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Abstract

Satisficing heuristic search such as greedy best-first search
(GBFS) suffers from local minima, regions where heuristic
values are inaccurate and a good node has a worse heuristic
value than other nodes. Search algorithms that incorporate ex-
ploration mechanisms in GBFS empirically reduce the search
effort to solve difficult problems. Although some of these
methods entirely ignore the guidance of a heuristic during
their exploration phase, intuitively, a good heuristic should
have some bound on its inaccuracy, and exploration mech-
anisms should exploit this bound. In this paper, we theoret-
ically analyze what a good node is for satisficing heuristic
search algorithms and show that the heuristic value of a good
node has an upper bound if a heuristic satisfies a certain prop-
erty. Then, we propose biased exploration mechanisms which
select lower heuristic values with higher probabilities. In the
experiments using synthetic graph search problems and clas-
sical planning benchmarks, we show that the biased explo-
ration mechanisms can be useful. In particular, one of our
methods, Softmin-Type(h), significantly outperforms other
GBFS variants in classical planning and improves the perfor-
mance of Type-LAMA, a state-of-the-art classical planner.

Introduction
Greedy best-first search (GBFS) (Doran and Michie 1966)
is a satisficing heuristic search algorithm widely used to
solve difficult graph search problems including AI planning.
GBFS estimates the distance to a goal node using a heuris-
tic value and greedily expands nodes in the order of their
heuristic values. However, GBFS suffers from local minima,
regions where the heuristic values are inaccurate or mis-
leading. In local minima, a good node, i.e., one that makes
progress toward the goal node, has a higher heuristic value
than other nodes, and GBFS needs to search through many
nodes before reaching a good node. To escape local minima,
a number of exploration methods have been developed (Imai
and Kishimoto 2011; Valenzano et al. 2014; Xie, Müller, and
Holte 2014; Xie et al. 2014). Usually, these algorithms per-
form GBFS most of the time but sometimes switch to ex-
ploration and select a node based on different criteria. Some
of the algorithms such as ε-GBFS (Valenzano et al. 2014)
and Type-GBFS (Xie et al. 2014), which empirically per-
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form well, ignore the heuristic values during their explo-
ration phase. However, although heuristics sometimes make
mistakes, good heuristics should not be too inaccurate; intu-
itively, there should be some bound on the inaccuracy of a
heuristic and exploration should consider this bound instead
of completely ignoring heuristic values.

In this paper, we investigate exploration mechanisms that
consider heuristic values. First, we theoretically analyze
what a good node is for satisficing heuristic search algo-
rithms. We prove that expanding closest nodes, the nodes
closest to a goal node in the open list, is a sufficient and
necessary conditions for open list-based search algorithms
such as GBFS to find a solution. Then, we introduce the
notion of t-dominance, a property, parameterized by func-
tion t, that measures the informativeness of a heuristic in a
given graph search problem. We show that if a heuristic is
t-dominating, the heuristic values of closest nodes have an
upper bound depending on t, and we do not need to explore
higher heuristic values. Although identifying t before solv-
ing a problem is impractical, from empirical observations,
we expect that a good heuristic is usually t-dominating with
some function t. Based on this idea, we propose biased ex-
ploration mechanisms, which select lower heuristic values
with higher probabilities. In our experiments, we evaluate
extensions of Type-GBFS with the biased exploration mech-
anisms. Using synthetic graph search problems, we validate
that the biased exploration mechanisms can be useful when
a heuristic is t-dominating. We also evaluate our methods
in classical planning and show that Softmin-Type(h), one
of the biased exploration mechanisms, significantly outper-
forms GBFS and Type-GBFS. Furthermore, we show that
our method improves Type-LAMA (Xie et al. 2014), one of
the state-of-the-art classical planners.

Satisficing Heuristic Search
We consider heuristic search algorithms that find a path in
a directed graph. A directed graph is represented as 〈V,E〉
where V is a set of nodes and E ⊆ V × V is a set of edges.
A path from node n0 to node nm is a sequence of edges
〈e1, ..., em〉 where ∀1 ≤ i ≤ m, ei = (ni−1, ni) ∈ E. We
say that node n is on the path if n = ni for some 0 ≤ i ≤ m.
Node n′ is reachable from node n if there exists a path from
n to n′. We call nodes which are reachable from node n
descendants of n.



A graph search problem is defined as 〈V,E, nI , G〉,
where 〈V,E〉 is a directed graph, nI ∈ V is the initial
node, and G ⊆ V is the set of goal nodes. A solution for
a graph search problem is a path from the initial node to
a goal node in G, which is called a solution path. We de-
note the shortest path length from node n to a goal node by
d∗(n), the d∗-value of n. If no goal node is reachable from
n, d∗(n) = ∞. We assume that a graph search problem is
solvable, i.e., d∗(nI) <∞.

An algorithm which returns a solution for a graph search
problem is called a graph search algorithm. We consider
open list algorithms, graph search algorithms that maintain
an open list B ⊆ V , which is the set of candidate nodes
to search. At the beginning, B = {nI}. At each step, an
open list algorithm removes one node n from B and gen-
erates a successor node n′ for each (n, n′) ∈ E. From the
generated successor nodes, some nodes can be pruned; for
example, some search algorithms maintain a closed list, the
set of already expanded nodes, and prune a node if it is in-
cluded in the closed list. After pruning, the algorithm inserts
the remaining successors into the open list. We call this step
the expansion of n or say that the algorithm expands n. The
algorithm terminates when it expands a goal node and con-
structs a path from nI to the goal node by traversing the
edges backwards. By g(n), we denote the length of the path
from nI to n found by a search algorithm, the g-value of
n. If there are multiple paths to n, we assume that a search
algorithm chooses one of them.

