
Noname manuscript No.
(will be inserted by the editor)

A Combinatorial Cut-and-Lift Procedure with
an Application to 0-1 Second-Order Conic
Programming

Margarita P. Castro · Andre A. Cire ·
J. Christopher Beck

Received: date / Accepted: date

Abstract Cut generation and lifting are key components for the performance
of state-of-the-art mathematical programming solvers. This work proposes a
new general cut-and-lift procedure that exploits the combinatorial structure
of 0-1 problems via a binary decision diagram (BDD) encoding of their con-
straints. We present a general framework that can be applied to a wide range of
binary optimization problems and show its applicability for second-order conic
inequalities. We identify conditions for which our lifted inequalities are facet-
defining and derive a new BDD-based cut generation linear program. Such a
model serves as a basis for a max-flow combinatorial algorithm over the BDD
that can be applied to derive valid cuts more efficiently. Our numerical re-
sults show encouraging performance when incorporated into a state-of-the-art
mathematical programming solver, significantly reducing the root node gap,
increasing the number of problems solved, and reducing the run-time by a
factor of three on average.

Keywords Lifting · Cutting Planes · Decision Diagrams · Binary Optimiza-
tion · Second-order Cones

Margarita P. Castro
Department of Industrial and Systems Engineering, Pontificia Universidad Católica de Chile
E-mail: margarita.castro@ing.puc.cl

Andre A. Cire
Department of Management, University of Toronto Scarborough and
Rotman School of Management
E-mail: andre.cire@rotman.utoronto.ca

J. Christopher Beck
Department of Mechanical and Industrial Engineering, University of Toronto,
E-mail: jcb@mie.utoronto.ca

2 Castro, Cire, and Beck

1 Introduction

Cutting plane methodologies have played a key role in the theoretical and
computational development of mathematical programming [19,46]. Extensive
literature has focused on cuts that exploit special problem substructure, lead-
ing to an array of techniques that are now integral into state-of-the-art solvers
[41]. For general problems, cuts are obtained either by leveraging disjunctive
reformulations [9,10] or by lifting, i.e., relaxing an initial inequality so that it
is valid for a higher-dimensional polyhedron [28,43,58].

In this paper, we study both a cut generation procedure and a lifting
approach for general binary optimization problems of the form

max
x∈X⊆{0,1}n

c>x, (BP)

where the feasible set X is arbitrary, e.g., possibly represented by a conjunction
of linear and/or non-linear constraints. Our methodologies consist of exploit-
ing network structure via a binary decision diagram (BDD) embedding of X.
A BDD is a graphical model that represents solutions as paths in a directed
acyclic graph, which can be viewed as a network-flow reformulation of X. Such
a model is potentially orders of magnitude smaller than an explicit represen-
tation of X as it identifies and merges equivalent partial solutions. Several
BDD encodings have already been investigated for linear and non-linear prob-
lems [12,13,44] and are used to exploit submodularity [14] or more general
combinatorial structure [16].

We propose a sequential lifting procedure that can be applied to any initial
inequality (e.g., given by another cutting-plane technique). The lifting algo-
rithm uses 0-1 disjunctions derived from a BDD representation of X to rotate
inequalities while maintaining their validity. We show that each step of our
sequential lifting can be performed efficiently in the size of the BDD and,
when applicable, increases the dimension of the face by at least one. We also
establish conditions for which the inequality becomes facet-defining and draw
connections between our procedure and existing lifting techniques from dis-
junctive programming [8], showing that our approach generalizes well-known
lifting procedures for 0-1 inequalities [7,32,50].

For our cut generation approach, we propose a reformulation of the BDD
polytope based on capacitated flows, which leads to an alternative cut gener-
ation linear program (CGLP) for separating infeasible points. We show that
the set of cuts derived from this model defines the convex hull of the solutions
encoded by the BDD, i.e., X, and that this methodology circumvents com-
mon issues of existing BDD cut techniques. Finally, we build on this model to
develop a weaker but computationally faster alternative that solves a combina-
torial max-flow/min-cut problem over the BDD to generate valid inequalities.

For optimization problems where a BDD for X may be exponentially large
in n, our lifting and cut procedures remain valid when considering instead a
limited-size relaxed BDD for BP, i.e., where the BDD encodes a superset of X.
Several efficient methods exist to build relaxed BDDs, such as only considering

A Combinatorial Cut-and-Lift Procedure 3

a subset of the problem constraints [16]. This approach is similar in spirit, e.g.,
to when a linear relaxation is used to lift cover inequalities of a single knapsack
constraint [7]. We exploit the discrete relaxation given by the BDD as opposed
to a continuous relaxation, which captures some of the combinatorial structure
of the problem. Both our lifting procedure and combinatorial cuts are also of
low complexity in the size of the BDD and, when a relaxed BDD is employed,
its size can be controlled through a parameter limiting its maximum width.

To assess our lifting and cut generation procedure, we apply our method-
ology to a class of second-order conic programming problems (SOCPs) with
multiple second-order conic (SOC) inequalities, each reformulated as a BDD.
We experiment on the SOC knapsack benchmark [5,36] and 270 randomly
generated instances with more general and challenging SOC inequalities, in-
corporating our cut-and-lift approach into CPLEX. We also compare with ex-
isting BDD cutting techniques [55,27] and a SOC cut-and-lift method [5], also
noting that CPLEX includes many state-of-the-art SOC techniques [35].

Our numerical results indicated that (a) our lifting procedure reduced the
average root gap up to 29% in our benchmark when applied to cuts generated
by all procedures; (b) when cuts are added only at the root node, a hybrid
technique combining our method with BDD target cuts [55] is the most effec-
tive for SOC knapsacks, while for general SOC inequalities our cuts perform
similarly to target cuts; and (c) when adding cuts during the tree search, the
hybrid is also the best performing across all methods, particularly achieving
the best final gaps, solution times, and number of solved instances for our
general SOCP benchmark. Furthermore, the hybrid BDD technique improves
upon default CPLEX and reduced up to 52.2% of the root node gap, closed at
last 17 instances in each benchmark, and decreased solution times by threefold.

The paper is structured as follows. §2 introduces notation and background
material. §3 describes related works in the BDD and lifting literature. §4 de-
scribes our combinatorial lifting procedure while §5 details our BDD-based
cutting-plane algorithms. §6 introduces the case study problem and describes
the BDD encoding for SOC inequalities. Lastly, §7 and §8 present the empirical
evaluation and final remarks, respectively.

2 Background

This section introduces the notation used throughout this work and the back-
ground material on BDDs. For convenience, we assume n ≥ 1 and let I :=
{1, ..., n} represent the component indices of any n-dimensional point x.

We denote by dim(P) the dimension of a polytope P ⊆ [0, 1]n. An inequal-
ity π>x ≤ π0 with π ∈ Rn and π0 ∈ R is valid for P if π>x ≤ π0 holds for
all x ∈ P . The inequality defines a face of P if F (π) := {x ∈ P : π>x =
π0} is not empty, i.e., the inequality supports P . A face F (π) is a facet if
dim(F (π)) = dim(P)− 1; in such a case, π>x ≤ π0 is facet-defining. Finally,
we denote the convex hull of P by conv(P).

4 Castro, Cire, and Beck

r

u1 u2

u3 u4

u5

t

x1:

x2:

x3:

x4:

r

u′
1 u′

2

u′
3 u′

4 u′
5

u′
6

t

va = 0

va = 1

Fig. 1 Two BDDs B1 (left-hand side) and B2 (right-hand side) with XB1 = XB2 = {x ∈
{0, 1}4 : 7x1 + 5x2 + 4x3 + x4 ≤ 8}. B1 is reduced.

Binary Decision Diagrams. A BDD B is an extended representation of a set
XB ⊆ {0, 1}n as a network. Specifically, B = (N ,A) is a layered directed
acyclic graph with node set N and arc set A. The node set N is partitioned
into n+1 layers N = (N1, ...,Nn+1). The first and last layers are the singletons
N1 = {r} and Nn+1 = {t}, respectively, where r is the root node and t is the
terminal node. An arc a = (u, u′) ∈ A has a source node s(a) = u and a target
node t(a) = u′ in consecutive layers, i.e., u′ ∈ Ni+1 whenever u ∈ Ni for i ∈ I.

The points of XB are mapped to paths in the network, as follows. With
each arc a ∈ A we associate a value va ∈ {0, 1}, where a node u ∈ N has at
most one arc of each value emanating from it. Given an arc-specified r−t path
p = (a1, ..., an) with s(a1) = r and t(an) = t, we let xp := (va1 , va2 , . . . , van) ∈
{0, 1}n be the n-dimensional point encoded by path p. Thus, if P is the set of all
r−t paths in B, the set of points represented by the BDD is XB =

⋃
p∈P{xp}.

A BDD B is exact for set X ⊆ {0, 1}n when X = XB, i.e., there is a
one-to-one relationship between the points in X and the r − t paths in B.
Alternatively, B is relaxed when X ⊆ XB, i.e., every point in X maps to a
path in B but the converse is not necessarily true.

Example 1 Consider X = {x ∈ {0, 1}4 : 7x1 + 5x2 + 4x3 + x4 ≤ 8}. Figure
1 illustrates two exact BDDs for X: B1 on the left-hand side and B2 on the
right-hand side. Dashed and solid arcs have a value of 0 and 1, respectively.
Each point x ∈ X is represented by a path in B1 and B2. For example, x =
(1, 0, 0, 1) ∈ X is encoded by the path ((r, u2), (u2, u4), (u4, u5), (u5, t)) in B1,
and by the path ((r, u′2), (u′2, u

′
5), (u′5, u

′
6), (u′6, t)) in B2. �

A BDD B is reduced if it is the smallest network (with respect to number
of nodes) that represents the set XB. There exists a unique reduced BDD for
a given ordering of the indices I. Furthermore, given any B and an ordering,
we can obtain its associated reduced BDD in polynomial time in the size of B
[22]. For instance, B1 in Figure 1 is reduced and can be obtained by merging
nodes u′4 and u′5 from B2 and adjusting their emanating arcs appropriately.

Several exact and relaxed BDD construction mechanisms are available for
general and specialized discrete optimization problems [16,14,55]. These tech-

A Combinatorial Cut-and-Lift Procedure 5

niques either reformulate the problem as a dynamic program, where B rep-
resents an underlying state-transition graph, or separate infeasible paths of a
relaxed BDD. It is often the case that BDDs can be exponentially smaller than
enumerating XB explicitly [16]. If exact BDDs are too large, relaxed BDDs can
be built for X by either imposing a limit on the number of nodes or by consid-
ering a subset of the constraints. We discuss the construction and relaxation
techniques used for our case study in §6.

3 Related Work

Recent research has shown the versatility of BDDs for modeling linear and
non-linear inequalities [2,33,17,14] and there is a growing literature on BDD
encodings for vehicle routing [23,51,39], scheduling [25,20,21,34], and other
combinatorial optimization problems [13,15,24,16]. Within the context of this
work, Becker et al. (2005) [11] presented the first BDD cut generation proce-
dure based on an iterative subgradient algorithm that relies on a longest-path
problem over the BDD. Behle (2007) [12] formalized this procedure and pro-
posed a branch-and-cut algorithm that employs BDDs to generate exclusion
and implication cuts. The author also introduced the network flow model em-
ployed by most BDD cutting-plane procedures [27,44,55].

More recently, two BDD-based cutting plane techniques have been pro-
posed with theoretical and computational considerations. Tjandraatmadja and
van Hoeve (2019) [55] generate target cuts from polar sets using relaxed BDDs
to derive a more tractable methodology that in Becker et al. (2005) [11]. Davar-
nia and van Hoeve (2020) [27] develop an iterative method to generate outer-
approximations for non-linear inequalities, relying on a subgradient algorithm
to avoid solving linear programs. We compare these two models conceptually
to our approach in §5.4 and evaluate them numerically in §7.

Our cutting plane methods are related to the method by Lozano and Smith
(2018) [44] for a class of two-stage stochastic programming problems. The
authors propose a Benders decomposition approach using BDDs to encode
second-stage decisions, where arcs are can be activated or deactivated based
on first-stage decisions. Benders cuts are obtained by solving a network-flow
model over the BDD where arcs are bounded by the first-stage variables. Sim-
ilarly, our CGLP model proposed in §5 is also based on a capacitated network-
flow model. However, our model is more structured in that it incorporates one
variable per layer for all arc types, leading to more specialized inequalities and
structural results for separation purposes (e.g., Lemma 3 and Theorems 3 and
4). We also leverage this model to develop our combinatorial max-flow cuts
that do not depend on linear programming (LP) solutions.

Our numerical case study is focused on SOCPs. Recent work in the field
relies on ideas from split cuts [45], disjunctions [38,42], or are more specialized
[37,52]. Techniques based on mixed-integer rounding [6] and lift-and-project
[54] have also shown to be suitable in practice, and are currently implemented

6 Castro, Cire, and Beck

in commercial solvers [35]. Several recent works also exploit SOCPs with spe-
cial structure, such as binary SOC knapsack inequalities [5,18,4,36].

