
Multi-agent Negotiation for Distributed Production
Scheduling Problems

Lei Duan
Department of Mechanical
and Industrial Engineering

University of Toronto, Toronto,
Canada

lduan@mie.utoronto.ca

Mustafa K. Doğru
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ABSTRACT
We tackle the challenge of applying automated negotiation
to multiple self-interested agents with local but linked com-
binatorial optimization problems. Using distributed schedul-
ing problems in the context of supply chain management, we
propose two negotiation strategies for making concessions
in a joint search space of agreements. The first strategy
concedes on utility, an approach commonly used in the ne-
gotiation literature; the second strategy concedes in a met-
ric space while maximizing an agent’s local utility. Experi-
mental results show that, on small local problem instances,
the metric-space negotiation strategy outperforms its utility-
based counterpart on both agreement quality and computa-
tional effort. This paper presents one of the first studies
of applying automated negotiation to self-interested agents
each with a local combinatorial optimization problem.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; K.4.4 [Computers and Society]: Electronic Com-
merce

General Terms
Algorithm, Experimentation, Management

Keywords
negotiation, multiagent planning and scheduling, combina-
torial optimization, distributed problem solving

1. INTRODUCTION
Multi-agent negotiation is widely used in resolving con-

flicts and distributing profits among different participants
[12]. However, there has been little work in literature on ne-
gotiations among agents who have complex utility functions
based on local combinatorial optimization problems. In a
supplier-manufacturer relationship, the agents frequently ne-
gotiate on the delivery schedules, i.e., timing and quantities,

for a variety of components and products. These schedules
form an integral part of an agent’s local optimization prob-
lem which typically has a combinatorial nature. Making de-
cisions on these problems can be complex but critical to the
overall efficiency of the entire supply chain, which has long
been held as a key objective in supply chain coordination [4].
As a concrete example, consider a computer manufacturer
(e.g., Dell) and its supply chain including its suppliers and
customers. The manufacturer purchases components (e.g.,
CPUs, RAM, and hard drives) from various suppliers, as-
sembles them according to different product configurations,
and sells them to customers worldwide. Although optimiza-
tion of production and inventory decisions in large corpo-
rations are supported by software tools [7], negotiation of
delivery schedules between a manufacturer and a supplier
often relies on human interactions. The goal of this research
is to apply automated negotiation to achieve better overall
efficiency of the supply chain. This will free human planners
from lengthy communications as well as help them create
value with high-quality agreements.

(9,8,4)
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Figure 1: A supply chain consisting of one manufac-
turer and N suppliers.

In this paper, we investigate a multi-agent supply chain
consisting of one manufacturer and multiple suppliers (Fig-



ure 1). The manufacturer solves a production scheduling
problem to determine production quantities in each period
in order to satisfy customer demand (e.g., 10 units in the
first period, 7 in the second, and so on). The objective of
the manufacturer is to maximize its profit subject to both
local and external capacity constraints. The manufacturing
of a product requires N different components, each from a
different supplier. Each supplier has a similar scheduling
problem to determine the number of components to be pro-
duced in each period based on the manufacturer’s require-
ments as well as its local resource capacity. Similarly, every
supplier seeks to maximize its profit.

In order to establish a delivery schedule for each of the
components required, the manufacturer negotiates with each
supplier since no product can be assembled on schedule if
there is a disagreement on the component delivery schedule.
To support automated negotiation, we use the negotiation
protocol of Lai & Sycara [10]. To make concessions in a
shared search space of agreements for our distributed pro-
duction scheduling problems, we propose two negotiation
strategies. The first strategy concedes on an agent’s utility,
an approach widely used in the literature; the second strat-
egy concedes in a metric space while maximizing an agent’s
local utility. To assess the quality of agreements produced
by the two negotiation strategies, we implement a central-
ized solver that generates optimal solutions corresponding to
the best possible agreement that agents can achieve through
negotiation. Experimental results on small local problem in-
stances show that the metric-space strategy obtains agree-
ments closer to the best ones than its utility-based counter-
part and is overall more computationally efficient.

