
(I Can Get) Satisfaction: Preference-based
Scheduling for Concert-Goers at Multi-Venue

Music Festivals

†Eldan Cohen, ‡Guoyu Huang, and †J. Christopher Beck

Department of Mechanical & Industrial Engineering
University of Toronto, Toronto, Canada

†{ecohen, jcb}@mie.utoronto.ca, ‡guoyu.huang@mail.utoronto.ca

Abstract. With more than 30 million attendees each year in the U.S.
alone, music festivals are a fast-growing source of entertainment, vis-
ited by both fans and industry professionals. Popular music festivals are
large-scale events, often spread across multiple venues and lasting sev-
eral days. The largest festivals exceed 600 shows per day across dozens of
venues. With many artists performing at overlapping times in distant lo-
cations, preparing a personal schedule for a festival-goer is a challenging
task. In this work, we present an automated system for building a per-
sonal schedule that maximizes the utility of the shows attended based on
the user preferences, while taking into account travel times and required
breaks. Our system leverages data mining and machine learning tech-
niques together with combinatorial optimization to provide optimal per-
sonal schedules in real time, over a web interface. We evaluate MaxSAT
and Constraint Programming formulations on a large set of real festival
timetables, demonstrating that MaxSAT can provide optimal solutions
in about 10 seconds on average, making it a suitable technology for such
an online application.

1 Introduction

In recent years, music festival have been growing in popularity, generating sig-
nificant revenue [14–16]. In the U.S. alone, over 30 million people attend music
festivals each year, with more than 10 million attending more than one festival
each year [17].

Modern music festivals are large-scale events consisting of a set of musi-
cal shows, scheduled over the course of a few days at several different venues.
Preparing a personal schedule for a music festival is a challenging task due to
the existence of time conflicts between shows and travel times between venues.
Festival-goers often spend a significant amount of time deciding which shows to
attend, while trying to account for their musical preferences, travel times, and
breaks for eating and resting. This problem is often discussed in the entertain-
ment media:

“The majority of the major conflicts come late in each day—will you
dance to HAIM or Flume on Sunday? Will you opt for the upbeat
melodies of St. Lucia or Grimes on Saturday?” [12]

“Just when Coachella is upon us and you couldn’t be more excited, a
cloud enters – the set times are out, and there are heartbreaking conflicts.
Difficult decisions must be made. Do you pass over an artist you love
because an artist you love even more is playing all the way across the
fest?” [13]

In this work, we address the problem of building an optimal schedule based on
user preferences. We present a system that uses combinatorial optimization and
machine learning techniques to learn the user musical preferences and generate
a schedule that maximizes the user utility, while taking into account travel times
and required breaks. Our system is implemented over a web interface and is able
to generate optimal schedules in less than 10 seconds.

2 Problem Definition

The problem we address consists of two subproblems that need to be solved
sequentially. The preference learning subproblem consists of predicting the user’s
musical preferences based on a small sample of preferences provided by the user.
The scheduling subproblem then consists of finding an optimal personal schedule
based on the user’s preferences.

We first define the problem parameters and then the two subproblems.

2.1 Parameters

Shows. We consider a set of n festival shows S := {s1, s2, ..., sn}, each associated
with one of the performing artists (or bands) in the festival and taking place in
one of the festival venues V := {v1, v2, ..., v|V |}. Each show si ∈ S has a fixed

start time, tsi , and a fixed end time, tei , such that the show length is tli = tei − tsi .

Travel Times. We consider an n × n travel time matrix TT , such that TTij
is the travel time between the venue of show si and the venue of show sj . We
do not restrict TT to be symmetric, however, we assume it satisfies the triangle
inequality.

Show Preferences. To represent the user’s musical preferences, we consider
the tuple 〈fp,M,N〉. fp : S → Z+ ∪ {⊥} is a mapping from a show to either an
integer score or the special value ⊥ indicating that the user did not provide a
score for the show. M := {m1,m2, ...,m|M |} is a set of show groups, mi ⊆ S,
such that the user must attend at least one show in each group. These groups
can be used to model a simple list of shows the user has to attend (i.e., if each
group is a singleton), as well as more sophisticated musical preferences such as
seeking a diversity of musical styles by grouping shows based on style. Finally,
N ⊆ S is a set of shows the user is not interested in attending.

Break Preferences. We consider a set of l required breaks B := {b1, b2, ..., bl},
such that for each bk ∈ B, ws

k and we
k represent the start and end of a time

window in which the break should be scheduled and wt
k represents the required

break length. We assume that breaks are ordered temporally by their index,
the time windows are non-overlapping, and at most one break can be scheduled
between each pair of consecutive scheduled shows. The breaks are not allocated
to a specific venue: the user can choose to enjoy a break at any location (e.g., at
one of the venues or on the way to the next venue). The purpose of scheduling
the breaks is to guarantee that sufficient free time is reserved for each bk during
the requested time window.