While the literature on BDD cutting-plane procedures has grown recently,
to the best of our knowledge, this is the first work that leverages BDDs to
lift general form linear inequalities. Behle (2007) [12] proposes lifting cover
inequalities using classic techniques that compute new coefficients one at a
time [59] and where each sub-problem is solved using a BDD. Becker et al.
(2005) [11] also present a mechanism that uses 0-1 disjunctions over a BDD to
obtain new inequalities. Their technique differs from ours with respect to both
the procedure to obtain the new inequality and its theoretical guarantees. In
particular, their lifted inequality might not separate fractional points that the
original inequality does nor induce a face with higher dimension.

Our combinatorial lifting relates to sequential lifting algorithms based on 0-
1 disjunctions [8], including specialized procedures for the knapsack polytope
[7,48,47] and submodular inequalities [32,5]. These procedures successfully
address special cases of the general lifting problem we investigate (see §4), fo-
cusing on given problem structures (e.g., monotone sets). In particular, lifting
cover inequalities is a well-studied area [29,30], often using the classical knap-
sack dynamic program to efficiently lift coefficients [60] when such constraints
are present. In contrast, our approach is general in that it can be applied to
any type of valid linear inequality (i.e., not restricted to cover inequalities) or
feasibility set, including those defined by non-linear constraints. We also note
that BDD sizes can be parameterized for large-scale problems.

Lastly, our methodology is closely related to the n-step lifting procedure
by Perregaard and Balas (2001) [50], which generalizes the special cases men-
tioned above (e.g., lifting cover inequalities). We briefly introduce this proce-
dure below and relate it to our combinatorial lifting algorithm in §4.4.

An Iterative Lifting Procedure based on Disjunctive Programming. Given a
mixed-integer linear programming (MILP) problem of the form maxx{c>x :
Ax ≤ b, xi ∈ Z, ∀i ∈ I ′ ⊆ I}, the authors [50] propose the relaxation

max
x

{
c>x : Ax ≤ b,

∨
k∈K

Dkx ≤ dk, xi ∈ Z ∀i ∈ I ′′ ⊂ I ′
}
, (DP)

where fewer variables are constrained to be integral. The set K that defines the
disjunctive constraints is typically derived by considering the 0-1 integrality
constraints of individual variables (e.g., xi ≤ 0 ∨ xi ≥ 1).

Let PDP be the set of solutions of DP. The n-step procedure considers
two inputs: (a) an inequality π>x ≤ π0 that supports conv(PDP); and (b) an
arbitrary target inequality π̃>x ≤ π̃0 that is tight for all integer points in F (π).
The procedure uses a parameter γ to rotate the supporting inequality towards
the target inequality, generating a new lifted inequality (π+γπ̃)>x ≤ π0+γπ̃0
that is valid for conv(PDP). In particular, if π̃>x ≤ π̃0 is not valid for PDP , it

A Combinatorial Cut-and-Lift Procedure 7

can be shown that there is a finite maximal γ given by the disjunctive program

γ∗ = min
x,x0

{
π0x0 − π>x : Ax− bx0 ≤ 0,

∨
k∈K

Dkx− dkx0 ≤ 0,

π̃0x0 − π̃>x = −1, x0 ≥ 0, xi ∈ Z ∀i ∈ I ′′ ⊂ I ′
}
.

Under the same assumptions, the lifted inequality becomes a facet of conv(PDP)
if the procedure is repeated n times, using the rotated inequality and an ap-
propriate target inequality.

Similarly, our approach is a sequential procedure that relies on disjunctions.
It differs from the above method in that we exploit the combinatorial structure
encoded by a BDD as opposed to a disjunctive program relaxation. Such a
BDD may encode, e.g., complex non-linear constraints that are not necessarily
convex [14]. Furthermore, we also exploit the network to derive a tractable and
efficient way to compute several disjunctions simultaneously, while previous
algorithms are typically restricted to a small number of disjunctions [50].

4 Combinatorial Lifting

We now present our combinatorial lifting procedure and develop its structural
properties. We begin by introducing our basic methodology in §4.1, which is
defined in general terms and does not depend on a BDD B encoding. Next, in
§4.2 we present a methodology that exploits network structure to perform the
proposed lifting in polynomial time in the size of B (i.e., in the number of nodes
and arcs). Next, §4.3 incorporates the technique in a sequential procedure
and investigate the dimension of the resulting face. Finally, we depict the
relationship with previous disjunctive methodologies in §4.4.

Throughout this section, we assume that, for a given X ⊆ {0, 1}n, (a) in-
equality π>x ≤ π0 is valid and supports conv(X); (b) B is an exact BDD for
X, i.e., XB = X; and (c) for any i ∈ I, there exists x,x′ ∈ X such that xi = 0
and x′i = 1. Assumption (a) is a common lifting condition that is satisfied by
setting π0 := maxx∈X

{
π>x

}
. This, in turn, can be enforced in linear time in

the size of B (see §4.2). Assumption (b) is needed for our theoretical results
but it can be relaxed in practice (see §7). For (c), we can soundly remove any
i-th component not satisfying the assumption, adjusting n accordingly.

Our goal is to lift π>x ≤ π0 and better represent conv(X) by exploiting
the network structure of B. The resulting cuts are valid for any subset X ′ ⊆ X;
e.g., when B (and hence X) is a relaxation of some feasible set.

4.1 Disjunctive Slack Lifting

The core element of our lifting procedure is what we denote by disjunctive
slack vector (or d-slack in short). The i-th component of the d-slack indicates
the change in the maximum values of the left-hand side of π>x ≤ π0 when
varying xi. This is formalized in Definition 1.

8 Castro, Cire, and Beck

Definition 1 The disjunctive slack vector λ(π) with respect to π is given by

λi(π) := λ0i (π)− λ1i (π), ∀i ∈ I,

with λ0i (π) := maxx∈X{π>x : xi = 0} and λ1i (π) := maxx∈X{π>x : xi = 1}.

For notational convenience, we let S−(π) := {i ∈ I : λi(π) < 0}, S0(π) :=
{i ∈ I : λi(π) = 0}, and S+(π) := {i ∈ I : λi(π) > 0} be a partition of I
with respect to negative, zero, and positive d-slacks, respectively. Lemma 1
presents key properties of d-slacks used for our main results.

Lemma 1 For any λ(π) and index i ∈ I,

(1) i ∈ S−(π) if and only if xi = 1 for all x ∈ F (π).
(2) i ∈ S+(π) if and only if xi = 0 for all x ∈ F (π).
(3) i ∈ S0(π) if and only if there exists x,x′ ∈ F (π) with xi = 0 and x′i = 1.

Proof For the necessary conditions, consider first xi = 1 for all x ∈ F (π).
Since the solutions when optimizing over π>x must belong to the face F (π),
we must necessarily have λ1i (π) > λ0i (π) and so the d-slack λi(π) is negative.
An analogous reasoning holds for the other two cases.

For the sufficient conditions, consider first i ∈ S−(π). Then λ1i (π) = π0
and λ0i (π) < π0, i.e., all x ∈ F (π) are such that xi = 1. The same argument
can be applied to the case i ∈ S+(π). Lastly, if i ∈ S0(π), λ0i (π) = λ1i (π) = π0.
Thus, there exists x ∈ F (π) that maximizes λ1i (π) (i.e., xi = 1) and x′ ∈ F (π)
that maximizes λ0i (π) (i.e., x′i = 0). �

We now show in Theorem 1 how to apply the d-slacks to lift π>x ≤ π0.
In particular, the resulting inequality is valid for X (and thereby conv(X)),
the dimension of the face necessarily increases, and points separated by the
original inequality are still separated after lifting. This last characteristic is
important, e.g., if the input inequality π>x ≤ π0 was derived to separate a
fractional point. Note that we require a d-slack with a non-zero component to
rotate the inequality, as we later illustrate in Example 2.

Theorem 1 Suppose λi(π) 6= 0 for some i ∈ I. Let 〈π′, π′0〉 be such that

π′j :=

{
πj if j 6= i,

πj + λj(π) otherwise,
∀j ∈ I, π′0 :=

{
π0 if i ∈ S+(π),

π0 + λi(π) otherwise.

The following properties hold:

(1) π′>x ≤ π′0 is valid for X.
(2) F (π) ⊂ F (π′) and dim(F (π′)) ≥ dim(F (π)) + 1.
(3) For any x̄ ∈ [0, 1]n with π>x̄ > π0, we have that π′>x̄ > π′0.

Proof Let x ∈ X. We begin by showing (1) and (2). Assume first that i ∈
S+(π). By construction, π′>x ≤ π′0 ⇐⇒ π>x+ λi(π)xi ≤ π0.

A Combinatorial Cut-and-Lift Procedure 9

If xi = 0, the lifted inequality is equivalent to the original and therefore
valid. Otherwise, if xi = 1, i ∈ S+(π) implies that λi(π) = π0 − λ1i (π). Thus,

π′>x ≤ π′0 ⇐⇒ π>x+ π0 − λ1i (π) ≤ π0 ⇐⇒ π>x ≤ λ1i (π).

The last inequality above holds because we are restricting to the case xi = 1
and, by definition, λ1i (π) = maxx′∈X{π>x′ : x′i = 1}. Since x′i = 0 for all x′ ∈
F (π) (Lemma 1), the lifted inequality is tight for all x′ ∈ F (π), i.e., F (π) ⊂
F (π′). Notice also that this inequality is tight for x∗ = arg maxx′∈X{π>x′ :
x′i = 1}, i.e., x∗ ∈ F (π′). Then, x∗ is affinely independent to all points of
F (π) and therefore dim(F (π′)) ≥ dim(F (π)) + 1.

Assume now that i ∈ S−(π). Once again by construction, π′>x ≤ π′0 if
and only if π>x + λi(π)xi ≤ π0 + λi(π). If xi = 1, the lifted inequality is
equivalent to the original and therefore valid. Otherwise, if xi = 0, i ∈ S−(π)
implies that λi(π) = λ0i (π)− π0. Thus,

π′>x ≤ π′0 ⇐⇒ π>x ≤ π0 + λ0i (π)− π0 ⇐⇒ π>x ≤ λ0i (π).

The last inequality above holds because xi = 0 and, by definition, λ0i (π) =
maxx′∈X{π>x′ : x′i = 0}. As before, notice that this inequality is tight for
x∗ = arg maxx′∈X{π>x′ : x′i = 0}, i.e., x∗ ∈ F (π′). Since x′i = 1 for all
x′ ∈ F (π) (Lemma 1), the inequality is tight for all x′ ∈ F (π), x∗ is affinely
independent to all points of F (π), and therefore dim(F (π′)) ≥ dim(F (π))+1.

Lastly, we demonstrate (3). We restrict to the case i ∈ S+(π); the other
case is analogous. Given a fractional point x̄ ∈ [0, 1]n as defined above, we
have π′>x̄ = π>x̄+ λi(π)x̄i > π0 + λi(π)x̄i ≥ π0 = π′0. �

Example 2 Let X = {x ∈ {0, 1}4 : 7x1 + 5x2 + 4x3 + x4 ≤ 8} and consider an
inequality x1 +x2 ≤ 1 supporting conv(X). The d-slack is λ(π) = (0, 0, 1, 0)>

and the lifted inequality with respect to λ3(π) = 1 is π′>x = x1 +x2 +x3 ≤ 1.
Note that π′>x ≤ 1 is facet-defining for conv(X) and λ(π′) = 0. �

4.2 Extracting Disjunctive Slacks from a BDD

Identifying d-slacks λ(π) is a non-trivial task since we are required to solve 2n
binary optimization problems, i.e., one for each component i ∈ I and values
0 and 1. In this section, we leverage the network representation of a BDD
B = (N ,A) for X to generate all d-slacks simultaneously, which is key to the
computational complexity of the approach. We also show that the procedure
complexity is linear in the number of arcs |A| of B.

