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Abstract. Binarized Neural Networks (BNNs) are an important class
of neural network characterized by weights and activations restricted to
the set {−1,+1}. BNNs provide simple compact descriptions and as such
have a wide range of applications in low-power devices. In this paper, we
investigate a model-based approach to training BNNs using constraint
programming (CP), mixed-integer programming (MIP), and CP/MIP
hybrids. We formulate the training problem as finding a set of weights
that correctly classify the training set instances while optimizing ob-
jective functions that have been proposed in the literature as proxies
for generalizability. Our experimental results on the MNIST digit recog-
nition dataset suggest that—when training data is limited—the BNNs
found by our hybrid approach generalize better than those obtained from
a state-of-the-art gradient descent method. More broadly, this work en-
ables the analysis of neural network performance based on the availability
of optimal solutions and optimality bounds.

Keywords: Binarized Neural Networks ·Machine Learning · Constraint
Programming · Mixed Integer Programming · Discrete Optimization.

1 Introduction

Deep learning is responsible for recent breakthroughs in image recognition, speech
recognition, language translation, and artificial intelligence [18, 7]. Roughly speak-
ing, deep learning aims to find a set of weights for a neural network (NN) that
maps training inputs to target outputs (e.g., English sentences to their Spanish
translations), a process known as training. The most notable feature of deep
learning is that NNs generalize when trained over large datasets, i.e., they can
map unseen inputs to their target outputs with high accuracy.

? This is the authors’ copy of a paper that is to appear in the proceedings of the 25th
International Conference on Principles and Practice of Constraint Programming.
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Hubara et al. [9] recently showed that Binarized Neural Networks (BNNs)—
NNs with weights and activations in {−1,+1}—have comparable test perfor-
mance to standard NNs in two well-known image recognition datasets. This is
a remarkable result because BNNs can be implemented using Boolean oper-
ations with low memory and energy consumption, enabling, for example, the
application of deep learning in mobile devices. While training BNNs is a discrete
optimization problem, it has not been addressed by model-based techniques such
as mixed-integer programming (MIP) or constraint programming (CP). Instead,
BNNs are trained using gradient descent (GD) methods over continuous weights
which are binarized during the forward pass of the algorithm [26, 20, 33, 17].

Model-based approaches have stronger convergence guarantees than GD and,
as such, can potentially find better solutions given enough time and resources.
There are two reasons, however, why a model-based approach—in particular
MIP—may be disadvantageous, as stated by Gambella et al. [6]. First, it may
not scale to large datasets since the size of the model depends on the size of the
training set. Second, solutions with provably-optimal training error are likely to
overfit the data, that is, they will classify the training examples effectively but
will not generalize.

The main contribution of this paper is a collection of model-based training
methods that explicitly address these issues. The key insights are (i) improving
scalability by taking advantage of CP’s ability to find BNNs that fit the training
data and (ii) avoiding overfitting by optimizing well-known proxies for general-
izability. Specifically, we propose MIP, CP, and CP/MIP hybrid approaches to
train BNNs while optimizing objective functions based on two machine learning
principles for generalization: simplicity and robustness.

We experimented over subsets of the widely-used MNIST dataset [19]. Our
experiments focused on limited training data, a setting known as few-shot learn-
ing [32]. This setting is important in Machine Learning because collecting labeled
data is expensive—or even impossible—in many important real-world applica-
tions, including healthcare [21, 3]. Our results show that our hybrid methods
scale significantly better than MIP (i.e., they solve problems with larger net-
works and more training data) and produced BNNs that generalize better than
those trained with GD. In fact, our BNNs correctly classified up to 3 times more
unseen examples than BNNs learned by GD on a few-shot learning regime. How-
ever, model-based approaches are still far from scaling at the level of GD and,
hence, GD should be preferred when a large amount of data is available. Finally,
since model-based approaches find provably-optimal solutions—GD does not—
they allow for principled empirical comparisons between generalization proxies.
Our results suggest that optimizing for robustness leads to better test perfor-
mance than simplicity.