2.2 Preference Learning Subproblem

Given a function fp : S → Z+ ∪ {⊥} that maps shows to scores, our preference
learning problem consists of replacing each⊥ value by an integer value to produce
a full mapping f∗p that is consistent with the user’s preferences. Formally, our
problem consists of finding a function g : S → Z+ that minimizes the mean
squared error [10], a common measure of fit, over the set of shows for which a
score was provided Q = {si | fp(si) 6= ⊥}:

min
1

|Q|
∑
si∈Q

(g(si)− fp(si))
2

The function g will then be used to predict the missing scores:

f∗p (s) =

{
fp(s), if fp(s) 6= ⊥
g(s), if fp(s) = ⊥

2.3 Scheduling Subproblem

Our scheduling subproblem consists of finding an assignment of values for a set
of boolean variables {xi | i∈[1..n]}, representing whether or not the festival-goer
attends show si, and a set of integer values {yj | j∈[1..l]}, specifying the start
time of break bj . The assignment has to satisfy the user preference w.r.t. M , N ,
and B (i.e., groups, shows not attended, and break time-windows). Our objective
is to maximize the sum of the user-specified scores for the attended shows:

max
∑
si∈S

xi · f∗p (si)

3 System Architecture

The proposed system architecture is illustrated in Figure 1. Our system imple-
ments a web interface, accessible using any web-enabled device.

Given an input of user preferences (fp,M,N,B), provided over a web inter-
face, we start by populating the missing scores in fp using our preference learning

Combinatorial	
Optimization	
Problem

Off-the-Shelf
MaxSAT
Solver

Festivals
Database

Preferences
Learning

Web Server

User
Preferences
(𝑓# ,𝑀, 𝑁, 𝐵)

Post-processingUser Schedule

(𝑆,𝑇𝑇)

(𝑓#∗,𝑀, 𝑁,𝐵)

{𝑥.}, {𝑦1}

User device

Fig. 1. The system architecture

algorithm. Then, we formulate the scheduling problem as a MaxSAT problem
and solve it using an off-the-shelf MaxSAT solver. The details of the shows, S,
and the travel time matrix, TT , for all festivals are stored in a database on the
server. The results are processed and a schedule is produced and displayed over
the web interface.

In Section 4 we present our MaxSAT model for the scheduling problem,
followed in Section 5 with an alternative constraint programming (CP) model
for the same problem. In Section 6 we describe our preference learning algorithm.
Section 7 describes an empirical evaluation of the system, in which we compare
the MaxSAT and the CP model, and compare our preference learning method
to a simple baseline.

4 MaxSAT Model

In this section, we present our MaxSAT formulation of the problem. We first
describe a boolean formulation and then provide a weighted partial MaxSAT
encoding of the problem.

4.1 A Boolean Formulation

Consider the scheduling subproblem defined in Section 2.3. The variables xi that
represent show attendance are boolean while the variables yk that represent the
start time of each break are integer.

A time-indexed formulation of the problem would consist of replacing each
yk variable with a set of yk,p boolean variables such that yk,p=1 ⇐⇒ yk=p.
Assuming a time horizon of H time units, we need H×|B| variables, to represent
the breaks. This size may not be unreasonable but here we develop an equivalent
model that does not scale with the horizon length.

For any feasible solution for our problem, we can show that there exists a
feasible solution with the same objective value, in which if there exists a break
bk between the shows si and sj , it is scheduled in one of the following positions:

1. Immediately after si.
2. At the beginning of bk’s time window.

We prove this observation starting with the introduction of required notation
and definitions.

We start with z, an assignment of values to the xi and yk variables of our
problem, and bk ∈ B, an arbitrary break scheduled at start time yk. We use
beforez(k) to denote the end time of the latest scheduled show before break
bk and afterz(k) to denote the start time of the earliest scheduled show after
break bk, according to the assignment z. We also use ttz(k) to denote the travel
time between the location of the user at time beforez(k) and the location the
user needs to be at time afterz(k).

Definition 1 (Feasible Assignment) Let z be an assignment of values to
variables xi and yk. We consider z to be a feasible solution if

1. All attended shows are non-overlapping.
2. The scheduled breaks and the attended shows do not overlap.
3. All scheduled breaks are within their time windows, i.e., yk≥ws

k and yk+wt
k≤we

k.
4. For every break bk that is scheduled between the attended shows si and sj,

there is enough time to travel between the show venues and have the break:
afterz(k)− beforez(k) ≥ ttz(k) + wt

k.

Definition 2 (Earliest-break Assignment) Let z be a feasible assignment of
values to variables xi and yk. We consider z∗, to be the earliest-break assignment
of z if:

x∗i = xi ∀si ∈ S

y∗k =

{
beforez(k), if beforez(k) ≥ ws

k

ws
k, if beforez(k) < ws

k

Figure 2 demonstrates the two possible locations of earliest-break assignments.
Note that by definition of z∗, y∗k ≤ yk (otherwise yk is not feasible).

Lemma 1. There exists a feasible assignment z if and only if there exists a
feasible earliest-break assignment z∗.

Proof. Direction =⇒ : We show that if z is feasible, we can construct a z∗

that satisfies all the requirements of a feasible solution.