The rest of the paper is organized as follows. In Section 2,
we present related work on multi-agent negotiations with a
special attention of their applications to distributed schedul-
ing. In Section 3, we present our negotiation protocol and
the two negotiation strategies, followed by definitions and
models of the production scheduling problems in Section 4.
Experimental results are shown in Section 5. Finally, we
conclude in Section 6.

2. RELATED WORK
In the negotiation framework of Ito et al. [8], each agent

uniformly samples from its utility space to generate bids in a
joint search space of agreements in which issues are interde-
pendent and utility functions are nonlinear. These bids are
then sent to a mediator which selects the winning proposal
that maximizes the social welfare of all the participating
agents. Although this approach significantly outperforms
previous methods on agreement quality, it does require a
mediator for completing the negotiation. In a supply chain,
however, it may not be very cost-effective to coordinate dis-
tributed decision making through a mediator.

Turning to negotiation on scheduling problems, in [15],
Zhang and Lesser study the multi-linked negotiation in which
an agent negotiates with others in completing multiple tasks.
These tasks contain operations with precedence constraints
among them. Reasoning on these precedence relations based
on a partial order schedule proposed by the authors enables
an agent to manage the negotiations on the start and fin-
ish time of an operation much more effectively with other
agents, resulting in more tasks being completed by their
deadlines than ignoring the precedence relations and simply
negotiating on the tasks separately. Although an agent uses

heuristics to sequence its tasks locally, none of the agents
has its utility based on solving a local combinatorial opti-
mization problem.

Smith et al. [14] address the problem of a team of collabo-
rative agents each of which executes part of a pre-computed
global schedule in an uncertain environment. The objective
of an agent is to maximize the total quality of the execu-
tion of the given global schedule. When deviations from
the established schedule occur due to certain unexpected
events, agents will locally reschedule their activities to re-
store feasibility or to maintain the quality of their partial
solutions. Agents also collaborate on improving the qual-
ity of the global schedule through joint schedule changes.
The key difference in our setting is that there is no global
schedule existed before negotiation takes place. Each agent
only knows its own production schedule. To make mat-
ters worse, our supply-chain agents are self-interested: each
agent is solely interested in maximizing its own gain, even
at the cost of other agents’ interest. Therefore, conflicts
are not only caused by uncertainties but also by each agent
maximizing the objective function of its own problem dis-
regarding others, a phenomenon known as incentive conflict
[4]. The conflict needs to be resolved by agents negotiating
with each other aiming to find a common solution to one
another’s local problem.

Crawford and Veloso [5] introduce the Semi-Cooperative
Extended Incremental Multiagent Agreement Problem with
Preferences in which an agent’s utility is based on its own
preferences discounted by the negotiation round (an exchange
of an offer and a counter offer). In their agreement prob-
lem, variables arrive over time, and the assignment must
be agreed by all the parties involved. Although an agent’s
preferences on variable assignment are private, the domain
of the variables are public knowledge (e.g., all the possible
time slots between 9AM and 5 PM in a meeting scheduling).
As utility is discounted by time, an agent can learn from his-
tory and predict the round in which a value will be offered
by other agents. Thus using this learned information, for
example, by proposing offers in the descending order of es-
timated round, will help an agent obtain better utility in
an agreement. In contrast, in our case, each agent has a
combinatorial optimization problem, and the set of common
values grows exponentially, making it impossible to propose
every solution in a particular order based on learning.

Lastly, a closely related work is Burke et al. [3] in which
distributed problem solving takes place among a manufac-
turer and several suppliers each with a production schedul-
ing problem, a setting similar to ours. Agents form a com-
ponent delivery schedule using the ADOPT algorithm [11].
The ADOPT algorithm in this context has several draw-
backs. First, it does not truly realize a negotiation in which
all of the agents can propose offers. The algorithm only
enables the manufacturer to do so while the suppliers just
revise their schedules based on the manufacturer’s proposal,
thus essentially blocking them from bargaining. Second,
only one agent, corresponding to the root node in a depth-
first search tree in ADOPT, can generate the optimal agree-
ment and end the negotiation whereas in our negotiation
protocol, every agent can exit a negotiation by accepting an
offer. Lastly, the privacy of the agents in ADOPT is severely
compromised as they need to communicate the values of
their utility functions during negotiation: in our protocol,
agents never disclose any information other than offers.



