
Exploring the use of constraint programming for enforcing connectivity during
graph generation

Kenneth N. Brown1, Patrick Prosser2, J. Christopher Beck3 and Christine Wei Wu1

1Cork Constraint Computation Centre, Department of Computer Science,
University College Cork, Ireland.

{k.brown,cww1}@cs.ucc.ie
2Department of Computer Science, University of Glasgow, Scotland

pat@dcs.gla.ac.uk
3Toronto Intelligent Decision Engineering Laboratory,

Department of Mechanical and Industrial Engineering, University of Toronto, Canada.
jcb@mie.utoronto.ca

Abstract
We discuss the problem of using constraint models
to force generated graphs to be connected. We rep-
resent the graph as a simple adjacency matrix, and
then attempt to post constraints ensuring connectiv-
ity. Doing this using standard modelling primitives
is harder than expected, because of a problem with
our use of the implication operator. We develop a
global constraint connected-graph, and show that
it does save time over a class of graph generation
problems, but most of the gains come from sim-
ple pre-search filters applied to insoluble instances.
We finish by discussing a new constraint, graphi-
cal, which simply ensures that a partially instanti-
ated graph can be completed.

1 Introduction
We consider the problem of enforcing connectivity while gen-
erating graphs, a problem which appears embedded within
many practical applications. For example, in computational
chemistry, generating all possible single molecules formed
from a set of atoms involves generating connected multi-
graphs (where atoms are represented by vertices, valencies
are represented by the degrees, and bonds are represented by
edges [Wu, 2004]). In telecommunications network plan-
ning, base stations and hubs are vertices, the communica-
tion links are edges, and the network must clearly be con-
nected. From Operations Research, solving the Travelling
Salesperson Problem involves constructing a minimal length
path which visits every node: i.e. a connected graph where
every vertex has degree 2. Many such problems come with as-
sociated side constraints - for example, legal bonds between
atoms or acceptable delays on communications links - and
thus a constraint programming solution may be desirable. In
this paper, we attempt to develop a constraint model which
ensures that generated graphs are connected. There has been

some previous work on reasoning about properties of graphs
using constraint models. For example, [Le Pape et al., 2002]
present a new variable type representing paths in a graph,
[Sorlin and Solnon, 2004] discusses a global constraint for
graph isomorphism problems, and [Pesant and Soriano, 2002]
generate optimal cycle covers for networks. Graph theoretic
algorithms have been used extensively in constraint program-
ming; see [Régin and Gomes, 2004], for example, or [Simo-
nis, 2004] for a survey.

We have investigated a pure version of the problem, con-
structing undirected connected simple graphs with no self
loops over a set of vertices with known degrees. First, we
represent the undirected simple graphs with no self loops. We
assume that we are given an empty adjacency matrix and a
degree sequence, and that the search process is free to select
or reject any edge. Our goal is then to construct constraint-
based models which will allow us to enforce connectivity
while searching for all graphs that realise a given sequence.

We start by presenting a constraint encoding for produc-
ing the basic graphs with the specified degree sequence. We
then consider how to enforce connectivity on these graphs
using standard constraints, but run into problems. We then
present connected-graph, a global constraint for maintaining
connectivity, and describe a first implementation based on
a ‘connected-components’ algorithm. We then extend that
implementation to include some limited propagation. We
present some results indicating that the constraint is effective
when searching for all solutions to a set of degree sequences,
but that most of the efficiency gains come from sequences
which have no connected realisation. We then conclude by
looking at a more limited constraint which simply enforces
graphicality - that is, it ensures that a partially instantiated
graph can in fact be fully realised as a graph.

2 Graph Theory Preliminaries
We assume the necessary constraint background, and concen-
trate here on introducing the graph theory terminology and

basic graph-theoretic results. See [Gould, 1988] for a more
comprehensive (and readable) account.

A graph G is a finite set V = {1, 2, . . . , n} of vertices, and
a collection E = 〈{v1, w1}, . . . , {vm, wm}〉 of edges, where
each vi, wi ∈ V . If the edges in E are ordered pairs rather
than sets, then E is a directed graph. If the list E is a set, then
G is a simple graph; if E contains multiple copies of an edge,
then G is a multigraph. If {vi, vi} ∈ E, then it is a self-loop.
From now on, we will assume that E is an undirected simple
graph with no self loops.