1. Since z is feasible, the attended shows {si|xi = true} are not overlapping
(Definition 1). Since z∗ is an earliest-break assignment of z, x∗i = xi ∀si ∈ S
(Definition 2). Therefore, the attended shows {si|x∗i = true} do not overlap
(z∗ satisfies requirement 1).

2. Since z∗ is an earliest-break assignment of z, beforez(k) ≤ y∗k ≤ yk (Defini-
tion 2). Consequently, y∗k +wt

k ≤ afterz(k). Since the shows and breaks do
not overlap in z, they do not overlap in z∗ (z∗ satisfies requirement 2).

3. Since z∗ is an earliest-break assignment of z, ws
k ≤ y∗k ≤ yk (Definition 2).

Consequently, y∗k +wt
k ≤ yk +wt

k. Therefore, all breaks in z∗ are within their
time windows (z∗ satisfies requirement 3).

4. beforez(k), afterz(k), ttz(k), and wt
k remain in z∗ as they were in z. There-

fore, z∗ satisfies requirement 4.

Direction ⇐= : If exists an earliest-break assignment z∗ that is feasible, then
z = z∗ is a feasible assignment. ut

Note that because the cost function depends only on the xi variables and x∗i = xi
for all i, z∗ has the same objective value.

Fig. 2. The two possible locations of earliest-break assignments.

We can, therefore, translate the integer start time of a break to a set of
boolean variables representing the two possible locations for each break: qk,i
that represents whether break bk is scheduled immediately after show si and
rk that represents whether break bk is scheduled at the beginning of its time
window.

4.2 Weighted Partial MaxSAT Encoding

We present a weighted partial MaxSAT model in Figure 3, using soft clauses
to model the objective function by attaching a weight for each show that cor-
responds to the user preferences. In our model, (c, w) denotes a clause c with a
weight w, while (c,∞) denotes that c is a hard-clause.

We use R(k) to denote the set of all pairs of shows si, sj ∈ S, such that
the break bk cannot be scheduled between the si and sj , due to the necessary
transition time. Formally, R(k)={(i, j) | tsi≤tsj ∧ tsj−tei≤TTij+wt

k}.
We use the following boolean decision variables in our MaxSAT formulation:

xi := show si ∈ S is attended.

qk,i := break bk is scheduled immediately after show si.

rk := break bk is scheduled at the beginning of its time window.

(¬xi ∨ ¬xj ,∞) ∀si, sj∈S : tsi≤tsj ∧ tei+TTij≥tsj (1)

(
∨

xi∈mi

xi,∞) ∀mi ∈M (2)

(¬xi,∞) ∀si ∈ N (3)

(¬qk,i,∞) ∀si∈S, bk∈B : tei+wt
k≥we

k (4)

(¬qk,i,∞) ∀si∈S, k∈B : tei≤ws
k (5)

(¬xi ∨ ¬rk,∞) ∀si∈S, bk∈B : tsi≤ws
k≤tei (6)

(¬xi ∨ ¬rk,∞) ∀si∈S, bk∈B : tsi≤ws
k + wt

k≤tei (7)

(¬xi ∨ ¬rk,∞) ∀si∈S, bk∈B : ws
k≤tsi ∧ ws

k + wt
k≥tei (8)

(xi ∨ ¬qk,i,∞) ∀i∈S, bk∈B (9)

(¬xi ∨ ¬xj ∨ ¬qk,i,∞) ∀bk∈B, (i, j)∈R(k) (10)

(¬xi ∨ ¬xj ∨ ¬rk,∞) ∀bk∈B, (i, j)∈R(k) : tei ≤ ws
k ≤ tsj (11)

(rk ∨ qk,1 ∨ qk,2 ∨ ... ∨ qk,n,∞) ∀bk∈B (12)

(xi, fp(si)) ∀si∈S (13)

Fig. 3. MaxSAT model

Constraint (1) makes sure that for every pair of shows that cannot both be
attended (either because they are overlapping or because of insufficient travel
time), at most one will be attended. Constraint (2) ensures the shows that the
user must attend are part of the schedule and constraint (3) ensures the shows
the user is not interested in attending are not part of the schedule.

Constraints (4) and (5) ensure that a break is not scheduled immediately
after a show, if it means that the break start time or end time is not inside the
break’s time window.

Constraints (6), (7), (8) ensure that a break is not scheduled at the beginning
of its time window if it overlaps an attended show. Constraints (9) ensures that
a break is not scheduled immediately after a show that is not attended.

Constraint (10) and (11) ensure that a break is not scheduled in any of the
two possible locations between two attended shows, if there is not sufficient time.

Constraint (12) ensures that all breaks are scheduled at least once (if a break
can be scheduled more than once while maintaining optimality we arbitrarily se-
lect one). Constraint (13) is the only soft constraint and is used for optimization.
Each clause corresponds to a show with weight equal to the show’s score.

5 Constraint Programming Model

We present a CP model in Figure 4. For this model, we utilize optional interval
variables, which are decision variables whose possible values are a convex interval:
{⊥}∪{[s, e) | s, e ∈ Z, s ≤ e}. s and e are the start and end times of the interval
and ⊥ is a special value indicating the interval is not present in the solution [9].
The variable pres(var) is 1 if interval variable var is present in the solution, and
0 otherwise. Model constraints are only enforced on interval variables that are
present in the solution. start(var) and end(var) return the integer start time
and end time of the interval variable var, respectively.

