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In the last decade, decision diagrams (DDs) have been the basis for a large array of novel approaches for

modeling and solving optimization problems. Many techniques now use DDs as a key tool to achieve state-

of-the-art performance within other optimization paradigms, such as integer programming and constraint

programming. This paper provides a survey of the use of DDs in discrete optimization, particularly focusing

on recent developments. We classify these works into two groups based on the type of diagram (i.e., exact

or approximate) and present a thorough description of their use. We discuss the main advantages of DDs,

point out major challenges, and provide directions for future work.
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1. Introduction

Decision diagrams (DDs) are graph-based structures with a large number of applications

in computer science and operations research literature. While they have a long history in

the Boolean function community (Akers 1978, Bryant 1986, Wegener 2000), their use in

optimization is much more recent. For example, in the past ten years, researchers have

successfully applied DDs to methodologies in scheduling (Cire and van Hoeve 2013), routing

(Kinable et al. 2017, Castro et al. 2020a), and healthcare applications (Guo et al. 2021,

Riascos-Álvarez et al. 2020), to name a few, and related literature and applications are

growing steadily.

In the context of optimization, a DD is a directed acyclic graph that encodes solutions

and/or their associated costs as directed paths from a root node to a terminal node. The
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benefit of this representation is that it provides an explicit and potentially compact rep-

resentation of the solution space of a problem that exposes network structure. Such a

network can be manipulated directly, e.g., to obtain valid bounding procedures (Bergman

et al. 2014c), or can be integrated with other optimization techniques. For example, DDs

have been combined with integer programming (IP) solvers using a network-flow formu-

lation over the underlying graph (Behle 2007) and with constraint programming (CP)

technologies by developing inference procedures (Andersen et al. 2007).

This paper provides an in-depth treatment of DDs for discrete optimization with a focus

on recent advances. Our objective is to provide a systematic classification of the field,

identify unifying themes, and discuss challenges and opportunities that may be the basis

of new research. Specifically, our classification partitions the area into the two pervasive

DD types in related works, i.e., exact and approximate DDs. Exact DDs encode the exact

problem, in that any property that holds for the DD is also valid for the original problem.

Approximate DDs, in contrast, provide an over- or under-approximation of the feasible

space or the objective function, and are the basis of combined and enumerative approaches

(e.g., Bergman et al. 2016b).

Using this classification, we divide works employing exact DDs into four themes based on

the methodology’s purpose: (i) modeling, (ii) feasibility checking, (iii) solution extraction,

and (iv) solution-space analysis. Table 1 presents the paper classification for exact DDs

and its respective sub-classes. Similarly, we divide the works that consider approximate

DDs into three themes: (i) approximate DD compilation, (ii) DD-based bounds, and (iii)

CP propagation. Table 2 summarize the works that focus on approximate DDs for each

class and sub-class.

The paper is organized as follows. Section 2 provides a background on DDs and the

notation used throughout the paper. Section 3 presents works related to exact DDs, high-

lighting recent advances in the field. Similarly, Section 4 focuses on approximate DDs and

novel methodologies in the literature. We concluded this survey in Section 5 with final

remarks and future work directions.

2. Preliminaries

We now formally define DDs and present the notation used throughout the paper. We start

with the DD encoding of optimization problems in Section 2.1, show the connections to
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Table 1 Paper classification for exact decision diagrams.

Sub-class Papers

Modeling

Recursive Model Hooker (2013), Hooker (2017), Bergman et al. (2016b).

Network Flow Formulation

Behle (2007), Bergman and Cire (2016a), Latour et al. (2017),
Haus et al. (2017), Bergman and Cire (2018), Latour et al. (2019),
Serra et al. (2019), Hosseininasab and van Hoeve (2021), Cire et al. (2019),
Ploskas et al. (2019), Bergman et al. (2019), Lozano et al. (2020a), Lozano et al. (2020b),
Nadarajah and Cire (2020), Bergman and Lozano (2021), Mehrani et al. (2021).

Global Constraints

Andersen et al. (2007), Cheng and Yap (2008), Cheng and Yap (2010),
Perez and Régin (2014), Amilhastre et al. (2014), Perez and Régin (2015b),
Perez and Régin (2015a), Perez and Régin (2016), Roy et al. (2016),
Perez and Régin (2017c), Perez and Régin (2018), Verhaeghe et al. (2018),
Vion and Piechowiak (2018), Verhaeghe et al. (2019), de Uña et al. (2019).

Continuous Variables Davarnia (2021), Salemi and Davarnia (2021).

Feasibility Checking

General Nishino et al. (2015), Xue and van Hoeve (2019).

Cutting Planes
Becker et al. (2005), Behle (2007), Tjandraatmadja and van Hoeve (2019),
Davarnia and van Hoeve (2021), Castro et al. (2021).

Benders Decomposition
Lozano and Smith (2018), Guo et al. (2021),
Salemi and Davarnia (2021), Bergman and Lozano (2021).

Inference
Subbarayan (2008), Hadžić et al. (2009), Gange et al. (2011),
Gange et al. (2013), Kell et al. (2015), Jung and Régin (2021).

Solution Extraction

General Hadžić et al. (2004).

Column Generation
Morrison et al. (2016), Kowalczyk and Leus (2018),

Raghunathan et al. (2018), Riascos-Álvarez et al. (2020).

Solution-Space Analysis

Post-Optimiality Analysis Hadžić and Hooker (2006), Hadžić and Hooker (2007), Serra and Hooker (2020).

Solution Enumeration
Bergman and Cire (2016b), Haus and Michini (2017),
Suzuki and Minato (2018), Suzuki et al. (2018), Bergman et al. (2021).

Polyhedral Analysis Behle and Eisenbrand (2007), Tjandraatmadja and van Hoeve (2019).

recursive models in Section 2.2, and discuss basic approximation concepts in Section 2.3.

While there are several DD variants in the literature (see, e.g., Wegener 2000), we primarily

focus on ordered decision diagrams. That is, layered diagrams where each layer is associ-

ated with a single variable. This DD variant is the most commonly used by the discrete

optimization community and, as such, most contributions are based on this structure.

2.1. DD Representation of Optimization Problems

In this paper, we consider maximization problems P of the form

max
x

{
f(x) : x∈X

}
. (P)

where x = (x1, x2, . . . , xn) is a tuple of n variables, X ⊂ Zn is a finite (integer) feasible

space, and f :Zn→R is the objective function. Moreover, we let I ≡ {1, . . . , n} denote the
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Table 2 Paper classification for approximate decision diagrams.

Sub-class Papers

Approximate DD Compilation

Top-down and Hadžić et al. (2008a), Bergman et al. (2011), Bergman et al. (2014d),
Iterative Refinement Frohner and Raidl (2019a), Frohner and Raidl (2019b),

de Weerdt et al. (2021), Horn et al. (2021).

Other Construction Cire and Hooker (2014), Bergman and Cire (2016c),Bergman and Cire (2017),
Algorithms Römer et al. (2018), Horn et al. (2021), Horn and Raidl (2021).

Variable Ordering
Behle (2008), Bergman et al. (2011), Cappart et al. (2019),
Karahalios and van Hoeve (2021), Parjadis et al. (2021).

DD-based Bound

Dual Bounds

Andersen et al. (2007), Cire and van Hoeve (2013), Kell and Van Hoeve (2013),
Bergman et al. (2014c), Hooker (2017), Kinable et al. (2017),
van den Bogaerdt and de Weerdt (2018), Maschler and Raidl (2018), Castro et al. (2019),
Castro et al. (2020a), Castro et al. (2020b), van Hoeve (2020), van Hoeve (2021).

Lagrangian Bounds
Bergman et al. (2015a), Bergman et al. (2015b), Hooker (2019),
Castro et al. (2020a), Tjandraatmadja and van Hoeve (2020), Lange and Swoboda (2021).

Primal Bounds
Kell and Van Hoeve (2013), Bergman et al. (2014d),
ONeil and Hoffman (2019), Horn and Raidl (2019).

Branch-and-Bound
Bergman et al. (2014a), Bergman et al. (2016b), González et al. (2020a),
González et al. (2020b), Gillard et al. (2021).

CP Propagation

Andersen et al. (2007), Hadžić et al. (2008b), Hoda et al. (2010),
Hadžić et al. (2009), Cire and van Hoeve (2012), Bergman et al. (2014b),
Perez and Régin (2017b), Perez and Régin (2017a), Kinable et al. (2017).

variable index set, and consider that each xi assumes values in a finite domain Di ⊂ Z

where X ⊆D1× · · ·×Dn.

DDs are graphical representations of solutions to P, where layers map to variables and

arcs map to variable-value assignments (see, e.g., Figure 1). Formally, a DD D = (N ,A)

is a layered-directed acyclic graph with node set N and arc set A. The node set N is

partitioned into n+1 layers N = (N1, . . . ,Nn+1). The first and last layers are the singletons

N1 = {r} and Nn+1 = {t}, respectively, where r is the root node and t is the terminal node.

An arc a= (u,u′)∈A has a source node s(a) = u and a target node t(a) = u′ in consecutive

layers, i.e., u′ ∈Ni+1 whenever u∈Ni for every i∈ I.

The solutions in X are mapped to paths in the graph as follows. The arcs emanating

from layer Ni, i∈ I, are associated with values in the domain of variable xi. Every arc a∈A

with source s(a)∈Ni has a value va ∈Di, and each node u∈Ni has at most |Di| emanating

arcs, each with a different value. Given an arc-specified r− t path p = (a1, . . . , an) with

s(a1) = r and t(an) = t, we let xp = (va1, va2, . . . , van)∈D1× · · ·×Dn be the n-dimensional
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point encoded by path p. Then, the solutions represented by the DD is

Sol(D)≡
⋃
p∈P

{xp},

where P is the set of all r− t paths in D. Finally, each arc a∈A is also associated with an

arc length `a. The length encodes, e.g., the contribution to the objective function of paths

crossing that arc. We denote the length of a path p∈P by `(p)≡
∑

a∈p `a.

We say that D exactly represents X if Sol(D) = X and f(xp) = `(p) for every p ∈ P,

i.e., there is a one-to-one correspondence between points in X and paths in P, and path

lengths evaluate to the objective value of their associated solution.

Example 1. Consider a knapsack problem with feasible set X = {x ∈ {0,1}4 : 7x1 +

5x2 + 4x3 + x4 ≤ 8} with weight vector w = (7,5,4,1) and a linear objective f(x) = c>x

with cost vector c= (4,2,5,1). Figure 1 illustrates the set of feasible solutions in X over

two graphs. Dashed arrows represent arcs associated with a zero-value variable assignment

(i.e., va = 0) and solid arrows correspond to arcs with a one-value variable assignments

(i.e., va = 1). The lengths of solid and dashed arcs in layer i are ci and 0, respectively.

The left graph in Figure 1 corresponds to a search tree (e.g., in a branch-and-bound

procedure) where paths from the root r to each leaf node correspond to feasible variable

assignments. The right graph illustrates a DD for X . Each DD layer is associated with a

variable and arcs denote feasible variable-value assignments. Note that there is a one-to-one

correspondence between root-to-leaf paths in the search tree and r− t paths in the DD,

i.e., the DD exactly represents X . Moreover, by construction, each path length evaluates to

the objective value of the corresponding solution. Note that any longest path, here defined

by x∗ = (0,0,1,1) with a length of 6, is an optimal solution to the problem. �

The DD variant above is the most commonly used by the discrete optimization com-

munity due to its simpler layer-variable structure. The original DD definition for Boolean

functions (Bryant 1986, 1992) differs in that: (a) nodes are directly associated with vari-

ables (i.e., literals) without the layered constraint, (b) arcs may traverse multiple layers,

and (c) the DD has two terminal nodes, one for feasible and one for infeasible solutions.

