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Abstract: Large Neighborhood Search (LNS) is a method for combining Constraint Programming (CP)
and local search. We present a new neighborhood which focus search effort on the part of the problem
which has the greatest effect on the objective. We explore this idea through minimizing makespan in the
job-shop scheduling problem. In this domain, we determine the impact of each activity on the objective
through slack. Slack is a measure of how critical each activity is in the best known solution. By choosing
to spend our search effort on the most critical variables we reduce the typical size of the neighborhood
space which results in improved performance. We test our approach on three sizes of job-shop scheduling
problems, the largest being 80 jobs on 80 machines, or 6400 activities. While there is not much of an im-
provement on small problems, we see the importance of a good neighborhood as the problem size increases.
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1 Introduction

One of the central drawbacks of constructive search methods like constraint programming (CP)
is the limitation of the size of the problem that can be solved in a reasonable time. While
constructive methods give very strong performance on small problem instances, this performance
does not tend to scale well on large problems, especially in the case of optimization problems.
Local search techniques such as tabu search tend to perform much better on larger problems.

Large Neighborhood Search (LNS) is a hybrid method which combines the power of con-
structive search with the scaling performance of local search. As in local search, we modify
an existing solution to the problem. However, instead of making small changes to a solution
(as is typical with local search move operators) we select a subset of the problem to search for
improved solutions. For example, a typical local search move in scheduling would be to swap
the ordering of two activities, eg Ai < Aj → Aj < Ai. Instead, in LNS we specify to search for
improved solutions by choosing to reassign some activities, eg search {Ai, Aj}. However since
CP-search can efficiently deal with more than two variables many variables are typically selected
for the improvement search. As in local search, a neighborhood is defined by ranking all possible
moves, in the case of LNS each move is a set of variables to search.

However, the choice of neighborhood is crucial to the performance of LNS. We wish to select
variables which are likely to give an improvement to the cost of the solution. We are also
concerned with the number of variables in each search, fewer variables give a quicker search,
but we must also choose related variables so that an improvement can be found. Promising
neighborhoods have been identified for vehicle routing, network design and car sequencing[4].

In this paper we present a new neighborhood based on the cost impact of variables involved
in the objective function. We explore this idea using job-shop scheduling with the objective of
minimizing makespan. In this case, the impact on cost of an activity can be determined by how
critical the start time variable is. We measure criticality using slack time, the difference between
the earliest start time and the latest start time of an activity. Our neighborhood consists of
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Algorithm 1: Large Neighborhood Search

Create initial solution1

while Not Optimal and Time Left do2

Choose part of problem3

Freeze the rest of the variables4

if Search finds improvement then5

Update solution6

end7

end8

increasing supersets of variables, where CBN(Si) is the set of activities which have a slack value
less than or equal to Si, where S is an ascending list of unique slack values which appear in the
current solution.

2 Large Neighborhood Search

The central idea of Large Neighborhood Search (LNS) is very simple and presented in Algorithm
1. Starting with a solution to the entire problem, we select a part of the problem and re-optimize
that part. By focusing efforts on a part of the problem we can intensify search to find better
solutions but this is balanced by choosing different parts of the problem to diversify search to
avoid getting stuck in a local optima. The key benefit of LNS is that we can use constraint
programming in the intensification step giving more search power than simple move operators.

We note there are several parameters to choose when implementing LNS. We must decide
on a method to freeze the variables in step 4. In our case, we use a scheduling precedence graph
where the variables represent the next activity and freezing is achieved by assigning the next
activity for all consecutive pairs of frozen activities. Next, some implementations of LNS use a
time or failure limit to limit search in step 5 however we chose not to apply any limit. Finally,
we choose to completely search for all improvements in step 5 rather than stopping after we find
the first improvement.

3 Cost-based Neighborhood

We now introduce the idea of a cost-based neighborhood. For the task of minimizing makespan
in the job-shop scheduling problem it is well known that to improve a solution it is necessary to
reorder some activities along a critical path. A critical path is defined as a sequence of critical
activities (which have a slack value=0) that are connected by precedence constraints, either
induced by an ordering on a resource or by the problem definition.