2 Problem Definition

BNNs are NNs with weights and activations restricted to the values −1 and
+1. A BNN architecture is defined by the number of layers L and the set of
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Fig. 1: A BNN with 2 inputs, two hidden layers with 16 neurons each, and 1
output neuron. We use the notation n`j to represent neuron j from layer `.

neurons N = 〈N0, . . . , NL〉, where N` corresponds to the set of neurons in layer
` ∈ {0, .., L}. For instance, Figure 1 shows a BNN with two input neurons (n0,1
and n0,2), two hidden layers with 16 neurons each (n1,1 to n1,16 and n2,1 to n2,16),
and one output neuron (n3,1), i.e., its architecture is N = 〈N0, N1, N2, N3〉 with
|N0| = 2, |N1| = |N2| = 16, and |N3| = 1. Every neuron j ∈ N` (` ≥ 1) is
connected to every neuron i ∈ N`−1 by a weight wi`j ∈ {−1, 0, 1}. Note that
setting wi`j = 0 is equivalent to removing the corresponding connection from the
BNN. Given a value x for the input neurons, the preactivation a`j(x) of neuron
j ∈ N` and its activation n`j(x) are, respectively,

a`j(x) =
∑

i∈N`−1

wi`j ·n(`−1)i(x) and n`j(x) =


xj if ` = 0

+1 if ` > 0, a`j(x) ≥ 0

−1 otherwise.

The activations of all the neurons in a BNN are −1 or +1 except for the input
neurons, which may take any real value. A weight assignment W to the network
defines a function fW : R|N0| → {−1, 1}|NL| that maps input vectors x ∈ R|N0|

to output vectors y ∈ {−1, 1}|NL|, where y represents the neuron activations in
the last layer. Training a BNN consists of finding a weight assignment that fits a
training set T = 〈(x1,y1), . . . , (xτ ,yτ )〉, i.e., finding W such that fW(xk) = yk

for all pairs (xk,yk) ∈ T . The task of learning functions from input-output
examples is known as supervised learning.

The goal of supervised learning is generalization [4]. A trained BNN is useful
only if it can map unseen examples to their correct outputs (i.e., good test per-
formance). Hence, a central problem is how to distinguish BNNs that generalize
from those that overfit the training data. There are two main principles to avoid
overfitting in machine learning (ML): simplicity and robustness.

The simplicity principle, also known as Occam’s razor, suggests that we
should prefer the simplest BNNs that fit the training set. For NNs, a natural
measure of simplicity is the number of connections [23]. Our first optimization
problem, therefore, looks for a BNN that fits the training data and minimizes
the number of nonzero weights:

min
W

{∑
w∈W

|w| : fW(x) = y, ∀(x,y) ∈ T , w ∈ {−1, 0, 1}, ∀w ∈W

}
. (min-weight)
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While the effectiveness of this principle has been challenged [4], it is the basis
for most forms of regularizers used in modern deep learning [27].

In contrast, the robustness principle looks for BNNs that classify the training
set correctly despite small perturbations to their weights. It is believed that
deep NNs avoid overfitting because GD implicitly drives the exploration toward
robust solutions [12, 13, 25]. One way of finding robust BNNs is by maximizing
the margins of their neurons. Given a training set T , the margin of neuron
n`j is equal to the minimum absolute value of its preactivation a`j(x) for any
(x,y) ∈ T . Intuitively, neurons with larger margins require bigger changes on
their inputs and weights to change their activation values. Recent work shows
that margins are good predictors for the generalization of deep convolutional NNs
[11]. Our second optimization problem searches for BNNs that fit the training
data and have the maximum sum of neuron margins:

max
W

∑
`∈{1..L}

∑
j∈N`

min{|a`j(x)| : (x,y) ∈ T } (max-margin)

s.t. fW(x) = y ∀(x,y) ∈ T
w ∈ {−1, 0, 1} ∀w ∈W

We focus on these two criteria because they are well-supported by previous work.
However, there are likely to be other objective functions worth studying and our
models may be extended to do so. Additionally, our models assume that the
training set has no incorrectly labeled training examples. Extensions to handle
noise can be done by including slack variables as proposed in the Support Vector
Machine literature [29].

