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Abstract. Despite the success of constraint programming (CP) for scheduling,
the much wider penetration of mixed integer programming (MIP) technology
into business applications means that many practical scheduling problems are
being addressed with MIP, at least as an initial approach. Furthermore, there has
been impressive and well-documented improvements in the power of generic MIP
solvers over the past decade. We empirically demonstrate that on an existing set
of resource allocation and scheduling problems standard MIP and CP models are
now competitive with the state-of-the-art manual decomposition approach. Mo-
tivated by this result, we formulate two tightly coupled hybrid models based on
constraint integer programming (CIP) and demonstrate that these models, which
embody advances in CP and MIP, are able to out-perform the CP, MIP, and de-
composition models. We conclude that both MIP and CIP are technologies that
should be considered along with CP for solving scheduling problems.

1 Introduction

While scheduling is often touted as a success story for constraint programming (CP)
[l ,2] the wider success and exposure of mixed-integer programming (MIP) in many
domains means that, for many practitioners, MIP is the default first approach for a new
scheduling problem. In addition, driven to some extent by commercial pressures, there
have been substantial improvements in MIP solvers over the past five to ten years [3]]
while the progress of commercial constraint programming solvers has not been as well
documented. For scheduling researchers, these points suggest that solving scheduling
problems using state-of-the-art MIP solvers should be considered.

In parallel, hybrid optimization methods that seek to combine the strengths of CP
and MIP have been developed over the past 15 years [4]]. Most notably, state-of-the-art
methods for resource allocation and scheduling problems are based around logic-based
Benders decomposition (LBBD) [5L6]]. This loosely coupled hybrid approach decom-
poses the global problem into a master problem and a set of sub-problems, and then

* Supported by the DFG Research Center MATHEON Mathematics for key technologies in
Berlin.
3 “Scheduling is a ‘killer application’ for constraint satisfaction” [2] p. 269].
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employs an iterative problem solving cycle to converge to an optimal solution. One
drawback of LBBD is that the decomposition is problem-specific and requires signifi-
cant creative effort. In contrast, tightly coupled hybrids that seek to combine MIP and
CP into a single solver and model [[7/8] have not yet been widely applied to scheduling
problems, though there have been some positive results [9U10].

In this paper, we focus on scheduling problems that combine resource allocation and
scheduling. Given a set of jobs that each require the use of one of a set of alternative
resources, a solution assigns each job to a resource and schedules the jobs such that the
capacity of each resource is respected at all time points. Our investigations are presented
in two steps reflecting our dual motivations. First, to investigate the advances in MIP
and CP solving, we compare existing MIP, CP, and LBBD models. We show that while
LBBD performance is consistent with earlier results, the CP and MIP models have
substantially improved [6/11]. The improvements of MIP solvers lead to significantly
better performance than both CP and LBBD. Second, based on such observations, we
present two tightly coupled hybrids within the constraint integer programming (CIP)
framework [7U12]. One model is motivated by adding linear relaxations to a CP model
and while the other is based on adding global constraint propagation to a standard MIP
model. Experiments show that both CIP models achieve performance better than the
three previous models, both in terms of the number of problems solved and run time.

This paper does not introduce new modeling techniques or algorithms. For our com-
parison of standard MIP, CP, and LBBD models such novelty would defeat the purpose
and the CIP models are based on known linear relaxations and inference techniques.
The contributions of this paper lie in the demonstration (1) that, contrary to a common
assumption in the CP scheduling community, MIP is a competitive technology for some
scheduling problems and (2) that CIP is a promising hybrid framework for scheduling.

In the next section, we formally present the scheduling problems. Section [3]is our
first inquiry: we define the CP, MIP, and LBBD models and present our experimental
results. In Section[d] we formally present CIP while Section [5 defines two CIP models
of our scheduling problems. Then in Section [ we present and analyze our experiments
comparing the CIP models to the existing models. In Section[7] we discuss perspectives
and weaknesses of the work and, in the final section, conclude.

2 Problem Definition

We study two scheduling problems referred to as UNARY and MULTI [6413]. Both are
defined by a set of jobs, 7, and a set of resources, /. Each job, j, must be assigned to
a resource, k, and scheduled to start at or after its release date, R ;, end at or before its
due date, D, and execute for p;;, consecutive time units. Each job also has a resource
assignment cost, c;;, and a resource requirement, r;;. Each resource, k € K, has a
capacity, C, and the constraint that the resource capacity must not be exceeded at any
time. In the UNARY problem, the capacities of the resources and the requirements of
the jobs are one. For MULTI, capacities and requirements may be non-unary. A feasible
solution is an assignment where each job is placed on exactly one resource and no
resource is over capacity. The goal is to find an optimal solution, that is, a feasible
solution which minimizes the total resource assignment cost.
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Model 1. Constraint programming model.

3 Reconsidering MIP

In this section, we present existing models using CP, MIP, and LBBD to solve the
resource allocation/scheduling problems. We then present our results and a discussion.
Unless otherwise indicated, the details of these models are due to Hooker [6].

Constraint Programming We use the standard CP model for our problem, defining
two sets of decision variables: binary resource assignment variables, x 3, which are as-
signed to 1 if and only if job j is assigned to resource k, and integer start time variables,
S;, which are assigned to the start-time of job j. Model|[I|states the model.