3. NEGOTIATION PROTOCOL AND STRATE-
GIES

In our supply chain, a manufacturer negotiates with N
suppliers to establish a component delivery schedule with
each supplier (see Figure 1). The manufacturer initiates the
negotiation by offering to each supplier a schedule, e.g., to
supplier i (i ∈ [1, . . . , N ]), 10 units for the first period, 7 for
the second, and 4 for the third. Each supplier then individu-
ally evaluates the offer to decide whether to accept or reject
it. In case of acceptance, the negotiation ends between the
supplier and the manufacturer with the manufacturer’s offer
as the agreement; in case of rejection, the negotiation contin-
ues with the supplier counter offering another schedule, e.g.,
(9, 8, 4) from supplier i back to the manufacturer. The man-
ufacturer receives response (counter offers or confirmations
of acceptance) from all the suppliers before another round
of proposing offers to those suppliers who have not agreed.
This exchange of offers and counter offers is repeated until
either the manufacturer has reached an agreement with ev-
ery supplier or a pre-specified maximum number of rounds
has passed, where a round is defined as an exchange of the
offers from the manufacturer to those suppliers who have
not agreed in the previous round and the counter offers or
confirmations of acceptance from those suppliers (Figure 2).

si

si

Round i evaluates

evaluates offersmoffers

s

m m

i Round i+1offers
oraccepts

Figure 2: The sequence of events in round r. m rep-
resents the manufacturer while si denotes a supplier,
i, who has not agreed in round r − 1.

3.1 A Utility-based Strategy
For each agent, the manufacturer or a supplier, the deci-

sion of whether to accept or to reject an offer is controlled
by a negotiation strategy [9]. A utility-based negotiation
strategy requires a reservation utility as a threshold of ac-
ceptance for each round: if an offer is no worse than the cur-
rent reservation utility, the offer will be accepted; otherwise,
a counter offer will be made. We assume that an agent’s
utility is discounted by time and an outcome of agreement
is better than no-agreement. Thus, similar to other works
[1, 10], we use a time-dependent concession function [6] to
calculate a reservation utility:

U(r) = U(0)− (U(0)− U(R))
“ r

R

”1/β

(1)

where R is the index of the final round, β is the rate of
concession, and U(r) is the reservation utility in round r
(r = 0, 1, . . . R). Through a series of reservation utilities,
{U(r)}, an agent starts with its best utility, U(0), and grad-
ually concedes to its worst utility, U(R), in the final round.
Without loss of generality, we describe a utility-based nego-
tiation strategy from the manufacturer’s perspective. The
manufacturer will accept offers from the suppliers if its util-
ity is no worse than the reservation utility in a particular
round. Otherwise, reject them and generate counter-offers
with a utility equal to the reservation utility.

Before this utility-based strategy can be applied, two is-
sues must be dealt with: one is to set the worst utility, U(R),
and the other is to find a solution that yields an optimization
objective value of U(r) in each round. Since establishing the
worst utility prior to negotiation can be difficult, we allow
it to be dynamically updated, an idea similar to An et al
[1]. Specifically, in the beginning, U(R) is set to be the lo-
cal utility of the first offer(s) from the other agent(s). In
the subsequent rounds, if the most recent offer(s) from the
other agent(s) renders a utility worse than U(R), then U(R)
is updated to the worse utility. Updating an agent’s worst
utility has the effect of increasing the concession step size
while still guaranteeing that the agent will accept an offer
with its worst observed utility in the last round. To tackle
the second issue, we apply a heuristic proposing method [10]
which would propose a counter-offer with a utility no less
than U(r) and with the maximum distance from the current
offers of the other agents minimized. To measure the dis-
tance between two offers, we use Manhattan distance in a
discrete space. In the rest of the paper, this strategy will be
referred to as strategy U, for “utility”.

