
Checking-up on Branch-and-Check

J. Christopher Beck

Department of Mechanical & Industrial Engineering
University of Toronto

Toronto, Ontario M5S 3G8, Canada
jcb@mie.utoronto.ca

Abstract. Branch-and-Check, introduced ten years ago, is a generaliza-
tion of logic-based Benders decomposition. The key extension is to solve
the Benders sub-problems at each feasible solution of the master problem
rather than only at an optimal solution. We perform the first systematic
empirical comparison of logic-based Benders decomposition and branch-
and-check. On four problem types the results indicate that either Benders
or branch-and-check may perform best, depending on the relative diffi-
culty of solving the master problem and the sub-problems. We identify
a characteristic of the logic-based Benders decomposition runs, the pro-
portion of run-time spent solving the master problem, that is valuable
in predicting the performance of branch-and-check. We also introduce a
variation of branch-and-check to address difficult sub-problems. Empir-
ical results show that this variation leads to more robust performance
than both logic-based Benders decomposition and branch-and-check on
the problems investigated.

1 Introduction

Logic-based Benders decomposition (LBBD) [1, 2] has been proposed as a frame-
work for hybrid techniques that combine mixed-integer programming (MIP) and
constraint programming (CP). Informally, LBBD requires the decomposition of
a problem into a master problem and a set of sub-problems. The solution ap-
proach solves the master to optimality, solves the sub-problems, and then adds
constraints (“Benders cuts”) to the master problem based on the sub-problem
results. The approach iterates between solving the master problem and the sub-
problems until a globally optimal solution is found and proved.

Branch-and-Check (B&C) [1, 3] is a generalization of LBBD where the sub-
problems are solved during the search for a solution to the master problem.
In Thorsteinsson’s formulation [3], the sub-problems are solved every time a
feasible master solution is found, and the cuts are added to the master problem,
if necessary. B&C, therefore, is essentially a branch-and-cut search with the
Benders sub-problems being the source of the cuts.

Despite the increasing interest in LBBD and speculation (e.g., [4]) that B&C
could result in a significant improvement over LBBD, there does not appear
to have been a systematic evaluation of B&C. We do not have a clear picture

of how B&C performs on different problems nor what problem characteristics
contribute to its behavior. The contributions of this paper, therefore, are:

1. The first systematic empirical comparison of logic-based Benders decompo-
sition and branch-and-check.

2. The identification of a characteristic of the behavior of LBBD that appears
to be correlated to whether an improvement in performance can be expected
from B&C.

3. The introduction and evaluation of a variation on B&C that addresses the
poor performance of B&C when the sub-problems are difficult.

The following section provides the necessary background. We then turn to
the empirical investigations which result in the first two contributions of this
paper. Section 4 proposes and evaluates the variation of B&C while Section 5
discusses our results and concludes.

2 Background

In this section, logic-based Benders decomposition and branch-and-check are
defined, the literature on branch-and-check is reviewed in detail, and the formal
definitions of the problems studied in this paper are presented.

2.1 Logic-based Benders Decomposition and Branch-and-Check

Logic-based Benders decomposition [2] is a generalization of classical Benders
decomposition that is based on the division of a problem into a master problem
(MP) and a set of sub-problems (SPs). The MP is a projection of the global model
to a subset of decision variables, denoted y, and the constraints and objective
function components that involve only y. The rest of the decision variables, x,
define the sub-problems. Solving a problem by Benders decomposition involves
iteratively solving the MP to optimality and using the solution to fix the y
variables, generating the sub-problems. The duals of the SPs are solved to find
the tightest bound on the (global) cost function that can be derived from the
original constraints and the current MP solution. If this bound is less than
or equal to the current MP solution (assuming a minimization problem), then
the MP solution and the SP solutions constitute a globally optimal solution.
Otherwise, a constraint, called a “Benders cut,” is added to the MP to express
the violated bound and another iteration is performed.

Branch-and-check (B&C) [3] moves the SP solving into a branch-and-cut
search to solve the MP. Rather than waiting until the MP is solved to optimal-
ity, the B&C algorithm solves the SPs at each feasible MP solution, generates
the Benders cuts, and immediately adds them to the branch-and-cut tree. The
current feasible MP solution is therefore rejected and search continues. Because
only globally feasible MP solutions are accepted, the MP is solved only once:
there are no MP-SP iterations as in LBBD.

Intuitively, B&C may out-perform LBBD because the MP is not repeatedly
solved from scratch. Furthermore, a cut introduced based on one sub-optimal
MP solution may cut-off other sub-optimal MP solutions whereas in LBBD these
sub-optimal solutions may be enumerated in each iteration.