Heuristic search algorithms use heuristic h : V → R+
0 ,

which estimates d∗(n) by h(n), the h-value (heuristic value)
of n. Greedy best-first search (GBFS) (Doran and Michie
1966) expands a node having the minimum h-value from an
open list and prunes successors using a closed list. When
there are multiple nodes with the same h-value, GBFS se-
lects one of them according to a tie-breaking strategy. For
example, the first-in-first-out (FIFO) tie-breaking strategy
expands the oldest node. There are variants of GBFS us-
ing exploration mechanisms, which expand a node based
on different criteria from GBFS. ε-GBFS (Valenzano et al.
2014) performs GBFS with the probability of 1 − ε and ex-
pands a node uniformly at random in the open list with the
probability of ε at each expansion. Type-GBFS (Xie et al.
2014) alternately expands a node from two open lists B1

and B2 while using a shared closed list. A generated node
is inserted to both of B1 and B2 if it is not in the closed
list. When a node selected for expansion is already in the
closed list, it is removed from the open list and not ex-
panded. From B1, a node having the minimum h-value is
expanded as in GBFS. In B2, node n is associated with type
T (n). First, type T̂ is selected uniformly at random from
T (B2) = {T (n) | n ∈ B2}, and then a node is expanded
uniformly at random from B2

T̂
= {n ∈ B2 | T (n) = T̂}.

Empirically, T (n) = (h(n), g(n)), a tuple of the h-value
and the g-value, works well.

Theoretical Analysis
Since GBFS always expands a node having the minimum h-
value, if a good node is mistakenly assigned a high h-value,

GBFS expands many nodes before expanding the good
node. Exploration mechanisms such as ε-GBFS (Valenzano
et al. 2014) and Type-GBFS (Xie et al. 2014) can be use-
ful in such a case because they expand diverse nodes, which
may have higher h-values than the minimum h-value. How-
ever, we lack a formal definition of a good node. Pre-
vious work theoretically analyzed the search behavior of
GBFS and defined the notion of the bench transition system
(Heusner, Keller, and Helmert 2017). In their analysis, once
GBFS expands node n called a bench-exit state, all nodes
expanded after n are descendants of n. Therefore, GBFS
makes progress when it expands a bench-exit state, and a
good node for GBFS is a bench-exit state. However, this the-
oretical analysis is limited to GBFS; for other algorithms,
there is no guarantee that they expand only descendants of a
bench-exit state, and expanding a bench-exit state does not
necessarily mean making progress. Therefore, we introduce
the notion of a good node for any open list algorithm. Our
intuition is that the algorithm makes progress when it ex-
pands a node in the open list which is the closest to a goal
node.
Definition 1 (Closest nodes). Given graph search problem
〈V,E, nI , G〉 and open listB ⊆ V , n′ ∈ B is a closest node
if d∗(n′) = minn∈B d

∗(n).
In fact, to find a solution, an open list algorithm must ex-

pand as many closest nodes as the length of the shortest so-
lution path.
Theorem 1. Given graph search problem 〈V,E, nI , G〉, if
an open list algorithm returns a solution path, it expands at
least d∗(nI) + 1 closest nodes.

Proof. The minimum d∗-value of a node in the open list
is decreased only when new nodes are added to the open
list, i.e., a node is expanded and at least one of its suc-
cessors is not pruned. Let the open list be B. Suppose
that n ∈ B is expanded, the open list is updated to B′,
and the minimum d∗-value is decreased. Since the mini-
mum d∗-value is decreased, B′ contains new node n′ with
d∗(n′) < minn′′∈B d

∗(n′′), which is a successor of n. d∗-
values are integer, so d∗(n′) + 1 ≤ minn′′∈B d

∗(n′′). Since
n ∈ B, d∗(n′) + 1 ≤ d∗(n). Since n′ is a successor of n,
d∗(n′) ≥ d∗(n) − 1. Therefore, d∗(n) = d∗(n′) + 1 ≤
minn′′∈B d

∗(n′′), so n is a closest node in B. Thus, when
the minimum d∗-value of a node in the open list is decreased,
a closest node is expanded.

At the beginning, the minimum d∗-value is d∗(nI). When
a goal node is in the open list, the minimum d∗-value is 0.
A goal node is also a closest node. Therefore, when a goal
node is expanded, at least d∗(nI) + 1 closest nodes have
been expanded.

If an open list algorithm does not prune a successor
node which will be a new closest node, it expands exactly
d∗(nI) + 1 closest nodes to find a solution.
Theorem 2. Given graph search problem 〈V,E, nI , G〉,
suppose that when an open list algorithm expands a node
from open list B, it does not prune at least one successor n′
such that d∗(n′) < minn′′∈B d

∗(n′′). The algorithm finds a
solution path iff it expands d∗(nI) + 1 closest nodes.



Proof. Let the open list be B. Suppose that 0 <
minn′′∈B d

∗(n′′) < ∞, n ∈ B is expanded, and the open
list is updated to B′. Since n is not a goal node, there
exists at least one path from n to a goal node with the
length of d∗(n). One successor n′ of n is on this path, and
d∗(n′) = d∗(n)− 1.

If n is a closest node, d∗(n′) < d∗(n) ≤
minn′′∈B d

∗(n′′). n′ is not pruned since it satisfies the con-
dition of the theorem, d∗(n′) < minn′′∈B d

∗(n′′). n′ be-
comes a closest node in B′, and the minimum d∗-value of a
node in the open list is decreased by 1.

If n is not a closest node, d∗(n) > minn′′∈B d
∗(n′′).

The d∗-value of every successor is at least d∗(n) − 1 ≥
minn′′∈B d

∗(n′′). Therefore, no matter which nodes are
pruned or inserted to the open list, the minimum d∗-value
is not changed.