We use the following decision variables in our CP formulation:

xi := (interval) present if the user attends show si and absent otherwise,
yk := (interval) always present interval representing bk such that start(yk)
and end(yk) represent the start and end time of break bk, respectively.

max
∑
si∈S

fp(si) · pres(xi) (1)

s.t. start(xi) = tsi ∀si ∈ S (2)

end(xi) = tei ∀si ∈ S (3)∑
si∈mj

pres(xi) ≥ 1 ∀mj ∈M (4)

pres(xi) = 0 ∀si ∈ N (5)

start(yk) ≥ ws
k ∀bk ∈ B (6)

end(yk) ≤ we
k ∀bk ∈ B (7)

end(yk)−start(yk) = wt
k ∀bk ∈ B (8)

noOverlap([x1, x2, ..., xn], TT) (9)

pres(xi)∧pres(xj)⇒ ∀bk∈B; (i, j)∈R(k) (10)

(end(yk)≤start(xi)) ∨ (start(yk)≥end(xj))

start(yk)=ws
k ∨ start(yk)∈{tsi | si∈S,ws

k≤tsi≤we
k} ∀bk ∈ B (11)

Fig. 4. Constraint programming model

Objective (1) maximizes the user’s utility, by summing the utility values of
the attended shows. Constraints (2) and (3) set the shows’ interval variables, of
fixed duration and at fixed times, based on the festival schedule. Constraint (4)
ensures that for every group in M , at least one show is attended and constraint
(5) ensures the shows the user is not interested in attending are not attended.

Constraints (6) and (7) define the time window for each break based on the
user’s request by setting a lower bound on the start time and an upper bound
on the end time of each break. Constraint (8) defines the length of the break
based on the requested break length.

Constraint (9) is responsible for enforcing the feasibility of attending the
chosen shows. We use the noOverlap global constraint which performs efficient
domain filtering on the interval variables with consideration for transition times
[9]. Here, the noOverlap global constraint ensures that the attended shows do not
overlap in time, with consideration for the transition time between the different
venues. For example, two consecutive shows can be attended if they are in the
same venue. However, if the transition time between the venues is larger than
the time difference between the end time of the first show and the start time of
the following show, it is impossible to attend both shows.

Constraint (10) ensures the consistency of the break schedule with the at-
tended shows. It verifies that a break is not scheduled between a pair of attended
shows that does not have sufficient time difference to allow traveling and taking
the break. For every triplet of two attended shows and a break such that the
break cannot be scheduled between the two shows due to time (i.e., the time
difference between the two shows is smaller than the sum of the transition time
and the break time), we make sure the break is either scheduled before the ear-
lier show or after the later show. Note that simple noOverlap constraints are
not sufficient as we need to ensure the break will be scheduled either before
the earlier show or after the later one and there is no required transition time
between the end (resp., start) of a show and the start (resp. end) of a break.

Constraint (11) reduces the domains of each break variable, based on Lemma 1.
While it does not enforce an earliest-break assignment (not required), it does re-
duce the domains of the break interval variables by allowing each break to be
scheduled only at the beginning of the break’s time window, or immediately after
shows that end in the break’s time window.

6 Learning User Preferences

The user cannot be expected to know all the performing artists in a festival or
to spend time assigning a score to every artist. Therefore, we employ a learning-
based approach to populate the missing scores based on the user’s assignment
of scores to a subset of the shows. We leverage the availability of large on-line
music datasets to mine the features to predict the user’s score.

As every show is associated with a performing artist, we assume the score
assigned to each show reflects the user preference for the musical style of the
performing artist. Therefore, our approach is to use the tags assigned to each
artist on Last.fm,1 a popular music website, as a feature set for a regression
model that predicts the user score. The tags typically describe the artist musical
style and origin (e.g., pop, indie rock, punk, australian, spanish, etc). Tag-based
features have been shown to be successful in recommending music [6, 11]. In this
work, we use linear regression model, due to its simplicity and its success in
tag-based recommendation systems [22].

Given a training set of K inputs of (−→oi , pi) for 1 ≤ i ≤ K where −→oi if a vector
of F features and pi ∈ R is a real value, the regression problem finds a set of

1 http://www.last.fm

weights, βi, that expresses the value as a linear combination of the features and
an error εi: pi = β0 +β1o1i +β2o2i + ...+βKoKi + εi, such that the mean squared
error over the training set is minimized [21]:

min
1

K

K∑
i=1

ε2i

We collect the tags associated with all performing artists in the festival using
Last.fm API.2 For each artist, we construct a binary feature vector describing
whether a tag applies to an artist. We train our model based on the subset of
artists for which a score has been provided by the user. We then predict scores
for the rest of performing artists, based on their associated tags. The predicted
scores are rounded to integers as per the problem definition.