While some researchers employ the classic DD definition to create smaller diagrams for

specific applications at the cost of more intricate implementations (Perez and Régin 2014),

most works in optimization adopt the restricted DD structure above. A second notable DD
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Figure 1 A decision tree and a DD for X = {x∈ {0,1}4 : 7x1 +5x2 +4x3 +x4 ≤ 8}.

variant is a zero-suppressed decision diagram (ZDD), which can compactly represent com-

binatorial sets and has been used, for instance, in column generation algorithms (Morrison

et al. 2016, Kowalczyk and Leus 2018) and enumeration procedures (Suzuki and Minato

2018). We refer the reader to the work of Minato (1993) for further details on ZDDs.

2.2. Decision Diagrams and Recursive Formulations

A common practice in the literature is to conceptualize DDs based on a recursive formula-

tion (RF) of P. As investigated by Hooker (2013), there is a strong relationship between

DDs and the state transition graph in the dynamic programming (DP) literature. DPs rep-

resent optimization problems via a recursive model where decisions are made sequentially

(Bertsekas 2017). The state transition graph can be obtained by unfolding the recursive

model for any possible state in the system, where nodes map to states, arcs represent the

state-transition function, and arc lengths encode the immediate rewards.

To detail this relationship, we start by introducing the general form of a recursive model

using syntax from the DP literature (Bertsekas 2017). In particular, such models are defined

in terms of stages, where transitions across stages are driven by actions (or controls). We

consider an n+ 1 stage system with actions x∈ Zn, one per stage i ∈ I. For a given stage

i ∈ {1, . . . , n+ 1}, state variables S ∈ Si represent a summary of past actions that reach

that state, where the state space Si denotes the set of states reachable at the i-th stage.

The set of feasible actions xi at a state S ∈ Si is given by the action set Xi(S).

The system transitions to a new state according to the current state and action that has

been applied. Transitions are governed by the transition function φi : Si×Xi→Si+1, which

maps the current state-action pair to a state in the next stage. Moreover, each state S ∈ Si
and decision variable x ∈ Xi(S) at stage i ∈ {1, . . . , n + 1} incurs an immediate reward

gi(S, x).
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The optimal actions of a DP model solve the Bellman equation

Vi(S) = max
x∈Xi(S)

{gi(S, x) +Vi+1(φi(S, x))} , ∀i∈ I, (RF)

where Vi(·) is the value function with Vn+1(S) = 0 for any S ∈ Sn+1. We assume the initial

state is the singleton S1 = {S1}, where S1 is the root state.

A recursive model is a reformulation of problem P if

(a) There is an one-to-one mapping between solutions x∈X and a state-action trajectory

(S1, x1), (S2, x2), . . . , (Sn, xn), where Si+1 = φi(Si, xi).

(b) For every solution x∈X and associated state trajectory (S1, x1), (S2, x2), . . . , (Sn, xn),

we have f(x) =
∑n

i=1 gi(S, xi), i.e., the solution value matches the sum of rewards.

Example 2. We depict the classical recursive model of the knapsack problem intro-

duced in Example 1. The actions are x∈ {0,1}4 and the state S =Q⊆Z captures the load

of the knapsack at each stage. For an initial state Q1 = 0, the Bellman equation is

Vi(Q) = max
x∈Xi(Q)

{cix+Vi+1(Q+wix)} , ∀i∈ {1, . . . ,5}. (R-KNP)

The transition function φi(Q,x) =Q+wix updates the load of the knapsack, while the

immediate reward gi(Q,x) = cix corresponds to the gain from choosing item i. Since the

weight of each item is positive, the action space for state Q ∈ Si is Xi(Q) = {x ∈ {0,1} :

Q+wix≤ 8}, for all stages i∈ {1, . . . ,4}. �

A DD can be obtained immediately from the state-transition graph of RF (Bergman

et al. 2011). Specifically, with each state S ∈ Si we associate a node uS ∈Ni, i∈ I∪{n+1};

note that the root node r corresponds to the initial state S1. There exists an arc a with

value va = x between nodes uSi
∈Ni and uSi+1

∈Ni+1, i∈ I, if and only if Si+1 = φi(Si, x).

The length of such an arc is the immediate reward of the transition, i.e., `a = gi(Si, x).

Finally, the nodes in the last layer, in case several terminal states are present, are merged

into the single terminal node t.

2.3. DD Approximations

While the size of the DD can be considerably reduced using the classical reduction proce-

dure by Bryant (1992) (i.e., by merging isomorphic subgraphs), an exact DD D for X is,

in general, exponentially large in the number of variables n. An alternative to overcome
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this limitation is to consider a DD approximation instead, i.e., a DD that either under or

over-approximates the set of feasible solutions and/or the objective function.

This idea was first proposed by Andersen et al. (2007), who over-approximates X using

a relaxed DD, i.e., a DD D with solution set such that X ⊆ Sol(D). Thus, every point in X

maps to a r− t path in D, but the converse does not necessarily hold. Bergman and Cire

(2018), Hooker (2013), and Hooker (2019) also consider variants that relax the objective

function value, in that any r − t path p satisfies f(xp) ≤ `(p). Relaxed DDs provide a

discrete relaxation of X that can be used, for instance, to compute optimistic bounds for

an optimization problem and have been key in state-of-the-art DD methodologies.

Conversely, Bergman et al. (2014d) introduce the concept of restricted DDs, i.e., D

under-approximates X by capturing only a subset of the feasible solutions. Such an approx-

imation can be obtained, for example, by limiting the number of nodes in each layer and

heuristically discarding nodes. The main advantage of this technique is to obtain primal

bounds for an optimization problem, as we will further discuss in Section 4.2.

Example 3. We recall the knapsack instance from Example 1 with feasible set X = {x∈

{0,1}4 : 7x1 + 5x2 + 4x3 + x4 ≤ 8} and recursive model R-KNP. Figure 2 depicts an exact,

a relaxed, and a restricted DD for X . The paths of the exact DD D1 (left diagram) have a

one-to-one relationship with the points in X . Moreover, each node in D1 is associated with

a single state of R-KNP, e.g., node u1 has Q= 0 and node u2 has Q= 7.

The restricted DD D2 (middle) represents only a subset of the solutions in X . For

instance, the solution (1,0,0,1)∈X is not in Sol(D2). This restricted DD can be obtained

by discarding the states of R-KNP that have value greater than 6. Lastly, relaxed DD

D3 represents all feasible solutions in X and some infeasible assignments. Specifically, the

shaded r− t path in D3 corresponds to infeasible solution (1,0,1,1) /∈X . �

When generating decision diagrams from a recursive model RF, each node and arc in

an exact DD maps to a state and action, respectively. Thus, the transition and reward

functions are well-defined in such settings, as they can be inherited directly from RF. In

a relaxed DDs, however, this property does not hold because relaxing a DD modifies the

state space by incorporating infeasible paths into the solution set.

Hooker (2017) provides a formal connection between RF and a relaxed DD through the

use of merged states. More specifically, given two states S,S′ ∈ Si, we define S̃ =S⊕S′ as
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Figure 2 An exact DD D1 (left), a restricted DD D2 (middle), and a relaxed DD D3 (right) for X = {x∈ {0,1}4 :

7x1 +5x2 +4x3 +x4 ≤ 8}.

a merged state where ⊕ is an appropriate merging operator, i.e., ⊕ satisfies the following

properties for any i∈ I:

(C1) The set of feasible actions over states S and S′ are also feasible over S̃, i.e.,

Xi(S),Xi(S
′)⊆Xi(S̃).

(C2) The immediate reward at state S̃ is greater than or equal to the immediate reward at

states S and S′. Thus, for any x ∈Xi(S) and x′ ∈Xi(S
′) we have gi(S, x)≤ gi(S̃, x)

and gi(S
′, x′)≤ gi(S̃, x′), respectively.

Following the above conditions, we say that S̃ relaxes a state S ∈ Si if Xi(S)⊆Xi(S̃) and

the immediate reward function over any x∈Xi(S) is larger for S̃, i.e., gi(S, x)≤ gi(S̃, x).

Properties (C1) and (C2) are necessary (but not sufficient) conditions to define a proper

relaxation of RF. Hooker (2017) shows that operator ⊕ defines a proper relaxation for RF

if, in addition to (C1) and (C2), we impose a condition over the transition function:

(C3) If S̃ relaxes state S ∈ Si, then, given any value x ∈ Xi(S), φi(S̃, x) relaxes state

φi(S, x), for all i ∈ I. Thus, S̃ defines a relaxed state in the following stage for each

feasible action.

The relevance of establishing such a connection is to provide a framework for building

relaxed DDs using RF. For example, one could construct a relaxed DD using a top-down

approach starting with r and building one layer at a time. If the number of nodes in a

layer (width) is too large, nodes can be merged using a state redefinition that satisfies

(C1)-(C3). We provide details in Section 4.1.

Example 4. Recall the knapsack instance from Example 1 with feasible set X = {x ∈

{0,1}4 : 7x1 +5x2 +4x3 +x4 ≤ 8} and recursive model R-KNP. We define the merge operator

over states Q,Q′ ∈ Si at stage i ∈ {1, . . . ,4} as the minimum over both quantities, i.e.,
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Q⊕Q′ = min{Q,Q′}. Operator ⊕ satisfies (C1) since any feasible solution for a knapsack

load Q or Q′ is also feasible for min{Q,Q′}. Condition (C3) also holds for ⊕ since the

transition function is an increasing function over Q (see Example 2). Lastly, (C2) holds

since the immediate reward gi(Q,x) = cix is independent of the current state Q. Note that

D3 in Figure 2 is a relaxed DD created with this merging operator by choosing to merge

nodes with small state value first. �

3. Exact Decision Diagrams

Exact DDs encode the set of solutions of a discrete optimization problem as paths over a

directed acyclic graph. As shown in Table 1, we distinguish four different purposes observed

in the literature for constructing an exact DD: modeling, feasibility checking, solution

extraction, and solution-space analysis.

We review each of these purposes and show how to integrate them into integer pro-

gramming (IP) and constraint programming (CP) solvers. This section focuses on works

where one or multiple exact DDs represent either the complete problem or a subset of its

constraints, i.e., where no merging operation is applied. We first present different mod-

eling techniques based on DDs. We then review works that use DDs to check feasibility

or to extract solutions. The last subsection describes enumeration procedures and post-

optimality analysis algorithms over DDs.

3.1. Modeling

One of the most common purposes of DDs is to model complex combinatorial structures.

A DD can represent any combinatorial problem by enumerating solutions as paths. This

characteristic is particularly appealing for problems that consider constraints that are

usually hard to represent with standard methodologies, e.g., non-linear inequalities.

A simple procedure to represent a combinatorial problem as a DD is to enumerate

all the solutions in a tree and then merge nodes with equivalent paths to the terminal.

This procedure is a näıve approach that is impractical in many applications due to the

exponential growth of the solution set with respect to the number of variables. Thus, most

works create DDs using algorithms that avoid explicitly enumerating all the solutions.

This section discusses general procedures to encode combinatorial problems into DDs,

in particular the recursive formulation strategy presented in Section 2.2. We then review

modeling techniques that integrate DDs into IP and CP methodologies. Lastly, we present

recent extensions of DDs to model problems with continuous variables.
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3.1.1. Recursive Models. Hooker (2013) studied the relationship between DDs and

dynamic programming, showing that DDs can be seen as a compact representation of

the state-transition graph (see Section 2.2). Thus, we can create a DD by building the

state-transition graph and merging nodes representing equivalent partial solutions (e.g.,

the set of paths from the merged nodes to t are identical). However, this algorithm can be

computationally intractable depending on the size of the state-transition graph.