If {vi, vj} ∈ E, then vi and vj are adjacent, and the edge
{vi, vj} is incident on both vi and vj . Two vertices v1 and vk

are connected if there is a path P = 〈v1, v2 . . . , vk〉 of ver-
tices, such that ∀i < k, {vi, vi+1} ∈ E. A graph is connected
if ∀i, j, vi and vj are connected. A connected component, Ci,
is a set of vertices such that vj ∈ Ci ↔ ∀vk ∈ Ci, vj and vk

are connected. A connected graph has exactly one connected
component. A connected graph must have at least n−1 edges.
A graph has at most n ∗ (n − 1)/2 edges.

The degree of a vertex is the number of edges incident on it.
By the handshaking lemma, the sum of the degrees of a graph
is twice the number of edges, and so, as a corollary, the sum
of the degrees of the vertices must be even. Let degree(i) be
the degree of vertex i. Then D = 〈degree(1), . . . degree(n)〉
is the degree sequence of G. We can now pose the question:
given V (a set of n vertices), and D (a sequence of n integers),
does there exist a graph G that realises D? That is, can we
construct an edge set E such that D is the degree sequence of
G = (V, E)? Further, can we ensure that G is connected, and
can we generate all connected realisations?

3 Representing a simple graph with a given
degree sequence

Representing a simple graph with a given degree sequence
[Shiloach, 1981] is straightforward. For a problem with n
vertices, we create an n × n array, A, of constrained 0/1
variables. When A[i, j] == 1, there is an edge from i
to j, and when A[i, j] == 0, there is no edge from i to
j. Since our graphs are undirected, we post the constraint
A[i, j] == A[j, i] for each pair i < j. To stop self-loops
we add the constraint A[i, i] == 0 for each i. If we then
assume that D is an array of integers, such that D[i] is the
degree of vertex i, then we can post a constraint for each
row i of A to ensure that the vertices have the correct degree:∑n

j=1
A[i, j] == deg[i].

We can now ask the solver to generate all solutions. For
a degree sequence 〈2, 2, 2, 1, 1〉, we will get 7 solutions: 6
of them will be paths, and the 7th will consist of two com-
ponents, one with a pair of connected vertices (K2), and
the other a triangle (K3). Obviously, the first 6 are isomor-
phic to one another, and the 7th is disconnected. For a de-
gree sequence 〈2, 2, 1, 1, 1〉, there are no solutions, since the
sum of the degree sequence is odd (from the handshaking
lemma). Our model, however, requires search to discover
this. Therefore there are two extensions required: we must
detect choices which would lead to a disconnected graph, and
need to identify degree sequences which cannot be realised.

4 Enforcing connectivity: a first attempt
Since connectivity is defined in terms of paths, we first con-
sidered enforcing connectivity by introducing n2 path vari-
ables P [i, j], such that P [i, j] = 1 if there is a path from
vertex i to vertex j. The path variables are not intended to
be decision variables, but will be linked to the adjacency ma-
trix. Each time we set two vertices to be adjacent (i.e. set
A[i, j] = 1), we also set P [i, j] = 1, and propagate recur-
sively to other path variables. Therefore, we add constraints
A[i, j] == 1 → P [i, j] == 1 (for each pair i and j), and
(P [i, j] == 1 ∧ P [j, k] == 1) → P [i, k] == 1 (for all
triples i, j and k). We then add a constraint forcing every
vertex to be connected to vertex 1: P [1, j] == 1 for all j.

But this doesn’t work, and it doesn’t work because we have
relied on implication. P → Q is true when Q is true and
P is false, so our encoding allows a solver to cheat by set-
ting P [i, j] = 1 whenever it needs to, and thus our path-
connectivity constraint is trivially satisfied.