3.2 A Metric-Space Strategy
Strategy U is based on calculating the utility that will be

conceded to and then finding a solution of that utility as
close as possible to the other agent’s current offer. From
an optimization perspective, an agent reformulates its local
optimization model with a constraint placed on the utility
function (no less than a reservation utility) while changing
the objective to minimize the maximum distance between
the most recent offer and the counter offer being searched
for. We can invert this approach by placing a constraint
on the distance: rather than giving up utility, an agent can
explicitly move closer to an agreement while maximizing its
utility. The time-dependent concession function we use in
the metric-space strategy is similar to (1):

D(r) = D(r − 1)

»
1−

“ r

R

”1/β
–

(2)

where R and β are as defined in (1), and D(r) is the dis-
tance threshold in round r (r = 1, . . . , R). D(0) is the
maximum distance between the first offer-counter offer pair,
corresponding to the two agents’ best utilities, respectively.
Different from (1), there is no need for an agent to explicitly
set the worst utility.

We define a metric-space strategy (referred to as M here-
after, for “metric”) as follows. In the initial round (r = 0),
find the solution with the best utility (the same as in strategy
U). In any subsequent round, find the solution that maxi-
mizes an agent’s utility in a region bounded by D(r). If
this distance-constrained solution is no better than the offer
from the other agent, then accept the offer and end the ne-
gotiation. Otherwise, reject the offer and counter offer the
best solution bounded by D(r).

4. THE PROBLEM DEFINITIONS AND MOD-
ELS

Consider the supply chain consisting of a manufacturer
and N suppliers. The manufacturer sells a product, which is
produced using N different components, each from a differ-
ent supplier. Each agent determines its production schedule,
the number of products/components to be manufactured



dt the customer demand in period t
Mm

t the product production capacity in period t
Im

t the inventory level of product at the end of t
Im−

t the backlog level of product at the end of t
Jmi

t the inventory level of component i at the end of t
P the unit selling price of product
pi the unit selling price of component i
sm

t the setup cost of product production in t
cm

t the unit product production cost in t
Ht the unit holding cost of product in t
Bt the unit backlogging cost of product in t
hmi

t the unit holding cost of component i in t

Msi
t the production capacity of component i in t

Isi
t the inventory level of component i at the end of t

ssi
t the setup cost of component i in t

csi
t the unit production cost of component i in t

hsi
t the unit holding cost of component i in t

Table 1: Notation for the production scheduling
problem.

during each period (e.g., day or week) over a fixed time
horizon and maximizes its profit. The production costs in-
clude a setup cost (fixed and independent of the quantity
produced) and a unit production cost (variable in the quan-
tity produced). In addition, a unit inventory holding cost is
charged for each product/component carried in stock from
one period to the next. The quantity of products (compo-
nents) that can be produced in a period by the manufacturer
(supplier) is constrained by available capacity. If the man-
ufacturer cannot fulfill the customer demand in a period,
it will backlog the unfulfilled demand and deliver in a later
period while paying a penalty cost to compensate the cus-
tomer for the late delivery. In this case, the manufacturer
uses a backlogging model [13] for its local production schedul-
ing problem. Such a problem often arises in the context of
supply chain management [13]. It is commonly known as
the lot sizing problem and is NP-hard [2]. In our example,
the manufacturer and the suppliers need to optimize their
own problems while negotiating to establish common deliv-
ery schedules between them. In the following, we formulate
the manufacturer’s and the supplier’s models for evaluating
offers and making counter offers with strategy U and M.

4.1 The Manufacturer’s Models for Negotia-
tion

The planning horizon is divided into periods of equal length.
Let t = 1, . . . , T be the index for periods and T denote the
last period in the horizon. We use the superscript m to
denote parameters and variables belonging to the manufac-
turer. The parameters are defined in Table 1. Without loss
of generality, we assume that assembling each product re-
quires one unit of a different component, i (i ∈ {1, . . . , N}),
and consumes one unit of production capacity.