The objective function minimizes the total resource allocation costs. Constraints
ensure that each job is assigned to exactly one resource. In Constraints , S, p.r., and
T.), are vectors containing the start time variables, the processing times, and demands
for each job if assigned to resource k. The global constraint opt cumulative is the
standard cumulative scheduling constraint [1] with the extension that the jobs are
optionally executed on the resource and that this decision is governed by the x.;, vector
of decision variables. The opt cumulat ive constraint enforces the resource capacity
constraint over all time-points. Constraints (3)) enforce the time-windows for each job.

We implement this model using IBM ILOG CP Optimizer. The assignment and
start time variables are realized via optional and non-optional I1loIntervalVar ob-
jects. For Constraints (I)) we used the I1oAlternative constraint linking the non-
optional start time variables to the corresponding optional assignment variables. The
optcumulative constraint is implemented by a cumulative constraint which con-
tains the corresponding optional I1loIntervalVar. For solving, we use the default
search of IBM ILOG CP Optimizer which is tuned to find good feasible solutions

Mixed Integer Programming One of the standard MIP models for scheduling prob-
lems is the time-indexed formulation. The decision variable, y;:, is equal to 1 if and
only if job j, starts at time ¢, on resource k. Sums over appropriate subsets of these vari-
ables form the resource capacity requirements. The model we use is defined in Model 2]
where Ty = {t — pjk,...,t}.

* Philippe Laborie, personal communication, November 23, 2011,
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Model 2. Mixed integer programming model with T} = {t — pjk, ..., t}.

As in the CP model, the objective function minimizes the weighted resource assign-
ment cost. Constraints (@) ensure that each job starts exactly once on one resource while
Constraints (3) enforce the resource capacities on each resource at each time-point.

To solve this model, we rely on the default branch-and-bound search in the IBM
ILOG CPLEX solver, a state-of-the-art commercial MIP solver.

Logic-based Benders Decomposition Logic-based Benders decomposition (LBBD)
is a manual decomposition technique that generalizes classical Benders decomposi-
tion [5]. A problem is modeled as a master problem (MP) and a set of sub-problems
(SPs) where the MP is a relaxation of the global problem designed such that a solution
generates one or more SPs. Each SP is an inference dual problem that derives the tight-
est bound on the MP cost function that can be inferred from the current MP solution.

Solving a problem by LBBD is done by iteratively solving the MP and then solving
each SP. If the MP solution satisfies all the bounds generated by the SPs, the MP solution
is globally optimal, as it is a relaxation of the global problem. If not, a Benders cut is
added to the MP by the violated SPs and the MP is re-solved. For models where the SPs
are feasibility problems, it is sufficient to solve the SPs to feasibility or generate a cut
that removes the current MP solution.

As in the CP model, the LBBD model defines two sets of decision variables: binary
resource assignment variables, x;, and integer start time variables, S;. The former
variables are in the master problem while the latter are in sub-problems.

Formally, the LBBD master and sub-problem models are defined in Model [3] The
objective function and first constraints are as in the CP model. Constraints (6) are a
linear relaxations of each resource capacity constraint. They state that the area of the
rectangle with height C}; and width from the smallest release date to the largest dead-
line must be greater than the sum of the areas of the jobs assigned to the resource.
Constraints (7) are the Benders cuts. Let H indicate the index of the current iteration
and Jpy denote the set of jobs that resulted in an infeasible sub-problem for resource &
in iteration h < H. The Benders cut, then, simply states that the set of jobs assigned to
resource k in iteration /i should not be reassigned to the same resource.

Because the MP assigns each job to a resource and there are no inter-job constraints,
the SPs are independent, single-machine scheduling problems where it is necessary to



Reconsidering Mixed Integer Programming and MIP-based Hybrids for Scheduling 5

(MP)  min > > cipag

keK jeT
st > a=1 VieJg
keK
Z DikTik Tik < Cr Vk e K (6)
jeg
o (—ap)>1 Vke K, Vhe{l,....,.H—-1} (1)
J€IThk
zr; € {0,1} VieJ,Vke Kk
(SP) cumulative(S,p.k, 7.k, Ck)
R; <5 <Dj —pjk Vi€ Tk
Sj €L Vi € Jk

Model 3. Logic-based Benders decomposition: master problem (MP) on top and sub-problem
(SP) for resource k below. Cr, = Cj - (maxjc7{D;} — minje 7{R;})

assign each job a start time such that its time window and the capacity of the resource
are respected. The SP for resource k can be formulated as a constraint program as in
Model (3] where J; denotes the set of jobs assigned to resource k. The components
of SP model are analogous to the parts of the CP model with the exception that the
resource assignment decisions are made before the SP models are created.

The MP and SPs are modeled and solved using SCIP [12]. We use the standard
bounds propagation [[1] of the cumulative constraint.

3.1 Experimental Results

Set up We use the following solvers: IBM ILOG CP Optimizer 2.3 for the CP model,
IBM ILOG CPLEX 12.2.0.2 running with one thread for the MIP model, and SCIP
version 2.0.1.3 integrated with SoPlex version 1.5.0.3 as the underlying linear pro-
gramming solver [14] for LBBD.

We use the scheduling instances introduced by [6]]. Each set contains 195 problem
instances with the number of resources ranging from two to four and the number of
jobs from 10 to 38 in steps of two. The maximum number of jobs for the instances with
three and four resources is 32 while for two resources the number of maximum number
of jobs is 38. For each problem size, we have five instances. For the MULTI problems
the resource capacity is 10 and the job demands are generated with uniform probability
on the integer interval [1, 9]. See [6] for further details w.r.t. generation of instances and
the appendix of [15] for further problem instance characteristics.