We associate a length of πi · va to each arc a ∈ A with value va ∈ {0, 1}
and source s(a) ∈ Ni for some i ∈ I. The longest r− t path of B with respect
to such lengths maximizes π>x over X. Given the r− t paths P of B, let

`a := max

{
n∑
k=1

πk · vak : p = (a1, . . . , an) ∈ P, ai = a

}

10 Castro, Cire, and Beck

be the longest-path value conditioned on all paths that include arc a. Because
each variable is uniquely associated with a layer, it follows that

λji (π) = max
a∈A
{`a : s(a) ∈ Ni, va = j} , ∀i ∈ I, ∀j ∈ {0, 1},

and the final d-slacks are obtained by the differences λ0i (π)− λ1i (π) for all i.
The lengths `a are derived by performing two longest-path computations

over B. Specifically, let Ain(u) and Aout(u) be the set of incoming and outgoing
arcs of a node u ∈ N , respectively. The solution of the recursion L↓(π, r) = 0,

L↓(π, u) = max
a∈Ain(u)

{L↓(π, s(a)) + πi−1 · va}, ∀u ∈ Ni,∀i ∈ {2, . . . , n+ 1}

provides the longest-path value L↓(π, u) from r to u, while L↑(π, t) = 0,

L↑(π, u) = max
a∈Aout(u)

{L↑(π, t(a)) + πi · va}, ∀u ∈ Ni, ∀i ∈ {1, . . . , n},

provides the longest-path value L↑(π, u) from u to t. The values L↓(π, u) can
be calculated via a top-down pass on B, i.e., starting from r and considering one
layer N2, . . . ,Nn+1 at a time. Analogously, the values L↑(π, u) are obtained
via a bottom-up pass on B, i.e., starting from t and considering one layer
Nn,Nn−1, . . . ,N1 at a time. For any arc a = (s(a), t(a)) such that s(a) ∈ Ni,
its length is given by `a = L↓(π, s(a)) + L↑(π, t(a)) + πi · va. Since each arc
is traversed twice via the top-down and bottom-up passes, the complexity of
the procedure is O(|A|).

We remark that the algorithm above is similar in spirit to the lifting pro-
cedures for cover inequalities based on dynamic programming [60,29,59], in
particular also solving a recursive model to lift coefficients. The existing tech-
niques, however, are applicable only for the knapsack polytope, solve a new
dynamic program for each inequality to be lifted, and specialize on cover in-
equalities. In contrast, our approach is suitable for any set X and valid linear
inequality, and utilizes the same BDD to lift any given inequality (i.e., the
BDD needs to be constructed only once).

4.3 Sequential Lifting and Dimension Implications

The lifting procedure detailed in Theorem 1 can be applied sequentially to
strengthen an inequality. Specifically, we start with 〈π, π0〉 satisfying our main
assumptions (a)-(c). Next, we calculate the d-slacks, choose i ∈ I such that
λi(π) 6= 0, and apply Theorem 1 to obtain the tuple 〈π′, π′0〉 defining the
lifted inequality. We re-apply this operation with the new 〈π′, π′0〉, and repeat
until all d-slacks are equal to zero. The procedure stops in a finite number of
iterations since the face dimension increases after each rotation; see property
(2) of Theorem 1. We summarize the procedure in Algorithm 1.

The choice of i in step 4 of Algorithm 1 is critical to the dimension of the
resulting face, as illustrated in Example 3.

A Combinatorial Cut-and-Lift Procedure 11

Algorithm 1 Sequential Combinatorial Lifting Procedure
1: procedure CombinatorialLifting(〈π, π0〉, B)
2: Calculate the disjunctive slacks λ(π) using B as explained in §4.2
3: while λ(π) 6= 0 do
4: Choose i ∈ I such that λi(π) 6= 0
5: Apply Theorem 1 to calculate 〈π′, π′0〉
6: Set 〈π, π0〉 = 〈π′, π′0〉
7: Recalculate λ(π)

8: return 〈π, π0〉

Example 3 Consider the set X = {x ∈ {0, 1}3 : 5x1 + 2x2 + 3x3 ≤ 6} and
inequality π>x = x1 + x2 + x3 ≤ 2 that supports conv(X). We have λ(π) =
(1,−1,−1)> and the lifted inequality with respect to λ1(π) = 1 is π′>x =
2x1+x2+x3 ≤ 2 and has λ(π′) = 0. The lifted inequality is not facet-defining
since dim(conv(X)) = 3 and dim(F (π′)) = 1.

If we instead lift x1 + x2 + x3 ≤ 2 with respect to λ2(π) = −1 the lifted
inequality is π′>x = x1 + x3 ≤ 1 and λ(π′) = 0. In this case, the lifted
inequality is facet-defining since dim(F (π′)) = 2. �

In order to understand the impact of the index choice, we first show in
Lemma 2 a relationship between d-slacks and the dimension of the face. Specif-
ically, the cardinality of S0(π) bounds dim(F (π)). We later use this result to
gauge when the sequential procedure leads to a facet-defining inequality.

Lemma 2 The dimension of a face F (π) satisfies dim(F (π)) ≤ |S0(π)|.
Moreover, |S0(π)| = 0 if dim(F (π)) = 0.

Proof For any i ∈ S−(π) ∪ S+(π), the value of xi is fixed at either 0 or 1
for all x ∈ F (π) according to Lemma 1. Thus, the dimension of dim(F (π))
is bounded by |S0(π)|, since at most |S0(π)| + 1 affinely independent points
can be obtained from F (π). Now, assume S0(π) 6= ∅ and dim(F (π)) ≥ 0.
There exist x,x′ ∈ F (π) such that xi 6= x′i for i ∈ S0(π). These two points
are affinely independent and therefore dim(F (π)) ≥ 1. Thus, S0(π) = ∅ if
dim(F (π)) = 0. �

Example 3 depicts a case where |S0(π)| increases faster than the number
of affinely independent points in F (π). In view of Lemma 2, we would like to
choose i so that |S0(π)| increases at a slower rate, since each lifting operation
increases dim(F (π)) by at least one according to Theorem 1-(2). We show in
Theorem 2 that the slow increase of |S0(π)| occurs when there exists a unique
slack with minimum non-zero absolute value.

Theorem 2 Suppose there exists i 6∈ S0(π) such that |λi(π)| < |λi′(π)| for
all i′ 6∈ S0(π) (i′ 6= i). Then, for 〈π′, π′0〉 obtained when lifting 〈π, π0〉 with
respect to λi(π), dim(F (π′)) = dim(F (π)) + 1 and |S0(π′)| = |S0(π)|+ 1.

Proof From Lemma 1, it suffices to show that, for any x ∈ F (π′) and i′ 6∈
S0(π) such that i′ 6= i, we have: 1) i′ ∈ S+(π) implies that xi′ = 0; and

12 Castro, Cire, and Beck

2) i′ ∈ S−(π) implies that xi′ = 1. In such cases, an index i′ that was originally
in S−(π) or S+(π) will remain in its original partition S−(π′) or S+(π′) for
the lifted π′. The statement then follows due to Theorem 1-(2) and Lemma 2.

We will focus our attention to the case λi(π) > 0 (the others are analo-
gous). For any x ∈ F (π′), we have by construction that π>x = π′0−λi(π)xi ≥
π0 − λi(π). Assume, for the purpose of a contradiction, that xi′ = 1 and that
λi′(π) > 0. Thus, λ1i′(π) ≥ π>x ≥ π0 − λi(π). Moreover, λ0i′(π) = π0. This
implies that λi′(π) = λ0i′(π) − λ1i′(π) ≤ π0 − π0 + λi(π) ≤ λi(π) and hence
0 < λi′(π) ≤ λi(π). This cannot hold since |λi(π)| < |λi′(π)|.

Similarly, assume that λi′(π) < 0 and xi′ = 0. Then, λ0i′(π) ≥ π0 − λi(π)
and λ1i′(π) = π0. This implies that λi′(π) = λ0i′(π)−λ1i′(π) ≥ π0−λi(π)−π0 =
−λi(π). Thus, 0 > λi′(π) ≥ −λi(π). This contradicts |λi(π)| < |λi′(π)|. �

Theorem 2 provides a simple choice rule based on picking i with the min-
imum absolute d-slack. It also indicates when this rule will converge to a
facet-defining inequality. We formalize it in Corollary 1 below, which can be
derived as a direct consequence of Theorem 2.

Corollary 1 If dim(F (π)) = |S0(π)|, the sequential lifting procedure (Algo-
rithm 1) with the minimum slack absolute rule produces a facet-defining in-
equality if, at each lifting iteration except the last, the chosen i ∈ I is such
that |λi(π)| < |λi′(π)| for all i′ 6∈ S0(π) (i′ 6= i).

Finally, we note that, in general, it may not be possible to achieve a facet-
defining inequality. For example, all non-zero d-slacks can have the same ab-
solute value and the cardinality of |S0(π)| might increase by more than one
while the dimension of F (π) does not (see Example 3).

4.4 Relationship with Lifting based on Disjunctive Programming

We now formalize the connection between our lifting methodology and the n-
step lifting procedure by Perregaard and Balas [50] mentioned in §3. Assume
that X = {Ax ≤ b, x ∈ {0, 1}n} for a matrix A and vector b of appropriate
dimensions. We consider a relaxation of the form DP-L that includes one
disjunctive term for each index i ∈ I and removes all integrality constraints:

max
x

{
c>x : Ax ≤ b,

∨
i′∈I

(xi′ ≤ 0) ∨ (xi′ ≥ 1), x ∈ [0, 1]n

}
. (DP-L)

Proposition 1 below shows that, for DP-L, the optimal rotation parameter
in the n-step lifting is such that γ∗ = |λi(π)| when using the individual binary
disjunctions as target inequalities.

Proposition 1 Suppose λi(π) 6= 0 for some i ∈ I. Then, γ∗ = |λi(π)| if we
employ either xi ≤ 0 or xi ≥ 1 as a target inequality in the n-step procedure.

A Combinatorial Cut-and-Lift Procedure 13

Proof Consider the case when i ∈ S+(π) and let ei be the i-th column of an
n× n identity matrix. Since all x ∈ F (π) have xi = 0 , π̃>x = e>i x = xi ≤ 0
is an invalid target inequality for conv(X) and satisfies π̃>x = xi = 0 for all
x ∈ F (π). The system that defines γ∗ is therefore

γ∗ = min
x∈[0,1]n,x0≥0

{
π0x0 − π>x : Ax ≤ b, −xi = −1,

∨
i′∈I

(xi′ ≤ 0) ∨ (−xi′ + x0 ≤ 0)

}
. (1)

It follows from (1) and xi = 1 that x0 ≤ 1. Without loss of generality, we
consider x0 = 1. The system reduces to:

γ∗ = min
x,x0

{
π0x0 − π>x : Ax ≤ b, xi = 1, x ∈ {0, 1}n, x0 = 1

}
= π0 −max

x
{π>x : x ∈ X, xi = 1} = λ0i (π)− λ1i (π) = λi(π).

The second to last equality comes from i ∈ S+(π) and λ0i (π) = π0. The proof
for i ∈ S−(π) and target inequality π̃>x = xi ≥ 1 is analogous. �

Proposition 1 indicates when these techniques are equivalent. By taking
π̃>x = xi ≤ 0 as the target inequality, we obtain γ∗ = λi(π) > 0. The rotated
inequality (π + γ∗π̃)>x = (π + λi(π)ei)

>x ≤ π0 is equivalent to the lifted
inequality in Theorem 1. Similarly, using target inequality π̃>x = −xi ≤ −1
would result in γ∗ = −λi(π) > 0. Then, the rotated and lifted inequalities are
equivalent, i.e., π + γ∗π̃ = π + λi(π)ei and π0 + γ∗π̃0 = π0 + λi(π).

While the techniques are equivalent in this restricted case, our approach is
valid for any binary set X and, thus, can handle models where a BDD (or BDD
relaxation) is a more advantageous representation in comparison to a linear
description of X [14]. We also note that the BDD network structure allows us
to efficiently compute the disjunctive terms in a combinatorial fashion.

5 Combinatorial Cutting-Plane Algorithm

While the BDD-based lifting procedure developed in §4 can enhance inequal-
ities from any cutting-plane methodology, we now exploit similar concepts to
derive new valid inequalities for X based on the network structure of B. In
particular, we design inequalities that separate points from X by only relying
on the combinatorial structure encoded by B. Thus, no other specific structure
(e.g., linearity, submodularity, or gradient information) is required.

We assume, as before, that we are given an exact BDD B for X. Our
cutting-plane method is based on an alternative linear description of B as an
extended capacitated flow problem. We present this formulation in §5.1 and
our BDD-based cut generation linear program in §5.2. For cases where solving
such model is not computationally practical, in §5.3 we develop a weaker but
more efficient combinatorial cutting-plane method based on a max-flow/min-
cut problem over B. Finally, we show in §5.4 the relationship between our
approach and existing BDD cutting-plane techniques [27,55].

14 Castro, Cire, and Beck

5.1 BDD Polytope

Existing BDD-based cut generation procedures [27,44,55] rely on the network-
flow formulation NF(B) introduced by Behle [12], described as follows:

NF(B) :=
{

(x;y) ∈ [0, 1]n × R|A|+ :∑
a∈Aout(u)

ya −
∑

a∈Ain(u)

ya = 0, ∀u ∈ N \ {r, t}, (2a)

∑
a∈Aout(r)

ya =
∑

a∈Ain(t)

ya = 1, (2b)

∑
a∈A:s(a)∈Ni,va=1

ya = xi, ∀i ∈ I
}
. (2c)

Equalities (2a) and (2b) are balance-of-flow constraints over B. Constraint
(2c) links the arcs of B with solutions x. In particular, the polytope NF(B)
projected over the x variables is equivalent to the convex hull of all solutions
represented by B, i.e., Projx(NF(B)) = conv(X).