Bergman et al. (2016b) revisited this idea and presented a general procedure to cre-

ate DDs based on top-down algorithms to build relaxed DDs (see Section 4.1 for further

details). The authors presented recursive models for several classic combinatorial prob-

lems (e.g., the maximum independent set) and showed that their procedure can efficiently

create exact and relaxed DDs based on such recursive models. Hooker (2017) analyzed

the relationship between DDs and recursive models for sequencing problems. The author

formalized some of the ideas introduced by Bergman et al. (2016b) to create valid DD

relaxations and presented a general framework to define recursive models that are suited

for exact and relaxed DDs.

Most papers in this survey use a recursive model to create a DD for two reasons. First,

several discrete problems have a natural recursive formulation, e.g., the knapsack problem

and many sequencing problems. Second, there exists a wide range of algorithms to construct

a DD from a general recursive formulation (Bergman et al. 2016b). Nonetheless, there are

specific cases where other mechanisms are more suited to create a DD encoding, e.g., global

constraints that represent a list of feasible solutions (Cheng and Yap 2008).

3.1.2. Network Flow Formulation. One of the most appealing characteristics of DDs

for the mathematical programming community is their network flow reformulation (Behle

2007). This formulation can be integrated into any IP model by adding new variables and

constraints. Moreover, the network flow model is a core component for advanced procedures

that combine DDs and IP methodologies, e.g., cutting planes, Benders decomposition, and

Lagrangian relaxations.

Given a DD D = (N ,A), the network flow model NF(D) uses variables y ∈ R|A|+ to

represent the flow traversing each DD arc and the original variables x∈Rn to limit the flow

in each layer. Equalities (1a) and (1b) are balance-of-flow constraints over D. Constraint

(1c) links the arcs of D with solutions x.

NF(D) = {(x;y)∈Rn×R|A|+ :
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a∈Aout(u)

ya−
∑

a∈Ain(u)

ya = 0, ∀u∈N \{r, t}, (1a)

∑
a∈Aout(r)

ya =
∑

a∈Ain(t)

ya = 1, (1b)

∑
a∈A:s(a)∈Ni

vaya = xi, ∀i∈ I
}
, (1c)

where Aout(u) and Ain(u) are the outgoing and incoming arcs at a node u, respectively.

Intuitively, the flow over each path p ∈ P can be seen as the weight of its corresponding

point xp. By restricting the total flow to have value one, the flow variables represent a

convex combination of the points in Sol(D). In particular, the polytope NF(D) projected

over the x variables is equivalent to the convex hull of all solutions represented by D, i.e.,

Projx(NF(D)) = conv(X ) (Behle 2007, Tjandraatmadja and van Hoeve 2019). Thus, the

network flow model NF(D) is an ideal linear formulation of the solution set of D. In partic-

ular, NF(D) can be used to create extended linear formulations of complex combinatorial

structures as we review in what follows.

There is a strong relationship between DD network flow models and arc flow formulations

based on dynamic programming models (Martin 1987, de Lima et al. 2022). As previously

mentioned, a DD D can be seen as a compact representation of a state-space graph of a

recursive model. Thus, NF(D) corresponds to the arc flow formulation for this compact

state-space graph. These two lines of research mainly differ on how the graphical structures

are constructed and manipulated. For example, DDs have generic reduction algorithms to

build exact diagrams with the minimum number of nodes and arcs (Bryant 1992), while

graphical manipulations for arc flow formulations are mostly problem specific (de Lima

et al. 2022). Moreover, there are methodological differences when creating relaxations of

the original feasibility set instead of an exact representation (see Section 4.2 for a further

discussion).

We now review notable applications using this reformulation as a modeling tool. Recent

works have shown the advantage of using a DD network flow formulation as a modeling

mechanism in a wide variety of real-world applications. Cire et al. (2019) tackled a clin-

ical rotation scheduling problem for medical students, creating a DD-based network flow

model to represent all feasible schedules coupled with additional constraints to model other

problem characteristics. Another notable real-world application is the design of a heat
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exchange circuit (Ploskas et al. 2019). The authors created a DD to represent all possible

tube configurations and used its network flow formulation in an MILP model.

While these last two works create a single DD to represent the complex combinato-

rial component of the problems, several works consider multiple DD network flow models

together. Bergman and Cire (2016a) first proposed the idea of decomposing a problem

using multiple DDs that represents specific aspects of the problem. Their procedure cre-

ates a network flow model NF(D) for each DD D where the x variables are common to

each model, i.e., (1c) are linking constraints that synchronize the solutions among all DDs.

Lozano et al. (2020a) studied the complexity of this multiple network flow model and

showed that it is NP-hard in the general case. The authors also proposed a cutting-plane

algorithm that solves a maximum flow problem over the DDs to derive cuts and solve the

problem more efficiently.

Despite its complexity, the idea of using multiple DDs has been particularly successful

in representing non-linear functions as network flow models. Bergman and Cire (2018)

employed this procedure to represent non-linear objective functions that admit a recursive

formulation. Their technique assumes that the objective function corresponds to the sum of

non-linear functions and considers one DD for each function. Bergman and Lozano (2021)

presented a similar decomposition for quadratically constrained problems. Their procedure

decomposes the matrix of a quadratic constraint as the sum of multiple smaller matrices,

where a DD encodes the solution set induced by each sub-matrix. The authors then used

a network flow formulation with linking constraints to linearize the quadratic constraint.

Lastly, Nadarajah and Cire (2020) created an approximate linear program in the context

of DP by employing multiple DD-based network flow models, showing that stronger linear

reformulations can be obtained if the (merged) states of the DDs are taken into acount

when generating the model.

Recent works also employ network flow models based on multiple DDs to solve chal-

lenging applications. Serra et al. (2019) considered a problem that assigns train trips and

commuter vehicles to an uncertain set of passengers to minimize the number of commuter

trips and total traveling time. Their approach considers a DD for each possible destination

and scenario to model the set of passengers associated with a commuter vehicle. Bergman

et al. (2019) addressed the bin packing problem with minimum color fragmentation by
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building one DD for each bin and creating an IP formulation that links the solutions rep-

resented in each DD network flow model. Since all bins are identical, the authors also

proposed an IP formulation that uses a single DD network flow model with some modifica-

tions to consider multiple bins (Mehrani et al. 2021). Hosseininasab and van Hoeve (2021)

used a similar strategy to tackle the multiple sequence alignment problem with a DD flow

model to represent all pairwise sequence alignments and linking constraints to synchronize

the DD solutions. The problem is then solved using a Logic-Based Benders Decomposition

(LBBD), where the master problem corresponds to the DD flow models with linking con-

straints and the sub-problems enforce additional constraints over the chosen alignments.

Lastly, Lozano et al. (2020b) employed multiple DDs for the paired job scheduling problem,

where each DD represents the specific constraints for a job. The authors proposed a lifted

reformulation based on the network flow model where the flow variables are projected out.

The main advantage of their lifted reformulation is that it can be constructed without

explicitly constructing the DDs.

While the aforementioned works employ the network flow model of Behle (2007), other

authors have presented variants for DDs that encode stochastic constraints. Latour et al.

(2017, 2019) represented probabilistic constraints with DDs where the parameters follow

a probability distribution that depends on the decision variables. The authors used the

DD to model the probability of each constraint by encoding the decision variables and the

stochastic parameters within the DD. The DD is reformulated into a quadratic constraint

model that is linearized and introduced into a MILP formulation of the problem.

Haus et al. (2017) also considered a variant of the network flow model for a class of

two-stage stochastic programs. Their problem considers endogenous uncertainty, i.e., the

first stage decision influence the stochastic process. Their proposed procedure aggregates

scenarios with equal cost using multiple DDs and relates these scenarios with the first stage

decisions. Similar to Latour et al. (2017), each DD computes the probability of achieving

a cost value using a MILP reformulation.

We note that most of the works described here create a DD network flow model to

represent a subset of constraints that are generally hard to encode with linear inequalities.

For example, several works model the sequencing aspect of the problem using a DD (Cire

et al. 2019, Ploskas et al. 2019, Serra et al. 2019, Hosseininasab and van Hoeve 2021)

since other alternatives would involve big-M constraints that have a loose linear relaxation.
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Alternatively, some authors employ DDs as linearization tools for non-linear expressions

(Bergman and Cire 2018, Bergman and Lozano 2021) and probabilistic structures (Latour

et al. 2017, 2019, Haus et al. 2017). Thus, a DD network flow formulation is most beneficial

when standard procedures lead to poor relaxations and the DD encoding is small.

3.1.3. Global Constraints. In contrast to IP technologies, CP solvers represent com-

binatorial problems using global constraints, i.e., general-form constraints that encode

sub-structures of the problem (Rossi et al. 2006). A global constraint has an inference pro-

cedure that retrieves information about feasible variable assignments and a propagation

mechanism to update the set of feasible solutions inside the constraint. From this per-

spective, a DD that represents a set of solutions is a global constraint where the inference

procedure checks the arc values to determine the current domain of the variables and the

propagation procedure removes arcs to update the feasibility set.

Andersen et al. (2007) introduced a general framework for exact and relaxed DDs in

CP solvers. Their DD implementation encodes the complete solution set (i.e., the domain

store) and propagates the branching decisions. Since the DD could grow exponentially, the

authors approximate the solution space using a relaxed DD. Alternatively, we can represent

sub-structures of the problem using exact DDs.

One of the main advantages of the DD representation of a global constraint is that

it achieves generalized arc consistency (GAC). We say that a variable x is GAC for a

constraint C if for every value of its domain there exists a feasible solution with respect

to C. Since the DD represents all feasible solutions of a global constraint C, we can check

in polynomial time if a variable assignment is part of a feasible solution or not (Andersen

et al. 2007). Another important characteristic is that CP solvers construct a DD only

once and can efficiently update the graph to eliminate infeasible assignments according to

other constraints or branching decisions. We note that these two properties do not hold

for relaxed DDs and, thus, it is necessary to build sophisticated procedures to efficiently

integrate relaxed DD with CP technologies when exact representations are too large.

Several researchers have represented different global constraints with DDs and even pre-

compile sub-problem structures into DDs to enhance propagation (de Uña et al. 2019).

This line of research has inspired new DD variants that are suitable for CP technologies,

such as non-deterministic DDs (Amilhastre et al. 2014). In the following, we review several
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works that represent global constraints using exact DDs. Section 4.3 discusses encoding

global constraints with relaxed DDs.

One of the main applications of DDs in the CP community is to encode global constraints

that explicitly enumerate the set of solutions. Cheng and Yap (2008) first proposed to

model Table constraints (i.e., a list of feasible solutions) using an exact DD. The authors

presented an algorithm to convert a Table constraint into a DD by first representing the set

of solutions in a tree and then merging identical sub-trees to obtain a reduced DD. Their

DD construction procedure was later improved by Cheng and Yap (2010) and generalized

to consider negative Table constraints (i.e., a list of infeasible solutions).

These preliminary works became the stepping stone for DD-based Table constraints and

similar structures. Perez and Régin (2014) presented a new algorithm for DD inference

over Table constraints that shows superior run-time performance compared to existing

methodologies. The same authors also introduced novel algorithms to construct DDs from

specialized Table constraints (Perez and Régin 2015b). Moreover, the authors presented

improved procedures to manipulate DDs, e.g., algorithms to reduce a DD or to add/remove

solutions (Perez and Régin 2015a, 2016), and introduced a parallelization strategy for these

algorithms (Perez and Régin 2018). Lastly, Perez and Régin (2017c) studied DD-based

propagation for linear cost functions. Their approach improves the cost-based propagator

of a DD (i.e., propagation of a linear cost function) and introduces a DD propagator for

soft constraints (i.e., constraints that allow infeasible solutions with a cost penalty).