Let yi
t be the quantity of component i delivered in period

t. The decision variables are δm
t , a 0-or-1 variable indicating

whether to have a production set-up in period t; xm
t , the

quantity of the product to be manufactured in period t; gt,
the quantity of the product to be delivered to customers
in period t; and zi

t, the quantity of component i to order
from supplier i in period t. The mathematical programming

model is formulated as follows.
Maximize um:

TX
t=1

Pgt −
NX

i=1

TX
t=1

pizi
t − (

TX
t=1

sm
t δm

t + cm
t xm

t

+HtI
m
t + BtI

m−
t +

NX
i=1

hmi
t Jmi

t ) (3)

Subject to:

xm
t ≤ δm

t Mm
t t = 1, . . . , T (4)

Im
t = Im

t−1 + xm
t − gt t = 1, . . . , T (5)

Jmi
t = Jmi

t−1 + zi
t − xm

t t = 1, . . . , T ; i = 1, . . . , N (6)

Im−
t = Im−

t−1 + (dt − gt) t = 1, . . . , T (7)

zi
t = yi

t t = 1, . . . , T ; i = 1, . . . , N (8)

δm
t ∈ {0, 1}; gt, x

m
t , zi

t ≥ 0 t = 1, . . . , T ; i = 1, . . . , N (9)

where Im
0 and Jmi

0 are the respective levels of product and
component inventory at the beginning of the time horizon,
which are assumed to be zero without loss of generality.

Given the complete customer demand in the time hori-
zon, {dt}, the objective function (3) maximizes the profit:
the revenue from product sales minus the total purchasing,
setup, production, inventory holding, and backlogging costs.
Constraint (4) ascertains that there is a production set-up
(δm

t = 1) if the quantity produced is positive, and also en-
forces the production capacity. Constraints (5) and (6) are
inventory balance equations for the product and the compo-
nents, respectively. Constraint (7) ensures that the backlog
level at the end of period t is the backlog level at the end of
period t−1 plus the difference between demand and amount
delivered in period t.

Constraint (8) specifies that the ordering quantity of com-
ponent i in a period is equal to the quantity delivered from
supplier i. When the manufacturer initiates an negotiation,
there is no component delivery schedule from any supplier
to refer to. So the manufacturer assumes that each supplier
can provide as many components as needed and optimizes
the model without Constraint (8). The resulting component
ordering schedules, {zt}i, yields the maximum profit for the
manufacturer, i.e., Um(0) for function (1), and is used as
the manufacturer’s first offer to all the suppliers. For subse-
quent rounds in which the manufacturer evaluates supplier
i’s counter offer of a different schedule, Constraint (8) will
be enforced. It will be also enforced when the manufacturer
reaches an agreement with a supplier during negotiation. Fi-
nally, Constraint (9) specifies the domains of the variables.
We note that there is always a feasible solution to the back-
logging model, i.e., to backlog all customer orders with hefty
loss on profit.

Given all the counter offers, {{yt}i(r)}, in round r, the
model for the manufacturer to offer new schedules, {{zt}i(r+
1)}, in round r + 1 using strategy U is given below.

Minimize:

max
i

TX
t=1

|zi
t(r + 1)− yi

t(r)| (10)



Subject to:

Um(r + 1) ≤
TX

t=1

Pgt −
NX

i=1

TX
t=1

pizi
t(r + 1)− 

TX
t=1

sm
t δm

t + cm
t xm

t + HtI
m
t + BtI

m−
t +

NX
i=1

hmi
t Jmi

t

!
(11)

and (4), (5), (6), (7), (9)

where Um(r + 1) is the manufacturer’s reservation utility in
round r+1 according to concession function (1). The manu-
facturer will reject {{yt}i(r)} and counter offer {{zt}i(r+1)}
if um

`
{{zt}i(r + 1)}

´
> um

`
{{yt}i(r)}

´
. Also, the manu-

facturer initially sets its worst utility, Um(R), on the sup-
pliers’ first offers, {{yt}i(0)}.

The model for the manufacturer to find new component
delivery schedules, {{zt}i(r + 1)}, using strategy M is as
follows.

Maximize: (3)
Subject to:

max
i

TX
t=1

˛̨̨
zi

t(r + 1)− yi
t(r)

˛̨̨
≤ D(r + 1) (12)

and (4), (5), (6), (7), (9)

where D(r + 1) is the manufacturer’s distance threshold in
round r + 1 according to concession function (2). (D(0) =

maxi

PT
t=1 |z

i
t(0) − yi

t(0)|) The objective function remains
maximizing the profit. Similar to strategy U, strategy M is
also guaranteed to converge to an agreement since in the last
round, the manufacturer’s distance threshold is decreased
to zero and it will accept the suppliers’ offers from round
R− 1, which always make the manufacturer’s local problem
feasible. In the initial round (r = 0), the manufacturer
offers its best schedule, {zt}i(0), to supplier i since it has no
supplier’s offer to compare on the utility yet.