2.2 Literature Review

Thorsteinsson [3] introduced the name branch-and-check and performed experi-
ments on a planning and scheduling problem. A significant speed-up was shown
when compared to an LBBD model due to Jain & Grossmann [5]. These results
were attributed to the claim that the MP was hard to solve, relative to the SPs,
and therefore adding the SP cuts based on feasible MP solutions (rather than
waiting for optimality) sped-up the overall solving process. A significant weak-
ness of the work, however, is that the B&C implementation did not actually
solve the SPs during the MP branch-and-cut search: each time the SPs were
solved, the MP search was restarted.

Bockmayr & Pisaruk [6] adopt an approach very similar to B&C, except
that cuts are added at each node in the MP branch-and-cut tree rather than
only at integer feasible nodes.1 The relaxed solution at each node is used to
derive bounds that are then used to define the SPs. Computational results show
that solving the SPs more often results in an improvement over the results of
Jain & Grossmann. No comparison is done against Thorsteinsson’s approach.

Sadykov & Wolsey [7] address the same scheduling problem as the above
authors with a B&C approach. They state that solving the SPs at integral MP
nodes only is an important feature distinguishing their algorithm from Bock-
mayr & Pisaruk. However, Sadykov & Wolsey use a tighter MP formulation
than Bockmayr & Pisaruk and so it is not possible to attribute their improved
performance solely to the more frequent solution of the SPs. In fact, Sadykov &
Wolsey state that they believe that the main reason for their performance is the
tighter MP model. Follow-up work [8] solves a one-machine minimum weighted
number of late activities problem using B&C: the SP is solved at each feasi-
ble MP solution and the MP branch-and-cut search continues with the added
Benders cuts. However, no LBBD algorithm is used for comparison.

In summary, we have been able to find only four papers [3, 6–8] that have
implemented a B&C-like approach. Thorsteinsson and Bockmayr & Pisaruk use
the same model as Jain & Grossmann and so these three papers vary only on the
frequency with which the sub-problems are solved. Jain & Grossmann solve the
sub-problems the least, only when an optimal MP solution is found. Thorsteins-
son solves the SP at each feasible MP solution, restarting the MP search each
time. Bockmayr & Pisaruk solve the SPs most often, at each node in the MP
tree. Both Thorsteinsson and Bockmayr & Pisaruk show better performance
than Jain & Grossmann but their approaches have not been compared to each
other. The fourth work, Sadykov & Wolsey, also solves the SPs at each feasible

1 The idea of solving the sub-problems more often than at each feasible MP solution
appears in Hooker’s original formulation [1].

MP solution and shows stronger results than Bockmayr & Pisaruk but uses a
tighter MP formulation.

It appears, therefore, that the most we can conclude from previous work is
that for a specific scheduling problem, solving the SPs more frequently than is
done in LBBD leads to improved performance. We have not been able to find
any work that directly compares B&C (without restarting the MP search) to
LBBD. Moreover, work on B&C has been restricted to a single problem type,
limiting the generality of the resulting conclusions.

2.3 Problems and Models

In this section, we define the four problems used in this study. Each of these
problems has an existing LBBD model in the literature. We study three planning
and scheduling problems and one location-allocation problem.

CostMinUnary CostMinUnary is the problem studied by Jain & Grossmann,
Thorsteinsson, and Bockmayr & Pisaruk. The problem is defined by a set of
jobs, j ∈ J , each with an individual release date, Rj , and deadline, Sj , which
must be scheduled on a set of resources, I. A job can be assigned to any resource;
however, its processing time, pij , and cost, fij , depend on the resource, i ∈ I, to
which it is assigned. The objective is to assign the jobs to resources so that they
can execute within their time-windows [Rj , Sj], no jobs on the same resource
overlap, and the cost of the resource assignment is minimized.

Following existing work [1, 5, 4], the master problem in an LBBD model can
be defined as follows, with yij being a 0-1 variable expressing whether job j is
assigned to resource i:

minimize
∑
ij

fijyij (1)

s.t.
∑

i

yij = 1 all j (2)∑
j

pijyij ≤ max
j
{Sj} −min

j
{Rj} all i (3)∑

j∈Jhi

(1− yij) ≥ 1 all i, h = 1, . . . H − 1 (4)

yij ∈ {0, 1} all i, j

The objective function (1) minimizes the cost of assigning jobs to resources,
subject to the constraint that all jobs must be assigned to exactly one resource
(2). Constraint (3) is a relaxation of the sub-problem expressing that the sum of
the durations of the jobs assigned to any resource must be less than or equal to
the time between the minimum release date and maximum due date. Constraints
(4) are the Benders cuts, where Jhi is the set of jobs assigned to resource i in
iteration h and that led to an infeasibility in the sub-problem. The cut simply
expresses that, in order to form a feasible schedule, at least one job in Jhi must
be assigned to a different resource.