Thus, when expanded node n is not a goal node, the min-
imum d∗-value of a node in the open list is not increased,
and it is decreased by 1 if n is a closest node. At the be-
ginning, the minimum d∗-value is d∗(nI). After expand-
ing d∗(nI) closest nodes, the minimum d∗-value becomes
0, which means that closest nodes in the open list are goal
nodes. Therefore, when the algorithm expands one more
closest node, it finds a solution path.

Expanded closest nodes are not necessarily on a solution
path except for the initial and goal nodes. For example, af-
ter an algorithm expands closest node n with d∗(n) = 1, it
may find a solution path which does not include n and nodes
expanded before n but for nI . In this case, the algorithm is
making a detour despite the fact that a goal node, which is a
successor of n, is already included in the open list.

If an open list algorithm prunes successors using only
a closed list, the condition in Theorem 2 is satisfied.
Therefore, GBFS, ε-GBFS, and Type-GBFS expand exactly
d∗(nI) + 1 closest nodes.

Theorem 3. Given graph search problem 〈V,E, nI , G〉,
suppose that an open list algorithm prunes a successor us-
ing only a closed list. The algorithm finds a solution path iff
it expands d∗(nI) + 1 closest nodes.

Proof. First, we show that for each expanded node n0, at
least one node on a shortest path from n0 to a goal node
is included in the open list if d∗(n0) < ∞ and n0 is not
a goal node. Let a shortest path from n0 to a goal node be
〈e1, ..., ed∗(n)〉 where ei = (ni−1, ni) for 1 ≤ i ≤ d∗(n)
and nd∗(n) ∈ G. Let j be the maximum i such that 0 ≤ i ≤
d∗(n) and ni was expanded. Such a j exists since at least
n0 was expanded. j ≤ d∗(n) − 1 since a goal node is not
expanded yet. nj+1 is not expanded by the definition of j.
Since nj+1 is a successor of an expanded node, it was not
pruned and is inserted to the open list.

Suppose that node n is expanded from open list B and
its successor n′ is pruned. Since it is pruned, n′ was already
expanded. If d∗(n′) =∞, then d∗(n′) ≥ minn′′∈B d

∗(n′′).
Otherwise, there exists node n̂ on a shortest path from n′ to a
goal node in the open list. Since d∗(n′) > d∗(n̂), d∗(n′) ≥
minn′′∈B d

∗(n′′). Thus, the pruning satisfies the condition
in Theorem 2.

Based on Theorem 3, for GBFS and its variants, we as-
sume that expanding a closest node means making progress,
and a closest node is a good node. Therefore, an exploration
mechanism that quickly expands a closest node is desirable.

Heuristic Values and Closest Nodes
Based on the notion of closest nodes, we investigate when
exploration mechanisms are needed and what kind of explo-
ration mechanisms are efficient. To identify closest nodes,
we need to know d∗-values of all nodes in the open list.
By definition of d∗-values, we need to compute the shortest
paths from all nodes in the open list to a goal node, which
is at least as difficult as solving the graph search problem.
Therefore, we estimate d∗-values from information avail-
able without expensive computation. In satisficing heuristic
search, h-values can be considered such estimation of d∗-
values. If the estimation is perfect, we do not need to use
exploration mechanisms; if ∀n ∈ V, h(n) = d∗(n), GBFS
immediately finds a solution. In fact, even if h(n) 6= d∗(n),
GBFS immediately finds a solution as long as the order of
h-values is consistent with the order of d∗-values. We for-
malize this property of a satisficing heuristic.

Definition 2 (Perfect satisficing heuristic). Given graph
search problem 〈V,E, nI , G〉, heuristic h is a perfect sat-
isficing heuristic if

∀n1, n2 ∈ V, h(n1) ≤ h(n2)→ d∗(n1) ≤ d∗(n2).

Theorem 4. Given graph search problem 〈V,E, nI , G〉 and
heuristic h, GBFS expands a closest node from any open
list B ⊆ V regardless of the tie-breaking strategy iff h is a
perfect satisficing heuristic.

Proof. Let n be the node expanded by GBFS. ∀n′ ∈
B, d∗(n) ≤ d∗(n′) since h(n) ≤ h(n′). Therefore, d∗(n) =
minn′∈B d

∗(n′), so n is a closest node.
Suppose B = {n1, n2} for any pair of nodes n1 and n2

with d∗(n2) < d∗(n1) in V . If GBFS expands a closest node
for any open list regardless of the tie-breaking strategy, since
GBFS expands n2 from B, h(n2) < h(n1). Therefore,

∀n1, n2 ∈ V, d∗(n2) < d∗(n1)→ h(n2) < h(n1),

which is the contrapositive of the definition of a perfect sat-
isficing heuristic.

From Theorems 3 and 4, GBFS is an optimal algorithm
with a perfect satisficing heuristic.

Corollary 1. Given graph search problem 〈V,E, nI , G〉
and a perfect satisficing heuristic h, GBFS minimizes the
number of expansions to find a solution.

Theorem 4 says that using a perfect satisficing heuristic
is a sufficient and necessary condition for GBFS to always
expand a closest node given any subset of V as an open list.
However, in practice, GBFS never encounters some subsets
of V , so GBFS can be an optimal algorithm without a per-
fect satisficing heuristic. For example, if all nodes on one
shortest solution path have h-values of 0 and other nodes
have h-values of∞, GBFS expands a closest node at every



expansion. The heuristic is not a perfect satisficing heuris-
tic because for n1 and its successor n2 on a shortest path,
d∗(n2) < d∗(n1) and h(n2) = h(n1). This does not contra-
dict Theorem 4; given open list {n1, n2}, GBFS may expand
n1, which is not a closest node. However, since n2 is a suc-
cessor of n1, GBFS never encounters such an open list.

t-Dominance
Since the exploration mechanisms empirically work well,
we do not assume that actual heuristics are perfect satisfic-
ing. However, if h(n1) is sufficiently lower than h(n2), we
expect that n1 has lower d∗-value than n2. We formalize this
intuition as the following property of a heuristic.
Definition 3 (t-dominance). Given graph search problem
〈V,E, nI , G〉, heuristic h, and function t : R+

0 → R+
0 such

that t(x) ≥ x, h is a t-dominating heuristic if
∀n1, n2 ∈ V, t(h(n1)) < h(n2)→ d∗(n1) < d∗(n2).