5 Enforcing connectivity: a second attempt
There are two standard algorithms for checking whether or
not a graph is connected ([Cormen et al., 2001]): depth-first
search, and CONNECTED-COMPONENTS(G). This second
algorithm maintains data structures for the connected sub-
components of the graph, and its outline is sketched below:
Connected-Components(G)
1. for each vertex v in V(G)
2. MakeSet(v)
3. for each edge (v,u) in E(G)
4. if FindSet(u) != FindSet(v)
5. Union(u,v)

The algorithm starts by producing an individual set for
each vertex in the graph, such that each set contains exactly
one vertex. We then iterate over the edges of the graph, com-
bining pairs of sets if they span an edge. On termination, the
sets represent the components of the graph: if there is only
one component, then the graph is connected, and otherwise it
is disconnected. In line 2, MakeSet(v) creates a new set con-
taining vertex v. In line 4, FindSet(u) returns the set that con-
tains u, and in line 5, Union(u,v) unions the sets that contain
u and v. Let n be the number of vertices, and e the number of
edges. We assume that Union(u,v) takes O(|v|) operations,
and that FindSet and MakeSet take O(1). For a connected
graph, n − 1 of the edges require an application of Union
(to establish that each of the remaining vertices connects to
the first). In the worst case, the algorithm always applies
Union(u,v) when u is a singleton set, and |v| steps from 1 to
n−1, and thus requires 1+2+. . .+(n−1) = (n−1)n/2 op-
erations, plus n operations for the initial sets. Thus the worst
case running time is O(n2). The space required is O(n) (for
initially n singleton sets, and finally 1 set of n elements).

We attempted to construct a declarative constraint encod-
ing of this algorithm using the set variables provided in
Choco. We introduced n set variables S[i], where S[i] is ini-
tialised with the value {i}. Then, when search selects the
edge (i, j), we want to combine sets S[i] and S[j]. So we
added the following constraint:

∀i ∀j A[i, j] = 1 → ((S[i] ⊆ S[j]) ∧ (S[j] ⊆ S[i]))

But now we are back to the implication problem. We could
change A[i, j] above to P [i, j], and turn the implication into
an ‘if and only if’, but we then have the same problem as
before linking P [i, j] back to the adjacency matrix1. The
problem is because we are introducing auxiliary variables,
but only putting them on the right hand side of an implica-
tion, and thus setting the value of an auxiliary variable only
partially constrains the decision variables. In terms of the im-
plication operator, the auxiliary variables also need to appear
on the left hand side of an implication, with a decision vari-
able on the right (or on the right of a chain of implications).

6 Enforcing connectivity: the connected-graph
global constraint

Instead of continuing to try different modelling primitives2,
we decided to implement a global constraint, which uses the
CONNECTED-COMPONENTS(G) algorithm to update its
internal data structures (the components) after each value as-
signment. The constraint takes the adjacency matrix, A, and
the degree sequence, D, as input. It does no propagation, but
will be violated if all the variables in A are instantiated and
there is more than one component remaining. It requires three
reversible data structures (reversible so that their values can
be restored when the search process backtracks). C is a list
of components, and each component is a list of integers rep-
resenting vertices. P is an array maintaining for each vertex
the index of its component in C. c is the number of compo-
nents. To initialise, we create a unique component for each
vertex. Whenever the search process assigns the value 1 to
A[i, j] (i.e selects the edge between i and j), where i and j
were in different components, we update the data structures.
We take the smaller of the two components, move all of its
vertices into the larger, and update P for each of those ver-
tices to point to the new component. Finally, we decrement
c. When we reach a leaf node, if c == 1 then the graph is
connected; if c > 1, then the graph is disconnected.

The data structures require O(n) space, to store each vertex
in a component, and to store the names of the components. If
we assume that we always merge the shorter component into
the larger, the updating requires at most n/2 operations to
merge two components, and n/2 operations to update P , and
thus is O(n) at each node of the search tree. However, on a
complete branch from root to leaf, we require n − 1 updates,
and thus O(n2) operations. This is the same cost as it would
be to run the CONNECTED-COMPONENTS(G) algorithm
afresh at each leaf node. In addition, however, we have the
cost of updating the data structures on the branches that fail
because of other constraints. Therefore, if this constraint is to
be effective, we need to extend it by pruning or by detection
of search nodes which have no connected realisations below
them in order to save enough operations to account for the
overhead.

1and we also found that Choco wouldn’t let us do it anyway,
reporting that the opposite of ⊆ was not defined.

2although we have one more model, suggested by Ian Miguel,
which we have not yet tried.

7 Adding propagation to connected-graph
We can improve the constraint by reasoning about the resid-
ual degrees of vertices and components during search, and by
including some of the basic graph theory results. During a
search, if vertex i has had k of its possible edges instantiated,
then its residual degree is degree(i)− k. Let the residual de-
gree of a component be the sum of the residual degrees of its
vertices. The residual degree of a partially instantiated graph
is the sum of the residual degrees over all vertices. To main-
tain information on the residual degrees, we need the follow-
ing additional reversible data structures:

• an array RV of integers, maintaining the residual degree
of each vertex. Each time we instantiate A[i, j] to 1, we
subtract 1 from RV [i] and RV [j].