Verhaeghe et al. (2018) also studied how to efficiently encode Table constraints into

DDs. Their work proposes a related data structure called semi-DD (or sDD) where the

middle layer is non-deterministic. Intuitively, an sDD is a DD obtained by connecting the

leaf nodes of two trees representing partial solutions for half of the variables. The main

advantage of this structure is that the maximum number of nodes in each layer can be

exponentially smaller than a standard DD. The authors introduced several mechanisms

to construct and manipulate an sDD, including a reduction procedure and an algorithm

to remove solutions. In a related work, Verhaeghe et al. (2019) proposed a new DD vari-

ant to model Smart-Table constraints. Their basic smart DDs (or bs-DDs) can represent

unary constraints (e.g., x1 ≥ 1) over arcs to compactly encode sets of feasible values. There-

fore, bs-DDs avoid having multiple arcs with the same source and target node. Vion and

Piechowiak (2018) also proposed an alternative DD structure for Table constraints. Their
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work presents a procedure to transform any MDD to special type of BDD where propa-

gation and filtering procedure can be performed more efficiently. In particular, their work

adapts filtering procedures proposed for MDDs and other tree structures and shows better

results in terms of theoretical complexity bounds and empirical solution times.

Researchers have also employed exact and relaxed DDs to build novel global constraints.

Roy et al. (2016) introduced a new global constraint based on DDs that models binary

relations over sequences of temporal events. Their empirical results show that their DD-

based global constraint is superior to a classical scheduling representation of the same

temporal relations. We refer the reader to Section 4.3 for further examples of relaxed DD

encodings of global constraints.

3.1.4. Continuous Variables. So far we have discussed how to model combinatorial

problem using DDs. While DDs can represent any bounded set with integer points, until

recently there was no DD representation of problems with continuous variables.

Davarnia (2021) first considered modeling a mixed-integer set X ∈ Rn with a DD to

build outer-approximations. This work shows that it is possible to construct a DD D such

that conv(X )⊆ conv(Sol(D)) where D has a finite number of arcs. The main result relies

on the fact that it is sufficient to have at most two arcs between consecutive nodes u and

v (i.e., u ∈ Ni and v ∈ Ni+1 for some i ∈ I), where the arc labels take the minimum and

maximum feasible value of their associated variable x. This type of DD is called an arc-

reduced DD since it omits arcs with labels other than the minimum and maximum domain

values. Therefore, any variable x∈ [a, b] can be represented in an arc-reduced DD with at

most two arcs emanating from nodes in the layer associated with x.

Davarnia (2021) shows how to build arc-reduced DDs that over-approximate conv(X )

for any X ∈ Rn, but there are no guarantees on the tightness of such approximations.

Salemi and Davarnia (2021) studied this problem and identified necessary and sufficient

conditions to exactly represent conv(X ) with an exact DD. In particular, their paper states

that a set X ∈ Rn is DD-representable (i.e., there exists a DD D such that conv(X ) =

conv(Sol(D))) if and only if X admits a rectangular decomposition (we refer to the original

paper for a formal definition). While determining if X admits a rectangular decomposition

can be challenging, the paper points out that any compact integer set X ∈ Zn fulfills this

property. Moreover, the authors showed that any compact mixed-integer set X ∈Rn with

a single continuous variable is DD-representable. This last result is particularly important

for decomposition algorithms, as we discuss in Section 3.2.
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3.2. Feasibility Checking

Another important use of exact DDs is checking the feasibility of a solution. This general

idea attracted the attention of researchers in discrete optimization since there are several

feasibility checking procedures for IP and CP technologies. The main advantage of using

exact DDs for feasibility checking is that we construct the DD only once and repeatedly

call it for each new candidate solution.

While feasibility checking is most commonly used in conjunction with IP and CP solvers,

two recent works employ this idea without these technologies. In both applications, the

solution generation procedure first solves a relatively easier problem to generate solutions

fast, and the DD encodes the set of constraints that are hard to represent. Nishino et al.

(2015) used a DD for feasibility checking to solve the constrained shortest path problem.

They employed Dijkstra’s algorithm (Dijkstra et al. 1959) to solve a shortest path problem

but in each step a DD checks the feasibility with respect to the additional constraints. The

second work generates solutions for a traveling salesman problem (TSP) with preferences

using a generative adversarial neural network (GAN) (Xue and van Hoeve 2019). Since

the GAN solutions might violate some of the TSP constraints, the authors used a DD to

identify infeasible candidate solutions and guarantee feasibility.

The following subsections review feasibility checking algorithms in the IP and CP com-

munity where DDs are suitable alternatives to other methodologies. As with the procedures

described above, the DD can compactly encode the set of hard constraints for the problem

and check feasibility in polynomial time with respect to its size. Thus, these techniques are

suited for combinatorial structures that lead to small DDs or where alternative procedures

(e.g., an IP model) take exponential time to check feasibility.

3.2.1. Cutting Planes. Cut generation is a mathematical programming procedure to

separate infeasible points from the solution set by generating inequalities that are valid

for the problem but violated by the infeasible points. This separation problem is NP-hard

in the general case, so most cutting plane procedures focus on specific problem structures

or use a relaxation of the original problem to generate valid cuts (Cornuéjols 2008). In

this context, DDs are an attractive method to solve the separation problem since they

provide compact representations of several combinatorial problems, and their network flow

formulation lead to cut generation linear programs (CGLP).
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We now describe a simple procedure to separate points for a discrete set X ⊆ Zn using

a DD D that exactly represents X (Becker et al. 2005). Given a point x′ ∈ Rn, we can

identify if x′ /∈ conv(X ) if there exists a vector λ ∈ Rn such that λ>x′ > λ∗, where λ∗ =

max{λ>x : x ∈ conv(Sol(D))}. The main advantage of this separation problem is that

computing λ∗ can be done in polynomial time (w.r.t. to DD size) using a longest-path

procedure over the DD with λ coefficients. Moreover, the resulting cut λ>x≤ λ∗ is valid

for every x∈ conv(X ) = conv(Sol(D)).

Becker et al. (2005) first studied this DD-based separation problem and proposed a pro-

cedure to find vector λ that maximizes distance |λ>x′ − λ∗| for any x′ /∈ conv(X ). The

authors used an iterative sub-gradient procedure that computes λ∗ using a longest-path

over D and updates λ with the longest-path solution. Davarnia and van Hoeve (2021) stud-

ied this procedure to create outer-approximations for non-linear problems and enhanced

the sub-gradient routine by adding normalization constraints to improve convergence.

This simple DD-based separation algorithm can also be reformulated as a CGLP using

the dual of the network flow model NF(D) (Behle 2007). While this CGLP might be

computationally slower than a sub-gradient routine (Davarnia and van Hoeve 2021), it is

easier to implement and can be modified to obtained structural properties for the resulting

cuts. Specifically, two recent works develop novel DD-based CGLPs based on Behle (2007)

CGLP. Tjandraatmadja and van Hoeve (2019) proposed a DD-based CGLP to generate

target cuts based on the polar set of NF(D). Their CGLP can compute facet-defining

inequalities by just considering a few additional variables and constraints. In contrast,

Castro et al. (2021) introduced a reformulation of NF(D) for binary sets and created a

CGLP that resembles a maximum flow problem. The authors also proposed a combinatorial

approach to generate cuts that solves a max-flow problem over the DD. Their procedure

is orders of magnitude faster than DD-based CGLPs and the sub-gradient routines but

might not cut all infeasible fractional points x′ /∈ conv(Sol(D)).

In addition to the previously mentioned approaches, Behle (2007) proposed two types of

DD-based logical cuts for branch-and-cut routines. The first one returns an exclusion cut

when the DD is infeasible given the current branching decisions (i.e., the DD has no r− t

paths/feasible solutions due to branching decisions). The second one is an implication cut

that is returned when the values of some variables are fixed after updating the DD with

the branching decisions.
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Cutting-plane procedures are usually coupled with constraint enhancement routines so

that the resulting cut removes a larger portion of the fractional space. However, there is

currently a limited number of DD-based algorithms to enhance valid inequalities. Becker

et al. (2005) introduced a simple procedure to modify the coefficients of a valid inequality

to increase its face dimension. However, the resulting inequality might not separate the

set of points that the original constraint does. Behle (2007) proposed a DD-based lifting

procedure for cover cut inequalities based on classic techniques (Wolsey and Nemhauser

1999) in which the coefficient sub-problem is solved using a DD instead of an integer or

linear program. Recently, Castro et al. (2021) introduced a general lifting procedure for

combinatorial problems where a DD iteratively tilts valid inequalities in order to increase

their dimension. Their procedure resembles the simple approach by Becker et al. (2005)

but the lifted inequality is guaranteed to dominate the starting inequality.

As with other DD procedures reviewed so far, these cutting plane techniques leverage the

fact that the DD is built only once and can be used to find optimal solutions with different

objective functions. For example, the sub-gradient routines use this property to create new

sub-gradients based on the DD optimal solutions. The same is true for the CGLP models

and the inequality enhancement procedures. We note that these cutting plane techniques

are also valid if we replace the exact DD with a relaxed DD (Tjandraatmadja and van

Hoeve 2019, Castro et al. 2021, Davarnia and van Hoeve 2021). In this case, the generated

inequalities are valid for the original problem but the cutting plane procedure will not

separate all infeasible points.

3.2.2. Benders Decomposition. Benders decomposition (Benders 1962) is another IP

methodology that has benefited from DDs. The overall idea is to decompose the problem

into a master problem and one or more sub-problems, where each sub-problem is repre-

sented by a DD. Each DD D can then be used to generate logic-based cuts or traditional

Benders cuts with the help of the network flow model NF(D). Bergman and Lozano (2021)

first studied this approach for quadratically constrained integer problems. Their proce-

dure decomposes the quadratic matrix into multiple smaller matrices where a DD can

easily represent the solution set of each component matrix. Their work proposes a Benders

decomposition scheme where each sub-problem solves the shortest path problem over its

corresponding DD to generate a Benders cut.
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Similar ideas have also been used to solve stochastic programming problems. Lozano

and Smith (2018) introduced a DD-based Benders decomposition for a family of two-stage

binary stochastic programming problems and applied them to a stochastic TSP variant.

Their approach uses a DD to represent the sub-problem (i.e., one for each scenario) and

solves a max-flow problem over the DD to create Benders cuts. Guo et al. (2021) applied

this same procedure to tackle a stochastic distributed operation room scheduling problem.

In these applications the DD represents a combinatorial problem that might take a

considerable time for an IP model to solve. Since the sub-problems of these Benders decom-

positions are relatively small (e.g., 20 to 40 cities for the traveling salesman problem),

the resulting DD is small enough to store in memory and can solve the sub-problems in

fractions of a second. Since the set of solutions in the DD remains the same, the overhead

of constructing the DD is negligible if we consider that we need to solve the sub-problem

thousands of times. Moreover, the DD network flow model is a convex reformulation of

the original discrete non-convex sub-problem. Thus, this model can be used to generate

LP-based Benders cuts, which is impossible for the original discrete sub-problem.

Alternatively, Salemi and Davarnia (2021) proposed a DD-based Benders decomposition

where the master problem is given by a DD and the sub-problems are, for example, linear

programs. Their procedure relies on the fact that mixed-integer programming models with

a single continuous variable are DD-representable. Thus, we can create a DD for the master

problem with the integer variables of the original problem and a single continuous variable

to approximate the cost of the sub-problems. Their decomposition, however, needs to

update the master problem DD for each sub-problem cut, which can be computationally

expensive. To mitigate the potential exponential growth of the exact DD, the authors

proposed an iterative DD-based Benders approach that uses relaxed and restricted DDs.

3.2.3. Inference. The CP community has also considered DDs for feasibility checking

to infer no-good assignments, i.e., an infeasible set of variable assignments (Schiex and

Verfaillie 1994). CP solvers employ no-goods to avoid exploring portions of the solution

space that it has already shown to be infeasible.