The sub-problems are then straightforward to define using constraint pro-
gramming: they are single-machine scheduling problems with release dates and
due dates where the goal is to find a feasible schedule. Explicitly, if tj is the start
time of job j, the sub-problem for resource i for all j with yij = 1 is:

tj ≥ Rj (5)
tj + pij ≤ Sj (6)
cumulative(tj , pij ,1, 1) (7)

The global constraint cumulative [9] represents a single-machine scheduling
problem to assign values to all start times, tj , taking into account the durations
of each job and the capacities. The capacity required by each job is represented
in the vector 1 and the capacity of the resource is 1.

CostMinMulti The CostMinMulti problem is the same as CostMinUnary ex-
cept that the resources are no longer unary and each job may require more than
one unit of the resource. The model [4] has the objective function (1), constraint
(2), and the Benders cuts (4) as in CostMinUnary. The sub-problem relaxation
(3) is different to account for the discrete resource capacity and the fact that
all the problems solved here have a release date of 0 and the same due date,
represented by d0. Letting Ci be the capacity of resource i and cij the amount
of resource i required by job j during its processing time, the sub-problem re-
laxation expresses that the area of resource availability (i.e., capacity multiplied
by the time horizon: Ci × (d0 − 0)) must be greater than or equal to the sum of
the areas of the jobs assigned to i (pijcijyij). Therefore, constraint (8) replaces
constraint (3).

1
Ci

∑
j

pijcijyij ≤ d0, all i (8)

The sub-problem formulation is also changed to reflect the discrete capacity.
Thus, constraint (7) becomes:

cumulative(tj , pij , cij , Ci) (9)

MkspMinMulti MkspMinMulti is a multi-capacity planning and scheduling
problem with the objective of makespan minimization. In Hooker’s model [4],
M represents the makespan and the master problem is defined as follows:

minimize M (10)
s.t.

∑
i

yij = 1 all j (11)

M ≥ 1
Ci

∑
j

pijcijyij all i (12)

M ≥M∗hi −
∑

j∈Jhi

(1− yij)pij all i, h = 1, . . . H − 1 (13)

yij ∈ {0, 1} all i, j

The differences from CostMinMulti are the sub-problem relaxation (12) and
the Benders cut (13). The sub-problem relaxation is, in fact, a restatement of
constraint (8) with a variable end of horizon, M , rather than the fixed one, d0,
and as such is based on exactly the same reasoning. The Benders cut makes
use of M∗hi, the minimum makespan on resource i in iteration h. The expression
that is subtracted from M∗hi relies on the fact that the maximum reduction in
makespan that can come from removing job j from resource i (i.e., by setting
yij to 0) is the duration of that job, pij .

Unlike the other two scheduling problems, in MkspMinMulti, the sub-problem
is an optimization problem as follows:

minimize Mi (14)
s.t. Mi ≥ tj + pij (15)

tj ≥ 0 (16)
cumulative(tj , pij , cij , Ci) (17)

LocAlloc The LocAlloc problem is a facility location, customer allocation, and
truck allocation problem. Given the set J of potential sites and the set I of
clients, the goal is to choose which sites to open, to assign each customer to a
single open site, to assign a number of trucks to each site, and to assign each
customer to a single truck. Multiple customers can be assigned to the same truck
provided the sum of their travel distances is less than a given maximum distance
for the truck. For each site j there is an opening cost, fj , and a capacity, bj .
The demand of the clients, di, assigned to a site must be less than or equal to
the site capacity. Each vehicle has a fixed utilization cost, u, and a maximum
total driving distance, `. Serving client i from site j generates a driving distance,
tij , for the vehicle performing the service and has an associated cost, cij . The
available vehicles at a site are indexed in set K with parameter k ≥ |K| being
the maximum number of vehicles at any site.

In the LBBD model presented by Fazel-Zarandi & Beck [10], the master
problem determines the open sites, the assignment of customers to sites, and the
number of trucks at each site. The sub-problems are then separate feasibility
problems which attempt to assign the customers to trucks.

The master problem decision variables are:

pj =
{

1, if site j is opened
0, otherwise

xij =
{

1, if client i is served by site j
0, otherwise

numVehj = number of vehicles assigned to facility j

The master problem can then be modeled as:

minimize
∑
j∈J

fjpj +
∑
i∈I

∑
j∈J

cijxij + u
∑
j∈J

numVehj (18)

s.t.
∑
j∈J

xij = 1 i ∈ I (19)∑
i∈I

tijxij ≤ ` · k j ∈ J (20)

tijxij ≤ ` i ∈ I, j ∈ J (21)∑
i∈I

dixij ≤ bjpj j ∈ J (22)

numVehj ≥
⌈∑

i∈I tijxij

`

⌉
j ∈ J (23)

numVehj ≥ numVeh∗jh −
∑

i∈Ijh

(1− xij) j ∈ Jh (24)

xij ≤ pj i ∈ I, j ∈ J (25)
xij , pj ∈ {0, 1} i ∈ I, j ∈ J (26)

The objective (18) is to minimize the total cost of opening facilities, serving
customers from a site, and allocating vehicles to a site. Constraint (19) ensures
that all clients are served by exactly one facility. The distance limitations are
defined by constraints (20) and (21). Constraint (22) limits the demand assigned
to facility j. Constraint (23) defines the minimum number of vehicles assigned
to each site.