Note that t(x) ≥ x is necessary since t(x) < x causes a
contradiction when n1 = n2. With a t-dominating heuristic,
we can infer a bound on h-values of closest nodes based
on t. Intuitively, nodes having h-values higher than some
relative threshold cannot be closest nodes, so an exploration
mechanism will not benefit from expanding such nodes.
Proposition 1. Given graph search problem 〈V,E, nI , G〉,
open list B ⊆ V , and t-dominating heuristic h, any node
n′ ∈ B with h(n′) > minn∈B t(h(n)) is not a closest node.

There is no guarantee that nodes having lower h-values
than the threshold are closest nodes since the heuristic might
not be a perfect satisficing heuristic; even when t is an iden-
tity function, it is still possible that nodes n1 and n2 with
h(n1) = h(n2) satisfy d∗(n1) > d∗(n2), which does not
violate the condition of t-dominance, h(n1) < h(n2) →
d∗(n1) < d∗(n2), but violates the condition of a perfect sat-
isficing heuristic, h(n1) ≤ h(n2)→ d∗(n1) ≤ d∗(n2).

As an example of t-dominance, we present a t-function
for the unit-cost version FF heuristic (Hoffmann and Nebel
2001) in a classical planning problem instance, ptesting-2-
2-3 of the HIKING domain from the optimal track of IPC14.
We show the number of nodes having a particular combina-
tion of an h-value and a d∗-value using a heatmap in Fig-
ure 1. We also show the t-function empirically computed
based on h-values and d∗-values of all nodes; for h-value
x, t(x) is the maximum h-value of node n in V such that
d∗(n) ≤ maxn′∈V :h(n′)=x d

∗(n′). If h(n′′) > t(x) for node
n′′, d∗(n′′) > maxn′∈V :h(n′)=x d

∗(n′), so the condition of
a t-dominating heuristic is satisfied. In the example, when
x ≤ 7, t(x) is less than the maximum h-value, 17. In other
words, when h(n) ≤ 7, nodes having higher h-values than
some relative thresholds always have higher d∗-values than
d∗(n). As t-dominance is parameterized by a function, not
a single value, quantitatively analyzing t-dominance using
a set of problems is difficult. However, we observe qualita-
tively similar tendencies in instances in many other classical
planning domains.

Summary
In this section, we showed that open list algorithms includ-
ing GBFS and its variants must expand closest nodes to find

(a) Distribution of d∗- and h-values.

(b) t function.

Figure 1: Example of t-dominance using the HIKING domain
from IPC14 and the FF heuristic.

a solution path, and therefore expanding a closest node can
be considered as making progress for such algorithms (The-
orem 1–3). Then, we showed that with a perfect satisficing
heuristic, GBFS always expands a closest node, and we do
not need exploration mechanisms (Theorem 4 and Corol-
lary 1). Since we do not expect a heuristic is perfect satis-
ficing in practice, we introduced the notion of t-dominance,
which parameterizes the informativeness of a heuristic using
a heuristic- and problem-specific function t. We showed that
closest nodes have lower h-values than a threshold depend-
ing on t when a heuristic is t-dominating (Proposition 1).

If we knew a t-function with which a heuristic is t-
dominating, exploration mechanisms could avoid nodes hav-
ing higher h-values than the threshold. Unfortunately, identi-
fying a t-function requires computing d∗-values of all nodes.
However, we expect that a good heuristic is t-dominating for
some t, and closest nodes have lower h-values than some
threshold. In the following section, we consider improv-
ing exploration mechanisms based on this expectation. Intu-
itively, we try to increase the probability to expand a closest
node by biasing expansion to nodes having lower h-values.

Improving Exploration Mechanisms
First, we formally define an exploration mechanism as a
probability distribution over nodes in the open list.



Definition 4. Given graph search problem 〈V,E, nI , G〉
and open list B ⊆ V , p : B → R+

0 is an exploration mech-
anism if

∑
n∈B p(n) = 1. When an open list algorithm uses

p given B, it expands n ∈ B with the probability of p(n).
For example, Type-GBFS alternately uses GBFS and ex-

ploration mechanism pT such that pT (n) = 1
|T (B2)||B2

T (n)
|

for n ∈ B2. Although pT expands all nodes with non-zero
probabilities, we actually do not need to consider nodes hav-
ing higher h-values than a certain threshold if the heuristic
is t-dominating according to Proposition 1. One potential
problem is that pT can be biased toward non-closest nodes
if there are many types with h-values higher than the thresh-
old. In such cases, it expands a non-closest node with a
high probability. The same problem is also possible for ε-
GBFS if many nodes have higher h-values than the thresh-
old. To avoid this bias, we propose a variant of Type-GBFS
where first h-value ĥ is selected uniformly at random from
H(B) = {h(n) | n ∈ B}, then type T̂ is selected uniformly
at random from T (Bĥ) = {T (n) | n ∈ B ∧ h(n) = ĥ},
and finally a node is expanded uniformly at random from
Bĥ,T̂ = {n ∈ B | h(n) = ĥ ∧ T (n) = T̂}.
Definition 5. Given graph search problem 〈V,E, nI , G〉
and open list B ⊆ V , exploration mechanism ph,T is de-
fined as

∀n ∈ B, ph,T (n) =
1

|H(B)||T (Bh(n))||Bh(n),T (n)|
.