One drawback of NF(B) is that constraints (2c) only consider flow vari-
ables associated with arc labels equal to one (i.e., va = 1). Thus, there is no
constraint explicitly limiting the flow passing through zero-value arcs. CGLPs
based on NF(B) are potentially unbounded, which has been a fundamental
challenge in existing works [55,27].

We propose an alternative formulation of NF(B) that addresses its main
limitations and use the reformulation to define our cutting-plane algorithms.
The new formulation, here denoted by JNF(B), corresponds to a joint capac-
itated network-flow polytope. The new model maintains the flow conserva-
tion constraints, (2a) and (2b), and replaces (2c) with (3a) and (3b) below.
Both inequalities enforce a common capacity for arcs in a layer with the same
value. Proposition 2 shows that the two formulations are equivalent and, thus,
Projx(JNF(B)) = conv(X).

JNF(B) :=
{

(x;y) ∈ [0, 1]n × R|A|+ : (2a)− (2b),∑
a∈A:s(a)∈Ni,va=1

ya ≤ xi, ∀i ∈ I, (3a)

∑
a∈A:s(a)∈Ni,va=0

ya ≤ 1− xi, ∀i ∈ I
}
. (3b)

Cut generation methods based on capacitated network flows over BDDs
have been previously studied in the context of two-stage stochastic programs
[44]. In our model, the proposed polytope JNF(B) is specially structured given,
e.g., the use a single variable xi per layer i to limit the capacity of the zero
and one-value arcs. This structural property give us desired properties for
separation in §5.2, and is key to when developing combinatorial cuts that do
not depend on linear programs in §5.3.

A Combinatorial Cut-and-Lift Procedure 15

Proposition 2 JNF(B) = NF(B).

Proof Consider (x′;y′) ∈ NF(B), so (x′;y′) satisfies (2a) and (2b). Since (2c)
holds, (x′;y′) also satisfies (3a). From the flow conservation constraints, (2a)
and (2b), the flow traversing each layer i ∈ I in B is exactly one, i.e.,∑

a∈A : s(a)∈Ni

y′a = 1 ⇒
∑

a∈A:s(a)∈Ni : va=1

y′a +
∑

a∈A:s(a)∈Ni : va=0

y′a = 1

⇒
∑

a∈A:s(a)∈Ni : va=0

y′a = 1− x′i.

Then, (x′;y′) satisfies (3b) and (x′;y′) ∈ JNF(B). Consider now (x′;y′) ∈
JNF(B). Since flows traversing a layer sum to one, constraints (3a) and (3b)
are satisfied as equalities and therefore (2c) holds for (x′;y′). �

5.2 General BDD Flow Cuts

Our cutting-plane procedure formulates a max-flow optimization problem over
JNF(B) to identify and separate points x′ 6∈ conv(X), given by (4) below:

z(B;x′) := max
y∈R|A|+

 ∑
a∈Aout(r)

ya : (2a), (3a)− (3b),x = x′

 . (4)

This model omits constraint (2b) which enforces the flow to be equal to one.
We argue in Lemma 3 that z(B;x′) = 1 is a necessary and sufficient condition
to check if x′ belongs to conv(X).

Lemma 3 x′ ∈ conv(X) if and only if z(B;x′) = 1.

Proof Constraints (3a) and (3b) enforce that the flow in each layer i is at most
x′i + 1− x′i = 1. Thus, z(B;x′) ≤ 1. Consider x′ ∈ conv(X). From Proposition

2, there exists y′ ∈ R|A|+ such that
∑
a∈Aout(r) y

′
a = 1 and therefore z(B;x′) = 1.

For the converse, suppose z(B;x′) = 1. It follows that there exists y′ ∈ R|A|+

such that (x′;y′) ∈ JNF(B) = NF(B), so x′ ∈ conv(X). �

Our BDD-based CGLP uses the dual of (4) to separate x′ 6∈ conv(X). Con-
sider ω ∈ R|N | and ν,η ∈ Rn+ as the dual variables associated with constraints
(2a), (3a), and (3b), respectively. The resulting model is

min
ω,ν,η

∑
i∈I

x′iνi +
∑
i∈I

(1− x′i)ηi (BDD-CGLP)

s.t. ωt(a) − ωs(a) + vaνi + (1− va)ηi ≥ 0, ∀i ∈ I, a ∈ A, s(a) ∈ Ni, (5a)

ωt(a) + vaν1 + (1− va)η1 ≥ 1, ∀a ∈ Aout(r), (5b)

− ωs(a) + vaνn + (1− va)ηn ≥ 0, ∀a ∈ Ain(t), (5c)

ω ∈ R|N |, ν,η ∈ Rn+. (5d)

16 Castro, Cire, and Beck

Let w(B;x′) be the optimal solution value of BDD-CGLP. Strong duality
and Lemma 3 imply that we can identify if a point x′ belongs to conv(X) if
w(B;x′) = 1. Furthermore, we can use the optimal solution (ν∗;η∗) to create
a valid cut when w(B;x′) < 1. Specifically, the cut is given by∑

i∈I
xiν
∗
i +

∑
i∈I

(1− xi)η∗i ≥ 1. (6)

Theorem 3 shows that the set of all cuts of the form (6) describes conv(X).

Theorem 3 Let Λ(B) be the set of extreme points of the BDD-CGLP polyhe-
dron defined by (5a)-(5d). Furthermore, let PB be the set of points x ∈ [0, 1]n

that satisfy (6) for all (ν;η) ∈ Projν,η(Λ(B)). Then, conv(X) = PB.

Proof Consider a point x′ ∈ conv(X). Lemma 3 guarantees that z(B;x′) =
w(B;x′) = 1, so constraint (6) holds for any extreme point of BDD-CGLP.
Now consider a point x′ ∈ PB. Since x′ satisfies (6) for all extreme points in
Λ(B), we have that w(B;x′) ≥ 1 and, thus, w(B;x′) = z(B;x′) = 1. Finally,
using Lemma 3, we have that x′ ∈ conv(X). �

Thus, we solve BDD-CGLP to separate points x′ /∈ conv(X). The proce-
dure returns a cut (6) where (ν∗;η∗) is the optimal solution of BDD-CGLP.

5.3 Combinatorial BDD Flow Cuts

The above cutting-plane procedure requires solving a linear program with
|A| constraints and |N | + 2n variables. Obtaining w(B;x′), thus, could be
computationally expensive for instances where B is large (see §7). We propose
an alternative cut-generation procedure based on BDD-CGLP that involves a
combinatorial and more efficient max-flow solution over B.

First, we consider a reformulation of JNF(B) where the joint capacity con-
straints are replaced by individual constraints for each arc, i.e., a standard
capacitated network flow polytope over B:

CNF(B) := {(x;y) ∈ [0, 1]n × R|A|+ : (2a)− (2b),

ya ≤ xi, ∀a ∈ A, s(a) ∈ Ni, va = 1, i ∈ I, (7a)

ya ≤ 1− xi, ∀a ∈ A, s(a) ∈ Ni, va = 0, i ∈ I}. (7b)

Proposition 3 JNF(B) ⊆ CNF(B). Moreover, for any integer x /∈ conv(X),
we have that x /∈ Projx(CNF(B)).

Proof Consider x′ ∈ JNF(B). By construction, x′ satisfies (2a)-(2b). Since x′

satisfies (3a) and (3b), it follows that x′ holds for (7a) and (7b).

Now take an integer point x′ /∈ conv(X) and y′ ∈ R|A|+ such that (x′;y′)
satisfies (2a), (7a)-(7b). Notice that such a y′ exists (e.g., y′ = 0). By construc-
tion, there is no path p ∈ P associated with x′. From constraints (7a)-(7b), in
any path p ∈ P there exists an arc a ∈ p with capacity zero (i.e., ya ≤ 0). We
can then deduce that y′ = 0, therefore (x′;y′) violates (2b). Finally, for any

x′ ∈ {0, 1}n \ conv(X) there is no y′ ∈ R|A|+ such that (x′;y′) ∈ CNF(B). �

A Combinatorial Cut-and-Lift Procedure 17

Proposition 3 shows that for any integer point x′, x′ 6∈ X implies x′ 6∈
Projx(CNF(B)). Example 4 illustrates that, conversely, there might exist frac-
tional points x′ /∈ conv(X) such that x′ ∈ Projx(CNF(B)), and hence CNF(B)
is a weaker representation.

Example 4 Consider our example X = {x ∈ {0, 1}4 : 7x1+5x2+4x3+x4 ≤ 8},
a fractional point x′ = (0.4, 0.6, 0.4, 1), and the exact BDD B1 in Figure 1. It
is easy to see that x′ /∈ conv(X) since 7x′1+5x′2+4x′3+x′4 = 8.4 ≥ 8. However,

there exists a y′ ∈ R|A|+ such that (x′,y′) ∈ CNF(B) with value y(r,u1) = 0.6,
y(r,u2) = 0.4, y(u1,u4) = 0.2, y(u1,u3) = 0.4, y(u2,u4) = 0.4, y(u3,u4) = 0.4,
y(u4,u5) = 0.6, y(u5,t) = 1, and all other arcs with flow equal to zero. �

Similar to the general BDD flow cuts, we use the dual of the max-flow
version of CNF(B) to identify points that do not belong to conv(X). Consider
ω ∈ R|N | as the dual variables associated with constraints (2a) and α the dual
variables associated with constraints (7a)-(7b). Then, the separation problem
for the alternative BDD cuts is as follow:

min
ω,α

∑
i∈I

 ∑
a∈A:s(a)∈Ni,va=1

x′iαa +
∑

a∈A:s(a)∈Ni,va=0

(1− x′i)αa

 (CN-CGLP)

s.t. ωt(a) − ωs(a) + αa ≥ 0, ∀i ∈ I, a ∈ A, s(a) ∈ Ni,
ωt(a) + αa ≥ 1, ∀a ∈ Aout(r),

− ωs(a) + αa ≥ 0, ∀a ∈ Ain(t),

ω ∈ R|N |, α ∈ R|A|+ .

Let wr(B;x′) be the optimal solution value of CN-CGLP. Proposition 3
implies that for any x′ ∈ conv(XB), wr(B;x′) = 1. It follows that inequality
(9) holds for any x ∈ conv(XB), where α∗ is optimal to CN-CGLP:

∑
i∈I

 ∑
a∈A:s(a)∈Ni,va=1

xiα
∗
a +

∑
a∈A:s(a)∈Ni,va=0

(1− xi)α∗a

 ≥ 1. (9)

Of important note is that CN-CGLP is a classical min-cut problem, i.e., we
are searching for a maximum-capacity arc cut in the network that certifies that
a point does not belong to the convex hull of X. While the resulting inequalities
are not as strong as the general BDD cuts from BDD-CGLP, we can leverage
max-flow/min-cut combinatorial algorithms to solve it more efficiently in the
size of the BDD. Several algorithms are readily available to that end [1] and
provide both primal and dual solutions to CN-CGLP.

Furthermore, another consequence of the design of such cuts is that their
strength depends on the BDD size. That is, two BDDs B and B′ encoding the
same set might generate different combinatorial flow cuts because of distinct
min-cut solutions. We show in Theorem 4 that the reduced BDD, which is
unique, generates the tightest CNF(B) formulation and is hence critical in such
a formulation. We note that a reduced BDD can be generated in polynomial
time in B′ for any B′ representing the desired solution set [22].

18 Castro, Cire, and Beck

Theorem 4 Let Br = (N r,Ar) be the reduced version of B, i.e., XBr = XB,
and for each layer i ∈ I, |N r

i | ≤ |Ni|. Then, CNF(Br) ⊆ CNF(B).

Proof Consider P r to be the set of r− t paths in Br. First, XBr = XB implies
that, for any r − t path p ∈ P, there exists a unique r − t path p′ ∈ P r such
that xp = xp

′
. Thus, we will consider that the set of paths in both BDDs are

equivalent, i.e., P r = P.

Let Ai = {a ∈ A : s(a) ∈ Ni} and Ar
i = {a ∈ Ar : s(a) ∈ N r

i }. Since Br is
unique, there exists a unique surjective function fi : Ai → Ar

i that maps arcs
from B to Br for each layer i ∈ I. Thus, for every arc a ∈ Ar

i, let us define the
pre-image of fi as f−1i (a) := {a′ ∈ Ai : f(a′) = a}, i.e., the subset of arcs
in Ai that map to arc a ∈ Ar

i. Next, denote by Γ (B; a) := {p ∈ B : a ∈ p}
the set of paths in a BDD that traverse an arc a ∈ A. From the construction
procedure of Br given B [22], Γ (Br; a) =

⋃
a′∈f−1

i (a) Γ (B; a′) for all a ∈ Ar
i, i.e.,

the set of r− t paths passing through a is equivalent to the set of r− t paths
passing through all the arcs in f−1i (a).