Constraint (24) is the Benders cut. Inspired by the makespan cut in the
MkspMinMulti problem, this cut makes use of the optimal number of trucks at
facility j in iteration h, numVeh∗jh, and subtracts from it an upper-bound on the
reduction in the number of trucks that can arise from removing one customer.

The sub-problem is a feasibility problem to determine if the customers can be
feasibly assigned to the allocated trucks. In order to generate a cut, however, we
must solve the optimization version of the problem, finding the minimum number
of vehicles that the assigned clients can be packed into. This is a bin-packing
problem that can be modeled in CP as follows:

min numVehBinPackingj

s.t. pack(loadk, trucki, disti) (27)
numVehj ≤ numVehBinPackingj < numVehFFDj (28)

The variables of the sub-problem are loadk, the total travel distance for
truck k based on its assigned clients and trucki, the index of the truck assigned
to client i. The distances between site j and client i are represented in the data
vector disti. The pack global constraint (27) maintains the load of the vehicles
given the distances and assignments of clients to vehicles [11]. The upper and
lower bounds on the number of vehicles are represented by constraint (28). These
bounds are derived from the MP solution (numVehj) and heuristic preprocessing
(numVehFFDj).

3 A Systematic Evaluation of Branch-and-Check

The next sub-section describes the problem instances for each of our problems as
well as providing the experimental details. We then compare logic-based Benders
decomposition and branch-and-check experimentally and present insights into
the performance comparison through a deeper analysis of the results.

3.1 Experimental Setup

We use existing problem instances in all of our experiments. For the two multi-
capacity scheduling problems we use Hooker’s instances [4]: 75 instances with
2 resources, 60 instances with 3 resources, and 60 instances with 4 resources.
The number of jobs varies between 10 and 38. The unary capacity problem in-
stances are generated by modifying the multi-capacity instances by setting the
capacity equal to 1 and modifying the time windows of each activity. The overall
scheduling horizon is extended by a factor of 3.6, a value chosen after experi-
mentation in order to guarantee that all instances have a feasible solution. The
horizon change resulted in two other changes: as in Hooker’s work the possible
window for an activity is set to one-third of the (now extended) horizon and,
unlike Hooker, the release of each job was drawn with uniform probability from
the first two-thirds of the horizon. All other parameters (cost, processing times,
etc.) are exactly as in Hooker’s instances.

For the Location-Allocation problems, 300 instances are taken from Fazel-
Zarandi & Beck [10]. In half of these instances, the cost of serving a customer
from a specific location is correlated with the distance to the location, while in
the remaining half, distance and cost are uncorrelated. The problem sizes (i.e.,
number of possible facilities × number of clients) are: {20×10, 30×15, 40×20}.

All experiments were run with a 7200-second time limit on a Duo Core AMD
720 CPU with 1 MB cache, 4 GB of memory, running Red Hat Enterprise 4. The
MIP solver is CPLEX 12.1 and the CP solver is ILOG Solver/Scheduler 6.7.

3.2 Logic-based Benders Decomposition vs. Branch-and-Check

The comparison of logic-based Benders decomposition with branch-and-check is
shown in Table 1.2 For each problem set, we present the mean and median dif-
ference in CPU time (LBBD minus B&C). This formulation means that positive
numbers favor B&C (i.e., it has a lower mean CPU time) and negative entries
favor LBBD. Using a bootstrap paired-t test [12], we also indicate the statistical
significance at p ≤ 0.005.

Our results are consistent with previous work on the CostMinUnary prob-
lems: B&C shows a clear benefit, especially with an increased number of re-
sources. However, the advantage for B&C disappears for the other scheduling
problems to the point that LBBD shows significantly lower mean run-time over-
all and on three of the six subsets of CostMinMulti and MkspMinMulti. Finally,
for LocAlloc, B&C again shows a significant advantage over LBBD.
2 The OPT15 columns are discussed in Section 4.1.