All computations reported were obtained on Intel Xeon E5420 2.50 GHz comput-
ers (in 64 bit mode) with 6 MB cache, running Linux, and 6 GB of main memory. We
enforced a time limit of 7200 seconds.

Results For each test set and model, Table [1| displays the number of instances for
which a feasible solution was found, for which the optimal solution was found (but
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Table 1. Results for each test set (UNARY and MULTI) and each model stating the number of
instances for which (i) a feasible solution was found, (ii) an optimal solution was found, (iii) an
optimal was found and proved, and (iv) the best known solution was found. Secondly we display
the shifted geometric mean for the total running time and time until the best solution was found.
The time to best solution is only an upper bound in case of IBM ILOG CPLEX since the output
log does not display this time point explicitly.

UNARY MULTI

CP MIP LBBD CIP[CP] CIP[MIP] CP MIP LBBD CIP[CP] CIP[MIP]
feasible 195 195 175 195 195 195 195 119 125 195
optimal found 187 195 175 194 195 119 148 119 124 142
optimal proved 19 191 175 194 195 5 109 119 123 133
best known found 187 195 175 194 195 130 155 119 124 146
total time 3793 12 28 10 19 6082 442 228 212 395
time to best 7 7 28 9 17 64 209 228 200 217

not necessarily proved), for which the optimal solution was found and proved, and for
which the best known solution was found. Optimal solutions are known for all 195
instances of the UNARY set. For the test set MULTI 181 optimal solutions are known.
We present the shifted geometric mearﬂ of the total solve time per instance and time
per instance to find the best solution found by the model. The shifted geometric mean
reduces the influence of outliers, both very hard and very easy instances. See [/] for
a detailed discussion of aggregate measures. For each category we used a bold font
to indicate the model(s) which performs best on a given criterion. We postpone the
discussion of the final two columns/models for each problem set to Section [6]

These results indicate the MIP and CP models out-perform LBBD on all measures
except the number of optimal found and proved where LBBD is superior to CP on both
problem sets and superior to MIP on the MULTT set. The CP and MIP models are able
to find feasible solutions for all instances while LBBD suffers from the fact that its
first globally feasible master solution is by definition optimal and, thus, there are no
intermediate feasible solutions available. The total run-times substantially favor MIP
on the UNARY set and LBBD on the MULTI set while the time to best solution found
favors CP, though tied with MIP on the UNARY problems.

The results indicate that MIP model performs best as it finds feasible solutions for
all problems, the most best known solutions, proves optimality for the greatest number
of instances overall, and delivers competitive run-times.

To complement this overview, Tables E] and E] present detailed results for the CP,
MIP, and LBBD models on the UNARY test set and MULTI test set, respectively. The
first two columns define the instance size in terms of the number of resources || and
the number of jobs |7|. For each model, we report the number of instances solved to
proven optimality “opt” and the number instances for which a feasible solution was
found, “feas”, including the instances which are solved to optimality. We again use the
shifted geometric mean with shift s = 10 for time and s = 100 for nodes. For each
resource-job combination, the best time is shown in bold. For clarity, when a model did
not solve any instances of a given size, we use ‘-’ instead of 7200 for the running time.

> The shifted geometric mean of values t1, . .., tn is ([](t: + ) /" _ s, with shift s.
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Table 2. Results for the UNARY test set. Each resource job combination consists of 5 instances
for a total of 195. The running times are rounded up and given in seconds.

Cp MIP LBBD CIP[CP] CIP[MIP]