Now consider the path formulation of CNF(B), CNFP (B). It suffices to
show that CNFP (Br) ⊆ CNFP (B). Since the paths in B and Br are equivalent,
we will consider equivalent variables w for CNFP (Br) and CNFP (B).

CNFP (B) := {(x;w) ∈ [0, 1]n × R|X(B)|
+ :∑

p∈P:a∈p
wp ≤ xi, ∀a ∈ Ai, va = 1, i ∈ I, (10a)

∑
p∈P:a∈p

wp ≤ 1− xi, ∀a ∈ Ai, va = 0, i ∈ I}. (10b)

Using the path equivalence Γ (Br; a) =
⋃
a′∈f−1

i (a) Γ (B; a′) for any a ∈ Ar
i

and i ∈ I, we have that

∑
p∈P r:a∈p

wp =
∑

a′∈f−1
i (a)

∑
p∈P:a′∈p

wp, ∀a ∈ Ar
i, i ∈ I.

Thus, constraints (10a) and (10b) of CNFP (Br) are tighter since they restrict
more paths than for the case of CNFP (B). This implies that, for any (x′;w′) ∈
CNFP (Br), (x′;w′) ∈ CNFP (B). �

Theorem 4 indicates that the reduced BDD can separate more points than
any other BDD representing the same solution set. We also note in passing that
the variable ordering plays a role on the size of the BDD and, hence, on the
effectiveness of the combinatorial BDD flow cuts. Investigating variable order-
ings for specific problem classes and how they impact the cuts (theoretically
and computationally) may lead to new research avenues.

A Combinatorial Cut-and-Lift Procedure 19

5.4 Relationship with Existing BDD Cut Generation Procedures

The two existing BDD-based CGLPs rely on dual reformulations of NF(B),
and, thus, also describe conv(X) [55,27]. These techniques rely on additional
information: Tjandraatmadja et al. (2019) [55] CGLP requires an interior point
of X and Davarnia et al. (2020) [27] must incorporate possibly non-linear
normalization constraints. In contrast, BDD-CGLP exploits the structure of
B directly to describe conv(X). We now detail these two BDD-based CGLPs
and highlight the main theoretical differences to BDD-CGLP.

Consider ω ∈ R|N | as the dual variables associated with constraints (2a)
and (2b), and θ ∈ Rn as the dual variables associated with (2c). The two
BDD-based CGLP models employ flow inequalities of the form

ωt(a) − ωs(a) + θiva ≥ 0, ∀i ∈ I, a ∈ A, s(a) ∈ Ni. (11)

Notice that (11) resembles the flow inequalities (5a)-(5c) of BDD-CGLP. How-
ever, our flow constraints use two sets of positive dual variables for each
BDD layer (i.e., ν,η ∈ Rn+) instead of the single unbounded set of variables
θ ∈ Rn. This difference emerges because (2c) only bounds the arc flow vari-

ables y ∈ R|A|+ with value va = 1, while our joint-capacity constraints (3a)-(3b)
bound all variables y. This is one reason, e.g., why BDD-CGLP does not re-
quire any normalization as in previous techniques.

Tjandraatmadja et al. (2019) [55] propose a BDD-based CGLP (12) to gen-
erate target cuts that are facet-defining. Their CGLP yields a valid inequality
that intersects the ray passing through an interior point u ∈ conv(X) and
the fractional point x′ ∈ [0, 1]n to be cut-off. The procedure returns a cut
θ∗>x′ ≤ 1 + θ∗>u whenever the optimal value of (12) is greater than one.

max
ω,θ

{
θ>(x′ − u) : (11), ωt = 0, ωr = 1 + θ>u

}
. (12)

Davarnia et al. (2020) [27] circumvent the need of an interior point by
proposing a simpler but possibly non-linear BDD-based CGLP presented in
(13). The model checks if x′ can be represented as a linear combination of
points in X, i.e., whether there exists θ,ω such that θ>x′ = ωt. Otherwise,
their procedure returns a valid inequality θ∗>x ≤ ω∗t , which is not necessarily
facet-defining. Since the model may be unbounded, the optimization problem
(13) includes normalization constraints C(ω,θ) ≤ 0 which are potentially non-
linear. The CGLP (13) is addressed by an iterative subgradient algorithm.

max
ω,θ

{
θ>x′ − ωt : (11), ωr = 0, C(ω,θ) ≤ 0

}
. (13)

Note that, in our approach, we either solve BDD-CGLP (a linear program)
or a single max-flow/min-cut problem, both relying only on B. We compare
our cutting-plane approaches with these procedures in §7.

20 Castro, Cire, and Beck

6 Case Study: Second-order Cone Programming

For our numerical evaluation, we apply our combinatorial cut-and-lift proce-
dure to binary problems with SOC inequalities with the following form

max
x∈{0,1}n

{
c>x : a>j x+ ||D>j x− hj ||2 ≤ bj , ∀j ∈ {1, ...,m}

}
, (SP)

where || · ||2 is the Euclidean norm and, for each j, aj ,hj , and Dj are real
vectors and matrices of appropriate dimension. SOC inequalities arise in many
applications, including network design [3], assortment [53], overcommitment
[26], and chance-constrained stochastic problems [49,40]. Moreover, SOCPs
are supported by commercial solvers such as CPLEX [35] and Gurobi [31] which
facilitate the evaluation with state-of-the-art techniques. Our methodology,
thus, also aims at contributing to the active research in linearization/lifting
methods [56,57] as well as cutting methods [5,6,4,18,42] in this area.

The general SOC inequalities can be rewritten as:

a>x+ ||D>x− h||2 ≤ b ⇔ a>x+

√ ∑
k∈{1,...,l}

(d>k x− hk)2 ≤ b. (14)

We propose a novel BDD encoding for (14) using a recursive reformulation
based on the methodology by Bergman and Cire (2018) [14]. Specifically, our
formulation considers each linear component of (14) independently and applies
a variant of the convex composition operator [14] to create relaxed BDDs,
which is extended to handle multiple linear terms within a convex function
and is tailored to SOCs. We present our recursive model below and refer to
Appendix A for details of the BDD relaxation.

Our recursive formulation considers l+1 sets of state variables, Q0,Q1, ...,
Ql, where each set of variables has n + 1 stages, i.e., Qk ∈ Rn+1 for each
k ∈ {0, 1, ..., l}. State variables Q0 represent the value of the linear term (i.e.,
a>x), while Qk encodes the k-th linear expression in the quadratic term (i.e.,
d>k x− hk). The recursive model for (14) is given by

RSOC :=
{

(x;Q) ∈ {0, 1}n × R(l+1)×(n+1) :

Q0,0 = 0, Qk,0 = hk, ∀k ∈ {1, ..., l}, (15a)

Q0,i = Q0,i−1 + aixi, ∀i ∈ I, (15b)

Qk,i = Qk,i−1 + dkixi, ∀i ∈ I, k ∈ {1, ..., l}, (15c)

Q0,n +

√ ∑
k∈{1,...,l}

(Qk,n)
2 ≤ b

}
. (15d)

The first set of equalities (15a) initialize the state variables at stage 0. Equal-
ities (15b) and (15c) correspond to the recursive formulas for each linear
expression, and constraint (15d) enforces the SOC inequality. Notice that
Projx(RSOC) is equivalent to the feasible set of the SOC inequality (14).

A Combinatorial Cut-and-Lift Procedure 21

An exact BDD B = (N ,A) is the reduced state-transition graph of a
dynamic program, where each BDD node maps to a state variable and each
arc represents a state transition. If we consider, for example, the RSOC model,
the root node r stores the stage-0 values, and each node u in layer i ∈ I
corresponds to a reachable state from the (i − 1)-th stage. The recursions
(15b) and (15c) are used to compute the transitions between nodes.

The proposed recursive model (and thereby the BDD) can be used for any
type of SOC inequality. For our numerical evaluation, we consider two classes
of SOC inequalities commonly found in the literature. The first is defined by
SOC knapsack inequalities [5,36], i.e., where D ∈ Rn×n is a diagonal matrix
and the SOC constraint is given by

a>x+Ω

√∑
i∈I

d2iixi ≤ b. (16)

We develop a simpler recursive model for (16) with only two sets of state
variables,Q0 andQ1. As before,Q0 represents the linear term andQ1 encodes
the linear term inside the square root. Thus, the recursive model is given by

RSOC-K :=
{

(x;Q) ∈ {0, 1}n × R2×(n+1) : (15a), (15b),

Q1,i = Q1,i−1 + d2iixi, ∀i ∈ I, Q0,n +Ω

√∑
i∈I

Q1,n ≤ b
}
.

For our second class, we consider SOC inequalities derived from chance
constraints of the form P(ξ>x ≤ b) ≥ ε where ξ is a random variable with
normal distribution N(a, D) and ε ∈ [0.5, 1] [49,40]. Specifically, the constraint
can be reformulated as

a>x+ Φ−1(ε)||Dx||2 ≤ b ⇔ a>x+Ω

√ ∑
k∈{1,...,n}

(d>k x)2 ≤ b, (17)

where we use Ω = Φ−1(ε) for simplicity. Notice that (17) is a special case of
(14) where D is square matrix and h = 0.

An exact BDD for both problem classes can grow exponentially large.
Therefore, we construct relaxed BDDs using a standard incremental refine-
ment procedure [16]. For completeness, we provide a detailed explanation of
our BDD construction procedure in Appendix A.

7 Empirical Evaluation and Discussion

This section presents an empirical evaluation of our combinatorial cut-and-lift
procedure for SP (see §6). We create a BDD for each of the m SOC inequalities
and apply our procedure for each such constraint at the root node of the
branch-and-bound tree. For any fractional point x ∈ [0, 1]n, we iterate over
each BDD until one of them generates a cut, as we describe in detail below.

22 Castro, Cire, and Beck

We then lift the inequality using Algorithm 1. The procedure ends when x
cannot be cut-off by any BDD.

Datasets. We test our approach on the SOC knapsack (SOC-K) benchmark
[5,36] composed of 90 instances with n ∈ {100, 125, 150} variables and m ∈
{10, 20} constraints. We also generate a random set of instances (SOC-CC)
for the more general SOC inequalities derived from chance constraints (i.e.,
inequality (17)) following a similar procedure to the one used for SOC-K. We
consider n ∈ {75, 100, 125}, m ∈ {10, 20}, Ω ∈ {1, 3, 5}, and a density of
2/
√
n over all the constraints. Parameters aj , Dj , and c are sampled from

a discrete uniform distribution with aj ∈ [−50, 50]n, Dj ∈ [−20, 20]n×n, and
c ∈ [0, 100]n. Parameters bj are given by

bj = t ·

∑
i∈I

a+ji +Ω

√√√√∑
i∈I

max

{∑
k∈I

d+jik,
∑
k∈I

d−jik

}2
 , ∀j ∈ {1, ...,m},

where t ∈ {0.1, 0.2, 0.3} is the constraint tightness, f+ := max{0, f}, and
f− := max{0,−f} for any f ∈ R. Note that bj with t = 0.3 will remove
approximately 50% of the possible assignments for x ∈ {0, 1}n. Then, we gen-
erate 5 random instances for each parameter combination, i.e., 270 instances.

Benchmarks. We implement four basic variants of our approach to assess the
BDD cuts and the lifting procedure. B-Flow computes the low-complexity
combinatorial flow cuts in §5.3, while B-Gen also compute these cuts and, if
the approach fails to produce any cut, it applies BDD flow cuts derived from
our proposed CGPL in §5.2. The two other variants, B-Gen+L and B-Flow+L

are the respective versions of these cutting algorithms augmented with the
proposed BDD lifting from §4 for every new constraint generated.

Moreover, we implement the two most recent BDD-based cuts, namely
target cuts (B-Target) [55] and projected cuts (B-Proj) [27]. As before, we
use the suffix +L to denote if we apply lifting. Lastly, we implement the cover
cuts and lifting procedure by Atamtürk and Narayanan (2009) [5] for the SOC-
K dataset, here denoted by Cover and CoverLift for the version without
lifting and with their lifting. We also test their cover cuts in conjunction with
our BDD lifting, Cover+L. Finally, we evaluate combinations of different cut
classes, which we will define in each relevant section.

The procedures are implemented in C++ in the IBM ILOG CPLEX 12.9
solver [35] using the UserCuts callback at the root node of the search.1 All ex-
periments consider a single thread, a one-hour time limit, and the linearization
strategy (i.e., MIQCPStrat = 2) to solve the SOC problems.2 We deactivate all
solver cuts when running the BDD techniques (i.e., B-Flow, B-Gen, B-Target,
B-Proj) and the cover-cut variants (i.e., Cover, CoverLift, and Cover+L) to
evaluate their effectiveness on their own. Notice that, given the UserCuts call-
back, our techniques omit the Presolve option and use TraditionalSearch.

