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Abstract: The problem we tackle is progressive scheduling with temporal and
resource uncertainty. Operation durations are imprecise and alternative resources
may break down. Operation end times and resource breakdowns are observed
during execution. In this paper, we assume we have a representation of uncertainty
in the form of probability distributions which are used in the simulation of schedule
execution. We generate the schedule piece by piece during execution and use
simulation to monitor the execution of the partial schedule. This paper describes
the basis on which the decision to select and schedule a new subset of operations
is made. Copyright c© 2006 IFAC
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1. INTRODUCTION

In practical applications, scheduling must take
into account imprecise data, incomplete informa-
tion, and/or potential changes in the environment.
The central issue is to design robust scheduling
techniques, aimed at guaranteeing the feasibility
and the quality of the executed schedule; e.g.,
see Wu et al. (1999). One way among others is
to generate a schedule piece by piece to execute.

1 Partially supported by Convention Industrielle de For-
mation par la REcherche 274/2001.

This approach is relevant as far as we do not
want to change decisions and scheduling is fast
enough w.r.t. the scheduling execution; i.e., when
the dynamics of the system are low with respect to
those of decision-making. For example, the time
spent on machining a workpiece is much longer
than the time required for generating a schedule in
an automated production workshop. The problem
we tackle is a scheduling problem with temporal
and resource uncertainty. Operation durations are
imprecise and operation end times are observed
during execution. Resources may break down, and



resource breakdown start and end times are ob-
served during execution. In this paper, we assume
we have a representation of the uncertainty in
the form of probability distributions which are
used in the simulation of schedule execution. This
paper addresses the basis on which the progressive
scheduling is made by presenting simple measures
of the data provided by simulation. We have cho-
sen to use constraint programming and simulation
to solve this kind of problem. The interest of
these techniques is that they can solve large-scale
combinatorial problems (a few thousands of oper-
ations) and they can easily be extended to solve
more complex problems. Propagation algorithms
can reduce the search space. Simulation allows
to quickly obtain good approximations whatever
type of uncertainties and probability distributions
are considered. We illustrate our approach on job-
shop scheduling problems with imprecise opera-
tion durations, alternative resources, and uncer-
tain resources.

2. SCHEDULING PROBLEM

We are interested in scheduling problems with
probabilistic operation durations; i.e., operation
end times must be observed during execution.
Moreover, resources may break down: for each
resource, the duration between two consecutive
breakdowns is probabilistic and breakdown du-
rations are also probabilistic. In addition, there
are alternative unary resources; i.e., an operation
can require one of a number of resources. In other
words, we address job-shop problems with general
allocation, probabilistic operation durations, and
uncertain resources.

The problem is a randomly generated n × m
scheduling problem and consists in n process
plans. Each process plan pi is a job and consists
in a sequence of m operations (oij). For each
operation, a given number k of randomly picked
alternative resources constitute the set Rij of pos-
sible resources. There is no temporal constraint
between process plans. There are n×m operations
to be processed and the total number of resources
equals q.

We assume the following: operations are not pre-
emptive; an operation is halted when a resource
breaks down and resumes execution when the
resource is again available.

2.1 Costs

This scheduling problem is an optimization prob-
lem where the objective is to find the schedule that
minimizes the average global cost. We distinguish

two types of schedule costs: tardiness and alloca-
tion costs.

2.1.1. Tardiness Cost Each process plan pi ∈
P is associated with a due date duei. If the
last executed operation of pi finishes later than
duei, then a cost tardiCosteffi = tardieffi × φi is
incurred, called tardiness cost. tardieffi depends
on how late pi finishes: tardieffi = max(endpeff

i −
duei, 0), where endpeff

i is the effective end time
of pi, observed during execution. A weight, φi, is
applied to each time unit after the due date that
the process plan has not yet finished. A schedule is
associated with a tardiness cost Ktardiness defined
as follows.

Ktardiness =
∑
∀pi∈P

tardiCosteffi

2.1.2. Allocation Cost Another cost, called al-
location cost, is associated with each resource allo-
cation: when a given operation oij ∈ O is executed
with a given resource rl ∈ Rij , it incurs a cost
allocCostijl. A schedule is defined by a set of
allocations and associated with an allocation cost
Kallocation: each operation oij is effectively allo-
cated to a resource reff ∈ Rij and this allocation
costs allocCosteffij .

Kallocation =
∑

∀oij∈O

allocCosteffij

2.1.3. Global Cost The global cost K represents
the whole cost of a solution; this cost takes both
allocation and tardiness costs into account. It is
formally defined as:

K = Kallocation + Ktardiness.