K] |T| opt feas nodes time opt feas nodes time opt feas nodes time opt feas nodes time opt feas nodes time
2 10| 5 5 1160 0 5 5 1 0 5 5 62 I 5 5 20 0 5 5 1 1
12 | 2 5 2035k 511 5 5 8 1| 5 5 116 11 5 5 59 0 5 5 2 1
14 | 0 5134052k -5 5 77 1 5 5 567 2l 5 5 131 1 5 5 4 2
16 | 0 5134655k - 5 5 49 1| 5 5 81 1l 5 5 140 1 5 5 3 2
18 | 2 5 1065k 5100 5 5 130 2| 5 5 76 1 5 5 217 1 5 5 49 10
20| 0 5141258k - 5 5 669 11| 5 5 441 3 5 5 270 1] 5 5 23 10
22 | 0 5131240k -l 5 5 118 2| 5 5 19 2l 5 5 118 1 5 5 24 12
24 1 5 8424k 1924 5 5 149 3] 5 5 23 16/ 5 5 163 1] 5 5 77 24
26 | 0 5116549k - 5 51390 16| 4 4 301 34 5 5 440 1| 5 5 115 31
28 | 0 5125223k -| 4 5 2057 44| 5 5 511 29| 5 5 347 1| 5 5 337 54
30 | 0 5131057k -| 4 5 12k 160 4 4 1837 75| 5 5 2140 9| 5 5 261 68
32 | 0 5128084k - 5 5 257 6/ 5 5 28 3, 5 5 707 1] 5 5 117 56
34| 0 5126592k —-| 5 5 677 18 4 4 275 44 5 5 898 2| 5 5 190 60
36 1 5 22855k 1975 5 5 346 8 1 1 6572012 5 5 1015 2 5 5 199 100
38 1 5 7898k 1924 5 5 502 16| 3 3 984 425 5 5 1077 1] 5 5 135 88
3 10 3 5 249k 130] 5 5 1 0 5 5 357 I 5 5 74 1] 5 5 1 1
12| 0 5127293k -| 5 5 300 5 5 191 1 5 5 120 1] 5 5 1 1
14 | 0 5122754k -5 5 20 1 5 5 2760 515 5 315 1 5 5 4 3
16 | 0 5117197k - 5 5 109 1/ 5 5 224 11 5 5 323 1/ 5 5 6 4
18 | 0 5127851k - 5 5 112 1| 5 5 445 1l 5 5 633 2/ 5 5 6 5
20 | 0 5128864k - 5 5 374 2| 5 5 1899 9 5 5 957 3] 5 5 51 14
22 | 0 5126140k - 5 5 258 2/ 5 5 1107 13| 5 5 1218 4 5 5 19 13
24 | 0 5141427k - 5 5 587 7| 5 5 1746 6] 5 51642 71 5 5 24 13
26 1 5 13667k 1927 5 5 1081 13| 5 5 18k 58 5 5 5648 23| 5 5 46 19
28 1 5 17842k 1932 5 5 491 14| 5 53722 12| 5 5 4592 19| 5 5 221 69
30 | 0 5140336k -| 4 5 20k 175\ 3 3 12k 134 5 5 19k 104] 5 5 100 52
32 | 0 5130588k -] 5 5 4520 56| 4 4 6229 96| 5 5 11k 52| 5 5 492 83
4 10| 2 5 1806k 511 5 5 1 0 5 5 263 1 5 5 3 0 5 5 1 1
12 | 0 5114608k - 5 5 1 0 5 5 59 2l 5 5 8 1| 5 5 1 1
141 0 511018k -] 5 5 3 1) 5 5 2391 6 5 5 212 1 5 5 1 1
16| 0 5123967k - 5 5 37 1| 5 5 23k 42| 5 5 769 3] 5 5 4 4
18| 0 5120008k —| 5 5 7 1) 4 4 9858 62 5 S5 905 3] 5 5 2 3
20| 0 5118755k - 5 5 334 2| 5 5 20k 24| 5 52526 9 5 5 11 12
22 | 0 5127409k | 5 5 1665 9| 3 3223k 246 5 5 8913 45 5 5 114 28
24 | 0 5121900k - 5 5 679 5| 4 4 44k 71| 5 5 7356 39 5 5 58 24
26 | 0 5129501k —-| 5 5 4514 35| 4 4 152k 257 5 5 38k 180 5 5 83 44
28 | 0 5125818k -| 5 5 15k 144/ 4 4 243k 376 5 5 34k 176| 5 5 272 90
30| 0 512687k —-| 4 5 74k 508 4 4 130k 130] 4 5 64k 379 5 5 256 101
32 | 0 5121034k -| 5 5 13k 211 4 4 527k 483 5 5 74k 492 5 5 259 176
19 195 42746k 3793|191 195 501 112|175 175 2178 28|194 195 1112 110|195 195 66 19

The CP model only solved 19 and 5 instances, respectively, to optimality. Hence,
the “nodes” and “time” columns are meaningless since they do not reflect the strength
of finding good feasible solutions quickly. We include them for completeness.

For the UNARY problems, the MIP model preforms consistently better than LBBD
independently of the problem size. That changes for the MULTI test set where LBBD
solved more large problems but eventually also fails to find optimal solutions.

Since the MIP method provides a lower bound, we have a quality measure for the
solutions which are not solved to optimality. The mean percentage gap between its best
feasible solution and lower bound is 0.94%, demonstrating that MIP is able to find
proven good feasible solutions. In contrast, the other two models cannot provide any
quality information by themselves since LBBD cannot find any intermediate feasible
solutions for these problems and CP does not provide a lower bound.
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Table 3. Results for the MULTI test set. Each resource job combination consists of 5 instances.
This adds up to a total of 195. The running times are rounded up and given in seconds.

Cp MIP LBBD CIP[CP] CIP[MIP]