1 The code is available at https://github.com/MargaritaCastro/dd-cut-and-lift.
2 Numerical testing suggested that this was the best strategy across all techniques.

https://github.com/MargaritaCastro/dd-cut-and-lift

A Combinatorial Cut-and-Lift Procedure 23

Table 1 Aggregated root information for the SOC-K and SOC-CC datasets.

Root Gap Root Time (s) # Cuts % Lift Sep.(s)

+nL +L +nL +L +nL +L

SOC-K

CPLEX 2.8% - 2.4 - 123.5 - - -
Cover 3.3% 2.8% 1.3 1.8 96.4 95.7 98.6% 0.001
Cover+L - 2.7% - 11.6 - 81.0 70.0% 0.001

B-Flow 3.6% 2.8% 20.0 12.8 240.7 54.9 99.2% 0.001
B-Gen 1.3% 1.3% 400.4 109.4 1087.2 191.1 80.7% 0.442

B-Proj 3.9% 3.76% 16.6 16.5 8.0 6.5 72.2% 0.020
B-Target 1.3% - 118.0 - 108.1 - - 0.329

SOC-CC

CPLEX 20.4% - 9.1 - 127.6 - - -

B-Flow 19.5% 15.4% 17.1 16.1 31.1 23.3 90.7% 0.001
B-Gen 13.0% 13.0% 144.7 85.0 305.7 124.5 72.6% 0.096

B-Proj 17.6% 16.3% 25.3 18.0 61.3 20.5 71.4% 0.017
B-Target 13.3% - 71.4 - 98.1 - - 0.102

For a fair comparison, when running unaugmented CPLEX, we use the same
configuration except with the solver cuts activated.3

We experimented with three BDD widthsW ∈ {2000, 3000, 4000}, i.e., the
maximum number of nodes per layer allowed in a relaxed BDD. We present
results for the width with the best overall performance,W = 4000 (we include
aggregated results for other widths in Appendix B). Notice that most of the
created BDDs are relaxed due to width limit, especially when n ≥ 100.

7.1 Effectiveness of BDD-based Lifting Procedure

We first evaluate our lifting algorithm over the BDD-based cuts and other
cutting-plane procedures. Table 1 shows the average root node information
for our two datasets, i.e., optimality gap, time, number of cuts, percentage of
inequalities lifted at least once, and time to solve the separation problem. The
first three columns are divided into two sub-columns, the first showing results
without lifting (+nL) and the second with lifting (+L). Column +L refers to
our BDD-based lifting, except in row Cover that shows the continuous lifting
[5]. Appendices C and D present detailed results for each dataset.

Our lifting procedure significantly reduces the root gap and time for B-Flow.
We observe a similar behavior for B-Proj but with a smaller impact due to
fewer added cuts. B-Gen also benefits from our lifting, reducing the number of
cuts added and, as a consequence, the root node time. However, there is no
root gap improvement for B-Gen+L since the general BDD cuts separate all
infeasible fractional points from each BDD. Lastly, our lifting has no impact
on B-Target since these cuts are facet-defining and, thus, we omit this variant.

3 Numerical testing suggested that CPLEX performs better on the problem sets when
Presolve is deactivated.

24 Castro, Cire, and Beck

0 200 400 600 800
0

200

400

600

800

B-Gen+NoFlow+L

B
-
G
e
n
+
L

0 200 400
0

200

400

B-Target

B
-
T
a
+
F
l
+
L

Fig. 2 Root time influence (in seconds) of combinatorial BDD flow cuts for SOC-CC in-
stances.

Our BDD lifting also has a positive impact when applied to cuts obtained
from other techniques. For the cover cut Cover, our lifting achieves a smaller
root gap than the continuous lifting (i.e., 2.67% vs. 2.81%) and adds fewer
valid inequalities. Lastly, our BDD lifting is faster than the continuous lifting
(0.001 seconds vs. 0.006 seconds per individual cut). This is as expected given
that the continuous cuts require solving a linear program.

7.2 BDD-based Cutting Planes Comparison

Table 1 also highlights the root performance differences between the BDD cuts.
As expected, the complete methods based on a CGLP (i.e., B-Gen, B-Gen+L,
and B-Target) achieve the lowest root gap. However, these techniques are
computationally expensive since they solve LPs with as many variables as arcs
in the BDD. In total time, B-Target is more efficient than B-Gen because it
adds fewer cuts, possibly due to the fact that its inequalities are facet-defining.
This difference is partially mitigated by our BDD lifting since B-Gen+L has
similar average performance to B-Target.

The low-complexity BDD cuts (i.e., B-Flow and B-Proj) are orders of mag-
nitude faster but have a larger root gap than the CGLP-based alternatives. As
discussed in §5.3, B-Flow and B-Flow+L solve a min-cut problem over the BDD,
which explains the fast separation time, but might not remove all infeasible
fractional points. B-Proj is a complete algorithm but its subgradient routine
struggles to separate points close to the convex hull [27], which explains its
poor root gaps. Also, B-Proj is 15 to 20 times slower than B-Flow on average
because it requires several subgradient iterations to derive an inequality.

Lastly, we evaluate the impact of combining the low-complexity BDD cuts
with the CGLP variants; i.e., the CGLP is invoked after no more fast cuts can
be added. Figure 2 depicts two plots where each (x, y) point represents the root
time for an instance given by the x-axis and the y-axis techniques. B-Ta+Fl+L
employs target and combinatorial flow cuts together, while B-Gen+NoFlow+L

represents a pure general BDD cut approach. In both cases, all methods have
approximately the same root gap. We observe that adding the low-complexity
cuts improves the root time performance of the methods, as they decrease the
number of calls to the corresponding CGLP.

A Combinatorial Cut-and-Lift Procedure 25

Table 2 Aggregated results showing the overall performance of each technique.

SOC-K Dataset SOC-CC Dataset

Solv Gap Time # Nodes # Solv Gap Time # Nodes

CPLEX 70 0.39% 167.8 155,856.4 137 7.46% 530.2 169,802.5
Cover 71 0.41% 209.9 446,171.5 - - - -
CoverLift 70 0.34% 149.3 303,020.2 - - - -
Cover+L 70 0.27% 109.6 191,505.4 - - - -

B-Flow 64 0.52% 458.2 867,798.4 135 7.01% 367.4 214,629.4
B-Flow+L 73 0.27% 139.6 270,937.6 149 5.55% 240.3 121,800.3
B-Gen 76 0.16% 441.1 38,879.7 162 4.31% 172.4 56,490.3
B-Gen+L 88 0.01% 126.9 32,289.6 167 4.18% 142.0 54,563.6

B-Proj 68 0.47% 422.7 1,019,999.4 136 6.63% 380.0 208,567.2
B-Proj+L 66 0.50% 335.1 846,437.0 139 6.34% 366.5 202,853.6
B-Target 90 0.01% 131.2 28,031.5 172 4.04% 132.9 51,319.9
B-Ta+Fl+L 90 0.01% 83.5 24,685.9 168 4.19% 110.0 45,979.1

7.3 Solution Performance - Cuts at the Root Node

We now present in Table 2 the average solution performance of the tested
techniques when cuts are added only at the root node. The first two columns
present the number of instances solved to optimality and the average final gap.
The next columns show the average solution time and nodes explored for only
the instances that all techniques solved.

We observe that B-Gen+L, B-Target, and B-Ta+Fl+L are the best perform-
ing techniques, the latter two solving all instances in SOC-K. These algorithms
have small performance differences that are explained by the root information
in Table 1, where B-Target is slightly more efficient than B-Gen+L. In terms
of time, B-Ta+Fl+L is the fastest approach and explores the fewest number of
nodes. We note, however, that B-Target is effective for SOC-CC and solves
more instances in that benchmark, albeit more slowly than B-Ta+Fl+L. This
behavior may be explained by the fact that B-Target only adds facet-defining
cuts while B-Ta+Fl+L generates our combinatorial BDD cuts first, which sig-
nificantly increases the total number of cuts added at the root node.

Figure 3 depicts the performance of each algorithm for the SOC-CC in-
stances (similar results can be found for SOC-K in Appendix C). The graph
illustrates the number of instances solved over time (left-hand side) and the ac-
cumulated number of instances over a final gap range (right-hand side). Once
again, we see the positive impact of our lifting procedure and the dominance
of B-Gen+L, B-Target, and B-Ta+Fl+L.

7.4 Solution Performance - Branch-and-Cut

Lastly, we evaluate the effectiveness of the BDD cuts when added in each node
of the branch-and-bound tree search. We compare the best CGLP-based ap-
proach (i.e., B-Target) with our best low-budget alternative (i.e., B-Flow+L).

26 Castro, Cire, and Beck

0 1200 2400 3600 | 0% 20% 40% 60%

0

50

100

150

200

250

Time (sec) | Optimality gap at time limit

#
In
st
a
n
ce
s
S
o
lv
ed B-Ta+Fl+L

B-Target

B-Gen+L

B-Gen

B-Flow+L

B-Flow

CPLEX

B-Proj

B-Proj+L

Fig. 3 Profile plot comparing the cumulative number of instances solved over time (left),
and the cumulative number of instances over a final gap range (right) for SOC-CC dataset.

We also propose a hybrid B-Hybrid that adds BDD target cuts at the root
and combinatorial BDD flow cuts during search. Table 3 presents the average
results for our two datasets. The table shows the number of instances solved,
final gap, average solution time, and nodes explored for instances solved by
all techniques, in addition to the total number of cuts added. For ease of com-
parison, we include again the results when adding cuts only at the root node
in row Root, while the new version is included in row Search.

B-Flow+L has a stronger performance when we add these cuts during search
than just at the root node. In fact, B-Flow+L outperform B-Target over the
SOC-CC dataset when we add the latter cuts during search (i.e., 177 vs. 172
instances solved). In contrast, B-Target performs best when the cuts are only
added at the root node due to their long separation time (see Table 1).

Table 3 indicates that, for our datasets, B-Target has the best overall
performance when adding cuts only at the root node, but performs poorly

Table 3 Aggregated results when adding cuts during tree search.

Solve Gap Time (s) # Nodes # Cuts

SOC-K

B-Flow+L
Root 73 0.3% 25.8 56,376.5 54.9
Search 78 0.1% 51.5 8,355.5 2,918.4

B-Target
Root 90 0.0% 38.6 10,949.5 108.1
Search 47 0.7% 3516.0 3,553.0 700.5

B-Hybrid 85 0.0% 57.0 3,900.0 1,866.7

SOC-CC

B-Flow+L
Root 149 5.6% 176.1 54,328.5 23.3
Search 177 3.6% 21.4 2,046.8 1,317.2

B-Target
Root 172 3.9% 54.2 4,118.2 98.1
Search 102 6.7% 704.9 1,524.7 1,249.7

B-Hybrid 179 3.5% 52.2 1,751.6 1,326.9

A Combinatorial Cut-and-Lift Procedure 27

when the cuts are added at all nodes during search. In contrast, B-Flow+L
performs best when cuts are added during search. Based on our analysis, this
behavior is due to the fast computational time of combinatorial flow cuts,
which can be derived in a significant shorter time than B-Target (Table 1).
B-Hybrid, in turn, solves fewer instances than B-Target in the SOC-K dataset
possibly due to the large number of combinatorial flow cuts added during
search. However, the inverse is true for the SOC-CC dataset, where B-Hybrid

solves 179 instances and B-Flow+L (Search) 177, while B-Target (Root) only
solves 172. Overall, we highlight that B-Target has the best performance when
applied at the root node, while B-Hybrid performs well when cuts are added
during search. Thus, both could be considered as viable options when applying
BDD cuts in general binary problems.

8 Conclusions

We introduce a novel lifting and cutting-plane procedure for binary programs
that leverage their combinatorial structure via a binary decision diagram
(BDD) encoding of their constraints. Our lifting procedure relies on 0-1 dis-
junctions to rotate valid inequalities and uses a BDD to efficiently compute
the disjunctive sub-problems. While our combinatorial lifting can enhance any
cutting-plane approach, we also propose two novel BDD-based cut generation
algorithms based on an alternative network-flow representation of the BDD.