Since all h-values are selected with the same probability,
this exploration mechanism is not biased toward particular
h-values with which many types are associated. However, if
there are many h-values higher than the threshold, the ex-
ploration mechanism is still biased toward higher h-values.

Another approach to improve exploration mechanisms is
to estimate the threshold by some value t′ and avoid ex-
panding nodes having higher h-values than t′. However, if
t′ < minn∈B t(h(n)), i.e., we underestimate, it is possible
that all closest nodes have higher h-values than t′. In such a
case, if an exploration mechanism focuses only on h-values
less than or equal to t′, it cannot find a closest node. In addi-
tion, expanding all nodes with non-zero probability is theo-
retically beneficial because it ensures the probabilistic com-
pleteness of a search algorithm for a graph search problem
with an infinite graph (Valenzano and Xie 2016). Therefore,
instead of using a hard threshold like t′, we use a soft thresh-
old; we use biased exploration mechanisms which expand
all nodes with non-zero probabilities but assign higher prob-
abilities to nodes with lower h-values.
Definition 6. Given graph search problem 〈V,E, nI , G〉,
open list B ⊆ V , heuristic h, and exploration mecha-
nism p, let w : H(B) → R+

0 be a function such that∑
n∈B w(h(n))p(n) = 1. Biased exploration mechanism

w[p] is defined as

∀n ∈ B,w[p](n) = w(h(n))p(n).

Proposition 2. Given graph search problem 〈V,E, nI , G〉,
open list B ⊆ V , heuristic h, exploration mechanism p, and

biased exploration mechanism w[p], if h is a t-dominating
heuristic andw : H(B)→ R+

0 is a non-increasing function,

q(B,w[p]) ≥ w
(
min
n∈B

t(h(n))

)
q(B, p).

where q(B, p) is the probability that exploration mechanism
p expands a closest node.

Proof. q(B, p) =
∑
n∈Y p(n) and q(B,w[p]) =∑

n∈Y w(h(n))p(n) where Y is the set of closest nodes
in B. Since h is t-dominating, ∀n′ ∈ Y, h(n′) ≤
minn∈B t(h(n)). Since w is non-increasing, ∀n′ ∈
Y,w(h(n′)) ≥ w (minn∈B t(h(n))).

The biased exploration mechanism expands a closest
node with a higher probability than the original one if
w(minn∈B t(h(n))) > 1, which is more likely to occur
when minn∈B t(h(n)) is lower, i.e., a heuristic is more in-
formative.

We propose the following non-increasing functions as w:

• lin(ĥ) = supH(B)−αĥ+β∑
n∈B(supH(B)−αh(n)+β)p(n) where α ≥ 0 and

β ≥ 1.

• softmin(ĥ) =
exp(−ĥ/τ)∑

n∈B exp(−h(n)/τ)p(n) where τ > 0.

With lin, the probability to expand a node decreases lin-
early with higher h-value. Parameters α and β are the weight
and the bias of the linear function. β ≥ 1 guarantees non-
negativity. The probabilities to expand nodes having lower
h-values increase as α increases and β decreases. With
softmin, the probability to expand a node decreases expo-
nentially with higher h-value. The probabilities to expand
nodes having lower h-values increases as τ decreases. In
these functions, each value is divided by the sum of values
over all nodes so that

∑
n∈B w(h(n))p(n) = 1.

Experimental Evaluation
We compare the following algorithms with GBFS:
• Type: Type-GBFS where T (n) = (h(n), g(n)).
• Type(h): Type using ph,T as the exploration mechanism

instead of pT .
• 3-Type(h): Type(h) where the exploration mechanism ig-

nores nodes having h-values higher than the third lowest
h-value in the open list.

• Lin-Type(h): Type(h) using lin[ph,T ] with α = 1 and
β = 1 as the exploration mechanism instead of ph,T .

• Softmin-Type(h): Type(h) using softmin[ph,T ] with τ =
1 as the exploration mechanism instead of ph,T .

Here, we focus on extending Type-GBFS since it is shown
to be better than ε-GBFS by previous work (Xie et al. 2014).
For 3-Type(h), Lin-Type(h) and Softmin-Type(h), we do not
tune the parameters and use fixed values for all experiments.
Optimization of the parameters is future work. As Softmin-
Type(h) uses an exponential function for weighting, it is ex-
pected to be greedier than Lin-Type(h). By comparing 3-
Type(h) to Lin-Type(h) and Softmin-Type(h), we evaluate
the benefit of using a non-decreasing function instead of a
hard threshold. We use FIFO tie-breaking strategy for GBFS
and the first open list of Type-GBFS and its variants.



Synthetic Search Space
First, we verify that biased exploration mechanisms are use-
ful when a heuristic is t-dominating. We generate synthetic
graph search problems and assign heuristic values so that
the heuristic is t-dominating. We evaluate the exploration
mechanisms using heuristics with different t functions. Fol-
lowing previous work which empirically analyzed GBFS us-
ing a synthetic search space (Cohen and Beck 2017), we use
Dm,p, the probability space of all random directed graphs
with m nodes and no self-loops where each directed edge is
present with probability p (Karp 1990). We generate graph
search problem 〈V,E, nI , G〉 in the following procedure:
1. Sample directed graph 〈V,E〉 from Dm,p.
2. Randomly choose node ng ∈ V such that ∃n, (n, ng) ∈
E. Let ng be a goal node, i.e., G = {ng}.