3 Related Work

Unfortunately, BNNs cannot be trained using standard backpropagation because
their weights are discrete. Hubara et al. [9] proposed using two sets of weights: W
and Wb, with W taking continuous values. When computing the activations, the
weights W and activations a are projected to −1 or +1 using Wb = sign(W) and
ab = sign(a). Then, the gradients are computed as usual except for the activation
function. To backpropagate over sign(a) they assume that its gradient is equal
to 1 if |a| ≤ 1 and is 0 otherwise. These gradients update W and then the
process repeats. While most work on training BNNs follows this approach [20,
26, 31, 33], there are a few gradient-based alternatives such as Apprentice [22]
and Self-Binarizing Networks [17].

Other work has explored the use of model-based approaches, in particular
MIP, in tasks related to NNs [6]. For example, MIP models have been proposed
for NN verification [1] and for finding adversarial examples for NNs [5, 30] and
BNNs [15]. Given a pre-trained network and a target input, the problem of find-
ing an adversarial example consists of discovering the smallest perturbation of
the target input such that the output of the network changes. In particular,
Khalil et al. proposed a MIP model that, similarly to our work, uses big-M con-
straints to model the neuron activations [15]. They recognize those big-M con-
straints as the main bottleneck in scaling their approach and propose a heuristic
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method that finds adversarial examples by fixing different subsets of the acti-
vations over time. One of our hybrid CP/MIP models, HA, exploits a similar
idea but for training BNNs. SAT models have also been used in the context of
verifying properties over BNNs [24, 2].

With regards to training BNNs, Khalil and Dilkina discussed the viability of
using MIP models in an extended abstract at CPAIOR 2018 [14]. They report
no specific results, but suggest that their MIP approach fails to scale. To the
best of our knowledge, there is no other work on training BNNs using MIP or
CP nor on any applications of CP to BNNs.

4 Monolithic Models For Training BNNs

We now introduce CP and MIP models to train BNNs. The models receive the
training set T = 〈(x1,y1), . . . , (xτ ,yτ )〉 and the network’s architecture N =
〈N0, . . . , NL〉 as input. Our models use T = {1, . . . , τ} as the set of training
indices and L = {1, . . . , L} as the set of layers.

4.1 Constraint Programming Models

Our CP models use the formalism and global constraints available in IBM ILOG
CP Optimizer [10]. Let wi`j ∈ {−1, 0, 1} be a decision variable indicating the
weight of the connection going from neuron i ∈ N`−1 to j ∈ N`. Let nk`j be
a CP expression representing the activation of neuron j in layer ` when the
training instance xk is fed to the BNN. Our model uses the vector notation
w`j = [w1`j , ..., w|N`−1|`j ]

> and nk` = [nk`1, ..., n
k
`|N`|]

>. The constraints are:

nk
0j = xkj ∀j ∈ N0, k ∈ T (1)

nk
`j = 2

(
scal prod(w`j ,n

k
`−1) ≥ 0

)
− 1 ∀` ∈ L \ {L}, j ∈ N`, k ∈ T (2)

nk
Lj = ykj ∀j ∈ NL, k ∈ T (3)

wi`j ∈ {−1, 0, 1} ∀` ∈ L, i ∈ N`−1, j ∈ N` (4)

The first three constraints recursively define the neuron activations. Constraint
(1) instantiates N0 to be the same as the input vector for each training example.
Constraint (2) defines the activations for the remaining layers, which depend
on the variables wi`j . This constraint uses a reified scalar product constraint,
scal prod(v1,v2) = v>1 · v2, to compute the neuron activation. Constraint (3)
matches the last neuron layer values to the output vector of each training exam-
ple. Constraint (4) defines the variable domains.

Our CP models have identical sets of constraints but different objectives.
Model CPw minimizes the total number of weights using the expression abs(a) =
|a| for absolute value, i.e.,

min
∑
`∈L

∑
i∈N`−1

∑
j∈N`

abs(wi`j), s.t. (1)–(4), (CPw)
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while model CPm maximizes the sum of neuron margins, i.e.,

max
∑
`∈L

∑
j∈N`

min
(
{abs(scal prod(w`j ,n

k
`−1))| k ∈ T}

)
, s.t. (1)–(4). (CPm)

Each CP model has O(W ) decision variables and O(|NL| · τ) constraints,
where W is the number of weights, |NL| is the number of output neurons, and
τ is the size of the training set.