Due to the properties of this problem, notably a large number of features
compared to a small training set, we choose to use Elastic Nets [26]. Elastic Nets
employ a convex combination of L1 and L2 regularization using a parameter α,
such that α = 1 corresponds to ridge regression [8] and α = 0 corresponds to
lasso regression [24]. We use 5-fold cross-validation on the training set to choose
the α value from a set of 10 values in [0, 1]. To reduce training time, we start by
performing a univariate feature selection based on the F -test for regression [4],
i.e., for each feature we calculate the F -test value for the hypothesis that the
regression coefficient is zero, and select the top 75 features.

For comparison, we also consider Support Vector Regression (SVR). In our
empirical evaluation we compare the linear regression based on Elastic Nets,
to a linear SVR model. Linear SVR are much faster to train and to generate
predictions than nonlinear SVR, and often give competitive results [7], making
them an interesting candidate for our application. The regularization parameter
and the loss function are chosen using a 5-fold cross validation on the training
set.

7 Empirical Evaluation

In this section we present an empirical evaluation of our system. As our work
consists of two parts – preference learning and scheduling, we evaluate each part
separately.

A thorough evaluation of our application would require performing an exper-
iment with real users to evaluate their satisfaction of the system. Unfortunately,
such experiment is outside the scope of this research at this time. Instead, we
leverage the existence of on-line datasets to empirically evaluate our system using
real data.

First, we perform an experiment that evaluates the success of our preference
learning method in predicting the musical taste of real users. Then, we perform
an empirical evaluation of the scheduling system based on the timetables of real
music festivals.
2 http://www.last.fm/api

7.1 Preference Learning Evaluation

In this section we present an experiment designed to evaluate the success of
our preference learning method in predicting the musical taste of a user. The
preference learning method we develop in Section 6 takes in a training set of
tuples (user, artist, score) and predicts the score for (user, artist) tuples using
tags from Last.fm. To evaluate this method without real users, we need a way to
generate potential user scores on a subset of artists as an input to our learning
algorithm and then a way to find a set of “ground truth” scores for the rest of
the artists to compare against our predicted scores.

We could not find a dataset of this form that we can directly apply our
method on. Instead, we take an existing dataset describing the listening habits
of users and manipulate it into the required form of (user, artist, score). We
then split it to a training set used to train our learning algorithm and a test set
on which we can compare our predicted score.

Data Preparation. The chosen dataset r is a collection of tuples (user, artist,
#plays) describing the listening habits of 360,000 users on Last.fm, collected by
Celma [3]. Each tuple describes the number of times each user listened to songs
of each artist. For this experiment, we sample a set of 1000 users, U , each with at
least 50 tuples. On average, each user in our sample has tuples for 57.85 artists.

In order to transform this dataset to the required form, we need to substitute
the #plays column with a score column. To do so, we sort each user’s records
based on #plays, and provide a score between 1 to 8, based on the corresponding
quantile of #plays. The artists with the lowest #plays will have a score of 1, and
the artists with the highest #plays will have a score of 8. For convenience, we
refer to the transformed dataset as a set of 1000 user-specific datasets. Given a
user u ∈ U , we use ru to denote the dataset that consists of (artist, score) tuples
that correspond to the user’s tuples in r, ri = Π〈artist,score〉(σuser=u(r)) ∀u ∈ U .

Experiment Setup. To evaluate the preference learning method, we split each
user’s transformed dataset into a training set (60%) and a test set (40%). Given
approximately 58 tuples per user, we get an average training set of approximately
35 records. We consider this to be a reasonable number of input scores to expect
from a music festival attendee.

For each user, we train the model described in Section 6 based on the train-
ing set and then measure the Minimum Squared Error (MSE) and Minimum
Absolute Error (MAE) in predicting the score of the records in the test set. We
then calculate the median value of MSE and MAE across all users.

We compare our preference learning method, based on Elastic Net, with a
linear SVR model and a baseline that consists of substituting all the missing
scores with the mean score.

Experiment Results. Table 1 shows the median MSE, the median MAE, and
the mean runtime (train + test) across all ru, for the Elastic Net, the linear SVR,

and the mean baseline. It is clear that the learning based methods significantly
outperform the baseline. The Elastic Net method yields more accurate results,
however it requires longer runtime. Note that we expect the runtime in our
system to be longer due to a larger set of shows for which we must predict scores
(all shows in the festival).

Table 1. Median MSE, median MAE and average time across a dataset of 1000 users

Algorithm Median MSE Median MAE Mean Runtime (sec)

Elastic Net 3.45 1.56 0.94
Linear SVR 3.79 1.64 0.35

Mean score baseline 6.24 2.25 0.24

7.2 Schedule Evaluation

In this section we present an empirical evaluation of the scheduling system. All
experiments were run on a dual-core i5 (2.7GHz) machine with 16GB of RAM
running Mac OS X Sierra. For our MaxSAT model, we used MaxHS v2.9, that
employs a hybrid SAT and MIP approach [5]. For our CP model, we used CP
Optimizer from the IBM ILOG CPLEX Optimization Studio version 12.6.3,
single-threaded with default search and inference settings. We use a 10-minute
run-time limit for each experiment.