B&C OPT15
Problem Set Mean Median Mean Median

2 ∗110.9 0.1 ∗110.9 0.1
CostMinUnary 3 ∗164.8 1.2 ∗200.2 1.2

4 ∗1049.7 19.7 ∗1038.7 19.7
all ∗416.3 0.7 ∗423.8 0.7

2 †-206.4 0 †-207.3 0
CostMinMulti 3 -194.8 0.1 †-224.6 0.1

4 -15.1 0.9 -8.6 0.9
all †-144.0 0 †-151.5 0

2 -106.8 0 -58.7 0
MkspMinMulti 3 †-361.7 0 -215.2 0

4 †-804.3 -0.1 -163.9 0.2
all †-400.0 0 -139.2 0

LocAlloc cor ∗999.4 66.8 ∗948.1 12.9
uncor ∗812.5 11.4 ∗848.5 11.7

all ∗905.9 23.9 ∗898.3 12.4
Table 1. Summary of B&C and OPT15 Performance. Mean and Median are the cor-
responding average differences in run-time (in seconds) between B&C and LBBD and
between OPT15 and LBBD. A negative value indicates that LBBD achieves a lower
run-time. The symbols ∗ and † indicate a significant difference in mean run-time at
p ≤ 0.005, for the corresponding B&C variation and LBBD, respectively.

3.3 A Deeper Analysis

Table 2 presents further data: the number of iterations and the percentage of
the run-time spent on the master problem and the sub-problems.

The statistics for LBBD indicate that it has significantly different behavior
on the four problems. Using the median, we see that in CostMinUnary, LBBD
spends over 97% of the run-time solving the MP and does 23 iterations. This is
a substantial difference from the other two scheduling problems: a median 11%
and 21% of their run-times is spent on the MP and they perform a median of
7 and 13 iterations, respectively. LocAlloc is different again, spending 100% of
the run-time on the master problem but only requiring two iterations.

The branch-and-check results show a large increase in both the number of
times that the SPs are solved and a corresponding increase in the proportion of
CPU time spent solving them. This pattern is not seen for LocAlloc as, though
there is a substantial increase in the number of SP iterations, most of the run-
time is still spent solving the master problem.

The positive differences in CPU time in Table 1 correspond to problem sets
where a significant portion of the run-time is spent on the master problems.
Figure 1 plots the mean difference in run-time between LBBD and B&C against
the proportion of time spent solving the MP by LBBD. We have aggregated the
latter data into 10 buckets corresponding to intervals of size 0.1. The pattern
that can be observed is that unless LBBD spends about 80% or more of its time
solving the master problem, the benefits from branch-and-check are rare. In

LBBD B&C
Problem Set Iterations % MP % SP SP Iterations % MP % SP

2 62.8 (6) 75.9 (91.5) 22.8 (7.9) 165.4 (11) 32.0 (28.0) 57.3 (64.5)
CostMinUnary 3 138.9 (24) 90.4 (95.1) 9.6 (4.9) 1047.5 (40) 44.1 (42.7) 54.2 (57.1)

4 258.2 (81.5) 96.2 (99.3) 3.8 (0.7) 1022.4 (160) 53.5 (50.8) 46.5 (49.2)
all 146.3 (23) 86.6 (97.0) 12.9 (2.8) 700.5 (50) 42.4 (42.5) 53.0 (55.6)
2 2.6 (1) 12.8 (0) 81.9 (100) 4.1 (2) 8.1 (0) 90.5 (100)

CostMinMulti 3 23.6 (14.5) 51.3 (66.5) 48.7 (33.5) 47.2 (26.5) 15.9 (3.7) 84.1 (96.2)
4 35.2 (22) 68.8 (93.4) 31.2 (6.6) 69.4 (45.5) 22.7 (18.1) 77.3 (81.9)

all 19.1 (7) 41.9 (11.2) 56.1 (73.5) 37.4 (17) 15.0 (0.5) 84.5 (99.4)
2 18.9 (5) 9.0 (0) 91.0 (100) 20.8 (6) 3.7 (0) 96.3 (100)

MkspMinMulti 3 59.0 (25.5) 37.4 (33.3) 62.6 (66.7) 69.9 (28.5) 13.0 (1.2) 87.0 (98.8)
4 51.3 (20) 55.5 (60.0) 44.5 (40.0) 70.2 (36) 17.4 (8.7) 82.6 (91.4)

all 41.2 (13) 32.0 (21.5) 68.0 (78.5) 51.1 (20) 10.8 (0.3) 89.2 (99.7)
cor 7.2 (1.5) 99.9 (100) 0.1 (0) 70.6 (19) 99.4 (100) 0.6 (0)

LocAlloc uncor 5.9 (2) 99.9 (100) 0.1 (0) 87.2 (23.5) 98.4 (100) 1.6 (0)
all 6.5 (2) 99.9 (100) 0.1 (0) 78.9 (21.5) 98.9 (100) 1.1 (0)

Table 2. Details of the logic-based Benders decomposition vs. Branch-and-Check ex-
periment. On the left-hand side, we present the mean (and median) number of master
problem iterations and the percentage of time spent solving the master problem (%
MP) and the sub-problems (% SP). On the right-hand side, branch-and-check data is
presented: the number of iterations of the sub-problem (i.e., the number of times that
the set of sub-problems is solved–recall that the master problem is solved only once), as
well as the percentages of the run-time spent on the master problem and sub-problems.

contrast, with master run-time proportions approaching 1, both the magnitude
and the frequency of benefits from using B&C are much higher.