4.2 Mixed Integer Programming Models

The MIP and CP models share the same main decision variables. Variable wi`j ∈
{−1, 0, 1} indicates the weight of the connection from neuron i ∈ N`−1 to neuron
j ∈ N`. Variable uk`j ∈ {0, 1} models the activation of neuron j ∈ N` when the

training instance xk is fed to the BNN. Note that the actual neuron activation is
nk`j = 2uk`j−1 in this case. In addition, we use an auxiliary variable to model the

non-linearities inside the BNN. Variable cki`j ∈ R represents the multiplication

of neuron activation i ∈ N`−1 for a given k ∈ T and weight wi`j , i.e., cki`j =

(2uk(`−1)i−1)·wi`j . Lastly, we use sets L2 = {2, . . . , L} and LL−1 = {1, . . . , L−1},
and a small constant ε > 0 to model strict inequalities.

Our minimum-weight MIPw model introduces a binary variable vi`j ∈ {0, 1}
to represent the absolute value of each weight wi`j . Constraints (5) and (6)
force the BNN output to be equal to target value ykj in the training set. Con-
straints (7) and (8) are implication constraints (which can be reformulated as
big-M constraints) that define the activations. Constraint (9) sets the value
of cki1j for the input layer, while constraints (10) to (13) ensure that cki`j =

(2uk(`−1)i − 1) · wi`j . Constraint (14) defines the absolute values of each weight.

Lastly, constraints (15) to (18) specify the domains of the variables.

min
∑
`∈L

∑
i∈N`−1

∑
j∈N`

vi`j (MIPw)

s.t.
∑

i∈NL−1

ckiLj ≥ 0 ∀j ∈ NL, k ∈ T : ykj = 1 (5)

∑
i∈NL−1

ckiLj ≤ −ε ∀j ∈ NL, k ∈ T : ytj = −1 (6)

(uk
`j = 1) =⇒

 ∑
i∈N`−1

cki`j ≥ 0

 ∀` ∈ LL−1, j ∈ N`, k ∈ T (7)

(uk
`j = 0) =⇒

 ∑
i∈N`−1

cki`j ≤ −ε

 ∀` ∈ LL−1, j ∈ N`, k ∈ T (8)

cki1j = xki · wi1j ∀i ∈ N0, j ∈ N1, k ∈ T (9)

cki`j − wi`j + 2uk
(`−1)i ≤ 2 ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T (10)

cki`j + wi`j − 2uk
(`−1)i ≤ 0 ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T (11)

cki`j − wi`j − 2uk
(`−1)i ≥ −2 ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T (12)
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cki`j + wi`j + 2uk
(`−1)i ≥ 0 ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T (13)

− vi`j ≤ wi`j ≤ vi`j ∀` ∈ L, i ∈ N`−1, j ∈ N` (14)

wi`j ∈ {−1, 0, 1} ∀` ∈ L, i ∈ N`−1, j ∈ N` (15)

uk
`j ∈ {0, 1} ∀` ∈ LL−1, j ∈ N`, k ∈ T (16)

cki`j ∈ R ∀` ∈ L, i ∈ N`−1, j ∈ N`, k ∈ T (17)

vi`j ∈ {0, 1} ∀` ∈ L, i ∈ N`−1, j ∈ N` (18)

The maximum-margin MIPm model introduces a variable m`j ∈ R+ to represent
the margin of each neuron j ∈ N`. The set of constraints is similar to the previous
model with the exception that it includes neuron margin variables in the neuron
activation constraints (19)–(22).

max
∑
`∈L

∑
j∈N`

m`j (MIPm)

s.t. (9)–(13), (15)–(17)∑
i∈NL−1

ckiLj ≥ mLj ∀j ∈ NL, k ∈ T : ykj = 1 (19)

∑
i∈NL−1

ckiLj ≤ −ε−mLj ∀j ∈ NL, k ∈ T : ytj = −1 (20)