|K] | T| opt feas nodes time opt feas nodes time opt feas nodes time opt feas nodes time opt feas nodes time
2 10 ] 2 5 155k 509 5 5 38 I 5 5 52 I 5 5 153 0 5 5 6 2
12| 0 5149191k -] 5 5 147 Il 5 5 20 11 5 5 156 0 5 5 58 4
141 0 5160424k —| 5 5 202 1l 5 5 7 3 5 5 343 1l 5 5 130 5
16 | 0 5157963k —-| 5 512339 11| 5 5 4 171 5 5 3111 19| 5 53393 30
18 | 0 516718k —-| 4 5 25k 162 5 5 8§ 8| 5 5 9952 18] 5 5 11k 77
20| 0 5168579k -| 3 5 71k 401 3 3 21 158 5 5 4107 3] 5 5 11k 139
22 | 0 5171979k -] 2 5151k 1442 2 2 10 703| 2 2 339k 1325 4 5 417k 2550
24 | 0 5174557k -] 2 5305k 2197 0 O -| 3 3 354k 707 3 5 66k 1180
26 | 0 5175929k —-| 3 5578k 2977 1 1 1 5193 1 11715k 5440| 2 5 265k 3261
28 | 0 5173741k  —-| 2 5333k 2503] 3 3 11 441 3 3 91k 160 2 5 198k 2598
30| 0 5180622k | 1 5669k 5429 1 1 12972 0 02390k - 1 5182k 4180
32 | 0 5177335k -] 0 5 816k - 1 1 1 5680 3 3 495k 282| 1 5319k 6123
34 | 0 5182303k —| 1 5322k 3448 1 1 1 3015 1 12730k 1397| 2 5 90k 4265
36 | 0 5174330k -] 1 5446k 6052 1 1 1 2044 2 21314k 700/ 1 5 115k 4678
383 | 0 5181485k —| 0 5460k - 1 1 1 3369 3 36442k 1676)] 2 5 73k 5095
3 10| 2 5 1998k 510 5 5 7 0 5 5 50 I 5 5 85 0 5 5 4 1
12| 0 5139631k -] 5 5 100 1l 5 5 268 1| 5 5 481 1l 5 5 59 5
14| 0 5140052k - 5 5 220 1l 5 5 9 1l 5 5 1153 215 5 234 11
16 | 0 5156864k —-| 5 53622 14/ 5 5 88 10/ 5 5 15k 22| 5 5 3196 60
18 | 0 5151398k —| 5 5164k 429 5 53197 21| 4 4 202k 139] 4 5 18k 296
20 | 0 5165255k -| 4 5409k 1124 5 5 1614 6/ 5 5 38k 35 5 5 8427 253
22 | 0 5164038k —-| 2 5818k 6014 5 5 2254 149| 2 2 633k 1352 5 5 38k 505
24 | 0 5163222k —| 2 5439k 3253 1 1 813 2324 1 11661k 3165 4 5 41k 1001
26 | 0 5172448k —| 0 5452k —-| 4 4 1341 1351 3 3 651k 727 1 5269k 4467
28 | 0 5174771k -] 2 5200k 1829 0 O 9 -| 2 3 726k 1261 2 5 60k 3057
30 | 0 5179915k —| 0 5376k - 0 0 50 -| 0 01383k -| 2 5 75k 5435
32| 0 5177797k -] 0 5471k - 0 0 4 -| 1 11748k 6918 1 5 76k 6639
4 10| 1 5 16295k1926] 5 S5 13 0 5 5 14 I 5 5 106 I 5 5 1 1
12 | 0 5146205k - 5 5 18 1 5 5 31 1l 5 5 243 1l 5 5 6l 4
14| 0 5149547k - 5 5 210 1l 5 5 389 2l 5 5 1119 2 5 5 136 12
16 | 0 5145424k - 5 5 363 21 5 5 252 1| 5 5 1095 2005 5 79 11
18 | 0 5158035k -| 5 5 18k 38 5 5 3297 4 5 5 29k 21| 5 52395 67
20| 0 5150735k -] 5 5108k 309 5 5 1298 27| 5 5 35k 29| 5 5 3650 106
22 | 0 5147950k | 4 5 64k 324 5 5 3364 46| 4 4 78k 167 5 5 16k 544
24 | 0 5159240k -] 0 5535k - 2 21980 1446] 2 21797k 3021| 2 5 253k 4184
26 | 0 5172713k -| 0 5485k —-| 1 1 16k 4070 0 12437k -| 2 5170k 5530
28 | 0 5174855k -] 1 5370k 5034 1 1 680 2804 1 11310k 6575 2 5 101k 3885
30| 0 5169821k -] 0 5364k - 1 1 187 2105 0 01782k -| 0 5118k -
32| 0 5178032k - 0 5323k - 0 0 136 - 0 01973k - 0 5 8lk -
5195 122736k 6082|109 195 34k 442|119 119 223 228|123 125 62k 212|133 195 12k 395

Overall, all three approach fail to find optimal solutions when the problem size
increases. It is notable, that CP and MIP consistently provide high quality solutions
independently of the problem size.

3.2 Discussion

The results of the CP model are different form those of Hooker [6] and those recently
reproduced in [11]. It was shown that instances with 18 jobs or more could not be
solved to optimality and finding even feasible solution was an issue. Using IBM ILOG
CP Optimizer instead of IBM ILOG Solver and IBM ILOG Scheduler leads to a
significant increase in the number of instances for which a high quality solution was
found. However, it also leads to a substantial decrease in the number of instances solved
to proven optimality. From our perspective these results are an improvement over those
of Hooker as high quality solutions are found for all instances even though no quality
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gap is provided. We believe we are using substantially the same model as Hooker and
so attribute the difference in performance to the different underlying CP solvers.

Results on the LBBD for the UNARY instances were not presented by Hooker [6]] but
they are consistent with previously published results using a separate implementation
(using IBM ILOG CPLEX and IBM ILOG Scheduler) by Beck [13]]. In contrast, the
LBBD results for the MULTI test set, are not consistent with the previous implementa-
tion of Beck [13]. He solved 175 instances, 56 more than our LBBD model. We suspect
that using SCIP for solving the sub-problems instead of IBM ILOG Solver and IBM
ILOG Scheduler leads to these differences. We plan to further investigate this issue.

The MIP results are substantially better than those reported by Hooker. This model
significantly out-performs the CP and LBBD model for the UNARY test set. For the
MULTI instances, the MIP method is competitive to LBBD w.r.t. proven optimality
(taking into account the results of [13]]). Overall, however, the MIP approach domi-
nates this test set as well since it finds high quality solutions for those instances which
are not solved to proven optimality. As this was not the case on the MULTI problems in
Hooker’s 2005 paper [[6] and we use the same models, the difference appears to be due
to the changes in the underlying MIP solver in the past six years.

Given these results, the question arises of whether we can combine CP and MIP
techniques to achieve even better performance. As noted above, this question is not new
as attested by a number of publications over the past decade, notably [16/4], as well as
by the existence of the CPAIOR conference series. Indeed, the LBBD framework itself
is one positive answer to this question. However, the decomposition model suffers at
least two weaknesses. First, a workable decomposition is difficult to develop and then
limited in its applicability in the face of simple side constraints (e.g., the addition of
precedence constraints between jobs on different resources). Second, for some models
such as the ones studied here, LBBD cannot find good feasible solutions before finding
an optimal one. For larger problems, therefore, LBBD is likely not to return a usable
result at all, a significant weakness from a practical point of view.