Subbarayan (2008) first proposed the idea of using DDs to infer no-good assignments in

CP solvers. The author showed that the problem of finding a minimum no-good over a DD

is NP-hard and proposed a heuristic procedure that traverses the DD to find small sets of

no-good assignments. Gange et al. (2011) revisited this idea and presented an incremental
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algorithm to find no-goods that searches just a portion of the DD in the vicinity of the

last set of arcs removed from a DD. Gange et al. (2013) extended this no-good algorithm

for cost-based reasoning, i.e., to identify assignments that lead to sub-optimal solutions. A

similar idea was implemented for SAT solvers (Kell et al. 2015) where a DD represents a

subset of the constraints (i.e., clauses) and identifies no-goods for clause generation.

We note that no-good inference is related to the cutting plane procedures in IP tech-

nologies. A no-good set can be encoded as a linear constraint and added into an IP solver

in a branch-and-cut procedure. In fact, the DD-based logic constraints introduce by Behle

(2007) are a particular type of no-good that a DD infers during the search. Thus, these

advanced technologies for no-good inference in the CP literature can also benefit IP solvers.

Alternatively, DDs can be used to efficiently check if one or more solutions satisfy a

global constraint. Jung and Régin (2021) proposed an inference procedure for this task

that relies on a novel DD inclusion operator. Their approach creates two DDs, one for

the solution set and one for the constraint, and then employs their inclusion operator to

check if the set of solutions satisfies the constraint. The authors showed that their inclusion

operator is more efficient than a DD intersection operator when applied to some well-know

global constraints, e.g., the Sequence constraint and GCC (global cardinality constraint).

3.3. Solution Extraction

In contrast to feasibility checking, we can use a DD to generate candidate solutions for a

given problem. Since DDs represent all the solutions of a combinatorial problem, we can

easily extract solutions by choosing any path in the DD. In particular, we can use this

property to extract solutions with certain structure or solutions that are optimal for a

specific linear objective function.

Hadžić et al. (2004) first explored this idea for a manufacturing problem. The authors

created a DD to represent all product configurations and proposed a polynomial-time

algorithm to extract solutions that satisfy a set of configuration requirements specified by

a user. Their algorithm ignores all arcs that represent infeasible configurations and returns

a sub-diagram without the ignored arcs. While the authors tested their procedure in a

manufacturing problem, the same idea can be applied for any other combinatorial problem

to extract solutions with user-specified variable assignments.

Solution extraction has the advantage that we can decompose the problem into two

parts. The first part, encoded with a DD, represents a relaxation of the original problem



Castro, Cire, and Beck: Decision Diagrams for Discrete Optimization: A Survey of Recent Advances
23

to create candidate solutions. The second part of the problem checks the feasibility of the

extracted solution and gives feedback to the DD to extract new solutions. This mechanism

is a generalization of the column generation procedure and, thus, it can be applied with

other technologies. We also point out that this decomposition scheme is suited for problems

where the solution extraction and feasibility checking are relatively easy to solve and a DD

compactly represents the set of solutions.

3.3.1. Column Generation. Solution extraction has been mostly used as a sub-routine

of the column generation procedures in IP/LP technologies. Morrison et al. (2016) proposed

a general scheme that applies DDs in a branch-and-price algorithm (Barnhart et al. 1998).

The DD solves the pricing problem of the column generation sub-routine, i.e., the DD

returns a promising solution and adds a new column to the master problem. The algorithm

then separates the last queried solution from the DD to avoid duplicated solutions. Their

implementation also considers a branching rule over the original variables, which can be

easily integrated into the DD by ignoring arcs with specific values.

There are three advantages of the procedure by Morrison et al. (2016). First, the DD

can solve the pricing problem in polynomial time (with respect to its size) for any linear

objective function. Thus, their implementation constructs the DD only once and can solve

the pricing problem multiple times. Second, the DD can return all optimal solutions for

the pricing problem and, thus, add multiple columns in each iteration. Third, branching

decisions can be easily included to the DD without changing the complexity of the pricing

problem. Therefore, this procedure can be a better alternative to other methodologies when

there is a compact DD representation of the pricing problem.

Morrison et al. (2016) tested their procedure on the graph coloring problem. Kowalczyk

and Leus (2018) implemented the DD-based branch-and-price procedure for a parallel

machine scheduling problems. Raghunathan et al. (2018) applied a similar branch-and-

price approach to solve a transportation scheduling problem. Their application has multiple

pricing problems, each one modeling the tours of an origin-destination pair using a DD.

Lastly, Riascos-Álvarez et al. (2020) employed the DD-based branch-and-price technique

to solve a kidney exchange problem where multiple DDs represent the set of possible chain

donations of different sizes.
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3.4. Solution-Space Analysis

DDs provide a compact representation of the solution space, which is also useful if we

want to enumerate and analyze the set of solutions. For example, we can analyze the set

of (near) optimal solutions or study the convex hull of the solutions of a DD. We now

review procedures to analyze the solutions encoded in a DD and to enumerate solutions

with specific characteristics.

3.4.1. Post Optimality Analysis. Hadžić and Hooker (2006) studied this topic for

discrete optimization problems and introduced three procedures over an exact DD. The

first one is a cost-based domain analysis that identifies the set of variable assignments

that are present in at least one near-optimal solution. The second is a conditional cost-

based domain analysis, which restricts a subset of variables to take specific values and then

performs cost-based domain analysis over the subset of solutions. Lastly, their frequency

analysis computes the percentage of solutions with a particular variable assignment.

Since representing the set of solutions using a DD is intractable for most combinato-

rial problems, Hadžić and Hooker (2007) introduced the concept of sound DDs for post-

optimality analysis. A DD is sound for a specific post-optimality analysis if it yields the

same results that an exact DD would. Thus, a sound DD might represent a larger solution

set than an exact DD but preserves certain properties to correctly perform the analysis.

The authors presented a pruning and contraction procedure to create sound DDs for cost-

based domain analysis. While the resulting sound DD is significantly smaller than an exact

DD, their procedure requires a starting DD that is either exact or represents all feasible

solutions within a cost range. Thus, creating sound DDs with this procedure is intractable

for large problems.

Recently, Serra and Hooker (2020) revisited the idea of sound DDs for post-optimality

analysis and provided new insights. The authors presented several theoretical results

related to sound DDs, including a sound-reduction algorithm that constructs the small-

est sound DD. They also introduced a general construction procedure for ILP models

that creates a sound DD from a branching tree. Their experiments over a wide range

of ILP benchmarks show that the resulting sound DD is a more suitable alternative to

post-optimality analysis than, for example, branch-and-bound enumeration.
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3.4.2. Solution Enumeration. Recent works have also employed DDs to represent the

set of non-dominated solutions for a multi-objective discrete optimization problem, i.e., the

Pareto frontier. Bergman and Cire (2016b) first tackled the problem by representing the set

of feasible solutions with an exact DD and then enumerating the non-dominated solutions

using a multi-criteria shortest path algorithm over the DD. This work was extended by

Bergman et al. (2021) where the authors presented three procedures that modify the DD

while preserving the set of non-dominated solutions. The authors also proposed a bidirec-

tional multi-criteria shortest path procedure to enumerate the non-dominated solutions,

which outperforms the unidirectional approach (Bergman and Cire 2016b). Suzuki and

Minato (2018) presented a similar procedure to enumerate non-dominated solutions for

the 0-1 multi-objective knapsack problem. Their algorithm encodes all feasible solutions

using a ZDD and employs specialized filtering procedures based on the knapsack structure

to prune dominated solutions.

All the papers discussed so far enumerate solutions to analyze optimal or near-optimal

solutions. Conversely, we can employ the DD structure to obtain insightful information on

the combinatorial set and, thus, ignore the objective function. Suzuki et al. (2018) built a

DD to compute the strongly connected reliability of a network, i.e., the probability that

the network will remain strongly connected when removing one or more edges. The authors

showed how to create a DD that enumerates all possible strongly connected sub-networks

and how to compute the desired probability by traversing the DD once. Thus, this work

employed DDs to get structural properties of the connectivity problem over a network.

Haus and Michini (2017) constructed a DD to encode all the members of an independent

set to analyze the size of the solution set. The authors showed that the DD representation

has polynomial size in the number of variables for packing and set covering problems with

specific characteristics. Thus, this work opens the possibility of solution set analysis for

problems with tractable DD size.

3.4.3. Polyhedral Analysis. We now review two works that employ DDs for polyhedral

analysis, an important area of research in mathematical programming due to its relevance

for solving IP problems. Behle and Eisenbrand (2007) introduced a procedure to enumer-

ate vertices and facets of the convex hull of a DD solution set, i.e., conv(Sol(D)). Their

technique considers a binary solution set in an exact DD, where each path in the DD
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corresponds to a 0/1 vertex of the convex hull polytope. The enumeration procedure starts

with an initial facet that is rotated over the DD to obtain a new facet.

Tjandraatmadja and van Hoeve (2019) also presented a polyhedral analysis procedure

based on DDs to certify the dimension of any inequality that is a face of conv(Sol(D)).

Their procedure finds a set of affine independent points in the DD that are tight for the

face by solving a flow problem over the DD. Their procedure then uses a heuristic approach

to generate affine independent points based on the flow values of each arc in the DD. The

number of affine independent points gives a lower bound on the dimension of the face.

We note that polyhedron analysis is intractable for general IP models since constructing

the convex hull of all the solutions is NP-hard (Wolsey and Nemhauser 1999). DDs provide a

more manageable procedure to enumerate all the solutions and, thus, give valuable insights

to the polyhedral structure of problems that have a compact DD encoding.

4. Approximate DDs

Relaxed and restricted DDs are limited size DDs that over- and under-approximate the set

of feasible solutions, respectively (see Section 2.3 for a formal definition). These graphical

structures are desirable when tackling large-scale problems since the size of an exact DD

can grow exponentially with the number of variables. Specifically, approximate DDs provide

primal and dual bounds for a problem and, thus, can be embedded in a search procedure

to find optimal solutions for large problems.

This section presents an overview of existing procedures to construct and employ DD

approximations. We distinguish three main research areas related to approximate DDs (see

Table 2). The first research area focuses on DD construction procedures to create tight

approximations. The second area studies bound computation based on DD approximations

and specialized search procedures that employ these bounds. The last research area focuses

on propagation procedures for CP solvers based on relaxed DDs.

4.1. Approximate DD Compilation

While several works have shown the advantage of using approximate DDs (Bergman et al.

2016a), the question of how to construct one that provides tight bounds remains open.

The size of the DD plays an important role in the quality of the approximation, i.e., bigger

diagrams are expected to produce tighter bounds. Nonetheless, two DDs with equal size

can provide significantly different bounds.
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In the following, we introduce the most commonly used procedures to create approximate

DDs and discuss recent DD construction algorithms. These procedures can be applied to

a large range of problems, in particular to problems that can be reformulated recursively.

Also, note that there is no clear superiority between these construction algorithms but their

advantages and disadvantages can be used as a guideline to choose the most appropriate

procedure for a specific application.

4.1.1. Top-down and Iterative Refinement. The most common techniques to con-

struct approximate DDs are the top-down and the iterative refinement procedures

(Bergman et al. 2016a). The main advantage of both procedures is that they can be applied

to any combinatorial problem that has a recursive formulation RF. These procedures cre-

ate an approximate DD D of limited size by restricting the maximum number of nodes per

layer, i.e., limiting its width w(D) = maxi∈I{|Ni|}. Thus, we can control the size of the DD

approximation by changing the maximum width limit W ≥ 0.

We first describe the top-down construction procedure (Bergman et al. 2011), which can

create exact, relaxed, and restricted DDs by making small changes in the implementation

(see Algorithm 1). The algorithms starts with a DD structure with two nodes, the root node

and terminal node (lines 2-4). The procedure traverses the layers creating the emanating

arcs of each node and the nodes in the following layer (lines 5-12). Note that the procedure

creates one node for each reachable state given by RF, thus, it will return an exact DD if

the maximum widthW is large enough. If the number of nodes in a layer is larger than the

maximum width, the procedure will reduce the number of nodes to create either a relaxed

or restricted DD (line 13-14).