The choice of this global cost is inspired by
project-scheduling applications where the cost of
a project depends on how late it is delivered with
respect to due dates and what resources have
been rented or bought to carry it out. Note that
tardiness and allocation costs are antagonistic
since the tardiness cost is high if we only want to
reduce allocation cost during search by choosing
systematically the cheapest resources when allo-
cating operations, and conversely the allocation
cost is high if we only take tardiness cost into
account during search since this reduces the choice
of possible allocations.

Each scheduling problem is characterized by a
maximal global cost, Kmax, that defines an upper
bound with respect to the schedule costs. We want
to maximize the probability that the global cost
is less than the maximal global cost; this can be
formally expressed as follows.

max Pr(K ≤ Kmax)



Kmax may represent the initial budget dedicated
to a project.

3. MONTE-CARLO SIMULATION

For updating unknown probability distributions
associated with non-controllable variables such as
operation end times, we use Monte-Carlo simu-
lation. A Monte-Carlo simulation run consists in
randomly picking a value for each random variable
such that the two sets of values that are randomly
picked for two consecutive simulation runs may be
completely different. For each operation oij that is
allocated and sequenced but not yet executed, we
randomly pick a set of possible durations and for
each resource that is allocated to oij , we randomly
pick a series of breakdowns.

For running simulation, we use a precedence graph
that is generated from the constraint network:
each node represents an operation and each arc
represents a precedence constraint between two
operations. 2 We then topologically sort the prece-
dence graph and use this ordering in the simula-
tions. The simulation horizon equals the sum of all
operation durations. The complexity of a single
simulation run is in O(nbBk + nbOp + nbPCt),
where nbBk is the number of resource break-
downs, nbOp is the number of operations and
nbPCt is the number of precedence constraints.

4. PROGRESSIVE APPROACH

A progressive approach for scheduling consists in
generating a schedule piece by piece during execu-
tion. The first piece of schedule is solved off line.
In such an approach, execution and scheduling are
interleaved. For implementing such a scheduling
approach, we need to define progression condi-
tions that are used to decide when to select and
schedule a new subset of operations to anticipate
execution, what operations to select, and what
data to use when reasoning. When using such
an approach, decisions made are never changed
later on. Vidal et al. (1996) tackled a schedul-
ing problem by using a progressive approach but
their problem comprises only imprecise temporal
requirements; i.e., they assume resources do not
break down.

We propose to decide operation start times just
before execution because we want to minimize
tardiness cost and we do not want to change
decisions. In this way, solutions are flexible and
we can be opportunistic with respect to observed
operation end times and resource breakdowns.
Operations are executed as soon as possible.

2 There are precedence constraints between process plans
if ordering decisions have been made.

The problem with such an approach is that we
must be very careful when taking an allocation
decision or an ordering decision. On the one hand,
we have to wait until the uncertainty level around
the decision is low enough so that the decision
is well informed, but, on the other hand, we
cannot wait too long because we do not just
want to have a reactive and myopic decision
process. Determining when to select, allocate, and
order a new subset of operations will be done
based on monitoring a progression criterion during
execution. Determining what operations to select
will be done using heuristics and Monte-Carlo
simulation. Determining how to allocate and order
the operations of the selected subset will be done
using constraint-based search, possibly combined
with Monte-Carlo simulation.

Our progressive approach is characterized by four
parameters that can be set to choose indirectly
the anticipation horizon and the size of each sub-
problem, see Sections 4.1 and 4.2.

More precisely, suppose that we are at a given
time t and we are executing a partial flexible
schedule. We assume that a subset of opera-
tions OallocOrder of the problem have already been
allocated and ordered given all constraints at t
and the rest of the operations Opending of the
problem are not yet allocated and only ordered
given the precedence constraints of the origi-
nal problem. A subset of operations Oexecuted ⊆
OallocOrder have already been executed, a second
one Oexecuting ⊆ OallocOrder are executing, and
a third one OtoBeExe ⊆ OallocOrder have to be
scheduled and executed. An operation is sched-
uled when its start time is fixed at a date before,
at, or after the current time. (i) Of course, we
do not want to wait until the last operation of
OtoBeExe finishes execution before allocating and
ordering subsequent operations of Opending be-
cause we would then have very little time to react
and could not easily come up with a good decision,
and (ii) we do not want to make decisions too far
in the future in regions where there is still a lot of
uncertainty. Furthermore, we do not want to take
the allocation and ordering decisions one by one,
which would be very myopic and certainly lead to
a poor schedule quality but rather, select a subset
of operations and perform a combinatorial search
on this sub-problem in order to satisfy temporal,
resource, and cost constraints. So there are three
questions here: (1) how to design conditions that
will be monitored during execution and say “now,
we can try to extend the current partial flexible
schedule by allocating and ordering a new part
of the problem,” (2) when these conditions are
met, how to select the subset of operations to be
allocated and ordered, and (3) when the subset of
operations is selected, how to allocate and order
the operations of this subset in such a way that we



maximize the probability that the constraints will
be satisfied and the global cost will be minimal at
the end of execution.