In seeking to preserve the advantages of the MIP model, in the balance of this pa-
per, we focus on an alternative to decomposition-based hybridization in the form of
constraint integer programming (CIP). Our goals are:

— to increase problem solving performance through the combination of CP-style in-
ference and MIP-style relaxation (cf. [16])

— to maintain the modeling flexibility of CP and MIP

— to maintain the higher level structure and modeling flexibility of global constraints

4 Constraint Integer Programming

The power of CP arises from the possibility to directly model a given problem with a
variety of expressive constraints and to use constraint-specific inference algorithms to
reduce search. In contrast, MIP only admits very specific constraint forms (i.e., linear
and integrality constraints) but uses sophisticated techniques to exploit the structure
provided by this limited constraint language.
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Constraint Integer Programming (CIP) [[7112] seeks to combine the advantages and
compensate for the weaknesses of CP and MIP. Intuitively, a constraint integer pro-
gramming is a constraint program over integer and continuous variables with the re-
striction that, once the integer variables are assigned, the remaining problem (if any) is
a linear program. Formally a constraint integer program can be defined as follows.

Definition 1 ([7]). A constraint integer program (CIP) (€, I, ¢) consists of solving
¢ =min{c’z | €(z), z € R", z; € Z,Vj € I}

with a finite set € = {Cy,...,Cn} of constraints C; : R™ — {0,1}, i = {1,...,m}, a
subset I C N = {1,...,n} of the variable index set, and an objective function vector
c € R™. A CIP must fulfill the following additional condition:

Vir e zP (A Y) 0 {ze € RE | C(ir,z0)} = {zc €RY | Alzc <V} (8)
with C := N\ I, A’ € R**C and V' € R* for some k € Z>y.

Restriction (8] ensures that the sub-problem remaining after fixing all integer vari-
ables is a linear program. Note that the restriction does not forbid nonlinear or arbitrary
global constraints — as long as the non-linearity only refers to the integer variables.

The central solving approach for CIP as implemented in the SCIP framework [12] is
branch-and-cut-and-propagate: as in CP and MIP solvers, SCIP performs a branch-and-
bound search. Also as in MIP, a linear relaxation, strengthened by additional cutting
planes if possible, is solved at each search node and used to guide and bound search.
Similar to CP solvers, inference in the form of constraint propagation is used at each
node to further restrict search and detect dead-ends. Moreover, as in SAT solving, SCIP
uses conflict analysis and restarts.

CIP has been applied to MIP [12]], mixed-integer nonlinear programming [[17], non-
linear pseudo-Boolean programming [18]], chip verification [19], and scheduling [10].

5 Two CIP Models

We define two CIP models in this section: CIP[CP] is motivated by the CP model and
adds a linear relaxation and the solving techniques of modern MIP solvers to the CP
model defined above; the CIP[MIP] model is inspired by the standard MIP model and
can be seen as adding the cumulat ive constraint propagation plus (linear) channeling
constraints to the MIP model.

The CIP[CP] Model The CIP[CP] model is identical to Model (T)) with the addition
of a linear relaxation of the opt cumulative constraint. As noted below, a key part
of solving MIPs and CIPs is exploiting the linear relaxation of the problem. Therefore,
in addition to the constraints in the CP model, all of which are linear or integrality
constraints except cumulative, we add the opt cumulat ive linear relaxation rep-
resented by Constraint (6 of the LBBD model. Model 4] displays this model.

The default parameters of SCIP are used to solve the CIP[CP] model with the ad-
dition of a variable prioritization rule. The x;; are given higher branching priority than
the S;;, variables. This rule means that the start time variables will not be branched on
until all resource assignment variables are fixed.
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min g g Cjk Tjk

keEK jeT

st > ap=1 vieJ
ke
optcumulative(S.k, .k, P-k, -k, Ck) Vk e K
j;pa’krﬂc zjx < Ck - (fjnea;({Dj} - gfgg{Ra‘}) Vk e K
Rj < Sjr < Dj —pji VjeT, VkeK
zj, € {0,1} VieJ,Vke K
Sik €7Z VieJ,VkeK

Model 4. CIP[CP]: A CIP model based on the CP model.

The CIP[MIP] Model The CIP[MIP] model adds the optcumulative constraint
and channeling constraints to Model (2)). For completeness, the CIP[MIP] model is
formally defined in Model [5] Note that the opt cumulative constraint is logically
redundant as the MIP model is a complete model of the problem.

5.1 Solving CIP Models

To solve the CIP models, we use the hybrid problem solving techniques implemented
in SCIP. These techniques include the following.

Presolving. The purpose of presolving, which takes place before the tree search, is to
(1) reduce the size of the model by removing irrelevant information such as fixed vari-
ables; (2) strengthen the linear relaxation by exploiting integrality information; (3) ex-
tract structural information from the model which can be used for branching heuristics
and cutting plane generation. The optcumulative constraint can contribute to a
number of reformulations in presolving, including normalization of the demands and
the resource capacity and detection of irrelevant jobs that do not influence the feasi-
bility or optimality of the remaining jobs on that resource. For example, if a job has a
latest completion time which is smaller than the earliest start time of all remaining jobs
then this job is irrelevant and can be ignored.