In the case of a relaxed DD, the top-down procedure will merge the set of nodes into at

most W nodes to enforce the DD width limit. The MergeDDNodes(Ni) procedure utilizes

an appropriate merging operator ⊕ to guarantee that no feasible solutions are lost and,

thus, to construct a valid relaxation for the problem (see Section 2.3 for further details

on merging operators). In contrast, the DiscardDDNodes(Ni) procedure selects a subset of

nodes to eliminate from the diagram. By doing so, the resulting restricted DD represents

a sub-set of the feasible solutions of the original problem.

The decisions on which nodes to merge/discard are usually done heuristically based on

the state information of the nodes. Since these decisions are crucial to create stronger

approximations, several researchers have developed general heuristics that lead to better
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Algorithm 1 DD Top-Down Construction

1: procedure TopDownDD(RF, W)

2: Create DD D= (N ,A) with n+ 1 empty layers

3: Create the root and terminal node, i.e., r∈N1 and t∈Nn+1

4: Assign the initial state to the root node, i.e., S(r) =S1

5: for i∈ {1, . . . , n− 1} do

6: for u∈Ni do

7: Create an arc a emanating from u for each possible value in Xi(S(u))

8: for a∈Aout(u) do

9: if there exists node u′ ∈Ni+1 with S(u′) = φi(S(u), va) then

10: Direct arc a to node u′, i.e., t(a) = u′

11: else

12: Create u′ in Ni+1 with S(u′) = φi(S(u), va) and point arc a to u′

13: if |Ni|>W then

14: MergeDDNodes(Ni) (relaxed DD) or DiscardDDNodes(Ni) (restricted DD)

15: for u∈Nn do

16: Create an arc a emanating from u for each value in Xn(S(u)) with t(a) = t

17: return D

approximations than a random node selection. We note that there are several papers on

merging procedures for relaxed DDs but that is not the case for restricted DDs and dis-

carding heuristics (Bergman et al. 2014d). This discrepancy is due to the wider exploration

of relaxed DDs in the literature compared to restricted DDs.

For the relaxed DD case, Bergman et al. (2011) proposed a simple strategy that merges

nodes with respect to their longest/shortest path from the root. Thus, the heuristic avoids

merging nodes that can potentially impact the DD bound. A similar idea was then proposed

for discarding nodes to avoid removing optimal solutions (Bergman et al. 2014d). Frohner

and Raidl (2019b) further studied the Bergman et al. (2011) merging heuristic and proposed

tie-breaking rules to merge nodes that have similar relaxed states. Frohner and Raidl

(2019a) also presented a binary classifier procedure that chooses a merging heuristic in

each DD layer. Their heuristic outperforms the simple heuristics in terms of dual bounds

but it can be harder to implement due to the time needed to train the classifier. Recently,
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de Weerdt et al. (2021) proposed a novel merging procedure for a single-machine scheduling

problem that guarantees building an ε-approximation of the problem. Their procedure

groups states with values in a certain range that depends on ε. While the de Weerdt et al.

(2021) merging procedure was designed for a specific scheduling problem, similar ideas

could be applied to other problems.

The main advantage of the top-down algorithm is its flexibility and simplicity. The pro-

cedure can be used to construct any type of DD (exact, relaxed, or restricted) given a

recursive formulation of the problem. Moreover, the algorithm has shown to be computa-

tionally efficient in practice, allowing researchers to construct DDs with large widths in

fractions of a second (Bergman et al. 2016a). However, one of it main disadvantages its

the looseness of the approximation that it produces. The procedure merges/discards nodes

considering only the state information of the current nodes, which can lead to poor approx-

imations and, thus, weak bounds. While there exist alternatives that include a look-ahead

step, these procedures can be computationally expensive (Horn et al. 2021).

An alternative is to construct a relaxed DD using the iterative refinement procedure

(Hadžić et al. 2008a). In contrast to the top-down algorithm, this procedure starts with

an initial relaxed DD and iteratively increase its width by splitting nodes. The main

advantage is that we can use information on the resulting DD to guide the refinement in the

next iteration. This procedure can create exact and relaxed DDs but it cannot construct

restricted DDs since it only removes infeasible solutions (Algorithm 2, line 7).

Algorithm 2 DD Iterative Refinement Construction Procedure

1: procedure ConstructDD(RF, W, ⊕)

2: Create a width-one DD D

3: while D has been modified do

4: for i∈ I do

5: Update (relaxed) state information in each node u∈Ni

6: Split nodes in Ni and update their relaxed states if needed

7: Check all outgoing arcs of layer Ni and eliminate infeasible arcs

8: Update bottom-up state information in every node u∈N

9: return D
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Algorithm 2 illustrates the iterative refinement procedure given a recursive model RF,

a maximum width W, and a merging operator ⊕. The procedure starts by constructing

a width-one DD, i.e., a DD D where each layer Ni, with i ∈ I, has a single node and

emanating arcs for each value in their corresponding domain (line 1). The root node is

associated with the initial state (i.e., S(r) =S1) and each following node corresponds to a

relaxed state computed using the merging operator and its incoming arcs:

S(u) =
⊕

a∈Ain(u)

φi−1(S(s(a)), va), ∀u∈Ni, i∈ {2, . . . , n+ 1}. (2)

The procedure iteratively refines D one layer at a time starting with the first layer until

it cannot be updated any further (lines 3-8). It first updates the relaxed states of each node

in the current layer using (2), to guarantee up-to-date state information for each node (line

5). The algorithm uses the relaxed states to split a node u∈Ni, i.e., it creates a new node

u′ with the same outgoing arcs that u has and redirects a portion of the incoming arcs of

u to u′. The states of the split nodes are then updated and used to identify if any of the

outgoing arcs lead to infeasible assignments.

The main advantage of this procedure is that in each iteration we obtain a DD that better

approximates the original problem. Moreover, we can use the current DD relaxation to

decide how to split nodes in order to remove as many infeasible arcs (i.e., arcs representing

infeasible assignments) as possible. We can also create additional relaxed states for a node

u using the partial assignments from u to node t (i.e., bottom-up relaxed states). These

relaxed states are commonly used to find infeasible arcs that are not necessarily identifiable

with standard relaxed states (Hadžić and Hooker 2007, Cire and van Hoeve 2013).

Example 5. Consider the knapsack problem with feasible set X = {x ∈ {0,1}4 : 7x1 +

5x2 +4x3 +x4 ≤ 8} and recursive model R-KNP from our previous examples. We construct

a relaxed DD for X as follows. For each node u∈Ni, we consider a relaxed states S(u) =

(Qmin(u),Qmax(u)) where Qmin(u) and Qmax(u) represent the minimum and maximum load

of the knapsack at node u and stage i∈ {1, . . . ,5}, respectively. Thus, the merging operator

is given by ⊕ = (min,max). We choose this relaxed state representation to identify if a

node encodes multiple states and, therefore, if it is a candidate for splitting. Intuitively, a

node u∈N represents a single state of R-KNP if Qmin(u) =Qmax(u).

Lastly, we identify if an arc a∈A with source s(a)∈Ni is infeasible if

Qmin(s(a)) +wiva > 8 (KP-R1)
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for any i ∈ I. If arc a satisfies condition KP-R1, then all paths traversing a represent

solutions with a knapsack load above its limit. Thus, we can remove arc a from D.
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Figure 3 Iterative refinement procedure for X = {x ∈ {0,1}4 : 7x1 + 5x2 + 4x3 + x4 ≤ 8} and W = 2. The figure

shows a width-one DD (left), a DD after splitting layer N2 (middle), and a DD after splitting layer N3

(right). Values next to nodes represent relaxed states. Highlighted arrows correspond to infeasible arcs

that can be removed.

Figure 3 illustrates the iterative refinement procedure for R-KNP with maximum width

W = 2 and relaxed states as defined above. The left most DD corresponds to a width-one

DD, where the values next to each node represent its relaxed state. The middle DD depicts

the update, split, and filter sub-routines in layer N2. Node u1 ∈N2 is split into two (i.e., u1

and ū1), each node with one incoming arc and relaxed states updated accordingly. Notice

that arc a= (ū1, u2) with value va = 1 is infeasible, since it satisfies KP-R1. The right graph

shows the resulting DD after refining layer N3. In this DD, condition KP-R1 identifies

infeasible arc a= (ū2, u3) with value va = 1.

While condition KP-R1 identifies several infeasible arcs during the DD construction

procedure, there exist paths in the right most DD of Figure 3 that correspond to infeasible

solutions, e.g., path (r, u1, u2, u3, t) associated with point x= (0,1,1,1) is infeasible. This

path cannot be removed from the DD since all its arcs are also associated with feasible

solutions, i.e., all the arcs violate KP-R1. We can remove this path from the DD if we

further split node u2. �

Analogous to the top-down procedure, the tightness of a relaxed DD from an iterative

algorithm depends on the splitting heuristic. Ideally, we want to split nodes such that the

relaxed states are close to exact states. However, an appropriate splitting procedure will

greatly depend on the application at hand. For example, splitting nodes to exactly represent
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specific problem characteristics is a good strategy to identify infeasible assignments and

improve the DD relaxation (Cire and van Hoeve 2013, Castro et al. 2020a,b). By doing so,

the relaxed DD will satisfy a subset of the constraints and, thus, have theoretical guarantees

on the quality of the relaxation.

These two construction procedures have key distinctions that make them appealing for

different purposes. Top-down procedures are considerably faster to implement and deploy

than iterative refinement procedures, so a top-down construction is usually preferable for

prototyping new ideas or when the user needs to construct multiple DDs. In contrast,

iterative refinement procedures can lead to stronger bounds or exact enforcement of a

subset of the constraints, thus, guaranteeing certain properties for the resulting relaxation.

However, the iterative procedure is usually computationally slower than the top-down

approach due to the multiple refinement iterations, and thus, it is preferable when we need

to construct few relaxed DDs.

4.1.2. Other Construction Algorithms. A less commonly used technique to construct

relaxed DDs is the separation procedure (Cire and Hooker 2014). This algorithm is a

variant of the iterative refinement since it starts with a width-one DD and iteratively

splits nodes. However, the separation procedure splits nodes systematically so that all the

paths in the DD satisfy a constraint or have a longest-path value larger than a certain

threshold (Bergman et al. 2011). This technique can generate highly-accurate relaxations

if, for instance, we separate the constraint that is currently violated by the longest path

in a maximization problem (Bergman and Cire 2016c). Recent work by van Hoeve (2020,

2021) shows that separation procedures are quite effective for the graph coloring problem:

the DD relaxation yields bounds competitive with state-of-the-art methodologies.

Besides these construction techniques, two recent works have developed novel procedures

to construct relaxed DDs. Römer et al. (2018) proposed a local search framework with

operations to merge nodes, split nodes, and redirect arcs. Their procedure generalizes the

top-down and iterative refinement algorithms and consistently yields better bounds than

these alternatives. Horn et al. (2021) introduced an A∗-inspired algorithm to construct

relaxed DDs. Starting at the root node, the procedure keeps a priority list of nodes to

create next and can create and merge nodes in different layers. Recent works showed that

the A∗-inspired approach can return tighter bounds than the top-down algorithm for the
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prize-collecting scheduling problem (Horn et al. 2021) and the longest common subsequence

problem (Horn and Raidl 2021).

Lastly, Bergman and Cire (2017) studied the problem of finding the best DD relaxation

for a given width limit. The authors presented an IP model that partitions the nodes in

each layer to obtain the strongest dual bound. Their experiments show that the result-

ing DD provides significantly stronger bounds than any other methodology. However, the

computational time to solve their IP model can be quite long and, thus, impractical for

many applications.