These results can be understood by noting that LBBD and B&C embody
different expectations with respect to relative sub-problem difficulty. In LBBD,
the SPs are solved once for every (optimal) MP solution. In B&C, the SPs are
solved at each feasible solution to the MP. If the MP is much harder to solve than
the SPs, solving the MP once and using the cuts that are generated inexpensively
from repeated SP solutions should result in lower overall run-time. In contrast, if
the SPs are not easily solved, then frequently solving them is counter-productive.
It would be better to solve the SPs only when necessary: when an optimal master
problem needs to be either confirmed or cut-off. This is precisely the link between
the results in Tables 1 and 2.

The generality and analytical understanding of this pattern remain to be
explored. However, we believe that, as a broad measure, the portion of run-time
spent by LBBD on solving the master problem is a promising indicator of the
benefit that can accrue from applying B&C. Minimally, it can be employed by
practitioners when they are deciding if spending the time to implement B&C is
likely to be worthwhile.

4 A Variation on Branch-and-Check

The experiments above indicate that the difficulty in solving sub-problems is
important to the performance differences between LBBD and B&C. Additionally,
we make two observations.

-2000

-1500

-1000

-500

 0

 500

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ea

n
C

PU
 D

iff
er

en
ce

 (L
BB

D
 -

B&
C

)

MP CPU Time Proportion Bucket

All
CostMinUnary

CostMinMulti
MkspMinMulti

LocAlloc

Fig. 1. A plot of the proportion of run-time spent solving the master problem, ag-
gregated into 10 buckets ([0 0.1), [0.1 0.2) . . . [0.9 1.0]), against the mean difference
in CPU time (LBBD minus B&C). Note that the LocAlloc data all fall into the final
bucket and therefore form only a single point.

1. A feasible MP solution may be very different from an optimal one. The cuts
that are generated to remove the former may be irrelevant to cutting off
optimal MP solutions that are not globally feasible and, therefore, the work
of solving the SPs and generating cuts may be wasted.

2. The sub-problems in a given problem instance are not equally difficult. For
example, on the scheduling problems we have observed poor but feasible
MP solutions that place most or all activities on one machine, inducing the
worst-case in terms of SP difficulty.

These observations suggest that the avoidance of difficult and irrelevant sub-
problems may lead to better performance. Therefore, we propose a variation of
B&C that solves the SPs more frequently than LBBD but less often than B&C
by filtering the feasible MP solutions for which it solves the SPs. Our simple idea,
denoted OPT15, is as follows: within the B&C algorithm, rather than solving
SPs for each feasible MP solution, we solve the SPs corresponding to feasible

MP solutions with an optimality gap of less than 15%.3 Feasible solutions with
larger gaps are accepted as globally feasible.

The completeness of B&C is compromised by this change unless a feasible
MP solution with a gap of less than 15% is subsequently found and proved
to be globally feasible. If such a new MP solution is not found, we preserve
completeness by running a second iteration of B&C without the 15% threshold.
The second iteration has two significant advantages over the first iteration: all the
cuts from solving the SPs in the first iteration are incorporated and the warm-
start functionality of the MIP solver typically allows a good initial feasible MP
solution to be found in the pre-solve phase.

The choice of 15% is arbitrary and based on examination of preliminary ex-
periments. No tuning was done to investigate different choices for the threshold.

4.1 Experimental Evaluation

The right-hand side of Table 1 in Section 3.2 presents the mean and median
run-time difference between LBBD and OPT15. The problem instances and ex-
perimental setup are the same as described in Section 3.1.

The empirical results indicate that OPT15 performs more robustly than
LBBD or B&C. On the problems where B&C does significantly better than
LBBD (CostMinUnary and LocAlloc), OPT15 performs about the same as B&C,
achieving a statistically significant difference when compared to LBBD run-time
and achieving equivalent performance in terms of mean run-time as B&C. The
only statistic that is significantly different is the median run-time for LocAlloc,
which is considerably smaller for OPT15. On problems where B&C performs
poorly compared to LBBD, OPT15 performs approximately the same as B&C
on CostMinMulti and much better on MkspMinMulti. In fact, there is no sta-
tistically significant difference between LBBD and OPT15 on the latter set.