Propagation. Following [20], we adapt the standard bounds-based cumulative propa-
gation: we propagate all jobs that are known to execute on the resource with standard
cumulative propagation [[L]. Then, for each job j that is still optional, we perform
singleton arc-consistency (SAC) [21]]: we assume that the job will execute on the re-
source and trigger propagationE] If the propagation derives a dead-end, we can soundly
conclude that the job cannot execute on the resource and appropriately set the x;;, vari-
able. Otherwise, we retain the pruned domains for the implicit .S, variable. In either
case, the domains of all other variables are restored to their states before SAC.

® SAC is similar but more general than the shaving technique in the scheduling literature [22]).
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J ~Pjk

D
min Z Z Z Cik Yjkt

keKjeg t=R;

Dj —pjk
s. t. Z Z Yrjt = 1 vieJ
kEK t=R;
E Z ik Yk < Ch Vk € IC, Vit
JET /€Ty
D; —p;
> Yk =5 VjeJ, VkeK ©)
t=R
D —p;
> toyiee =Sk VjeJ, Vkek (10)
t=R,
cumulative(S.k, Tk, Pk, Tk, Ck) Vk e K
yire € {0,1} VijeJ,Vke K, Vt
zjk € {0,1} VjieJ, Vkek
Sik €7Z VieJ,Vke Kk

Model 5. CIP[MIP]: A CIP model based on the MIP model with channeling Constraints (), (I0).

Linear Relaxation. The linear relaxation can be solved efficiently to optimality and
used in two primary ways: (1) to provide a guiding information for the search and (2) as
the source of a valid lower bound on the objective function.

Branching Heuristics. As in CP and MIP, the branching decisions are crucial in CIP.
SCIP uses hybrid branching, a heuristic which combines several metrics including cost,
propagation, and constraint activity to decide on a branching variable [23].

Conflict Analysis. The idea of conflict analysis is to reason about infeasible sub-problems
which arise during the search in order to generate conflict clauses [24425]]. These conflict
clauses are used to detect similar infeasible sub-problems later in the search. In conflict
analysis, a bound change made during the search needs to be explained by a set of
bounds which imply the bound change. The explanations are used to build up a conflict
graph which is used to derive valid conflict clauses. Each time the optcumulative
has to explain a bound change it first uses the standard cumulat ive explanation al-
gorithm [26/27] to derive an initial explanation. The explanation is extended with the
bounds of all resource assignment variables which are (locally) fixed to one. In case
of the SAC propagation, a valid explanation is the bounds of all resource assignment
variables which are fixed to one at the moment of the propagation.

6 Experiments with CIP

In this section we compare the two CIP models with the CP, MIP, and LBBD models
above. The experimental set-up and hardware is as defined in Section The CIP
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models are implemented with SCIP version 2.1.0.3 integrated with SoPlex version
1.5.0.3 as the underlying linear programming solver.

Table[T|shows that the CIP models are very strong performers with CIP[MIP] dom-
inating all other models on the UNARY instances and being competitive with MIP, the
best previous model, on the MULTI instances.

UNARY. On the UNARY problems (Table , the CIP[MIP] model finds and proves
optimality for all 195 problem instances while CIP[CP] times-out on only one instance
(with 30 jobs and 4 resources). This performance is better than the other models. Like
the CP and MIP models, the CIP models find feasible solutions for all UNARY instances.
The CIP[CP] model is slightly faster than the MIP model, about three times faster
than LBBD, and twice as fast as CIP[MIP]. However, note that number of nodes used
by CIP[MIP] is 20 times smaller than for CIP[CP] which has the second lowest shifted
geometric mean number of nodes. We return to this observation in Section|/| The node
count of LBBD includes only the nodes in the master problem search not the sub-
problems. The time, however, includes both master and sub-problem solving.

MULTI. The CIP models perform best in terms of optimality on the MULTI problem
instances (Table. CIP[MIP] finds and proves optimality for 133 of 195 while CIP[CP]
achieves the same on 123 instances. Recall that LBBD and MIP perform reasonably
with 119 and 109 instances solved to optimality respectively while CP finds and proves
only 5 optimal solutions. CIP[MIP], MIP, and CP find feasible solutions for all MULTI
instances while CIP[CP] only finds feasible solutions for 125 instances with 119 for
LBBD. Comparing CIP[MIP] and MIP on solution quality shows that CIP[MIP] has
a mean percentage-gap of 0.68%, better than MIP at 0.94%. Furthermore, CIP[MIP]
achieves an equal or better solution than MIP on 164 of 195 instances.

CIP[CP] and LBBD achieve similar run-times, about twice as fast as MIP. CIP[MIP]
is 1.8 times slower than CIP[CP] albeit while solving more problems.

7 Discussion

Existing Models The results of our first experiment indicate that both MIP and CP
technology have progressed to the point where LBBD is no longer the clearly dominant
choice for solving resource allocation and scheduling problems. Indeed, our results
indicate that a monolithic MIP model can perform much better across all criteria while
a monolithic CP model is a stronger at finding high quality solutions quickly.

We do not want to make broad generalizations from these results. In particular,
we have studied only two (closely related) types of resource allocation and scheduling
problems. Furthermore, the size of the time-indexed MIP model scales with the time
granularity and so there will clearly be a point where both CP and LBBD out-perform
it. Given the inability of the LBBD model to return intermediate solutions for these
problems, we can further predict that CP will eventually be the only usable model (of
these three) for finding feasible solutions as problem size scales.

However, we believe that our results support our claim that MIP-based models for
scheduling problems should be reconsidered in light of modern MIP solver perfor-
mance. At the least, we have shown MIP models to be competitive on a set of bench-
marks in the literature. As a point of even stronger support, commercial MIP solvers
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Table 4. Percentage of run-time over all instances spend for the linear relaxation and
optcumulative propagation.