Problem Instances. We consider 34 instances based on the real timetables
of seven popular music festivals in the recent years as shown in Table 2. The
instances have a large range of sizes defined by the number of shows, |S|, the
number of venues, |V |, the number of must-attend groups, |M |, the number of
shows the user is not interested in attending, |N |, and the number of required
breaks, |B|. The parameters S and V are based on the real festival timetable. The
travel time matrix TT is randomly generated in a range based on the estimated
travel time between the real festival venues and it satisfies the triangle inequality.
The breaks inB are generated in two configurations: either 2 breaks of 30 minutes
or one break of 60 minutes. The shows in M and N were arbitrarily chosen,
discarding infeasible instances. Each M has a mix of singletons and groups with
multiple items. Random scores between 1-10 were assigned to a subset of the
artists that ranged between 50% for the smallest festival to 15% for the largest
one. The missing scores are predicted using our Elastic Net model. The preference
learning runtime for each instance ranges between 2 to 6 seconds per user.

Numerical Results. Table 3 shows the time it takes to find and prove an
optimal solution. The table is ordered in increasing size of the festivals. For the
smaller instances, both MaxSAT and CP find and prove an optimal solution in
a short time (usually less than 1 second). For the medium to large instances
(starting from Glastonbury), CP struggles to find and prove optimal solutions,

Timetable Source |S| |V | |M | |N | |B| Learning Time (sec)

Pitchfork’16 Saturday 17 3 1 1 2 5.72
Pitchfork’16 Sunday 16 3 2 2 1 3.27
Pitchfork’17 Saturday 14 3 1 1 2 2.64
Pitchfork’17 Sunday 14 3 2 2 1 3.38
Lollapalooza Chile’17 Saturday 34 6 1 1 2 2.92
Lollapalooza Chile’17 Sunday 34 6 3 3 1 2.97
Primavera’16 Thursday 35 6 1 1 1 2.65
Primavera’16 Friday 35 6 3 3 2 2.52
Primavera’17 Thursday 35 6 1 1 2 2.42
Primavera’17 Friday 35 6 3 3 1 2.68
Osheaga’15 Friday 40 6 1 1 2 2.73
Osheaga’15 Saturday 38 6 3 3 1 2.29
Osheaga’15 Sunday 38 6 5 5 2 2.63
Osheaga’16 Friday 38 6 1 1 1 3.25
Osheaga’16 Saturday 38 6 3 3 2 2.36
Osheaga’16 Sunday 37 6 5 5 1 2.54
Glastonbury’15 Friday 90 10 1 1 2 3.21
Glastonbury’15 Saturday 92 10 3 3 1 2.91
Glastonbury’15 Sunday 94 10 5 5 2 2.84
Glastonbury’16 Friday 95 10 1 1 1 2.40
Glastonbury’16 Saturday 90 10 3 3 2 2.65
Glastonbury’16 Sunday 90 10 5 5 1 2.60
Tomorrowland’14 #1 Friday 149 15 1 1 2 2.76
Tomorrowland’14 #1 Saturday 139 15 3 3 1 2.51
Tomorrowland’14 #1 Sunday 118 14 5 5 2 2.73
Tomorrowland’14 #2 Friday 149 15 1 1 1 2.58
Tomorrowland’14 #2 Saturday 139 15 3 3 2 2.96
Tomorrowland’14 #2 Sunday 129 15 5 5 1 2.56
SXSW’15 Thursday 685 100 1 1 1 4.21
SXSW’15 Friday 706 102 3 3 2 4.04
SXSW’15 Saturday 715 99 5 5 1 4.19
SXSW’17 Thursday 644 96 1 1 2 3.60
SXSW’17 Friday 564 94 3 3 1 3.62
SXSW’17 Saturday 566 77 5 5 2 3.66

Mean learning time: 3.03

Table 2. Description of the problem instances: number of shows |S|, number of venues
|V |, number of must-attend groups |M |, number of unattended shows |N |, and the time
it takes to train the learning model and predict the missing scores.

especially for the less constrained instances (i.e., smaller |M | and |N |). For the
largest music festival (SXSW), CP times-out on some of the instances (denoted
“T/O”), failing to prove optimality (although it does find an optimal solution
in all cases). MaxSAT, however, seems to be able to scale well, with the hardest
instance taking approximately 12 seconds to find an optimal solution and prove
its optimality.

Table 3 also shows the time it took to find the optimal solution without
proving its optimality. MaxSAT still demonstrates better results in most cases,
however in almost all cases, CP manages to find the optimal solution in less than
one minute.