A different perspective on this data is presented in Table 3. The table presents
two pieces of data: the mean and median number of times that the set of SPs is
solved (SP Iter.) and the percentage of problem instances for which the algorithm
achieved a run-time within 10 seconds of the best run-time achieved by any
algorithm. For example, on the two-machine instances of CostMinUnary, LBBD
is within the 10 seconds of the best run-time on 85.3% of the problem instances,
while B&C and OPT15 are within the threshold on all instances.

The SP iteration data demonstrate that, indeed, OPT15 tends to solve the
sub-problems less frequently than B&C. The difference, however, is small.

The % Best data indicates that OPT15 is seldom best on a given subset:
it is alone with the highest percentage on two subsets (CostMinMulti/4 and
LocAlloc/uncor), while LBBD is uniquely the best on 5 sets and B&C on 2.
However, it is never the worst performer while LBBD and B&C have poor results
on different problem sets. Overall, the performance of OPT15 results in it being
within the 10-second threshold on 84.7% the problems compared to 82.7% and
67.7% for B&C and LBBD, respectively.
3 This gap is between the cost of the incumbent MP solution and the best current

lower bound on the MP solution.

LBBD B&C OPT15
Problem Set % Best SP Iter. % Best SP Iter. % Best SP Iter.

2 85.3 62.8 (6) 100.0 165.4 (11) 100.0 165.0 (11)
CostMinUnary 3 75.0 138.9 (24) 98.3 1047.5 (40) 98.3 1008.3 (34)

4 41.7 258.2 (81.5) 96.7 1022.4 (160) 91.7 1045.7 (139)
all 68.7 146.3 (23) 98.4 700.5 (50) 96.9 695.4 (40)

2 98.7 2.6 (1) 88.0 4.1 (2) 88.0 4.1 (2)
CostMinMulti 3 83.3 23.6 (14.5) 76.7 47.2 (26.5) 78.3 45.9 (26.5)

4 80.0 35.2 (22) 81.7 69.4 (45.5) 85.0 74.5 (41.5)
all 88.2 19.1 (7) 82.6 37.4 (17) 84.1 38.6 (16)

2 90.7 18.9 (5) 85.3 20.8 (6) 86.7 19.5 (6)
MkspMinMulti 3 85.0 59.0 (25.5) 68.3 69.9 (28.5) 80.0 62.6 (26.5)

4 88.3 51.3 (20) 66.7 70.2 (36) 85.0 71.6 (26)
all 88.2 41.2 (13) 74.4 51.1 (20) 84.1 48.8 (17)

LocAlloc cor 35.3 7.2 (1.5) 82.0 70.6 (19) 71.3 62.7 (15.5)
uncor 45.3 5.9 (2) 74.0 87.2 (23.5) 84.0 69.3 (20)

all 40.3 6.5 (2) 78.0 78.9 (21.5) 77.7 66.0 (18)

All 67.7 47.8 (6) 82.7 200.9 (23) 84.7 194.9 (19)

Table 3. The mean (and median) number of sub-problem iterations (SP Iter.) and
percentage of problem instances (% Best) for which the algorithm’s run-time was within
10 seconds of the best run-time. Bold entries indicate the highest percentage in a row.

5 Discussion and Conclusion

This paper has presented the first systematic comparison of logic-based Ben-
ders decomposition and branch-and-check. Using four different problems from
the scheduling and facility location literature, we have demonstrated that B&C
can lead to a significant improvement over LBBD but that the improvement is
dependent on the difficulty of solving the sub-problems relative to that of solving
the master problem. For problems where the sub-problem is difficult, B&C can
result in significantly longer run-times than LBBD. We have also shown that
the proportion of run-time used in LBBD to solve the master problem is a good
measure of the likelihood of the benefit from implementing a B&C algorithm.
Our results show that unless at least 80% of the LBBD run-time is spent on the
master problem, benefits from B&C are small and rare.

The generality of these conclusions is still in question, as we have only evalu-
ated four problem types, three of which are related scheduling problems. It would
be interesting to perform similar experiments with radically different problems.
Despite the problem similarities, however, three different behaviors were ob-
served in terms of the proportion of CPU time spent solving the sub-problems
and the number of master problem iterations (see Table 2). Furthermore, our
results are consistent with our understanding of the increased emphasis on solv-
ing sub-problems that is embodied by B&C. We are, therefore, optimistic that
the conclusions here will be confirmed in follow-up research.