3. Randomly choose initial node nI 6= ng such that ng is
reachable from nI .

Differently from the previous work by Cohen and Beck, a
generated problem is always solvable since the goal node
is reachable from the initial node. We use a t-dominating
heuristic such that search algorithms encounter local min-
ima. Since we are focusing on exploration mechanisms that
are different in the selection of an h-value, we want to reduce
the effect of a tie-breaking strategy. We design the heuristic
so that it assigns different h-values to nodes having different
d∗-values. Our heuristic is defined as follows:

h(n) =


∞ if d∗(n) =∞
0 if d∗(n) = 0

d∗(n) + δ if d∗(n) ≡ 1 mod (δ + 1)

d∗(n)− 1 otherwise

(1)

where δ ≥ 1 is an integer parameter. When n is a closest
node and h(n) = d∗(n) + δ, GBFS needs to expand each
node n′ with d∗(n) < d∗(n′) ≤ d∗(n) + δ before n since
h(n′) < h(n). As δ increases, the number of such nodes
is expected to increase. This heuristic is t-dominating with
t(h(n)) = h(n) + δ; we show that d∗(n1) < d∗(n2) for
nodes n1 and n2 with h(n1)+δ < h(n2). Since d∗(n)−1 ≤
h(n) ≤ d∗(n)+ δ for node n, d∗(n1)−1+ δ < d∗(n2)+ δ,
so d∗(n1) < d∗(n2) + 1. If d∗(n1) = d∗(n2), h(n1) =
h(n2), which contradicts that h(n1)+δ < h(n2). Therefore,
d∗(n1) < d∗(n2).

In the experiment, following Cohen and Beck, we gen-
erate graph search problems with m = 10000 and p =

2
m−1 considering only instances having at least 1000 edges.1

For the heuristic, we use δ ∈ {1, ..., 9}. For each value
of δ, we generate 1000 instances and evaluate the median
number of expansions to solve a problem. In addition to
the algorithms presented above, we also evaluate δ-Type(h)
which is Type(h) ignoring nodes having h-values higher
than minn∈B h(n) + δ given open list B and parameter δ.
In other words, δ-Type(h) uses an exploration mechanism
which exploits perfect information of the t function. We im-
plement the problem generation method and search algo-
rithms in Python 3.8.10 and run the experiment on a machine
having Intel Core i5-8265U and 16GB RAM.

1p = 2
m−1

corresponds to γ = 2 in Cohen and Beck (2017).

Figure 2: Search effort to solve a synthetic graph search
problem using the heuristic in Equation 1 with different δ.

We show the result in Figure 2. As expected, δ-Type(h),
which exploits the perfect information, is the best algorithm
for all values of δ. For δ ≥ 4, Type and Type(h) expand
fewer nodes than GBFS, which is consistent with the in-
tuition that exploration mechanisms are more useful when
a heuristic is less informative. Type(h) is better than Type
for all values of δ. The biased exploration mechanisms,
3-Type(h), Lin-Type(h), and Softmin-Type(h), are better
than Type(h) when δ is small. In particular, when δ = 3,
they expand fewer nodes than GBFS and Type(h), which
confirms that biased exploration mechanisms are helpful
when a heuristic is informative to some extent. However,
as δ increases, the biased exploration mechanisms expand
more nodes than Type(h). 3-Type(h) is similar to Softmin-
Type(h), but it expands almost 10 times more nodes when
δ is large. Lin-Type(h) is more exploratory and similar to
Type(h) as the non-increasing weight function is not as steep
as 3-Type(h) and Softmin-Type(h).

When we change the value of p, the tendency is qualita-
tively similar. Increasing p, we observe that GBFS expands
more than 1000 nodes even when δ ≤ 3 possibly because
more nodes become reachable from a node, and GBFS needs
to expand them before a closest node.

Classical Planning
We evaluate the exploration mechanisms in classical plan-
ning. We use the Autoscale benchmark set 21.08, the re-
cently developed benchmark set of classical planning in-
stances (Torralba, Seipp, and Sievers 2021). In version
21.08, some instances in PARCPRINTER and PATHWAYS are
duplicates. In domains that are not unit-cost, we compute h-
values and g-values ignoring action costs; we use the unit-
cost version of the FF heuristic (Hoffmann and Nebel 2001)
with eager evaluation for the heuristic function, and the g-
value of node n is the length of the path from the initial node
to n. We implement all the methods in the Fast Downward
planning system (Helmert 2006). We run the experiment us-
ing an Intel Xeon Gold 6148 processor with a 30-minutes



Figure 3: Comparison of the number of expansions of GBFS
vs. GBFS with exploration mechanisms. For Type(h) and
Softmin-Type(h), we use the results of one run. Unsolved
instances are shown at ‘n.a.’.

time limit and 4 GB memory limit for each instance using
GNU parallel (Tange 2011).

We show the coverage of the algorithms in the left-hand
side of Table 1. Except for GBFS, which is deterministic,
we show the average over five runs. Type(h) solves more in-
stances than Type in total. Comparing the biased exploration
mechanisms, Softmin-Type(h) is the best and 3-Type(h) is
the next. Overall, Softmin-Type(h) solves more instances
than GBFS, Type, and Type(h) in 22 out of 41 domains. It
maintains similar coverage to GBFS in domains where Type
and Type(h) degrade such as BARMAN, ELEVATORS, and
GED while benefiting from exploration in domains where
Type and Type(h) perform better such as PIPESWORLD,
TIDYBOT, and VISITALL. These results suggest that the FF
heuristic is so informative that the aggressively biased ex-
ploration mechanisms such as Softmin-Type(h) are useful.