(uk
`j = 1) =⇒

 ∑
i∈N`−1

cki`j ≥ m`j

 ∀` ∈ LL−1, j ∈ N`, k ∈ T (21)

(uk
`j = 0) =⇒

 ∑
i∈N`−1

cki`j ≤ −ε−m`j

 ∀` ∈ LL−1, j ∈ N`, k ∈ T (22)

mlj ≥ 0 ∀` ∈ L, j ∈ N` (23)

Note that each MIP model has O(W +N · τ) integer decision variables and
O((W + N)τ) constraints, where W is the number of weights, N is the total
number of neurons, and τ is the size of the training set.

5 CP/MIP Hybrid Approaches

Our experimental results (Section 7.1) suggest that CP is good at finding a fea-
sible set of weights, while MIP is good at optimizing them towards solutions
that generalize better. This motivates our hybrid methods that find a first fea-
sible solution using CP and then use a MIP model to optimize. We use a CP
model without objective function, CPf , since it finds feasible solutions on a larger
number of instances than CPw and CPm (Section 7.2).

We propose two alternatives to incorporate the CP solution into the MIP
models. Our first hybrid model, HW, uses the CP solution as a warm-start for
either MIPw or MIPm. The second hybrid variant, HA, fixes the activations of all
the neurons in the MIP model and searches only over the weights. As a result,
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all the big-M constraints and variables cki`j are removed, albeit at the cost of
potentially pruning optimal solutions.

Given a feasible set of weights ŵi`j returned by CPf , HA computes the neuron
activations for a training example k ∈ T as n̂k0i = xki for the input layer and

n̂k`i = 2
(∑

i∈N`−1
n̂k(`−1)iŵi`j ≥ 0

)
− 1 for ` ∈ L. Then, the fixed activation

models for min-weight HAw and max-margin HAm are as follows.

min
∑
`∈L

∑
i∈N`−1

∑
j∈N`

vi`j (HAw)

s.t. (14), (15), (18)∑
i∈N`−1

wi`j · n̂k
(`−1)i ≥ 0 ∀` ∈ L, j ∈ N`, k ∈ T : n̂k

`j = 1 (24)

∑
i∈N`−1

wi`j · n̂k
(`−1)i ≤ −ε ∀` ∈ L, j ∈ N`, k ∈ T : n̂k

`j = −1 (25)

max
∑
`∈L

∑
j∈N`

m`j (HAm)

s.t. (15), (23)∑
i∈N`−1

wi`j · n̂k
(`−1)i ≥ m`j ∀` ∈ L, j ∈ N`, k ∈ T : n̂k

`j = 1 (26)

∑
i∈N`−1

wi`j · n̂k
(`−1)i ≤ −ε−m`j ∀` ∈ L, j ∈ N`, k ∈ T : n̂k

`j = −1 (27)

Hybrid methods are not necessary when the BNN has no hidden layers; in such
scenarios, the implication constraints (7)–(8) and (21)–(22) are not needed and,
as a result, the HA models reduce to our MIP models.

6 Gradient Descent Baselines

Current methods to train BNNs follow Hubara et al.’s GD-based algorithm [9]
described in Section 3. This algorithm is a highly optimized local search method
that starts from a random weight assignment and locally changes the weights
towards minimizing a Square Hinge loss function. The Square Hinge loss function
quadratically penalizes the errors on the training set. The most relevant hyper-
parameter is the learning rate that defines how much each weight is updated in
every step.

Hubara et al.’s approach learns BNNs only with −1 and +1 weights, whereas
our models also allow for zero-value weights. To make a fair comparison, we also
extended Hubara et al.’s approach to work with zero-value weights. Instead
of learning one binary weight per connection we learn two, w1

b and w2
b . The

final weight for the connection is the average between those two values, i.e,
wb = (w1

b +w2
b )/2 ∈ {−1, 0, 1}. Our experiments report the performance of both

the original approach GDb and our extension GDt.
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Fig. 2: The first 10 examples from the MNIST dataset.