In our experiments, the sub-problem relaxation and the Benders cut were
not independent variables. These are two critical components of an LBBD-style

algorithm and changing these model components may change the relative perfor-
mance of LBBD and B&C on a given problem. However, we conjecture that the
fundamental conclusion regarding the proportion of effort in solving the mas-
ter problem versus the sub-problems would still be valid. Specifically, a tighter,
harder-to-compute Benders cut should result in fewer iterations but may result
in much more expensive sub-problems. Depending on the strength and compu-
tational cost of the cut, the new model may spend either a higher or lower pro-
portion of its run-time on the sub-problems. Our results suggest that if the new
cut shifts the run-time toward the master problem then B&C has an improved
likelihood of out-performing LBBD when compared with the weaker cut. The
reverse is true if the new cut results in a larger proportional effort on the sub-
problems. In contrast, a tighter, more expensive sub-problem relaxation should
increase the effort required in solving the master problem while reducing the
number of times that the sub-problems must be solved. This shift suggests that
a tighter sub-problem relaxation would tend to favour B&C over LBBD.

This paper also introduces OPT15, a B&C variation that achieves more ro-
bust performance by avoiding sub-problems that are difficult and irrelevant to
cutting off optimal master solutions. It achieves this goal by only solving sub-
problems for master problem solutions with an optimality gap of 15% or less.

The relative performance of OPT15 and B&C depends on the quality of the
feasible MP solutions that are found. Experiments using an earlier version of
CPLEX (version 11.0) demonstrated significantly worse B&C performance and
correspondingly larger OPT15 improvement on the CostMinMulti and Mksp-
MinMulti problems. The performance change with CPLEX 12.1 was due to an
improvement in the quality of the first feasible MP solution found. With CPLEX
11.0, the initial MP solutions often induced worst-case SPs that, by themselves,
exhausted the 7200-second time limit. It would be interesting to repeat the above
experiments with different CPLEX settings (e.g., preferring optimal to feasible
solutions) and with other MIP solvers to further investigate the importance of
the initial feasible MP solution. We expect the performance of OPT15 to increase
when the initial feasible MP solutions are of poorer quality.

OPT15 investigates “middle ground” between solving sub-problems only for
optimal MP solutions versus solving them for each feasible MP solution. As a
relatively simple idea, it is unclear if OPT15 specifically deserves further de-
velopment. However, as an example of a technique that interpolates between
LBBD and B&C, it opens the possibility for more sophisticated approaches.
Our choice of using a threshold on the optimality gap and the specific choice of
that threshold were arbitrary. One might instead set a small time-limit on sub-
problem searches. For easy sub-problems, the performance would be identical to
B&C while for harder sub-problems, performance may approach that of LBBD.
One could consider adaptively learning such time limits for given problems or
problem instances.

Acknowledgments This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada, Canadian Foundation for Innova-

tion, Ontario Ministry for Research and Innovation, Alcatel-Lucent, and IBM.
Thanks to Daria Terekhov for comments on earlier versions.

References

1. Hooker, J.N.: Logic-based Methods for Optimization. Wiley (2000)
2. Hooker, J., Ottosson, G.: Logic-based Benders decomposition. Mathematical Pro-

gramming 96 (2003) 33–60
3. Thorsteinsson, E.S.: Branch-and-check: A hybrid framework integrating mixed

integer programming and constraint logic programming. In: Proceedings of the
Seventh International Conference on Principles and Practice of Constraint Pro-
gramming (CP2001), Springer (2001) 16–30

4. Hooker, J.: A hybrid method for planning and scheduling. Constraints 10 (2005)
385–401

5. Jain, V., Grossmann, I.E.: Algorithms for hybrid MILP/CP models for a class of
optimization problems. INFORMS Journal on Computing 13(4) (2001) 258–276

6. Bockmayr, A., Pisaruk, N.: Detecting infeasibility and generating cuts for mixed
integer programming using constraint programming. Computers & Operations
Research 33 (2006) 2777–2786

7. Sadykov, R., Wolsey, L.A.: Integer programming and constraint programming in
solving a multimachine assignment scheduling problem with deadlines and release
dates. INFORMS Journal on Computing 18(2) (2006) 209–217

8. Sadykov, R.: A branch-and-check algorithm for minimizing the weighted number of
late jobs on a single machine with release dates. European Journal of Operational
Research 189 (2008) 1284–1304

9. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based Scheduling. Kluwer
Academic Publishers (2001)

10. Fazel-Zarandi, M.M., Beck, J.C.: Solving a location-allocation problem with logic-
based Benders decomposition. In: Proceedings of the Fifteenth International Con-
ference on Principles and Practice of Constraint Programming (CP2009). (2009)
344–351

11. Shaw, P.: A constraint for bin packing. In: Proceedings of the Tenth International
Conference on Principles and Practice of Constraint Programming (CP04). (2004)
648–662

12. Cohen, P.R.: Empirical Methods for Artificial Intelligence. The MIT Press, Cam-
bridge, Mass. (1995)