• an integer r, maintaining the residual degree of the par-
tial graph. Each time we instantiate any edge variable
to 1, we subtract 2 from r (since each edge reduces two
individual residual degrees by 1 each).

• an array RC of integers, maintaining the residual degree
of each component. Each time we instantiate A[i, j] to
1, we find the components p and q of i and j respec-
tively using the array P . If they are the same component
(i.e. p == q), then we subtract 2 from RC[p]; if they
are different components, then we will merge them as
before. Let p′ be the merged component. We then set
RC[p′] = RC[p] + RC[q] − 2.

We can identify a number of cases in which violations can be
identified on initialisation:

1. if any vertex has initial degree of less than 1, and there is
more than 1 vertex, then no connected graph is possible,
since that vertex must be isolated;

2. if any vertex has an initial degree of more than n−1, then
no graph is possible, since there are not enough other
vertices with which to create the edges;

3. if the sum of the initial degrees is odd, then no graph is
possible, by the handshaking lemma;

4. if the sum of the initial degrees is less than 2n − 2,
then no connected graph is possible, since there are not
enough edges to connect all the vertices;

5. if the sum of the initial degrees is greater than n ∗ (n −
1), then no graph is possible, since there are not enough
vertices to occupy all the edges;

We can also identify two cases for intermediate search nodes
where the constraint must be violated, based on residual de-
gree:

6. if the residual degree of a component drops to 0, and
there is more than one component, then no completion
of the partial graph can be connected, since all vertices
in the component have used up all the edges, and none
of those edges connect to the second component (by the
definition of a component), then the first component can
never become connected to the second;

7. if the residual degree of the graph drops to less than
2c − 2, where c is the number of components, then no

completion of the partial graph can be connected. This
is by analogy to 4, in which we replace vertices by com-
ponents - in order to ensure one component is connected
to all the others, we will need to use at least one edge per
remaining component (i.e. c− 1 edges). Each edge con-
tributes 2 to the residual degree, and therefore we need
at least 2c − 2 edges to get a connected graph.

Finally, based on these violation checks, we can develop the
following propagations:

8. if n > 2, then for all pairs of vertices i and j with initial
degree of 1, force i and j to be not adjacent (since if we
connect two vertices with degree of 1, then they must
form an isolated component, and cannot be connected
into a larger graph).

9. if C[i] is a component with residual degree of 2, and
there is more than one component, then if there is a pair
j and k in C[i] each with residual degree of 1, force j
and k to be non-adjacent (if there is such a pair, then
if we were to connect them together, there would be no
more edges able to be instantiated incident on C[i], and
so C[i] could not be connected to the rest of the graph).
We apply this when RC[i] is reduced to 2.

10. if C[i] and C[j] are two components with residual de-
gree of 1, and there are more than two components, for
the vertices v in C[i] and w in C[j] with residual de-
gree of 1, force v and w to be non-adjacent (since each
component must have exactly one vertex with residual
degree > 0, and if we connect them, then the new com-
bined component would have residual degree of 0, and
so could not be connected to the rest of the graph). We
apply this when RC[i] is reduced to 1.

11. if the residual degree of the graph is 2c − 2, and there
is more than one component, then for all components
with residual degree greater than 1, force all pairs of ver-
tices internal to the component to be non-adjacent (by
the same analogy to 7, we need at least c − 1 edges to
connect up the components, and hence residual degree
at least 2c − 2, so if we connect two vertices that are
already in the same component, then we will not have
enough edges remaining to connect up the other compo-
nents). We apply this when r is first reduced to 2c − 2.

Propagation 8 is carried out at initialisation; the rest are car-
ried out at nodes of the search tree.

The space requirement is still O(n). The updates to the
data structures are O(n) as before, since the new updates each
require only O(1). The initialisation takes O(n2), because of
8. For propagation 9 we require at each search node at most
n checks to find 2 vertices. For propagation 10, we require
at most n checks to find both vertex v and all other vertices
representing w. For propagation 11 there are at most (n−1)2

pairs, and thus we require O(n2) checks. All four propaga-
tions only force values of 0, but are only triggered by vari-
ables being set to 1, and thus there is no cycle of propagators
(although they may be invoked again if the other constraints
set a variable to 1).