CIP[MIP] CIP[CP]
Test set linear relaxation propagation linear relaxation propagation
UNARY 69.6 % 8.4 % 1.5% 96.2 %
MULTI 58.3% 22.6 % 1.7 % 123 %

now routinely make use of multi-core machines. Within the same computational envi-
ronment as above but using eight threads, the MIP model solves 192 and 136 instances
solved to optimality for UNARY and MULTI with shifted geometric run-times of 7.6 and
227.7 seconds, respectively.

The CIP Models Based only on the results presented above, we would be justified in
claiming that CIP is the best performing approach to the resource allocation/scheduling
problems investigated. Both CIP models find more optimal solutions and better feasible
solutions than the other techniques. The LBBD results, however, presented in [13] on
the same problems sets, albeit using a different implementation, underlying solvers, and
hardware, are superior to the CIP results here. Furthermore, Hooker [28] presents an
alternative LBBD formulation for these problems with a tighter relaxation and Benders
cuts. His empirical results, again using a different implementation and environment, are
better than the LBBD results above but appear to be worse than our CIP results.

Therefore, we choose to be cautious in our claims: our empirical results demon-
strate that a CIP approach to these scheduling problems is competitive with the LBBD
approach while being considerably better than the MIP and CP models: CIP models
currently represent the best non-decomposition-based approach to the problems stud-
ied. Together with the paper of Berthold et al. [[10], these results provide strong evidence
of the promise of CIP for scheduling.

Comparing the CIP Models. It may be useful to view the CIP models as identical
except for their linear relaxations. In the CIP[MIP] model, the channeling constraints
ensure that time-index variables and the start time variables are coherent and equiva-
lent. Both models therefore have resource assignment variables and start time variables,
bounds constraints, integrality constraints, and optcumulative constraints. How-
ever, CIP[MIP] has a substantially stronger and larger linear relaxation via the knapsack
constraints (Constraints (3)) and relaxed time-index variables) for each time point.

This perspective explains the relative performance of the two models. The LP relax-
ation for CIP[MIP] is harder to solve, due to its size, but provides better bounding and
heuristic guidance. As a consequence, we see between 5 and 20 times fewer nodes in
the CIP[MIP] runs than in the CIP[CP] runs (in shifted geometric mean on the UNARY
and MULTI instances, respectively). Furthermore, while CIP[MIP] solves more problem
instances, it tends to be much slower than CIP[CP] especially on instances with fewer
than about 22 jobs. Table 4] supports this analysis by showing that CIP[MIP] spends a
considerably larger percentage of its run-time solving the linear program than in prop-
agating the opt cumulat ive constraint. For CIP[CP], the reverse is true.

While the tighter but larger LP allowed the CIP[MIP] model to solve more instances
than CIP[CP] here, it also represents an inherent weakness of the model. The CIP[MIP]
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model, like the time-indexed MIP formulation, scales with the time granularity. For
problem instances with longer horizons, therefore, we would expect the CIP[CP] model
to out-perform CIP[MIP].

Comparing CIP and LBBD. There is also, of course, a relationship between the CIP
and LBBD models: as the LBBD sub-problem consists of a single cumulative con-
straint, any linear sub-problem relaxation used in the LBBD master problem can be
adapted for the optcumulative relaxation in the CIP model. However, there are
three primary differences between the ways in which the two approaches behave:

1. In the CIP models, the optcumulative constraint is propagated during the
search through the resource assignment variables while in LBBD the cumulative
propagation only occurs during sub-problem solving.

2. In LBBD, the sub-problems are solved independently while that decomposition is
not visible to the CIP models.

3. The hand-crafted Benders cuts in LBBD are likely much stronger than the no-goods
derived by conflict analysis in CIP.

8 Conclusion

In this paper, we conducted two related studies. First, we replicated an experiment with
three existing optimization models for a resource allocation and scheduling problem:
mixed integer programming, constraint programming, and logic-base Benders decom-
position. We used modern commercial solvers for the former two models and demon-
strated that the progress in commercial MIP and CP solvers means that the decomposi-
tion-based approach is no longer the dominant approach to such problems. Furthermore,
our results indicate that MIP models are, at the least, competitive with other existing
scheduling models. The results showed that the CP model can quickly find high qual-
ity solutions over the whole test set. Whereas the MIP model is able to provide strong
lower bounds. As CP scheduling researchers have tended to discount the usefulness of
MIP for scheduling problems, these results suggest that we should reconsider MIP as
one of the core technologies to solve scheduling problems.

Subsequently, motivated by our first experiment, we introduced two constraint in-
teger programming (CIP) models for the same scheduling problem and compared them
to MIP, CP and LBBD models. The basic goal was to couple the fast detection of fea-
sible solutions with the strong lower bound computation. Our results demonstrated that
on problems with unary capacity resources, both CIP models are able to solve more
problems to optimality that any of the other approaches. On problems with non-unary
resource capacity, both CIP models again out-performed the other models in terms of
number of instances for which the optimal was found and proved and, for one CIP
model, in terms of the quality of the solutions for the instances not solved to optimality.
As the LBBD results presented are weaker than previous results [28l13], we conserva-
tively conclude that the CIP models are at the least competitive with the state-of-the-art
and represent the current best non-decomposition-based approaches to these problems.
We believe that our results demonstrate that constraint integer programming is a promis-
ing technology for scheduling in general and therefore plan to pursue its application to
a variety of scheduling problems.
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