Find+Prove Opt. (sec) Find Opt. (sec)

Instance Objective MaxSAT CP MaxSAT CP

Pitchfork’16 Saturday 40 0.02 0.02 0.00 0.00
Pitchfork’16 Sunday 30 0.02 0.02 0.00 0.00
Pitchfork’17 Saturday 43 0.02 0.01 0.00 0.00
Pitchfork’17 Sunday 39 0.02 0.02 0.00 0.00
Lollapalooza Chile’17 Saturday 34 0.04 0.39 0.00 0.01
Lollapalooza Chile’17 Sunday 33 0.03 0.04 0.00 0.00
Primavera’16 Thursday 50 0.03 0.06 0.00 0.01
Primavera’16 Friday 60 0.04 0.48 0.01 0.19
Primavera’17 Thursday 36 0.03 0.05 0.00 0.00
Primavera’17 Friday 38 0.03 0.39 0.00 0.06
Osheaga’15 Friday 52 0.12 0.91 0.00 0.01
Osheaga’15 Saturday 38 0.02 0.05 0.00 0.01
Osheaga’15 Sunday 33 0.02 0.04 0.00 0.00
Osheaga’16 Friday 51 0.05 0.39 0.00 0.00
Osheaga’16 Saturday 26 0.04 0.09 0.01 0.02
Osheaga’16 Sunday 38 0.03 0.04 0.00 0.00
Glastonbury’15 Friday 64 0.59 91.27 0.38 15.28
Glastonbury’15 Saturday 67 0.13 3.13 0.03 0.20
Glastonbury’15 Sunday 53 0.06 0.20 0.00 0.07
Glastonbury’16 Friday 85 0.06 110.78 0.01 1.33
Glastonbury’16 Saturday 70 0.06 1.90 0.01 0.12
Glastonbury’16 Sunday 61 0.18 1.07 0.01 0.05
Tomorrowland’14 #1 Friday 67 1.81 532.46 1.71 211.99
Tomorrowland’14 #1 Saturday 49 0.39 4.08 0.02 0.12
Tomorrowland’14 #1 Sunday 45 0.06 0.34 0.00 0.13
Tomorrowland’14 #2 Friday 58 11.13 408.23 0.02 0.42
Tomorrowland’14 #2 Saturday 48 0.09 2.68 0.01 0.99
Tomorrowland’14 #2 Sunday 42 0.37 1.15 0.30 0.08
SXSW’15 Thursday 133 8.00 T/O 4.67 61.10
SXSW’15 Friday 119 3.00 T/O 1.11 16.41
SXSW’15 Saturday 116 9.88 218.35 6.59 8.72
SXSW’17 Thursday 98 6.82 T/O 2.73 25.18
SXSW’17 Friday 101 2.76 80.04 0.19 5.93
SXSW’17 Saturday 125 4.90 T/O 0.57 96.04

Mean run-time 1.50 113.49 0.54 13.07

Table 3. Time to find and prove optimal solution and time to find optimal solution
for MaxSAT and CP (results that are at least 10 times better are in bold).

8 Related Work

Personal-level scheduling has received little attention in recent optimization lit-
erature. Refanidis and Yorke-Smith [20] presented a CP model for the problem
of automating the management of an individual’s time, noting the problem’s
difficulty due to the variety of tasks, constraints, utilities, and preference types
involved. Alexiadis and Refanidis [2, 1] presented a post-optimization approach,
in which an existing personal schedule is optimized using local search. They
developed a bundle of transformation methods to explore the neighborhood of
a solution using either hill climbing or simulated annealing and achieved more
than 6% improvement on average.

Closely-related problems, such as conference scheduling, have only been ad-
dressed from the perspective of building the event schedule with the objective of
either meeting the presenters’ or attendees’ preferences [23]. An example for a
presenter-based perspective approach can be found in Potthoff and Brams’s inte-
ger programming formulation for conference scheduling w.r.t. presenters’ avail-
ability [18]. Examples for attendee-based perspective approaches can be found
in Quesnelle and Steffy’s work on minimizing attendee conflicts [19], using an
integer programming model, and Vangerven et al.’s work on maximizing atten-
dance using a hierarchical optimization approach [25]. We are not aware of any
work that directly addresses music festival scheduling nor of any work which
takes the event schedule as input and optimizes for the individual attendee.

9 Conclusions and Future Work

We present a preference-based scheduling system for concert-goers at multi-
venue music festivals. We utilize data mining and machine learning techniques
to learn the user preferences and reduce the required user input. We use MaxSAT
to efficiently find and prove an optimal schedule that maximizes the user utility,
while taking into consideration the travel times between venues and the user’s
break preferences. Our system implements a web interface in which the user
provides the required inputs and accesses the resulting schedule.

Our empirical evaluation shows that the use of preference learning allows us
to provide more accurate results and the use of a MaxSAT model allows us to
provide an efficient online service, with most instances taking less than 5 seconds
and the hardest instances reaching 15 seconds for learning and optimization.

We believe this system can easily be adapted to other kinds of multi-venue
events, such as conferences and large sporting events. For example, in the context
of a conference, the preference learning can rely on the keywords of each talk
and generate a preference-based personal schedule of talks to attend.

Another potential extension of this work is to explore ways to provide the
users with alternative schedules. In this work the preference learning method is
aimed at finding a schedule that is consistent with the user preferences. How-
ever, as some visitors often use the festival to expand their musical horizons,
investigating ways to generate schedules that introduce the users to music they
are not familiar with is an interesting direction of research.