8 Experiments on connected-graph

We have implemented the adjacency matrix and the global
connected-graph constraint in Ilog Solver 6.0. Each of the
dead-end checks and propagations can be switched on or off
independently. Recall that our purpose is not to generate all
connected graphs as quickly as possible, but to develop a con-
straint that can be used with an external search procedure on
problems with side constraints, to enforce connectivity. In
particular, we have not considered symmetry, and there are
many symmetries in these problems. We view symmetry as
a separate feature, to be maintained independently from con-
nectivity, and in other work we have begun to detect sym-
metries during the search [Wu, 2004]. However, we do want
to evaluate the effectiveness of our model, and so we have
tested it on pure connected graph generation problems. We
have generated all possible degree sequences of lengths rang-
ing from 6 to 10, with maximum vertex degree of 4. For
each of these sequences, we then search for all possible so-
lutions, and we have recorded for each length the total num-
ber of solutions (i.e. connected graphical realisations), the
total number of backtracks-on-failure, and the total running
time. We have run the algorithm with full propagation (all),
with propagation 11 turned off (-11), with propagation only
in the initialisation phase (init), with the odd degree initiali-
sation filter and leaf node violations checks only (even), and
with only checks at the leaf nodes (leaf) (i.e. no propaga-
tion and no other violation checks). We use the variable or-
dering heuristic IloChooseMinSizeInt (minimum do-
main), and a lexicographic value ordering. The experiments
were carried out under Linux, with a 2.6 MHz processor. The
results are presented in table 1.

Running with the leaf node violation checks only (leaf)
is significantly slower than the four other methods which
use some degree of filtering. However, we note that most
of the improvement in running time for the other methods
comes from even, the simple initialisation filter which fails
sequences with an odd sum (which cannot have graphical re-
alisations). The search with full propagation, all, is reducing
the backtracks on failure by up to 10% compared to even, but
is not significantly faster - in fact, for some of the smaller n,
it is slightly slower. There could be a number of reasons for
this. It is possible that our implementation is inefficient. Sec-
ondly, our propagations are relatively shallow - that is, they
remove values which are likely to have been discovered at the
next one or two depths in the tree, and so much of the work
may be wasted. Finally, in this paper, we have only reasoned
about residual degrees. We have not yet considered the conse-
quences of setting an edge variable to 0 (i.e. rejecting the edge
from the graph). We expect to be able to do more reasoning
about the absence of edges to discover that subcomponents
cannot be connected. However, even if we do improve our
algorithms, when we compare the total fails for even with the
total number of solutions, it appears that there is simply not
that much propagation to be done - once we filter out those
sequences of odd degree, only approximately 15% of the leaf
nodes in the full search tree are not connected.

n # solutions fails time
6 84 703 all 193 0.14

-11 193 0.14
init 219 0.15
even 259 0.13
leaf 1243 0.18

7 120 10544 all 1811 0.37
-11 1817 0.43
init 2112 0.38
even 2303 0.40
leaf 18449 0.58

8 165 249569 all 38538 4.56
-11 38604 4.48
init 42512 4.46
even 44010 4.51
leaf 379152 8.25

9 220 7742661 all 1169783 127.19
-11 1170429 127.08
init 1230572 126.70
even 1242061 127.03
leaf 11764916 241.37

10 286 345052878 all 51550046 5717.91
-11 51558645 5750.86
init 52780580 5731.06
even 52916767 5733.59
leaf 478361894 10420.87

Table 1: finding all solutions for all degree sequences: n is
the length of the sequence, # is the number of sequences of
that length, solutions is the number of connected realisations,
fails is the number of backtracks-on-failure for each method,
and time is the total time in seconds for each method. Note
that solutions, fails and time are the aggregated results over
all sequences of the indicated length.