7 Experimental Evaluation for Few-Shot Learning

We tested our models over subsets of the MNIST dataset [19], which consists of
70, 000 labeled images of handwritten digits. Each image has 28× 28 gray-scale
pixels with values between 0 to 255. Every example has a label representing the
digit that appears on the input image, i.e., its class. Figure 2 shows 10 examples
from the MNIST training set.

To emulate the conditions of a few-shot learning scenario, we limited the
training set size to a range varying from 1 to 10 examples per class. We sampled
10 problem instances for each class and trained BNNs with 28× 28 = 784 input
neurons and 10 output neurons (one per class). If the image label is i, then the
ith output neuron should be active (yi = 1) and the rest inactive (yj = −1 for
all j 6= i). Each BNN has 0, 1, or 2 hidden layers with 16 neurons each.

We compare our models using three metrics. The first two metrics corre-
spond to the number of instances solved (i.e., finding a weight assignment that
fits the training data) and the quality of those solutions w.r.t. the objective
functions. The third metric compares the test performance over the 10, 000 test
instances from MNIST. We use the all-good metric that evaluates the percentage
of instances where the value of the 10 output neurons is correct. As such, the
expected performance of a BNN with random weights is 0.098%.

Approaches. We use Gurobi 8.1 [8] to solve the MIP models and IBM ILOG CP
Optimizer 12.8 [10] for the CP models. For MIP, the implications are formulated
using Gurobi’s special construct. The GD baselines were solved using Tensorflow
1.9.0 and Adam optimizer [16]. We evaluated the following approaches:5

– CPw and CPm: min-weight and max-margin CP models, respectively.
– MIPw and MIPm: min-weight and max-margin MIP models, respectively.
– HWw and HWm: min-weight and max-margin warm-start hybrid models.
– HAw and HAm: min-weight and max-margin fixed-activation hybrid models.
– GDb and GDt: Hubara et al.’s approach [9] and our extension for zero-weights.

As the GD baselines find different solutions depending on their starting point
and learning rate, we tested four common learning rates (10−3, . . . , 10−6) starting
from 5 independently sampled BNNs for each problem instance. We defined the
performance of each learning rate to be the average performance across its five
starting points. Our experimental results report the performance of the best
learning rate for each problem. This is an upper bound on the GD performance

5 Our source code is publicly available at https://bitbucket.org/RToroIcarte/bnn.
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Fig. 3: Solution quality comparison between CP and MIP.

that assumes the existence of an oracle that can predict the best learning rate
for each sampled training instance and BNN architecture.

Each approach was run with a 2-hour time limit using one thread on an Intel
Xeon E5-2680 2.70GHz processor with 96GB of RAM. This time limit is long
enough for GDb and GDt to converge in most of our experiments.

Data preprocessing. An input neuron is considered dead if its value is the
same in the entire training set. As those neurons add no new information to
discriminate the correct output for a given input, they can be removed without
losing correctness. We exploit this structure in our models (and baselines) by
fixing the value of every weight connected to a dead input neuron to zero.

7.1 Solution Quality Comparison Between MIP and CP

We now compare the efficiency of our monolithic models for finding high-quality
BNNs that fit the training data. Figure 3 compares the quality of the solutions
found by the MIP and CP models for the min-weight and max-margin objec-
tives. A point (x, y) in the plots corresponds to a single instance where x and y
represent the objective value obtained using MIP and CP, respectively. Points
that appear along the vertical (resp. horizontal) axes correspond to instances
where MIP (resp. CP) timed out before finding any feasible solution. For the
min-weight objective, points above the diagonal represent instances where the
MIP model found better solutions. The inverse is true for the max-margin graph.

The results show that MIP struggled to find feasible solutions when using
one and two hidden layers. This is mainly explained by the large number of
big-M constraints and variables that both MIPw and MIPm have in those cases.
In contrast, CP found feasible solutions for most of the problem instances.

When both methods found feasible solutions, the graphs suggest that MIP
was better at finding high-quality solutions. With both objectives, MIP con-
sistently found equal or better quality solutions than CP. In fact, MIP found
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Table 1: Number of instances where a feasible solution was found.