BDDs give us the flexibility to apply our cut-and-lift approach to a wide
range of non-linear problems. As a case study, we tested our procedure over
second-order conic inequalities and compare its performance against a state-
of-the-art solver (CPLEX) and existing BDD cuts in the literature. Overall, our
lifting procedure reduced the average root gap up to 29% in our benchmark
when applied to cuts generated by all tested methods. Also, a hybrid technique
combining our approach with existing BDD cuts proved to be the most efficient
over the tested benchmarks.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Inc., USA (1993)

2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on
multivalued decision diagrams. In: International Conference on Principles and Practice
of Constraint Programming–CP 2007, pp. 118–132. Springer (2007)

3. Atamtürk, A., Bhardwaj, A.: Network design with probabilistic capacities. Networks
71(1), 16–30 (2018)

4. Atamtürk, A., Muller, L.F., Pisinger, D.: Separation and extension of cover inequalities
for conic quadratic knapsack constraints with generalized upper bounds. INFORMS
Journal on Computing 25(3), 420–431 (2013)

5. Atamtürk, A., Narayanan, V.: The submodular knapsack polytope. Discrete Optimiza-
tion 6(4), 333–344 (2009)

6. Atamtürk, A., Narayanan, V.: Conic mixed-integer rounding cuts. Mathematical pro-
gramming 122(1), 1–20 (2010)

28 Castro, Cire, and Beck

7. Balas, E.: Facets of the knapsack polytope. Mathematical programming 8(1), 146–164
(1975)

8. Balas, E.: Disjunctive Programming. Springer (2018)
9. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed

0–1 programs. Mathematical programming 58(1-3), 295–324 (1993)
10. Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0-1 programming by lift-and-project in a

branch-and-cut framework. Management Science 42(9), 1229–1246 (1996)
11. Becker, B., Behle, M., Eisenbrand, F., Wimmer, R.: BDDs in a branch and cut frame-

work. In: International Workshop on Experimental and Efficient Algorithms, pp. 452–
463. Springer (2005)

12. Behle, M.: Binary decision diagrams and integer programming. Ph.D. Thesis (2007)
13. Bergman, D., Cardonha, C., Mehrani, S.: Binary decision diagrams for bin packing with

minimum color fragmentation. In: International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Research–CPAIOR 2019, pp. 57–
66. Springer (2019)

14. Bergman, D., Cire, A.A.: Discrete nonlinear optimization by state-space decompositions.
Management Science 64(10), 4700–4720 (2018)

15. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Variable ordering for the ap-
plication of BDDs to the maximum independent set problem. In: International Confer-
ence on Integration of Constraint Programming, Artificial Intelligence, and Operations
Research–CPAIOR 2012, pp. 34–49. Springer (2012)

16. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with
decision diagrams. INFORMS Journal on Computing 28(1), 47–66 (2016)

17. Bergman, D., Lozano, L.: Decision diagram decomposition for quadratically constrained
binary optimization. Optimization Online e-prints (2018)

18. Bhardwaj, A.: Binary conic quadratic knapsacks. Ph.D. thesis, UC Berkeley (2015)
19. Bixby, R.E., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: Mixed-integer program-

ming: A progress report. In: The sharpest cut: the impact of Manfred Padberg and his
work, pp. 309–325. SIAM (2004)

20. van den Bogaerdt, P., de Weerdt, M.: Multi-machine scheduling lower bounds using
decision diagrams. Operations Research Letters 46(6), 616–621 (2018)

21. van den Bogaerdt, P., de Weerdt, M.: Lower bounds for uniform machine scheduling
using decision diagrams. In: International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Research–CPAIOR 2019, pp. 565–
580. Springer (2019)

22. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. Computers,
IEEE Transactions on 100(8), 677–691 (1986)

23. Castro, M.P., Cire, A.A., Beck, J.C.: An MDD-based lagrangian approach to the mul-
ticommodity pickup-and-delivery tsp. INFORMS Journal on Computing (2019)

24. Castro, M.P., Piacentini, C., Cire, A.A., Beck, J.C.: Relaxed BDDs: An admissible
heuristic for delete-free planning based on a discrete relaxation. In: Proceedings of the
International Conference on Automated Planning and Scheduling, pp. 77–85 (2019)

25. Cire, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing problems.
Operations Research 61(6), 1411–1428 (2013)

26. Cohen, M.C., Keller, P.W., Mirrokni, V., Zadimoghaddam, M.: Overcommitment in
cloud services: Bin packing with chance constraints. Management Science 65(7), 3255–
3271 (2019)

27. Davarnia, D., van Hoeve, W.J.: Outer approximation for integer nonlinear programs via
decision diagrams. Mathematical Programming (2020)

28. Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear Algebra and
its Applications 2(4), 451 – 558 (1969)

29. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.: Lifted cover inequalities for 0-1 integer
programs: Computation. INFORMS Journal on Computing 10(4), 427–437 (1998)

30. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.: Lifted cover inequalities for 0-1 integer
programs: Complexity. INFORMS Journal on Computing 11(1), 117–123 (1999)

31. Gurobi Optimization, L.: Gurobi optimizer reference manual (2020)
32. Hammer, P.L., Johnson, E.L., Peled, U.N.: Facet of regular 0–1 polytopes. Mathematical

Programming 8(1), 179–206 (1975)

A Combinatorial Cut-and-Lift Procedure 29

33. Hoda, S., Van Hoeve, W.J., Hooker, J.N.: A systematic approach to MDD-based con-
straint programming. In: International Conference on Principles and Practice of Con-
straint Programming–CP 2010, pp. 266–280. Springer (2010)

34. Hooker, J.N.: Job sequencing bounds from decision diagrams. In: International Con-
ference on Principles and Practice of Constraint Programming–CP 2017, pp. 565–578.
Springer (2017)

35. IBM: ILOG CPLEX Studio 12.9 Manual (2019)
36. Joung, S., Park, S.: Lifting of probabilistic cover inequalities. Operations Research

Letters 45(5), 513–518 (2017)
37. Kılınç-Karzan, F.: On minimal valid inequalities for mixed integer conic programs.

Mathematics of Operations Research 41(2), 477–510 (2016)
38. Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone. Mathe-

matical Programming 154(1-2), 463–491 (2015)
39. Kinable, J., Cire, A.A., van Hoeve, W.J.: Hybrid optimization methods for time-

dependent sequencing problems. European Journal of Operational Research 259(3),
887–897 (2017)

40. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone
programming. Linear algebra and its applications 284(1-3), 193–228 (1998)

41. Lodi, A.: Mixed integer programming computation. In: 50 Years of Integer Programming
1958-2008, pp. 619–645. Springer (2010)

42. Lodi, A., Tanneau, M., Vielma, J.P.: Disjunctive cuts for mixed-integer conic optimiza-
tion. arXiv preprint arXiv:1912.03166 (2019)

43. Louveaux, Q., Wolsey, L.A.: Lifting, superadditivity, mixed integer rounding and single
node flow sets revisited. Quarterly Journal of the Belgian, French and Italian Operations
Research Societies 1(3), 173–207 (2003)

44. Lozano, L., Smith, J.C.: A binary decision diagram based algorithm for solving a class
of binary two-stage stochastic programs. Mathematical Programming pp. 1–24 (2018)

45. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formulations for mixed
integer conic quadratic programming. Operations Research Letters 43(1), 10–15 (2015)

46. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-
Interscience, USA (1988)

47. Padberg, M.W.: On the facial structure of set packing polyhedra. Mathematical pro-
gramming 5(1), 199–215 (1973)

48. Padberg, M.W.: A note on zero-one programming. Operations Research 23(4), 833–837
(1975)

49. Van de Panne, C., Popp, W.: Minimum-cost cattle feed under probabilistic protein
constraints. Management Science 9(3), 405–430 (1963)

50. Perregaard, M., Balas, E.: Generating cuts from multiple-term disjunctions. In: In-
ternational Conference on Integer Programming and Combinatorial Optimization, pp.
348–360. Springer (2001)

51. Raghunathan, A.U., Bergman, D., Hooker, J.N., Serra, T., Kobori, S.: Seamless multi-
modal transportation scheduling. arXiv preprint arXiv:1807.09676 (2018)

52. Santana, A., Dey, S.S.: Some cut-generating functions for second-order conic sets. Dis-
crete Optimization 24, 51–65 (2017)

53. Şen, A., Atamtürk, A., Kaminsky, P.: A conic integer optimization approach to the
constrained assortment problem under the mixed multinomial logit model. Operations
Research 66(4), 994–1003 (2018)

54. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0-1 mixed convex program-
ming. Mathematical programming 86(3), 515–532 (1999)

55. Tjandraatmadja, C., van Hoeve, W.J.: Target cuts from relaxed decision diagrams.
INFORMS Journal on Computing 31(2), 285–301 (2019)

56. Vielma, J.P., Ahmed, S., Nemhauser, G.L.: A lifted linear programming branch-and-
bound algorithm for mixed-integer conic quadratic programs. INFORMS Journal on
Computing 20(3), 438–450 (2008)

57. Vielma, J.P., Dunning, I., Huchette, J., Lubin, M.: Extended formulations in mixed
integer conic quadratic programming. Mathematical Programming Computation 9(3),
369–418 (2017)

58. Wolsey, L.A.: Technical notefacets and strong valid inequalities for integer programs.
Operations Research 24(2), 367–372 (1976). DOI 10.1287/opre.24.2.367

30 Castro, Cire, and Beck

59. Wolsey, L.A., Nemhauser, G.L.: Integer and combinatorial optimization, vol. 55. John
Wiley & Sons (1999)

60. Zemel, E.: Easily computable facets of the knapsack polytope. Mathematics of Opera-
tions Research 14(4), 760–764 (1989)

A Combinatorial Cut-and-Lift Procedure 31

A Relaxed BDD Construction Procedure for Second-Order Cones

We now present the relaxed BDD construction procedure for SOC inequalities based on
the RSOC model. The construction algorithm is analogous for the case of SOC knapsack
constraints and the RSOC-K model.

The state information at the core of our BDD construction algorithm is based on recur-
sive model RSOC. This information is stored in each node of the BDD and used to identify
infeasible assignments and decide how to widen the BDD (i.e., split nodes). Our state infor-
mation keeps track of each of the l + 1 linear components in inequality (14), i.e., a>x and
d>k x− hk for each k ∈ {1, ..., l}. Thus, each node u ∈ Ni has two l + 1 dimensional vectors

for top-down information, Q↓min(u) and Q↓max(u), that approximate the linear components
considering the partial assignments from r to u. We set the top-down state information

at the root node as Q↓min
0 (r) := Q↓max

0 (r) := 0 and Q↓min
k (r) := Q↓max

k (r) := −hk for all
k ∈ {1, ..., l}. Then, for any u ∈ Ni, i ∈ {2, ..., n}, and k ∈ {1, ..., l} we update the states as:

Q↓min
0 (u) := min

a∈Ain(u)
{Q↓min

0 (s(a)) + ai−1 · va},

Q↓max
0 (u) := max

a∈Ain(u)
{Q↓max

0 (s(a)) + ai−1 · va},

Q↓min
k (u) := min

a∈Ain(u)
{Q↓min

k (s(a)) + dki−1 · va},

Q↓max
k (u) := max

a∈Ain(u)
{Q↓max

k (s(a)) + dki−1 · va}.

Similarly, we use two l+ 1 dimensional vectors, Q↑min(u) and Q↑max(u), for our bottom-
up state information for each node u ∈ N . The information is initialized at the terminal

node as Q↑min
0 (t) := Q↑max

0 (t) := 0 and Q↑min
k (t) := Q↑max

k (t) := 0 for all k ∈ {1, ..., l}. Then,
for any u ∈ Ni, i ∈ {1, ..., n− 1}, and k ∈ {1, ..., l}, we have:

Q↑min
0 (u) := min

a∈Aout(u)
{Q↑min

0 (t(a)) + ak · va},

Q↑max
0 (u) := max

a∈Aout(u)
{Q↑max

0 (t(a)) + ak · va},

Q↑min
k (u) := min

a∈Aout(u)
{Q↑min

k (t(a)) + dki · va},

Q↑max
k (u) := max

a∈Aout(u)
{Q↑max

k (t(a)) + dki · va}.

For each node u ∈ N , the state information under and over approximates the value of
the linear components of (14) for all r − u paths (i.e., top-down information) and for all
u− t paths (i.e., bottom-up information). We use the state information to identify if an arc
corresponds to an infeasible assignment, i.e., all paths traversing it correspond to infeasible
solutions of (14). In particular, we can remove an arc a = (u, u′) ∈ Ai if the following
condition holds:

Q↓min
0 (u) + ai · va +Q↑min

0 (u′) +Ω

√√√√ l∑
k=1

gk(a) > b, (18)

where gk(a) for k ∈ {1, ..., l} is given by:

gk(a) :=

(Q↓min

k (u) + dki · va +Q↑min
k (u′))2, if Q↓min

k (u) + dki · va +Q↑min
k (u′) > 0,

(Q↓max
k (u) + dki · va +Q↑max

k (u′))2, if Q↓max
k (u) + dki · va +Q↑max

k (u′) < 0,

0, otherwise.

Notice that gk(a) under approximates (d>k x − dk)2 for all paths traversing arc a ∈ A,
and so the left-hand side (LHS) of (18) under approximates the LHS of (14) for all paths

32 Castro, Cire, and Beck

traversing arc a ∈ Ai. Then, all paths traversing an arc a that satisfy (18) correspond to
invalid assignments for (14).