CBN(Si) = {activityj |j ∈ Activities, slackj < Si} (1)

We choose our neighborhood to exploit the fact that re-optimizing critical activities is likely
to improve solution quality. First, we create an ascending list S of each unique slack value
found in the current solution. Then, we progressively search subproblems where we re-optimize
all activities whose slack is less than or equal to Si. In the first subproblem, we attempt to
exhaustively search all permutations of critical activities. We progress to larger subproblems
including the less critical activities if no improvement is found. We restart the procedure when
an improved solution is found. Because we are choosing subproblems based on the slack value
we hope that we are choosing parts of the problem in increasing order of importance to the
objective function.
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Problem Pure Random CBN 60/40 Mix
20x20 0.02463 0.00482 0.01612 0.00610
40x40 0.06699 0.02084 0.01710 0.00139
80x80 0.01757 0.01592 0.00061 0.00665

Table 1: Mean MRE on each problem set, running time of 600 seconds.

We note this approach of re-optimizing the critical path is very similar to the method iFlat
presented in [1]. Their approach differs in that they always replace the current solution after a
move, even if no improvement has been found. They also use a heuristic to search rather than
a complete search as is implemented in this work.

There are some interesting aspects of this approach which can yield further exploitation.
When we fail to find a solution we incrementally add more activities to the next subproblem,
but we have already performed a search on the previous subproblem. Let Fi be the set of
activities that were fixed in the subproblem produced by slack Si, that is all activities which
are not in CBN(Si). If we have completely searched the subproblem Si, then we know that no
improved solution exists to the larger subproblem Sj where i < j if the current assignment of
the activities in Fi stays the same. We can then place a no-good on Fi and avoid search. Such
an approach is used in [3] with their systematic local search. Indeed, taking an approach where
all subproblems are completely solved yields a complete method.

However, the harvesting of no-good information needs to be traded off against computational
effort. As the subproblems grow, it may be prohibitively expensive to perform a complete search
on the subproblem. In this case, a tradeoff needs to be considered to increase performance. We
have not yet implemented a no-good learning scheme and so far have only investigated the
tightening of the upper bound on makespan.

Another interesting development is the idea of Propagation Guided LNS presented in [4].
Propagation Guided LNS is used to create neighborhoods of related variables. It would be
interesting to this combined with cost-based selection.

4 Experiments

We explored the effects of using cost-based neighborhoods on three sizes of job-shop scheduling
problems. The small set consists of 20 jobs and 20 machines, a medium set has 40 jobs and 40
machines, and a large set has 80 jobs on 80 machines. There are 10 instances in each set and
the total number of activities per instance is 400, 1600 and 6400 respectively. We are interested
to see how the techniques scale as the problems grow in size.

We compare the performance of cost-based methods against a random approach. We use
the same number of activities that would have been chosen by CBN(Si) however we select the
activities randomly. This allows us to fix the size of the neighborhood and compare purely
based on the activities selected. We also show the results of combining random selection with
the cost-based approach, with 60% cost-based choices and 40% random choices. During the
search for improved solutions, we use a constructive search technique that uses texture-based
heuristics [2] and strong constraint propagation [6, 5]. Pure represents the result of solving the
problem using constructive search without LNS.

We ran each configuration for 10 minutes on a Pentium 4, 1.8Ghz computer running Fedora
Core 2 with the 2.6 linux kernel.
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5 Results

Table 1 displays mean relative error (MRE), a measure of the mean extent to which an algorithm
finds solutions worse than the best known solutions. MRE is defined as follows:

MRE (a,K) =
1
|K|

∑

k∈K

c(a, k)− c∗(k)
c∗(k)

(2)

where K is a set of problem instances, c(a, k, r) is the lowest cost solution found by algorithm
a on problem instance k during run r, and c∗(k) is the lowest cost solution found in these
experiments for problem instance k.

As we can see from the results, the difference in performance varies greatly on each problem
set. Perhaps the most striking result is how randomization wins on small problems, but as the
problems get larger the careful selection of activities becomes more important. Although it is
not shown here, the medium sized problems show an interesting crossover, before 200 seconds
the cost-based method performs best but the performance plateaus and then the combination
of the cost-based method with randomization performs better.

We also performed an analysis of the size of neighborhoods which lead to improved solutions.
This is not shown here, however the cost-based method and the combination method were able
to find improved solutions on much smaller sized subproblems compared to random selection.

6 Conclusions

We have presented a new neighborhood which is based on variables which contribute to the cost
of the solution. The effectiveness of the approach was investigated on three sizes of problems.
The results show that as problem size increases, the importance of choosing variables to improve
is more important.
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