One hidden layer Two hidden layers

|T | 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 Total

GDb 9.4 0.2 0 0 0 0 0 0 0 0 5.6 0 0 0 0 0 0 0 0 0 15.2
GDt 9.6 5.6 0.4 0 0 0 0 0 0 0 9.2 8.4 5.2 6.2 4.2 2.2 0 0 0 0 51
MIPm 10 3 2 1 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 19
MIPw 10 7 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 26
CPm 10 6 6 3 3 3 0 0 0 0 10 10 10 10 10 9 6 5 2 0 103
CPw 10 10 10 10 10 10 10 10 10 8 10 10 10 8 4 7 2 0 0 0 149
CPf 10 10 9 8 8 7 3 3 1 0 10 10 10 10 10 10 10 10 8 6 153

proven optimal solutions for 68 out of 300 instances when minimizing weights
and 15 out of 300 when maximizing margins, while CP never found and proved
optimal solutions.

7.2 Comparison Between Hybrid Methods

When hidden layers are used, our hybrid methods find a first feasible solution
using a CP model without an objective function, CPf , and give it to a MIP
model to optimize. To find feasible solutions, we could have instead used MIP,
GD, CPw, or CPm. However, CPf tends to finds more feasible solutions than the
other methods. This is well-supported by Table 1, which shows the number of
instances where a feasible solution was found (for each method) in under 2 hours.

To compare the solution quality of our model-based approaches, we analyze
the optimality gaps across different network architectures and training examples.
The gap computation uses the best dual bound found by any approach. Figure 4
shows the average optimality gaps obtained for the min-weight and max-margin
criteria using the monolithic and hybrid methods. We omit the gap lines for HA

and HW for the experiments with no hidden layer since our hybrid methods are
not needed in this case (see Section 5).

These results suggest that the hybrid methods exhibit the best characteristics
of the CP and MIP models. HW and HA scaled to larger training sets and network
architectures in a manner similar to CP—significantly outperforming MIP in
this metric—while obtaining high quality solutions that are comparable to those
produced by MIP. In addition, HA consistently outperformed HW when maximizing
the margins and found similar quality solutions for the min-weight criteria.

7.3 Test Performance Comparison with GD

Figure 5 compares the test performance of our methods and the best performing
GD baseline. A data point represents the performance of a BNN for each train-
ing set and network architecture. Points below the diagonal represent instances
where our approaches outperformed GD. These results show that MIP outper-
formed GD methods when it found a solution, and that the hybrid methods
found many more solutions than MIP while maintaining a similar test perfor-
mance profile. In particular, HAm has a remarkable performance in comparison
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Fig. 4: Optimality gap comparison with different number of hidden layers (HL)
and size of the training set (# Examples).

with GD in these experiments. For instance, with 2 hidden layers and 100 train-
ing examples, HAm correctly classifies up to 5, 612 of 10, 000 unseen examples
while GD predicted the true class in at most 1, 563 cases. Note that a BNN with
random weights is expected to correctly predict less than 10 examples.

To better represent these results, Figure 6 shows the number of instances
where model-based approaches have a strictly better test performance than the
best GD baseline. When limited data was used, the hybrid approaches consis-
tently outperformed GD. However, as the training sets get larger, some of our
models timed out before finding feasible solutions. In contrast, GD always re-
turned a solution. Such solution might not fit all the training data but it can
still be evaluated on the test set. Hence, GD is superior with large training sets.

It is equally important to consider by how much the solutions found by our
models outperform the solutions found by GD. Figure 7 displays the average test
performance across the instances solved by each approach. Under this metric,
the clear winner is HAm (which reduces to MIPm when no hidden layers are used)
as it largely outperformed GD and CP while scaling better than MIP.