As can be seen, strategy M takes a converse approach
from its utility-space counterpart in integrating external in-
formation into the local optimization model. In strategy M,
a constraint is placed on the distance in metric space of the
new counter offer(s) from the current offer(s) while the opti-
mization function remains the maximization of local utility
as in the original combinatorial optimization problem.

4.2 The Supplier’s Models for Negotiation
The supplier, unlike the manufacturer, is assumed to have

unlimited supply of raw materials for manufacturing the
components. Further, we assume that the cost of the raw
material is negligible, so it is not considered in the model.
Like in the manufacturer’s model, we use the superscript s
to denote parameters (Table 1) and variables that belong to
the supplier.

The decision variables are δsi
t , a 0-or-1 variable indicating

whether to have a production set-up in period t, xsi
t , the

quantity of the component to be manufactured in period
t, and yi

t. The mathematical programming model is given
below.

Maximize usi:

TX
t=1

piyi
t −

 
TX

t=1

ssi
t δsi

t + csi
t xsi

t + hsi
t Isi

t

!
(13)

Subject to:

xsi
t ≤ δsi

t Msi
t t = 1, . . . , T ; i = 1, . . . , N(14)

Isi
t = Isi

t−1 + xsi
t − yi

t t = 1, . . . , T ; i = 1, . . . , N(15)

zi
t = yi

t t = 1, . . . , T ; i = 1, . . . , N(16)

xsi
t ≥ 0, yi

t ≥ 0, δsi
t ∈ {0, 1} t = 1, . . . , T ; i = 1, . . . , N(17)

where Isi
0 is the inventory level of component i at the be-

ginning of the planning horizon and is assumed to be zero.
The objective function and the constraints resemble their
counterparts in the manufacturer’s model.

Strategy U requires that a supplier determines its best
and worst utilities initially in round 0. After the manufac-
turer offers its first component delivery schedule, {zt}i(0),
the supplier solves (13)–(17) and sets its worst utility based
on this offer: Usi(R) = usi

`
{zt}i(0)

´
. (In case of infeasibil-

ity, we assign Usi(R) = 0.) For the calculation of its best
utility, the supplier does not regard the manufacturer’s de-
livery request as a set of constraints in which the specified
quantity must be delivered in each period, but rather as a
sequence of demand for which the total amount may be ful-
filled within the planning horizon. Therefore, the supplier
drops Constraint (16) and adds the following constraint

TX
t=1

yi
t ≤

TX
t=1

zi
t (18)

to its model. The resulting schedule, {yt}i(0), yields the
best utility for supplier i, Usi(0).

The model for supplier i to counter offer {yt}i(r) in round
r using strategy U is as follows.

Minimize:

TX
t=1

|zi
t(r)− yi

t(r)| (19)

Subject to:

Usi(r) ≤
TX

t=1

piyi
t(r)−

 
TX

t=1

ssi
t δsi

t + csi
t xsi

t + hsi
t Isi

t

!
(20)

and (14), (15), (17), (18)

where Usi(r) is supplier i’s reservation utility in round r
according to concession function (1). The new objective
function (19) minimizes the difference between the current
offer on component delivery, {zt}i(r), and a new proposal
on delivery, {yt}i(r). The original objective function (13) is
revised as Constraint (20) according to strategy U. In round
0, the supplier will counter offer {yt}i(0), its best schedule,
if usi

`
{yt}i(0)

´
> usi

`
{zt}i(0)

´
.

The model for supplier i to counter offer {yt}i(r) in round
r using strategy M is given below.