4.1 When to Try Extending the Current Partial
Flexible Schedule?

To extend the current partial flexible schedule, we
need to assess what time we still have before being
forced to select, allocate, and order a new subset
of operations of Opending and how high the uncer-
tainty level of the end times of the operations of
OtoBeExe is; i.e., we need to monitor two conditions
during schedule execution and when at least one
of them is met, we can try to extend the current
partial flexible schedule.

We propose to evaluate the trade-off between the
fact that δtmin, the minimal anticipation horizon,
should be large enough to have time to perform
a combinatorial search leading to a good solution
and to ensure the stability of the schedule, and
the fact that execution has advanced far enough
to get reduced uncertainty on the mean end times
of the operations of OtoBeExe.

4.1.1. Temporal Condition for Starting Selection
Given OtoBeExe, there exists a time point tD that
is the last time point before which we have to
make at least an allocation decision if we want
to anticipate execution. tD is equal to the ear-
liest of the mean end times of the operations
in OallocOrderLast ⊆ OtoBeExe that are ordered
at last positions in process plans. tD is main-
tained using Monte-Carlo simulation. We can try
to extend the current partial flexible schedule
from the date at which tD − t ≤ δtmin, where
tD = min∀pi∈P (max∀oij∈OtoBeExe(endmean

ij )) and
endmean

ij is the mean end time of operation oij .
We minimize on all process plans to guarantee
that the start of selection anticipates execution
when δtmin > 0.

Figure 1 represents the execution of a partial
flexible schedule of a 3 × 6 scheduling problem;
OallocOrder is the subset of operations represented
by nine shadowed rectangles; OallocOrderLast is
composed of the three operations represented by
the most shadowed rectangles. Opending is com-
posed of the operations represented by white rect-
angles.

4.1.2. Uncertainty Condition for Starting Selec-
tion When the highest standard deviation of
the end times of the operations to be executed
of a process plan is less than a given standard
deviation σtmin, we can try to select a subset
of pending operations. These standard deviations
are maintained using Monte-Carlo simulation. In

a more formal way, we extend the current par-
tial flexible schedule from the date at which
min∀pi∈P (max∀oij∈OtoBeExe(σ(endmean

ij ))) ≤ σtmin,
where endmean

ij is the mean end time of operation
oij . We minimize on all process plans to guarantee
that the start of selection anticipates execution
when σtmin > 0.

4.2 How to Select the Subset of Operations to Be
Allocated and Ordered?

As soon as one of the two conditions defined above
is satisfied, we still need to select a subset of
operations to allocate and order. We need to find
a relevant order in which we iterate through a
subset of pending operations and determine which
of them are selected. Actually, we do not want
to select a too large problem because: (i) we do
not have an infinite time to allocate and order
it (in any case less than tD − t) and (ii) we do
not want to take allocation and ordering decisions
too far in the future as they concern data with
too much uncertainty. We thus need to monitor
two conditions during the selection process. To
select the subset of pending operations to be
allocated and ordered, we proceed in two steps as
follows: (i) we compute and associate priorities to
a subset of pending operations called the eligible
operations to determine the order in which we
assess each of them and (ii) we assess the eligible
operations by using a temporal condition and
an uncertainty condition, see Section 4.2.2, to
determine which of them are selected.

4.2.1. Assessment Order It is important to as-
sess the eligible operations in a relevant order
because we need to consider the eligible operations
that have priority in terms of resource contention
and tardiness costs. An eligible operation is the
pending operation that is ordered at the first
position of a process plan. There is thus one and
only one eligible operation per process plan at the
beginning of the selection process. We proceed in
several steps. (1) We use a heuristic that gives
the order in which we iterate through the current
eligible operations and assess the current flexible
schedule to determine which of them we select.
(2) Once all eligible operations have been labeled
by a priority value, we consider each eligible oper-
ation in the decreasing order of priority and assess
the probability distribution of the end time of its
preceding operation with respect to the process
plan it belongs to:

• if this distribution does not meet at least one
of the two conditions defined in Section 4.2.2,
then the eligible operation is selected and no
longer eligible (and no longer pending); this
selected operation is ordered and allocated in
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Fig. 1. Example of a schedule progressively generated.

such a way that its mean end time is mini-
mized; the next operation of the same process
plan, which is a pending operation, becomes
eligible and the priorities of the current eligi-
ble operations are then (re)computed;

• if this distribution meets the temporal con-
dition and the uncertainty condition defined
in Section 4.2.2, then the eligible operation
remains pending and is no longer eligible con-
cerning the current selection process. Both
conditions must be met to stop the selection
because we want to be sure to select a mini-
mal number of pending operations.