9 The Erdös-Gallai theorem
Since the solution density is so high in realisable sequences,
it appears that graphicality may be more significant than con-
nectivity, and so cheaper propagation to cut out non-graphical
sequences, followed by leaf node checks on connectivity,
might improve efficiency. We have therefore begun to inves-
tigate specific graphicality properties. The Erdös-Gallai the-
orem [Erdös and Gallai, 1960] states when a given degree se-
quence is graphical, i.e. under what conditions a graph can be
produced with a given degree sequence. The theorem states
that given a degree sequence σ = d1 ≥ d2 ≥ ... ≥ dn, this is
graphical if and only if equation (1) holds for all k < n.

k∑

i=1

di ≤ k(k − 1) +

n∑

i=k+1

min(k, di) (1)

This leads to the Havel-Hakimi algorithm [Havel, 1955;
Hakimi, 1962] for a realisation of that sequence. We repro-
duce it below, in a version taken from [Gould, 1988], and it
tests if the degree sequence σ is graphical.

1 If there exists an integer d in σ such that d > n− 1 then
halt and report failure. That is, we cannot have a vertex
that is adjacent to more than n − 1 other vertices.

2 If there are an odd number of odd numbers in σ halt and
report failure. That is, there must be an even number of
vertices of odd degree.

3 If the sequence σ contains a negative number then halt
and report failure.

4 If the sequence σ is all zeros then halt and report success.

5 Reorder σ such that it is non-increasing.

6 Delete the first term d1 from σ and subtract one from the
next d1 terms to form a new sequence. Go to step 3

Note that sequence σ = 0, 0, 0, 0 is graphical and realisable,
and so there is nothing in the theorem or algorithm that states
that the graph must be connected.

10 Using the Havel-Hakimi algorithm as a
constraint

In the generation of graphs, edges are selected or rejected by
the search process. Could the selection or rejection of an edge
result in a dead end because equation (1) is violated? The
answer is yes, and the (existence) proof follows.

Proof: Assume we have a degree sequence S = 2, 1, 1.
This is graphical and can be realised as the path graph.
Assume also that vertex v1 has been constrained to have a
degree of 2, and vertices v2 and v3 are to have a degree of
1. Further assume that the search process starts by selecting
the edge (v2, v3). In the residual graph v1 must have degree
2 and vertices v2 and v3 have a residual degree of 0. This is
not a graphical sequence. 2

Therefore we should expect that our search process can
generate dead-ends because equation (1) is violated, and early
detection of this may result in reduced search effort. Note that
step 2 of the above algorithm is redundant within the con-
straint encoding, i.e. if at the top of search the sequence σ
contains an even number of odd numbers this will continue to
be true during search. We prove this by considering 3 cases.

Proof: In case (1) search selects an edge (v, u) where the
residual degree of v and u is even. When we add the edge
we decrement the residual degrees and we now have two
more vertices of odd degree. (2) search selects (v, u) and
both vertices have an odd residual degree. When the edge
is added we decrement the residual degrees and we remove
two vertices of odd degree. (3) v has odd residual degree
and u has even residual degree or conversely v has even
residual degree and u has odd residual degree. We decrement
both residual degrees and have the same number of vertices
of even and of odd residual degree. Consequently such a
constraint would serve no purpose. 2

It is worth noting that in [Mihail and Vishnoi, 2002] it is
claimed that for a sequence to be graphical and potentially
connected it is necessary and sufficient that (1) holds and that
the sum of the degrees is at least 2(n − 1), i.e. there are at
least enough edges to produce a spanning tree. However, no
algorithm is given for realising this other than to produce a
spanning tree and then use the Havel-Hakimi algorithm on
the residual graph.

n nGSeq nCSeq Sol nodes- nodes+
4 11 6 9 6 9
5 31 19 61 62 62
6 102 68 787 1018 1017
7 342 236 15384 21329 21286
8 1213 863 580950 843812 841574

Table 2: Effect of the graphical constraint: n is the length of
the sequence (with no maximum degree), nGSeq is the num-
ber of graphical sequences, nCSeq is the number of those
that had connected realisations, Sol is the total number of
connected realisations, nodes- is the number of nodes gen-
erated during the search without the graphical constraint, and
nodes+ is the number of nodes generated using the constraint.

We have coded up the Havel-Hakimi algorithm as a con-
straint graphical. The constraint takes as arguments an ad-
jacency matrix of 0/1 constrained variables and a degree se-
quence. The constraint is tested whenever an edge is selected
or rejected, i.e. a test is performed to determine if the residual
graph continues to be graphical. If the residual graph is not
graphical a contradiction is raised and a backtrack is forced.
We have tested the effect of the constraint, and the resuls are
shown in Table 2. Note that the results in this table are not
comparable to the results in Table 1, since we have used a dif-
ferent experimental set-up. In particular, the sequences now
have no maximum degree, only graphical initial sequences
were considered, and a different connectivity filter was ap-
plied during search. From the results, we can see that the
graphical constraint does propagate, even in the search for
realisations of sequences that are initially graphical, and that
the effect does increase as we move to larger problems.