Maximize: (13)
Subject to:

TX
t=1

|yi
t(r)− zi

t(r)| ≤ Di(r) (21)

and (14), (15), (17), (18)

where Di(r) is supplier i’s distance threshold in round r ac-
cording to concession function (2). Note that this model
may fail to find a solution when the supplier has insufficient



pi, the unit selling price of component i: 20
P , the unit selling price of the product: 2×

P
i pi

sm
t , the setup cost of product production: 5

cm
t , the unit product production cost: 10

Ht, the unit holding cost of the product: P × 10%
Bt, the unit backlogging cost of the product: P × 40%
hmi

t , the unit holding cost of component i: 2

ssi
t , the setup cost of component i (under capacity): 10

ssi
t , the setup cost of component i (over capacity): 100

csi
t , the unit component production cost: 5

hsi
t , the unit holding cost of component i: 2

Table 2: Parameters for the production scheduling
problems.

production capacity, in which case the supplier will counter
offer the proposal from the previous round, {yt}i(r − 1), to
the manufacturer. In the initial round (r = 0), the supplier,
after finding its best schedule, {yt}i(0), will accept {zt}i(0)
if usi({zt}i(0)) ≥ usi({yt}i(0)), or counter offer {yt}i(0) oth-
erwise, since {yt}i(0) is the best solution within Di(0), the
distance between {zt}i(0) and {yt}i(0).

5. EXPERIMENTAL RESULTS
We now apply strategy U and M to the production schedul-

ing problems in our one-manufacturer-N -supplier supply chain.
We will compare these two approaches on criteria of conver-
gence to agreement subject to a computation limit, agree-
ment quality, and computational effort.

5.1 Parameter Settings
The index of the final round (R) and the concession rate

(β) are set to 10 and 1 (a linear concession), respectively.
Each strategy is restricted to one offer per round. The pa-
rameters for the production scheduling problems are set as
follows.

The customer demand, dt, t = 1, . . . , T (d0 = 0), is uni-
formly sampled from [µ − ∆, µ + ∆] with integer values,
where µ represents the mean demand and ∆ the maximum
deviation from the mean. We set µ = 100 and ∆ = 30.

The production capacity of an agent is set in a similar
way to the customer demand: [µm −∆m, µm + ∆m] for the
manufacturer and [µsi −∆si, µsi + ∆si] for supplier i. The
manufacturer is set to have more than enough capacity to
meet all the customer demand: µm = 500, ∆m = 50. How-
ever, two different settings are experimented with for a sup-
plier, “under capacity” in which a supplier, i, has barely
sufficient capacity to supply the manufacturer: µsi = 100,
∆si = 40; and “over capacity” in which a supplier has more
than enough capacity to satisfy the manufacturer’s demand:
µsi = 400, ∆si = 40. The number of suppliers with over
capacity is controlled by a ratio, ρ ∈ [0, 1]: ρ = 0 indicates
all under-capacity whereas ρ = 1 means all over-capacity. In
the experiments, ρ is drawn from [0, 0.25, 0.5, 0.75, 1].

The cost parameters are set in Table 2. The size of a
problem is decided by the length of the planning horizon,
T . In order for an agent to quickly solve its local problem,
we chose a small value of T : T = 5. Lastly, the number of
suppliers is drawn from [2, 4, 16, 64].

5.2 Results and Analysis

Number of Suppliers Strategy M Strategy U
2 50 50
4 50 50
16 50 50
64 50 32

Table 3: The total number of times that a negotia-
tion strategy converged to an agreement for different
number of suppliers.

Experiments were conducted to test the performance of
the two negotiation strategies on the underlying production
scheduling problem. For each capacity ratio, ρ, 10 problem
instances were randomly generated. A maximum CPU time
of 12 hours is used to cut off a problem instance–exhausting
this computational time is considered as failure to reach an
agreement. The negotiation protocols were coded in C++,
and the problem instances were solved by ILOG CPLEX
11.0. All the experiments were run on a Dual Core AMD
270 CPU with 4 GB main memory and Red Hat Enterprise
Linux 4.