References

1. Alexiadis, A., Refanidis, I.: Optimizing individual activity personal plans through
local search. AI Communications 29(1), 185–203 (2015)

2. Alexiadis, A., Refanidis, J.: Post-optimizing individual activity plans through local
search. In: Proceedings of the 8th Workshop on Constraint Satisfaction Techniques
for Planning and Scheduling Problems (COPLAS’13). pp. 7–15 (2013)

3. Celma, Ò.: Music Recommendation and Discovery: The Long Tail, Long Fail, and
Long Play in the Digital Music Space. Springer (2010)

4. Chatterjee, S., Hadi, A.S.: Regression analysis by example. John Wiley & Sons
(2015)

5. Davies, J., Bacchus, F.: Exploiting the power of MIP solvers in MaxSAT. In: Inter-
national conference on theory and applications of satisfiability testing. pp. 166–181.
Springer (2013)

6. Firan, C.S., Nejdl, W., Paiu, R.: The benefit of using tag-based profiles. In: Web
Conference, 2007. LA-WEB 2007. Latin American. pp. 32–41. IEEE (2007)

7. Ho, C.H., Lin, C.J.: Large-scale linear support vector regression. Journal of Ma-
chine Learning Research 13(Nov), 3323–3348 (2012)

8. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal
problems. Technometrics 42(1), 80–86 (2000)

9. Laborie, P.: IBM ILOG CP optimizer for detailed scheduling illustrated on three
problems. In: International Conference on AI and OR Techniques in Constriant
Programming for Combinatorial Optimization Problems. pp. 148–162. Springer
(2009)

10. Lehmann, E.L., Casella, G.: Theory of point estimation. Springer Science & Busi-
ness Media (2006)

11. Levy, M., Sandler, M.: Music information retrieval using social tags and audio.
IEEE Transactions on Multimedia 11(3), 383–395 (2009)

12. Long, Z.: Start planning your weekend with the lollapalooza 2016 sched-
ule (May 2016), https://www.timeout.com/chicago/blog/start-planning-your-
weekend-with-the-lollapalooza-2016-schedule-050916, [Online; posted May 9, 2016]

13. Lynch, J.: Coachella 2016: 10 heartbreaking set time conflicts (and how to
handle them) (May 2016), http://www.billboard.com/articles/columns/music-
festivals/7333891/coachella-2016-set-time-schedule-conflicts, [Online; posted April
14, 2016]

14. McIntyre, H.: America’s top five music festivals sold $183 million in tickets in 2014
(March 2015), http://www.forbes.com/sites/hughmcintyre/2015/03/21/americas-
top-five-music-festivals-sold-183-million-in-tickets-in-2014, [Online; posted Mar 21,
2015]

15. McIntyre, H.: New york city’s music festival mar-
ket is becoming increasingly crowded (June 2016),
http://www.forbes.com/sites/hughmcintyre/2016/06/21/new-york-citys-music-
festival-market-is-becoming-increasingly-crowded, [Online; posted Jun 21, 2016]

16. Mintel: Music concerts and festivals market is star performer in the
uk leisure industry as sales grow by 45% in 5 years (December 2015),
http://www.mintel.com/press-centre/leisure/music-concerts-and-festivals-market-
is-star-performer-in-the-uk-leisure-industry-as-sales-grow-by-45-in-5-years, [On-
line; posted Dec 9, 2015]

17. Nielsen: For music fans, the summer is all a stage (April 2015),
http://www.nielsen.com/us/en/insights/news/2015/for-music-fans-the-summer-
is-all-a-stage.html, [Online; posted Apr 14, 2015]

18. Potthoff, R.F., Brams, S.J.: Scheduling of panels by integer programming: Results
for the 2005 and 2006 New Orleans meetings. Public Choice 131(3-4), 465–468
(2007)

19. Quesnelle, J., Steffy, D.: Scheduling a conference to minimize attendee preference
conflicts. In: Proceedings of the 7th Multidisciplinary International Conference on
Scheduling: Theory and Applications (MISTA). pp. 379–392 (2015)

20. Refanidis, I., Yorke-Smith, N.: A constraint-based approach to scheduling an in-
dividual’s activities. ACM Transactions on Intelligent Systems and Technology
(TIST) 1(2), 12 (2010)

21. Sen, A., Srivastava, M.: Regression analysis: theory, methods, and ap-
plications. Springer Texts in Statistics, Springer, New York (1990),
http://cds.cern.ch/record/1611847

22. Sen, S., Vig, J., Riedl, J.: Tagommenders: connecting users to items through tags.
In: Proceedings of the 18th international conference on World wide web. pp. 671–
680. ACM (2009)

23. Thompson, G.M.: Improving conferences through session scheduling. The Cornell
Hotel and Restaurant Administration Quarterly 43(3), 71–76 (2002)

24. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological) pp. 267–288 (1996)

25. Vangerven, B., Ficker, A., Goossens, D., Passchyn, W., Spieksma, F., Woeginger,
G.: Conference scheduling: a personalized approach. In: Burke, E., Di Gaspero, L.,
Özcan, E., McCollum, B., Schaerf, A. (eds.) Proceedings of the 11th International
Conference on the Practice and Theory of Automated Timetabling. pp. 385–401.
PATAT (2016)

26. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Jour-
nal of the Royal Statistical Society, Series B 67, 301–320 (2005)