11 Conclusion and Future work
We have described some explorations of constraint program-
ming in graph generation, concentrating on forcing the graphs
to be connected. We have presented a straightforward en-
coding of the simple graph generation problem. We have
briefly described two failed attempts to model the connectiv-
ity constraint using standard modelling primitives. We have
discussed a new global constraint, connected-graph, and de-
veloped some violation checks and propagations. We have
tested the constraint on some pure generation problems, and
we have shown that the constraint does reduce search time.
However, perhaps because of the very high solution density,
almost all of the efficiency gains come from a filter reject-
ing non-graphical degree sequences, rather than from reason-
ing about connectivity. We have then discussed an alternative
constraint, graphical, which simply enforces graphicality.

As stated in the introduction, the problem of enforcing con-
nectivity during graph generation has practical applications,
and we are continuing to develop constraint-based solutions
for those applications. Although there does not appear to be
much scope for propagation in the pure problem, based on
the ratio of the number of solutions to the total leaf nodes,
we intend to develop better propagators based on reasoning
about the rejection of an edge, and on other methods based
on graph theory. Our first step will be to unify the different

methods discussed in this paper. We will also compare the
degree-sequence model to the cardinality matrix constraint
[Régin and Gomes, 2004], which could be used to enforce
a degree sequence. The most scope for improvement in the
application problems is in symmetry detection, and we have
begun to categorize and break the symmetries in the graphs.

12 Acknowledgments
We thank Ian Miguel and Barbara Smith for comments on
an earlier version of this paper. We are grateful for support
from Science Foundation Ireland ((00/PI.1/C075), Enterprise
Ireland (SC/2003/81) and Ilog SA.

References
[Cormen et al., 2001] T. H. Cormen, C. E. Leiserson, R. L.

Rivest, and C. Stein. Introduction to Algorithms. 2001.
[Erdös and Gallai, 1960] P. Erdös and T. Gallai. Graphs with

prescribed degrees of vertices. Mat. Lapok, 11:264–274,
1960.

[Gould, 1988] R. J. Gould. Graph Theory. 1988.
[Hakimi, 1962] S.L. Hakimi. On the realization of a set of

integers as degrees of the vertices of a graph. J. SIAM
Appl. Math., 10:496–506, 1962.

[Havel, 1955] V. Havel. A remark on the existence of finite
graphs. Casopis Pest. Mat., 80:477–480, 1955.

[Le Pape et al., 2002] C. Le Pape, L. Perron, J.-C. Régin,
and P. Shaw. Robust and parallel solving of a network de-
sign problem. In CP2002 (ed. P. van Hentenryck), LNCS
2470, pages 633–648, 2002.

[Mihail and Vishnoi, 2002] M. Mihail and N. K. Vishnoi. On
generating graphs with prescribed vertex degrees for com-
plex network modelling. In ARACNE 2002, pages 1–11,
2002.

[Pesant and Soriano, 2002] G. Pesant and P. Soriano. An op-
timal strategy for the constrained cycle cover problem. An-
nals of Mathematics and Artificial Intelligence, 34:313–
325, 2002.

[Régin and Gomes, 2004] J.-C. Régin and C. Gomes. The
cardinality matrix constraint. In CP2004 (ed. M. Wallace),
LNCS 3258, pages 572–587, 2004.

[Shiloach, 1981] Y. Shiloach. Another look at the degree
constrained subgraph problem. Inf. Proc. Letters, 12:89–
92, 1981.

[Simonis, 2004] H. Simonis. Constraint applications using
graph theory results. CPAIOR 2004 masterclass, 2004.
http://www.icparc.ic.ac.uk/ hs/.

[Sorlin and Solnon, 2004] S. Sorlin and C. Solnon. A global
constraint for graph isomorphism problems. In CPAIOR
2004, LNCS 3011, pages 287–301, 2004.

[Wu, 2004] C. W. Wu. Modelling chemical reactions using
constraint programming and molecular graphs. In CP2004
(ed. M. Wallace), LNCS 3258, page 808, 2004.