4.1.3. Variable Ordering. One of the main challenges when constructing a DD is the

variable ordering, i.e., the assignment of variables to layers. The size of a DD depends on

the variable ordering and the optimal ordering can lead to significantly smaller DDs. The

problem of finding the optimal variable ordering is NP-hard (Bollig and Wegener 1996)

and has been extensively studied for exact DDs. Several authors propose heuristic variable

orderings for different applications, including the knapsack (Behle 2008) and the maximum

independent set problem (Bergman et al. 2011).

Cappart et al. (2019) introduced a general ordering procedure based on reinforcement

learning (RL). While their technique can be applied to any optimization problem, it is only

compatible with the top-down construction procedure: during construction the RL agent

chooses the variable that will be assigned to the next layer. A recent work by Parjadis et al.

(2021) showed that the RL-based variable ordering can significantly improve the bound

quality and the number of nodes explored during a branch-and-bound search.

Alternatively, Karahalios and van Hoeve (2021) studied portfolio algorithms to select

an appropriate variable ordering for a problem. Their procedure considers several variable

ordering heuristics and selects one for a given problem. In contrast to the Cappart et al.

(2019) approach, the portfolio methodology provides a complete variable ordering and can

be used with any DD construction algorithm.

4.2. DD-based Bounds

DD approximations are commonly used to compute bounds for optimization problems.

The main advantage of DD bounds is that their tightness can be control by either changing

the size of DD or the mechanism to build the diagram (see Section 4.1 for more details).

Therefore, DD approximations provide a flexibility that is harder to obtained with other

procedures (e.g., linear programming or standard primal heuristics).
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In the following, we describe the main mechanisms to compute primal and dual bounds

with DD approximations and how to enhance these bounds. We then discuss different ways

to embed DD bounds into a branch-and-bound algorithm.

4.2.1. Dual Bounds. Andersen et al. (2007) first introduced the idea of using relaxed

DDs to obtain dual bounds for an optimization problem. A relaxed DD over-approximates

the set of feasible solutions, so optimizing over the DD provides a valid dual bound for the

problem. The authors consider a DD D= (N ,A) and the optimization problem max{f(x) :

x ∈ Sol(D)} where the objective function is separable, i.e., f(x) =
∑

i∈I fi(xi). The main

feature of this problem is that it can be solved using a longest-path algorithm over D.

Intuitively, we assign each arc a∈A a length given by `a = fi(va) for any arc a emanating

from node u∈Ni. Then, the longest r− t path is the optimal solution over Sol(D).

This simple longest-path procedure provides a valid dual bound for any optimization

problem where the feasible region is over-approximated by D. Note that the longest-path

optimization holds for separable objective functions (e.g., a linear objective), and it can be

generalized for problems with a recursive formulation RF (Bergman et al. 2016b, Bergman

and Cire 2018). In this case, the length of an arc a ∈ A corresponds to the immediate

reward over va and the relaxed state of its emanating node, i.e., `a = gi(S(u), va) for any arc

a emanating from node u ∈Ni. The procedure will return a valid dual bound if the node

merging operator satisfies the conditions described in Section 2.3 for a proper relaxation

(Hooker 2017).

Researchers have tested these bounds in a wide variety of combinatorial problems, includ-

ing set covering (Bergman et al. 2011), multidimensional bin packing (Kell and Van Hoeve

2013), maximum independent set (Bergman et al. 2014c, 2016b), maximum cut, maximum

2-satisfiability (Bergman et al. 2016b), and graph coloring (van Hoeve 2020, 2021). These

papers create a single relaxed DD to approximate the feasible set and compute bounds

using the shortest/longest path procedure over the DD or, alternatively, the DD network

flow model.

One of the most popular applications of relaxed DDs is for sequencing problems. These

problems are generally formulated recursively and come with a natural variable order

(i.e., choose elements in sequential order), which facilitates the construction of the DDs.

Cire and van Hoeve (2013) first applied relaxed DDs to solve sequencing problems. Their
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implementation updates the DD during branch-and-bound search to compute more accu-

rate dual bounds. The authors tested their DD dual bounds with satisfactory results in

several sequencing problems, including the traveling salesman problem (TSP) with time

windows, TSP with precedence constraints, and sequencing problems with makespan and

total tardiness minimization. This work was extended by Kinable et al. (2017) to tackle

TSP variants with sequence-dependent cost and by Castro et al. (2020a) for pick-up and

delivery problems.

Several researchers have studied the quality of the DD bounds for sequencing prob-

lems and compared them to those obtained from a linear programming (LP) relaxation.

Hooker (2017) formalized some of the main components to create relaxed DDs for general

sequencing problems and presents preliminary results on the bound quality for different DD

construction procedures. van den Bogaerdt and de Weerdt (2018) used this framework to

create bounds for the multi-machine scheduling problems with encouraging performance.

Similarly, Maschler and Raidl (2018) studied the DD bound quality for a prize-collecting

sequencing problem and compared the bounds given by a top-down and an iterative refine-

ment construction scheme. Lastly, Castro et al. (2018, 2019, 2020b) explored different DD-

based relaxations for AI planning problems and show encouraging results when comparing

the DD dual bounds with those from an LP relaxation.

We note that relaxed DDs and dual bound computation are strongly related to state-

space relaxations (Christofides et al. 1981). As we discussed in Sections 2.2 and 3.1, DDs can

be seen as compact representations of the state-space of a recursive model and, therefore,

relaxed DDs can be interpreted as state-space relaxations. These state-space relaxations

are widely used in the vehicle routing literature (Baldacci et al. 2011, 2012) and in other

applications, e.g., cutting stock problems (de Lima et al. 2022), to compute stronger bounds

than LP relaxations. The main difference between these two techniques is that state-space

relaxations are generally built by defining a mapping between the original states and the

relaxed space. In contrast, the DD construction procedures are much more flexible since

they can dynamically modify the DD to suite the user needs (see Section 4.1).

With this in mind, one key benefit of DDs is that they can be dynamically modified

to generate better bounds. The simplest alternative is to increase the width limit. How-

ever, larger relaxed DDs require more computational resources, i.e., memory and time for

compilation. Further, empirical results show that bound improvements decrease as the DD
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width increases (Bergman et al. 2014c, 2016a, Castro et al. 2020b). The question of which

DD width will lead to computationally efficient relaxed DDs that provide informative dual

bounds is still open.

4.2.2. Lagrangian Bounds. An alternative for computing better dual bounds is to

enhance the DD relaxation with dual information from an IP formulation. Consider a

minimization problem with feasible set X ⊆ Zn, a linear objective function c>x, and a

relaxed DD D that over-approximates X , i.e., X ⊆ Sol(D). The idea is to consider a set of

m valid inequalities Ax≤ b as penalties to the objective function to avoid paths in D that

are infeasible. The resulting problem is a Lagrangian sub-problem

L(λ) = min{c>x+λ>(Ax− b) : x∈ Sol(D)},

where λ∈Rm
+ are the Lagrangian penalties.

Since Sol(D) can be reformulated as a network flow model NF(D), the theoretical results

of Lagrangian duality hold for L(λ) (Conforti et al. 2014, Fisher 2004). In particular, L(λ)

for any λ∈Rm
+ is a valid dual bound for the original problem. Then, the Lagrangian dual

problem seeks λ that gives the tightest dual bounds. In our minimization example, the

Lagrangian dual maximizes the sub-problem L(λ) and, thus, returns a bound that is equal

to or stronger than the DD relaxation:

min{c>x : x∈ Sol(D)} ≤max{L(λ) : λ∈Rm}.

Bergman et al. (2015b) first proposed Lagrangian duality as a mechanism to enhance

DD relaxations. Their approach considers a DD that represents a subset of the constraints

of a problem. The Lagrangian procedure introduces dual information for the remaining

constraints as penalties in the objective function. The authors tested their procedure over

the TSP with encouraging results, where the DD-based Lagrangian relaxation returns sig-

nificantly tighter bounds than the pure DD relaxation. Hooker (2019) further explored this

idea for a family of sequencing problems and presents a detailed experimental evaluation

with similar conclusions.

Castro et al. (2020a) employed this procedure for a pick-up and delivery problem and

experimented with different DD and Lagrangian relaxations. Their experiments show that

the DD-based Lagrangian bounds are affected by the relaxed inequalities and the con-

straints that are prioritized inside the DD. The authors conjectured that we can get better
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bounds by dualizing inequalities that are hard to represent inside the DD and prioritizing

the remaining constraints in the DD relaxation.

Tjandraatmadja and van Hoeve (2020) explored DD-based Lagrangian bounds for gen-

eral ILP problems and proposed a decomposition approach. Instead of representing the full

problem with a relaxed DD, the authors considered sub-structures that are known to be

easily representable by a DD (e.g., conflict graphs). Thus, their procedure creates a DD for

a specific sub-structure and uses Lagrangian duality to penalize the remaining constraints

in order to improve the bounds and remove infeasible arcs. The main advantage of this

procedure is that it can be used by any ILP model as long as there is a sub-structure that

can be efficiently exploited by a DD.

While most works in the literature use Lagrangian duality over a single DD, Bergman

et al. (2015a) proposed a Lagrangian decomposition approach to communicate information

over multiple DDs. The idea is to have several DDs representing different constraints

and use Lagrangian penalties to synchronize their solutions. The authors introduced this

technique in the CP literature to improve propagation across multiple DDs. Lange and

Swoboda (2021) explored a similar idea for integer linear programming models where

each linear constraint is represented with a DD. The authors employed a message-passing

algorithm to solve the Lagrangian dual problem and showed that their approach obtains

competitive bounds when compare to commercial solvers.

We note that despite the simplicity of this Lagrangian dual bounds, the works employing

this procedure are very limited. The main advantage of Lagrangian procedures is that they

avoid the construction of huge relaxed DDs to create tight bounds. As pointed out by

several authors (Tjandraatmadja and van Hoeve 2020, Castro et al. 2020a), it could be

more beneficial to create an exact or relaxed DD that represents a subset of the constraints

and introduce the remaining constraints as dual penalties. By doing so, we can exploit

problem structures with potentially smaller DDs and obtain better bounds than when we

try to represent the complete problem with a large relaxed DD.

4.2.3. Primal bounds. In contrast to relaxed DDs, restricted DDs compute primal

bounds and provide feasible solutions for a problem. Bergman et al. (2014d) first intro-

duced this graphical structure as a general procedure to heuristically generate solutions

for discrete optimization problems. Their approach computes primal bounds by optimizing

the restricted DD using the longest/shortest path procedure for optimization problems (see
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Section 4.2.1). Since all the paths represent feasible solutions, an optimal path corresponds

to the tightest primal bound given by the restricted DD.

The main advantage of restricted DDs is that they encode a set of feasible solutions,

so they can potentially compute stronger primal bounds than other methodologies. For

example, Bergman et al. (2014d) showed that DD primal bounds are competitive to the

ones provided by IP solvers for set covering and set packing problems. Moreover, we can

introduce restricted DDs into search algorithms to obtain stronger primal bounds. For

instance, ONeil and Hoffman (2019) created restricted DDs to solve a TSP problem with

pick-ups and deliveries in an online setting. The authors used small-width restricted DDs

within a branch-and-bound search to find high-quality solutions in a few seconds.

We also note that relaxed DDs can also provide primal bounds. For example, Horn

and Raidl (2019) used a limited discrepancy search procedure guided by relaxed DD dual

bounds to find feasible solutions for a prize-collecting job sequencing problem. Alterna-

tively, we can extract feasible solutions from a relaxed DD using some heuristic methods

that traverse the DD from root to terminal node. However, the procedure might be unsuc-

cessful if we select a partial path that leads to infeasible solutions.