7.4 Discussion

Our experiments demonstrate the merits of model-based approaches—in partic-
ular, MIP and CP—to train BNNs. When data is scarce, these methods can



Training Binarized Neural Networks using MIP and CP 13

No hidden layers One hidden layer Two hidden layers

0 0.2 0.4 0.6
0

0.2

0.4

0.6

CPw

m
a
x
{G
D
b
,G
D
t
}

0 0.2 0.4 0.6
0

0.2

0.4

0.6

MIPw

0 0.2 0.4 0.6
0

0.2

0.4

0.6

HWw

0 0.2 0.4 0.6
0

0.2

0.4

0.6

HAw

(a) Min-weight test performance comparison with GD

0 0.2 0.4 0.6
0

0.2

0.4

0.6

CPm

m
a
x
{G
D
b
,G
D
t
}

0 0.2 0.4 0.6
0

0.2

0.4

0.6

MIPm

0 0.2 0.4 0.6
0

0.2

0.4

0.6

HWm

0 0.2 0.4 0.6
0

0.2

0.4

0.6

HAm

(b) Max-margin test performance comparison with GD

Fig. 5: Test performance comparison between the best GD and model-based meth-
ods with different number of hidden layers (HL) and optimization criteria.

find solutions that generalize better than the solutions found by GD. This is
a notable result that opens many opportunities for future work. In particular,
there are three interesting questions that arise from our experimental evaluation.

What are the advantages and limitations of model-based approaches?
The main advantage of training BNNs using model-based approaches is in find-
ing solutions that generalize better using fewer examples. Consider the results on
Figure 7(e) and 7(f). They show that our hybrid models need only 10 examples
to find solutions that generalize better than the ones found by GD using 100
examples. That being said, their main limitation is scalability. We expect that
more sophisticated model-based approaches, such as decompositions and spe-
cialized CP propagators, will push the boundary of problems that can be solved.
We also believe that model-based approaches will become a new tool for ML
researchers, as they allow for principled empirical comparisons of generalization
criteria based on provable bounds.

Are min-weight and max-margin the best proxies for generalization?
Our results suggest that both min-weight and max-margin are good proxies for
generalization. In fact, given two BNNs that perfectly fit the training data, our
models can accurately predict which one generalizes better. Through a pairwise
comparison of all the perfect-fit BNNs generated for each instance in our exper-
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Fig. 6: Number of instances where model-based approaches have better test per-
formance than max{GDb, GDt}.

iments, we saw that the BNN with bigger margin generalized better over 85% of
the time. The min-weight criteria is not as good at predicting generalization, but
still does a reasonable job: over 79% of the time, the BNN with fewer nonzero
weights generalized better. However, it would be very surprising if there are no
other criteria that could better predict generalization. Looking for such criteria
is a promising future work direction.

Why are deep BNNs not generalizing better than shallow ones?
A major insight from the deep learning literature is that adding hidden layers im-
proves generalization [28]. Surprisingly, this was not the case in our experiments.
A possible explanation is that our training sets are not big enough to justify the
use of hidden layers. This a reasonable hypothesis, especially considering that
the test performance of GD methods also decreased when adding more hidden
layers (see Figure 7). However, it does not explain why adding hidden layers
improves generalization when using 10 training examples for HWm and HAm.

Another possible explanation is that we are not finding close-to-optimal solu-
tions when using hidden layers (see Figure 4). Hence, while the test performance
reaches its full potential for the case with no hidden layers, there is room for
improvement for BNNs with hidden layers.
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Fig. 7: Test performance comparison for all our methods in BNNs with different
number of hidden layers (HL) using the two optimization criteria.

8 Concluding Remarks

Our work examines the use of MIP and CP to train BNNs. We formulate the
training problem as finding a BNN that perfectly fits the training set while
optimizing two proxies for generalizability. When solving this problem, we note
that CP is good at finding feasible solutions and MIP is good at optimizing
them. Hence, we propose two CP/MIP hybrids that exploit the strengths of CP
and MIP. With limited training data, our hybrid approaches found BNNs that
generalized better than the ones found by GD. In contrast, GD scaled better,
making it more appealing when large training sets are available.

This work opens many opportunities for future work at the intersection be-
tween ML and OR. From an ML perspective, model-based approaches allow for
principled empirical comparisons between proxies for generalization and seem
effective for few-shot learning. From an OR perspective, training BNNs is a
challenging combinatorial optimization problem with interesting structure. We
believe that exploiting such structure via decompositions or specialized CP prop-
agators presents a promising direction for future work.
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