We compare the number of expansions of GBFS, Type(h),
and Softmin-Type(h) for each instance in Figure 3. Al-
though Type(h) significantly reduces the number of expan-
sions in hard instances, where GBFS expands more than
100000 nodes, it tends to expand more nodes in easy in-
stances. In contrast, Softmin-Type(h) behaves similarly to
GBFS in easy instances while it reduces the search effort in
hard instances similarly to Type(h). Compared to Type(h),
Softmin-Type(h) achieves the better balance between explo-
ration and exploitation.

While a node is removed in a constant time in the orig-
inal type-based open list, a biased exploration mechanism
requires computational time proportional to the number of
h-values in the open list since it computes an weight for each
h-value. However, we do not observe major computational
overhead of biased exploration mechanisms in practice.

We use the biased exploration mechanisms in Type-
LAMA (Xie et al. 2014), which incorporates the type-based
open list in LAMA (Richter and Westphal 2010). Type-
LAMA is used in state-of-the-art classical planner portfo-
lios (Seipp 2018; Seipp and Röger 2018). We evaluate the
following variants of LAMA in the same resource setting as
the evaluation of GBFS and its variants in classical planning.
1. LAMA (Richter and Westphal 2010).
2. Type-FF: original Type-LAMA (Xie et al. 2014), which

is LAMA with an additional type-based open list

with exploration mechanism pT and type T (n) =
(hFF(n), g(n)) where hFF(n) is the h-value of node n
computed by the FF heuristic.

3. Type-FF-LC: Type-FF with an additional type-based
open list with exploration mechanism pT and type
T (n) = (hLC(n), g(n)) where hLC(n) is the h-value of
n by the landmark count heuristic (Richter, Helmert, and
Westphal 2008; Richter and Westphal 2010).

4. SM-FF: Type-FF with exploration mechanism
softmin[ph,T ] instead of pT .

5. SM-FF-LC: Type-FF-LC with exploration mechanism
softmin[ph,T ] instead of pT .

We show the coverage in the right-hand side of Table 1. Ex-
cept for LAMA, which is deterministic, we show the aver-
age over five runs. Using softmin[ph,T ] improves the perfor-
mance of both of Type-FF and Type-FF-LC, and SM-FF-LC
achieves the best coverage. While Type-FF-LC, where two
out of four open lists are type-based, performs worse than
Type-FF, SM-FF-LC is better than SM-FF. This result sug-
gests that having two original type-based open lists is too ex-
plorative, but it results in a good balance with softmin[ph,T ].

Related Work
Previous work theoretically and empirically analyzed the
behavior of satisficing heuristic search algorithms and lo-
cal minima of a graph search problem. For example, Hoff-
mann (2005) analyzed the behavior of enforced hill climb-
ing with the FF heuristic (Hoffmann and Nebel 2001) in
classical planning. Wilt and Ruml (2014; 2015) investigated
which types of heuristics are effective for GBFS to escape
local minima. Heusner, Keller, and Helmert (2017) theoret-
ically identified when GBFS makes progress. As we men-
tioned above, the notion of bench-exit states in their work
is similar to closest nodes but limited to GBFS. Cohen and
Beck (2018a; 2018b) empirically showed that the largest
search effort to escape a single local minimum is highly cor-
related with the overall search effort to solve a problem and
that the existence of a deep local minimum is related to the
heavy-tailed distribution of search effort. None of the previ-
ous work defined a good node independently from particular
heuristic search algorithms.

A number of GBFS variants have been proposed to escape
local minima. ε-GBFS (Valenzano et al. 2014) and Type-
GBFS (Xie et al. 2014) use randomized exploration mech-
anisms ignoring the order of heuristic values. DBFS (Imai
and Kishimoto 2011) and GBFS-LE (Xie, Müller, and Holte
2014) perform local search using a separate open list. Al-
though DBFS is a complicated algorithm, it is similar to
our biased exploration mechanisms in that it selects a node,
from which local search is performed, according to the prob-
ability biased by its heuristic value. RR-GBFS (Cohen and
Beck 2018b) uses randomized restarts to avoid getting stuck
in a large local minimum. Asai and Fukunaga (2017) pro-
posed a randomized tie-breaking strategy for GBFS to ex-
plore diverse nodes. Since these two methods are orthogo-
nal to Type-GBFS, they can be combined with our biased
exploration mechanisms.