The two negotiation strategies are evaluated on the follow-
ing three criteria. (i) The total number of times the negotia-
tion converged to an agreement out of 50 problem instances
for each number of suppliers across different ratios. (ii) The
quality of the agreement. If an agreement yields for all the
agents, the manufacturer plus all of the suppliers, a higher
sum of their individual profits, then a strategy producing
that agreement is deemed better. Also, we implemented a
centralized solver for the whole supply chain, modelled in
Appendix A, which yields the maximum possible profit that
all of the agents can achieve together through negotiation.
Thus, a negotiation strategy is better if it manages to reach
an agreement with a smaller deviation from the best possible
outcome. To measure the deviation on average, we calculate
the mean relative error (MRE):

MRE =
1

n

X ξm +
P

i ξsi − ξm+s

ξm+s

where ξm,
P

i ξsi, and ξm+s are the final profit of the man-
ufacturer, the sum of all the suppliers, and the central-
ized solver, respectively, and n is the number of agreements
reached out of 10 problem instances for a given ratio. (iii) The
computational effort, measured by the mean CPU time per
negotiation round given a 12-hour computational time limit
and a maximum number of 10 rounds.

Table 3 compares the two strategies on the total num-
ber of times a negotiation converged to an agreement for a
given number of suppliers across different capacity ratios.
Both strategies are able to scale with the number of suppli-
ers when the number is small. However, when the number
of suppliers becomes large (i.e., 64), strategy U can only
finish about 60% of the negotiation instances by the compu-
tational time limit while strategy M is still able to finish all
the negotiations with an agreement in time.

Figure 3 compares strategy M and U on the MRE for 2, 4,
16, and 64 suppliers, respectively. Strategy M consistently
outperforms its utility-based counterpart across different ca-
pacity ratios. On the criterion of computational effort (Fig-
ure 4), strategy M is overall more computationally efficient
than strategy U, especially when the number of suppliers
reaches 64: strategy M spends about four orders of mag-
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Figure 3: This set of figures shows the mean relative
error on profit for 2 (3(a)), 4 (3(b)), 16 (3(c)), and
64 (3(d)) suppliers, respectively.
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Figure 4: This set of figures shows the mean CPU
time per negotiation round for 2 (4(a)), 4 (4(b)),
16 (4(c)), and 64 (4(d)) suppliers, respectively. Fig-
ure 4(c) and 4(d) are on log scale.



nitude less CPU time per round on average in finishing a
negotiation.

6. CONCLUSION AND FUTURE WORK
In this paper, we tackle the challenge of applying au-

tomated negotiation to distributed production scheduling
problems and make two main contributions: (1) the inves-
tigation of multi-agent negotiation in which each agent’s
utility depends on solving a local combinatorial optimiza-
tion problem, and (2) the introduction of a novel concession
strategy which constrains the distance in the metric space
between successive offers while maximizing local utility. We
experiment with two negotiation strategies. One strategy,
based on a widely used approach in the negotiation litera-
ture, concedes on utility, and the other, the new one, takes
a converse approach and concedes in a metric space while
maximizing an agent’s local utility. Experimental results
show that, for small local problem instances, both strate-
gies scale up to as many as 64 agents. When compared
against each other, the metric-space strategy outperforms
its utility-based counterpart on both agreement quality and
computational effort.

Our next step is to apply the negotiation protocol with the
strategies to a general supply network of negotiating agents
each with a production scheduling problem and with more
complex interactions among them. Our ultimate goal is to
develop negotiation protocols and strategies for automated
negotiation between software tools that solve combinatorial
optimization problems.
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APPENDIX

A. THE CENTRALIZED SCHEDULING MODEL
The centralized model is formulated after incorporating

all the parameters, variables, and constraints from all the
manufacturer’s and the suppliers’ models. The decision vari-
ables are δm

t , xm
t , gt, δsi

t , and xsi
t , as previously defined. The

objective function is the sum of the objective functions of
the manufacturer and all the suppliers. The mathematical
programming model is formulated as follows.

Maximize:

TX
t=1

Pgt − (

TX
t=1

sm
t δm

t + cm
t xm

t + HtI
m
t + BtI

m−
t

+

NX
i=1

(hmi
t Jmi

t + hsi
t Isi

t + ssi
t δsi

t + csi
t xsi

t )) (22)

Subject to:

xsi
t = Jmi

t + Isi
t + xm

t − Jmi
t−1 − Isi

t−1

t = 1, . . . , T ; i = 1, . . . , N (23)

xm
t ≥ 0, δm

t ∈ {0, 1}, gt ≥ 0, xsi
t ≥ 0, δsi

t ∈ {0, 1}
t = 1, . . . , T ; i = 1, . . . , N (24)

and (4), (5), (7), (14)