Lastly, the primal bound of a restricted DD can also certify the feasibility of a problem.

For instance, Kell and Van Hoeve (2013) used restricted DDs to show the feasibility of

multidimensional bin packing problems. If the restricted DD has at least one path, then

the problem is feasible. This simple procedure proved feasibility for several instances that

IP and CP technologies could not in a given time limit.

4.2.4. Branch-and-Bound Procedures. One of the main advantages of relaxed DDs is

that they can provide stronger dual bounds than an LP relaxation (Bergman et al. 2014c).

Thus, replacing the LP relaxation with a DD relaxation in a branch-and-bound procedure

can be very advantageous.

Bergman et al. (2016b) proposed a general branch-and-bound scheme where relaxed and

restricted DDs provide dual and primal bounds, respectively. The main difference with

standard LP-based branch-and-bound is that their procedure branches over nodes of a

relaxed DD instead of variable-value assignments. Thus, the DD-based branch-and-bound

can potentially generate fewer sub-problems since each branching decision fixes the values

of multiple variables at a time. Gillard et al. (2021) presented two pruning techniques to
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further improve the DD-based branch-and-bound procedure that leverage local relaxed DD

bound information to avoid exploring nodes that lead to sub-optimal solutions.

Bergman et al. (2014a) extended the DD-based branch-and-bound procedure for parallel

computing, where every core is responsible for a DD sub-problem. Their procedure takes

advantage of the flexibility of DDs to efficiently process the sub-problems and communicate

bounds between each sub-problem.

González et al. (2020b) proposed a mechanism that integrates IP into the DD-based

branch-and-bound. The authors modified the DD-based branch-and-bound of Bergman

et al. (2016b) so that relaxed nodes can be either solved by an IP solver or follow the

original DD branching mechanism. To identify which node should be solved by an IP solver,

the authors implemented a supervised learning technique that chooses nodes during search.

This novel DD-based branch-and-bound procedure can be applied to any combinatorial

problem and shows promising results in the maximum independent set problem and the

quadratic stable set problem (González et al. 2020a).

DD bounds can also be integrated into other search procedures, such as a standard

branch-and-bound (Cire and van Hoeve 2013, Kinable et al. 2017, Castro et al. 2020b,

Tjandraatmadja and van Hoeve 2020). The main disadvantage is that the search algorithm

might not leverage the DD structure as the specialized DD-based branch-and-bound does.

To take advantage of the DD structure it is important to branch on variables following the

ordering in the DD. Some authors also note that a depth-first search strategy is preferable

for DDs since the branching updates can be done more efficiently by removing arcs in the

last branched layer (Cire and van Hoeve 2013, Castro et al. 2020a).

4.3. CP Propagation

As reviewed in Section 3.1, several researchers in the CP community encode global con-

straints using exact DDs. However, the size of an exact DD grows exponentially with the

number of variables, so exact DDs become impractical for large combinatorial structures.

Andersen et al. (2007) proposed to represent global constraints with relaxed DDs to avoid

the exponential size of exact DDs.

While relaxed DDs are more flexible than exact DDs in terms of memory usage, relaxed

DDs do not achieve generalized arc consistency (GAC) in polynomial time as in the case

of exact DD. Since some paths in a relaxed DD are infeasible, checking if there exists a

feasible solution for a specific variable-value assignment is not a trivial task. Andersen et al.
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(2007) proposed a new consistency measure to better analyze the propagation capabilities

of a relaxed DD. We say that a relaxed DD D = (N ,A) achieves DD consistency for a

global constraint C if for each arc a∈A there exists a path p that traverses a and is feasible

with respect to C. Intuitively, DD consistency asks for a relaxed DD with no infeasible

arcs, which is NP-hard in many cases. Note that identifying all infeasible arcs also results

in identifying all infeasible variable-value assignments, thus, DD consistency implies GAC

(Andersen et al. 2007).

Researchers have proposed sophisticated propagation mechanisms for different global

constraints to achieve DD consistency in polynomial time. A propagation procedure for

a relaxed DD is defined by the set of relaxed states and the set of conditions to identify

infeasible arcs (see Section 4.1). Andersen et al. (2007) proposed the first relaxed DD prop-

agators for Linear and All-different constraints. Later, Hadžić et al. (2008b) extended

the propagator from linear inequalities to separable inequalities and showed that it achieves

DD consistency in polynomial time.

Since the work of Andersen et al. (2007), several papers have introduced DD propagators

for other well-known global constraints. Hoda et al. (2010) explored DD propagators for

the Among and Element constraints. The authors also proposed new conditions to identify

infeasible arcs for the All-different propagator, improving its propagation capabilities.

Bergman et al. (2014b) presented a DD propagator for the Sequence constraint and show

that establishing DD consistency is NP-hard. More recently, Perez and Régin (2017a)

created an DD encoding for the Dispersion constraint where the DD enforces the mean

value constraint and uses a cost-based propagation for the variance restriction.

Besides the encoding of existing global constraints, relaxed DDs are also a building

block to create new global constraints. Cire and van Hoeve (2012) introduced a global

constraint for disjunctive scheduling based on a relaxed DD. Their DD represents the set

of job sequences and considers release times, deadlines, precedence relations, and sequence-

dependent set-up times.

Two recent works develop new probabilistic global constraints using DDs. Perez and

Régin (2017a) introduced a Probability Mass Function (PMF) constraint where a DD

encodes the linear inequality restricting the mean value of the variables and a cost-based

propagator to ensure that the probability of every feasible assignment is inside a pre-defined
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range. The authors extended this constraint to consider probability distributions given by

a Markov chain process (Perez and Régin 2017b).

DDs can also improve the propagation capabilities of a CP solver by sharing information.

Hadžić et al. (2009) first studied this idea using compatibility labels between multiple DDs.

Their procedure constructs an exact or relaxed DD for each constraint of the problem

following the same variable ordering. It then traverses the nodes of each DD to identify

compatibility with nodes in different DDs. The authors showed that nodes that do not

have any compatibility label can be removed since the solutions traversing that node are

infeasible in all other DDs. Bergman et al. (2015a) introduced a different procedure to

communicate information between DDs based on Lagrangian decomposition, which we

discussed in Section 4.2.2.

While relaxed DDs can model a wide variety of global constraints, there could be alter-

native procedures that are more suitable for some constraints. Specifically, Andersen et al.

(2007) noted that there are polynomial-time algorithms to enforce GAC for some con-

straints but it could be NP-hard for polynomial-size DDs to do so. A simple example is

the All-different constraint that achieves GAC in polynomial time by representing the

constraint as a matching problem in a bipartite graph. However, GAC is NP-hard in a

relaxed DD because the GAC problem reduces to a Hamiltonian path problem.

To summarize, relaxed DDs are attractive alternatives to construct global constraints

due to their propagation capabilities and flexibility to represent a wide range of combina-

torial structures. However, one of the main practical limitations of relaxed DDs is their

implementation, which usually requires the user to develop all the necessary components

to build and propagate the DDs. Recent work by Gentzel et al. (2020) presented Haddock,

a declarative language and architecture for DD compilation. The software supports a wide

range of existing DD propagators and can declare multiple DDs within a CP model. More-

over, Haddock has comparable performance when compared to dedicated MDD propagators

for different constraints.

5. Conclusions and Future Challenges

This paper reviews recent advances using decision diagrams (DDs) to model and solve dis-

crete optimization problems. We describe several procedures that benefit from a graphical

representation of the solution set and show how these techniques can be integrated into
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other optimization paradigms (e.g., IP and CP). In particular, we distinguish six different

ways to employ DDs: modeling, feasibility checking, solution extraction, computing primal

and dual bounds, inference and propagation, and solution-space analysis.

There are two key advantages of DDs that explain their success in many of the appli-

cations discussed. First, DDs can be efficiently optimized using different linear objective

functions. This property is crucial for decomposition techniques since DDs are iteratively

used, for example, in cutting plane procedures to solve the separation problem for each

new fractional point. Similarly, DDs are computationally efficient when we need to extract

information from the diagram multiple times, as in the case of the no-good inference pro-

cedures.

The second key advantage of DDs is their versatility when solving optimization problems.

For example, we can construct a relaxed DD to obtain a dual bound and have a heuristic

procedure that extracts feasible solutions from the DD (i.e., primal bounds). Similarly, we

can apply the same DD to generate valid inequalities, prune sub-optimal solutions, and

infer no-good assignments for the same problem. This property makes DDs a strong and

flexible optimization tool that can benefit from techniques developed in different fields.

There are, however, several DD limitations and challenges. Most importantly, DDs can

grow exponentially with the number of variables, which significantly limits their applica-

bility. While this limitation can be partially addressed by employing approximate DDs, the

quality of the approximation also depends on the size of the problem and other parametriza-

tions. Other drawbacks include implementation challenges (i.e., lack of general and reliable

DD packages for optimization) and modeling limitations (e.g., continuous variables).

While recent works have significantly expanded the use of DDs to solve discrete opti-

mization problems, there are many avenues yet to be explored. In particular, it is still

unclear when DDs should be used. As previously mentioned, the size of a DD is a sig-

nificant limitation, so researchers usually focus on applications that are combinatorially

challenging but where the number of variables is small enough that the solution set can

be represented with the DD. Sequencing problems are good examples since they usually

have weak LP relaxations due to big-M constraints and problems with few variables can be

challenging for commercial solvers (Cire and van Hoeve 2013, Kinable et al. 2017, Castro

et al. 2020a).
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Nonetheless, we know very little about DD representability and how to efficiently con-

struct these diagrams. We believe that it is crucial to understand which combinatorial

structures are better suited to DDs so we can exploit them in our implementations. A good

example of this idea is the paper by Tjandraatmadja and van Hoeve (2020). The authors

proposed a DD approach that can be integrated into an IP solver, but instead of modeling

the full problem with a DD they focus solely on conflict graphs, a combinatorial structure

that can be efficiently model with DDs. Since representing the full problem with a DD is

often impractical, knowing which sub-structures are better suited for DDs can provide a

better idea of how to employ DDs in practice.

With this idea in mind, we believe that combining DDs with existing optimization solvers

can lead to state-of-the-art performance. Recent papers have shown the potential of this

integration, for example, by employing DDs as a component of a decomposition algorithm

(e.g., column generation, cutting planes, and Lagrangian relaxation). However, most of

these works rely on existing decomposition algorithms and use DDs to efficiently solve

combinatorial problems. A promising research direction is to explore new decomposition

mechanisms that can leverage DDs to their full potential. DD-based branch-and-bound

(Bergman et al. 2016b, González et al. 2020b) is a good example of a methodology specially

made for DDs since the branching and bounding algorithms are designed to take advantage

of the graphical structure.

Another interesting research direction is to develop algorithms that can leverage infor-

mation from multiple DDs. The main advantage of this idea is that we can represent larger

problems by using multiple DDs that model small portions of them. This idea has been

briefly studied in the literature, for example, with Lagrangian decomposition (Bergman

et al. 2015a, Lange and Swoboda 2021) and network flow models with linking constraints

(Lozano et al. 2020a). However, the use of multiple DDs is still very limited, and, to the

best of our knowledge, there are no efficient algorithms to integrate or share information

between two or more DDs.

Decision Diagrams are flexible optimization tools that have shown state-of-the-art

results solving a wide variety of problems. DDs can be integrated with other optimization

paradigms and used in different ways to solve a problem. Nonetheless, we still know very

little of these graphical structures and how to properly exploit them for optimization pur-

poses. Thus, there is a wide range of possibilities yet to be explored that can leverage DDs

to solve challenging optimization problems.
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Hadžić T, O’Mahony E, O’Sullivan B, Sellmann M (2009) Enhanced inference for the market split problem.

Proceedings of the IEEE International Conference on Tools with Artificial Intelligence, 716–723.
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