domain GBFS Type Type(h) 3 Lin SM LAMA Type-FF Type-FF-LC SM-FF SM-FF-LC
AGRICOLA (30) 17 19.6 27.0 17.2 20.2 18.0 21 26.4 22.4 23.8 25.8
AIRPORT (30) 16 15.8 16.0 21.0 16.8 18.8 14 15.8 16.8 14.8 14.2
BARMAN (30) 12 6.4 6.0 12.8 7.6 12.6 30 30.0 30.0 30.0 30.0
BLOCKSWORLD (30) 5 6.0 6.0 7.8 7.6 7.8 27 27.0 26.8 26.8 26.8
CHILDSNACK (30) 5 2.8 3.0 1.6 3.4 3.4 9 9.0 9.0 9.0 9.0
DATA-NETWORK (30) 5 8.4 7.0 12.8 10.6 12.4 20 20.4 19.6 22.6 21.6
DEPOTS (30) 9 9.0 9.0 9.2 9.0 9.6 21 21.0 20.8 20.2 20.2
DRIVERLOG (30) 7 7.2 8.0 8.2 8.2 10.0 29 29.2 29.0 29.0 29.0
ELEVATORS (30) 28 23.0 25.0 30.0 24.4 30.0 30 30.0 30.0 30.0 30.0
FLOORTILE (30) 2 2.0 2.0 2.0 2.0 2.0 2 2.0 2.0 2.0 2.0
FREECELL (30) 4 4.0 4.0 4.0 4.0 4.0 4 4.0 4.0 4.0 4.0
GED (30) 26 8.6 11.0 28.8 10.8 28.2 30 30.0 30.0 30.0 30.0
GRID (30) 8 8.4 8.0 9.0 8.6 9.4 18 18.0 18.0 18.0 18.0
GRIPPER (30) 30 30.0 30.0 30.0 30.0 30.0 30 30.0 30.0 30.0 30.0
HIKING (30) 18 13.0 16.0 16.6 15.8 19.4 17 9.2 6.8 13.8 10.8
LOGISTICS (30) 9 8.0 8.0 11.2 8.2 13.0 11 9.0 9.0 11.0 9.4
MICONIC (30) 30 30.0 30.0 30.0 30.0 30.0 30 30.0 30.0 30.0 30.0
NOMYSTERY (30) 9 13.0 15.0 6.4 15.2 7.2 17 16.8 16.8 16.4 15.0
OPENSTACKS (30) 9 9.0 9.0 15.0 10.4 18.0 30 30.0 30.0 30.0 30.0
ORGANIC-SYNTHESIS-SPLIT (30) 17 16.4 17.0 15.2 16.8 15.4 17 18.0 19.4 17.0 18.4
PARCPRINTER (30) 30 30.0 30.0 29.6 30.0 30.0 30 30.0 30.0 30.0 30.0
PARKING (30) 8 6.4 6.0 11.2 6.2 10.8 22 22.0 22.0 22.0 22.0
PATHWAYS (30) 11 13.6 16.0 18.4 18.4 18.8 18 18.0 18.0 18.0 18.0
PEGSOL (30) 30 30.0 30.0 30.0 30.0 30.0 30 30.0 30.0 30.0 30.0
PIPESWORLD-NOTANKAGE (30) 11 23.8 25.0 21.2 23.6 23.2 23 24.2 24.8 23.2 24.0
PIPESWORLD-TANKAGE (30) 12 20.4 23.0 20.8 23.6 21.8 30 29.6 30.0 29.6 30.0
ROVERS (30) 15 14.2 16.0 24.2 16.2 23.4 30 30.0 30.0 30.0 30.0
SATELLITE (30) 10 10.0 9.0 9.8 9.4 10.0 18 18.0 18.0 18.0 18.0
SCANALYZER (30) 3 6.4 8.0 9.4 7.6 9.0 19 19.0 19.0 19.0 19.0
SNAKE (30) 9 8.0 10.0 8.4 8.0 9.0 9 9.6 10.4 9.0 12.8
SOKOBAN (30) 20 23.6 21.0 20.6 23.0 21.6 22 23.0 22.4 21.6 22.6
STORAGE (30) 3 6.2 7.0 10.4 7.6 10.0 11 9.8 9.8 12.6 12.0
TERMES (30) 17 17.0 15.0 18.6 17.2 18.6 23 22.2 22.0 22.6 23.0
TETRIS (30) 6 7.4 10.0 10.8 9.6 10.4 8 8.0 8.0 12.2 13.4
THOUGHTFUL (30) 12 23.6 23.0 9.8 22.6 11.0 19 23.0 24.4 19.4 19.2
TIDYBOT (30) 14 16.4 16.0 16.4 17.6 16.4 17 17.2 17.4 16.8 17.8
TPP (30) 7 8.2 9.0 10.0 9.2 11.0 20 20.0 20.0 20.0 20.0
TRANSPORT (30) 4 4.0 4.0 5.8 4.8 5.8 13 13.2 13.0 13.4 14.2
VISITALL (30) 5 9.0 8.0 6.2 8.6 7.0 30 30.0 30.0 30.0 30.0
WOODWORKING (30) 2 4.4 7.0 9.0 6.4 7.8 11 8.8 7.8 9.0 8.0
ZENOTRAVEL (30) 11 10.2 10.0 11.0 10.0 11.0 14 14.0 14.0 14.0 14.0
Total (1230) 506 533.4 560.0 600.4 569.2 615.8 824 825.4 821.4 828.8 832.2

Table 1: Coverage of classical planning benchmark instances. 3: 3-Type(h), Lin: Lin-Type(h), and SM: Softmin-Type(h).

In classical planning, best-first width search, which bal-
ances exploitation and exploration by combining the nov-
elty and the heuristic value of a state in the priority func-
tion of best-first search, achieves the state-of-the-art perfor-
mance (Lipovetzky and Geffner 2017). Fickert and Hoff-
mann (2017) proposed a different approach, which escapes
local minima by refining a delete relaxation heuristic and
changing heuristic values of nodes. Recent work has pro-
posed a lookahead strategy for GBFS, which tries to find a
node with a lower h-value than the expanded node at each
expansion using both of novelty and delete relaxation heuris-
tics (Fickert 2020). While the notions of novelty and delete
relaxation heuristics used in these methods are limited to
particular graph search problems such as classical planning,
our approach does not have such a limitation.

Conclusion
In this paper, we introduced the notion of closest nodes and
theoretically showed that expanding a closest node means
making progress for open list-based satisficing heuristic
search algorithms. Then, we showed that when a heuristic is
t-dominating, closest nodes have lower heuristic values than
some relative threshold and proposed the biased exploration
mechanisms exploiting this property. Our methods are em-
pirically more useful than conventional exploration mecha-
nisms and improve a state-of-the-art classical planner.

In our experiments, parameters of the biased exploration
mechanisms are not tuned. Tuning parameters to problem
domains offline or online is a part of our future work. Since
an exploration mechanism is a probability distribution, di-
rectly learning it or, equivalently, learning a t-function using
machine learning techniques may also be possible.
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Seipp, J.; and Röger, G. 2018. Fast Downward Stone Soup
2018. In IPC 2018 planner abstracts, 74–76.
Tange, O. 2011. GNU Parallel - The Command-Line Power
Tool. ;login: The USENIX Magazine, 36: 42–47.
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