(3) If there are no more eligible operations, then
the selection process is stopped, otherwise the
selection process goes on by executing alternately
(2) and (3).

We assume the schedule execution is stopped
during the selection process since the dynamics
of the underlying physical system are much lower
than the dynamics of the decision-making system.

In fact, we are only interested in the probability
distributions of the end times of the operations
of OallocOrderLast and in the probability distribu-
tions of resource breakdown end times at time
t when selecting and making decisions on a new
subset of operations. When an eligible operation
is selected, we run a set of simulations concerning
this operation, its preceding operations, and the
alternative resources it requires to decide what
resource to allocate during the selection process.
These allocation decisions are not definitive since

a combinatorial search is done when the selection
is finished, see Section 4.3.

4.2.2. Temporal and Uncertainty Conditions for
Stopping Selection Given the assessment order,
we have to make sure both that we will select
enough pending operations to keep an anticipa-
tion with respect to execution and that the un-
certainty level of the end time of each selected
operation is higher than a given threshold: an
eligible operation oij is not selected and is no
longer eligible during the current selection process
if the mean end time of its preceding operation
of the same process plan oij−1 is greater than
t + δtmax and the standard deviation of oij−1 is
greater than σtmax. We assume δtmax ≥ δtmin and
σtmax ≥ σtmin, otherwise we could not select any
pending operation.

• If δtmax is chosen close to δtmin and σtmax is
close to σtmax, then it amounts to selecting a
small number of pending operations because
both conditions are met very quickly.

• If δtmax � δtmin and σtmax � σtmin, then it
means that we select a large number of pend-
ing operations until we meet both conditions.

• If δtmax is chosen close to δtmin and σtmax �
σtmin, then it amounts to selecting pending
operations until the uncertainty condition is
met because the temporal condition is met
very quickly.

• If δtmax � δtmin and σtmax is chosen close to
σtmin, then it means that we select pending



operations until the temporal condition is
met because the uncertainty condition is met
very quickly.

4.2.3. Heuristic The energy-based heuristic is
combined with the Apparent Tardiness Cost rule
based heuristic, see Aktürk and Yildirim (1999),
to compute the priorities of eligible operations,
and the estimations of the process plan queues
and the allocation costs of pending operations.
We take resource constraints into account by
extending the mean durations of the pending
operations by using an energy-based heuristic,
see Erschler (1976); i.e., we compute the criticality
of each operation that depends on the average
loads and costs of the resources it requires, we
then modify its mean duration accordingly.

4.3 How to Allocate and Order the Subset of
Operations?

The set of all the selected operations on all
the process plans constitutes the sub-problem to
solve. After the selection process is finished, we
need to approximate the contribution of each pro-
cess plan in terms of cost; i.e., the allocation cost
and the length of the pending operations of each
process plan. This approximation is done by using
the same heuristic as the one dedicated to the se-
lection of operations. To make decisions, we gener-
ate a deterministic problem; i.e., we use the mean
durations of the selected operations extended de-
pending on resource breakdown distributions, and
process plan queues estimated heuristically. We
use standard constraint-programming techniques
to explore and reduce the search space.

5. DISCUSSION AND FUTURE WORK

If δtmax and σtmax are small, then it means
we frequently extend the current partial flexible
schedule with small subsets of operations: this is
a reactive approach. If δtmax and/or σtmax are
large, then it amounts to selecting and scheduling
all operations: this is a predictive approach.

We can change both δtmin and σtmin to choose
when we want to consider a subset of pending
operations during execution of the current flexible
schedule. If δtmin is small and σtmin is large,
then it amounts to extending the current flexible
schedule when the uncertainty condition is met.
If δtmin is large and σtmin is small, then it means
we extend the current flexible schedule when the
temporal condition is met. If both δtmin and
σtmin are small, then it means we extend the
current flexible schedule at the last time: the
temporal anticipation is short. If both δtmin and

σtmin are large, then it amounts to extending the
current flexible schedule very early: the temporal
anticipation is long.

An experimental study of this approach has still
to be conducted to understand the relationships
between the different and numerous parameters,
indicators, and problem characteristics. A pre-
liminary work in this direction has consisted in
generating problem instances.

An interesting future work will focus on mixing
this progressive approach with a proactive ap-
proach and/or a revision approach, and in study-
ing the relationships between the different param-
eters, indicators, and problem characteristics. The
following approaches are potential candidates.
Bidot et al. (2003) presented a revision approach
for tackling job-shop scheduling problems with
probabilistic, temporal data. Beck and Wilson
(2005) were interested in studying proactive tech-
niques for tackling the same scheduling problems.
For example, we could set a mixed approach that
generates solutions with a probability of exceeding
the global cost less than 0.15, a middle progression
horizon, and a small number of reschedulings.
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d’ordonnancement. Ph.D. dissertation. Uni-
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