If Q↓max
k (u) = Q↓min

k (u) for all nodes u ∈ N , we recover the exact BDD based on
the recursive model RSOC and condition (18) is equivalent to (15d). Thus, our splitting

procedure tries to achieve this property by selecting nodes u with Q↓max
k (u) − Q↓min

k (u) ≥
δ (δ > 0) for some k ∈ {0, ..., l} and then split it into two new nodes, u′ and u′′, so

Q↓max
k (u′) − Q↓min

k (u′) < δ and Q↓max
k (u′′) − Q↓min

k (u′′) < δ. The splitting procedure then
duplicates the outgoing arcs of u and assigns them to both u′ and u′′ to keep the same set
of paths in B.

Algorithm 2 Relaxed (Exact) BDD Construction Procedure

1: procedure ConstructBDD(SOC Constraint 〈a, D,h, Ω, b, n〉, W)
2: B := WidthOneBDD(n)
3: while B has been modified do
4: UpdateBDDNodesBottom(N)
5: for i ∈ {1, ..., n} do
6: UpdateBDDNodesTop(Ni)
7: SplitBDDNodes(Ni, W)
8: FilterBDDOutgoingEdges(Ni)

9: UpdateBDDNodesTop(Nn+1)

10: ReduceBDD(B)
11: return B

Our construction procedure creates a relaxed BDD B = (N ,A) by limiting its width
w(B) by a positive valueW, where w(B) := maxi∈I{|Ni|} represents the maximum number
of nodes in each layer. The complete BDD construction procedure is shown in Algorithm 2.
The algorithm starts creating a width-one BDD for the SOC constraint (line 2) and then
updates the bottom-up information for all the nodes (line 4). During the top-down pass
through the BDD (lines 5-9), the procedure updates the top-down information of layer Ni,
splits the nodes until we reach the width limit W, and filters the emanating arcs of Ni. The
algorithm then checks if the BDD has been updated (line 3) and repeats the bottom-up
and top-down iterations until the BDD cannot be updated any more. Lastly, we reduce the
BDD (line 10) following the standard procedure in the literature [22].

The resulting BDD starts with all possible variable assignments (i.e., a width-one BDD)
and removes arcs using condition (18). Thus, the procedure is guaranteed to construct a
relaxed BDD for a SOC constraint. Notice that for a big enough W, the procedure will
return an exact BDD.

Example 5 Consider the following binary set defined by an SOC inequality X = {x ∈
{0, 1}3 : 3x1 + x2 + x3 +

√
(x1 + x2 + 2x3)2 + (x1 + 3x2 − x3 + 3)2 ≤ 8}. Figure 4 depicts

some of the steps to construct an exact BDD for X. The left most diagram corresponds
to a width-one BDD for this problem. The top-down state information in the root node is

((Q↓min
0 (r), Q↓max

0 (r)), (Q↓min
1 (r), Q↓max

1 (r)), (Q↓min
2 (r), Q↓max

2 (r))) = ((0, 0), (0, 0), (3, 3)),
while for node u1 is ((0, 3), (0, 1), (3, 4)).

The middle BDD illustrates the resulting BDD after splitting node u1. The resulting
nodes, u′1 and u′′1 , have top-down state information ((0, 0), (0, 0), (3, 3)) and ((3, 3), (1, 1),
(4, 4)), respectively. In addition, the gray arc from u′′1 to u2 corresponds to an invalid as-
signment: the bottom-up information of u2 is ((0, 1), (0, 2), (−1, 0)), thus, (18) evaluates
to 10.3 > 8.

A Combinatorial Cut-and-Lift Procedure 33

r

u1

u2

t

x1:

x2:

x3:

r

u′
1 u′′

1

u2

t

r

u′
1 u′′

1

u′
2 u′′

2

t

va = 0

va = 1

Fig. 4 BDD construction procedure for set X defined in Example 5. The figure depicts a
width-one BDD (left), a BDD after the splitting and filtering procedure over N2 (middle),
and the resulting exact reduced BDD (right).

B Experiments Comparing Different BDD Widths

Table 4 presents the average performance for CPLEX and our four alternatives (i.e., B-Flow,
B-Flow+L, B-Gen, and B-Gen+L) with three different maximum width values,W ∈ {2000, 3000, 4000},
over the SOC-CC instances. The table shows the number of instances solved, average root
gap, and average final gap for all techniques. Our four alternatives withW ∈ {2000, 3000, 4000}
each outperform CPLEX.W = 4000 achieves the best overall performance across the four com-
binatorial cut-and-lift alternatives. Similarly, W = 4000 achieves the best or comparable
performance across the five BDD approaches over the SOC-K instances (right).

Table 4 Average performance of all techniques for different BDD widths for SOC-CC.

Width # Solve Root Gap Final Gap

CPLEX 137 20.82% 7.75%

B-Flow

2000 137 20.31% 7.35%
3000 140 20.11% 7.25%
4000 139 20.01% 7.25%

B-Flow+L

2000 149 16.61% 6.09%
3000 150 16.03% 6.04%
4000 150 15.68% 5.89%

B-Gen

2000 160 14.93% 5.21%
3000 159 14.05% 4.87%
4000 166 13.47% 4.59%

B-Gen+L

2000 160 14.91% 5.00%
3000 168 14.03% 4.66%
4000 168 13.44% 4.43%

Similarly, Table 5 presents the average performance over the SOC-K instances for CPLEX,
our four alternatives (i.e., B-Flow, B-Flow+L, B-Gen, and B-Gen+L) with three different max-
imum width values, W ∈ {2000, 3000, 4000}. Overall, W = 4000 achieves the best or com-
parable performance across the five BDD approaches.

We note that these three BDD widths achieve competitive results with respect to CPLEX

in our dataset. However, problems with more variables (i.e., n > 125) would probably
required a larger width to create a tight BDD relaxation and, thus, strong cuts.

34 Castro, Cire, and Beck

Table 5 Average performance of all techniques for different BDD widths for SOC-K.

Width # Solve Root Gap Final Gap

CPLEX 70 2.84% 0.39%

B-Flow

2000 66 3.64% 0.52%
3000 67 3.63% 0.52%
4000 64 3.63% 0.53%

B-Flow+L

2000 74 2.84% 0.27%
3000 72 2.80% 0.28%
4000 74 2.80% 0.26%

B-Gen

2000 75 1.62% 0.16%
3000 78 1.45% 0.15%
4000 76 1.34% 0.16%

B-Gen+L

2000 83 1.61% 0.04%
3000 87 1.44% 0.02%
4000 88 1.33% 0.01%

C Average Performance Comparison for Knapsack Chance
Constraints

We now present additional results for the SOC-K dataset. As in Figure 3, Figure 5 illustrate
the performance of each algorithm for the SOC-K dataset. We see a clear dominance of
B-Gen+L, B-Target, and B-Ta+Fl+L and also the positive impact of our combinatorial lifting
in instances solved and gap reduction.

0 1200 2400 3600 | 0% 1% 2% 3% 4%

0

30

60

90

Time (sec) | Optimality gap at time limit

#
In
st
a
n
ce
s
S
o
lv
ed

B-Ta+Fl+L

B-Target

B-Gen+L

B-Gen

B-Flow+L

B-Flow

CPLEX

Cover

CoverLift

Cover+L

B-Proj

B-Proj+L

Fig. 5 Profile plot comparing the accumulated number of instances solved over time (left),
and the accumulated number of instances over a final gap range (right) for SOC-K dataset.

The following tables show average results for each parameter configuration over the
SOC-CC benchmark. We present results for our four variants (i.e., B-Flow, B-Flow+L, B-Gen,
and B-Gen+L), cover cut variants (i.e., Cover, CoverLift, and Cover+L), CPLEX, and best
performing BDD-based cuts (i.e., B-Target and B-Ta+Fl+L). All techniques add cuts only

A Combinatorial Cut-and-Lift Procedure 35

Table 6 Instances solved to optimality comparison across all techniques for SOC-K bench-
mark.

Instances Solved

n m Ω CPLEX Cover CoverLift Cover+L B-Flow B-Flow+L B-Gen B-Gen+L B-Target B-Ta+Fl+L

100

10

1 5 5 5 5 5 5 5 5 5 5
3 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5

20

1 5 5 5 5 5 5 5 5 5 5
3 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 3 5 5 5 5 5

125

10

1 5 5 5 5 5 5 5 5 5 5
3 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5

20

1 5 5 5 5 4 5 5 5 5 5
3 1 2 1 1 1 3 4 5 5 5
5 0 0 0 0 0 1 2 5 5 5

150

10

1 5 5 5 5 5 5 5 5 5 5
3 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 3 5 5 5 5 5

20

1 4 4 4 4 3 4 4 5 5 5
3 0 0 0 0 0 0 1 3 5 5
5 0 0 0 0 0 0 0 5 5 5

Total 70 71 70 70 64 73 76 88 90 90

at the root node of the tree search. Tables 6, 7, and 8 show the number of instances solved,
average root gap, and average final gap for each n, m, and Ω combination with W = 4000,
respectively. Similarly, Tables 9 and 10 show the average number of nodes in the branch-
and-bound search and the average run time for the instances that all techniques solved to
optimality.

36 Castro, Cire, and Beck

Table 7 Root Gap comparison across all techniques for SOC-K benchmark.

Root Gap (%)

n m Ω CPLEX Cover CoverLift Cover+L B-Flow B-Flow+L B-Gen B-Gen+L B-Target B-Ta+Fl+L

100

10

1 0.9% 1.8% 1.4% 1.4% 2.0% 1.4% 0.5% 0.5% 0.5% 0.5%
3 2.4% 2.9% 2.2% 1.9% 3.2% 2.0% 0.5% 0.4% 0.5% 0.4%
5 3.7% 3.9% 2.8% 2.2% 4.4% 2.6% 0.3% 0.3% 0.3% 0.3%

20

1 1.9% 2.8% 2.4% 2.3% 3.2% 2.5% 1.1% 1.1% 1.1% 1.1%
3 4.5% 5.0% 4.5% 4.4% 5.4% 4.3% 1.5% 1.5% 1.5% 1.5%
5 6.1% 6.3% 5.9% 5.5% 7.1% 5.4% 1.5% 1.5% 1.5% 1.5%

125

10

1 0.7% 1.4% 0.9% 1.0% 1.8% 1.2% 0.7% 0.7% 0.7% 0.7%
3 1.8% 2.2% 1.6% 1.5% 2.5% 1.6% 0.8% 0.8% 0.8% 0.8%
5 2.7% 2.8% 2.0% 1.7% 3.3% 1.8% 0.9% 0.9% 0.9% 0.9%

20

1 2.1% 2.9% 2.6% 2.5% 3.1% 2.7% 1.9% 1.9% 1.9% 1.9%
3 4.0% 4.3% 4.1% 4.1% 4.7% 4.1% 2.4% 2.4% 2.4% 2.4%
5 5.8% 6.0% 5.6% 5.5% 6.5% 5.6% 2.7% 2.7% 2.7% 2.7%

150

10

1 0.5% 1.1% 0.9% 0.9% 1.3% 1.1% 0.7% 0.7% 0.7% 0.7%
3 1.6% 1.9% 1.5% 1.4% 2.1% 1.5% 0.9% 0.9% 0.9% 0.9%
5 2.7% 2.8% 2.4% 2.3% 3.2% 2.6% 1.3% 1.3% 1.3% 1.3%

20

1 1.6% 2.3% 1.9% 1.9% 2.5% 2.2% 1.6% 1.6% 1.6% 1.6%
3 3.3% 3.7% 3.3% 3.1% 3.9% 3.3% 2.1% 2.1% 2.1% 2.1%
5 4.7% 5.1% 4.5% 4.3% 5.3% 4.4% 2.6% 2.5% 2.5% 2.5%

Average 2.8% 3.3% 2.8% 2.7% 3.6% 2.8% 1.3% 1.3% 1.3% 1.3%

Table 8 Final Gap comparison across all techniques for SOC-K benchmark.

Final Gap (%)

n m Ω CPLEX Cover CoverLift Cover+L B-Flow B-Flow+L B-Gen B-Gen+L B-Target B-Ta+Fl+L

100

10

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

20

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
5 0.0% 0.0% 0.0% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0%

125

10

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

20

1 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%
3 1.0% 0.9% 0.8% 0.8% 1.2% 0.4% 0.1% 0.0% 0.0% 0.0%
5 2.5% 2.5% 2.0% 1.6% 2.8% 1.6% 0.5% 0.0% 0.0% 0.0%

150

10

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
5 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0%

20

1 0.1% 0.1% 0.2% 0.1% 0.3% 0.1% 0.2% 0.0% 0.0% 0.0%
3 1.3% 1.3% 1.0% 0.7% 1.6% 0.9% 0.6% 0.1% 0.0% 0.0%
5 2.1% 2.3% 1.8% 1.6% 2.7% 1.6% 1.5% 0.0% 0.0% 0.0%

Average 0.4% 0.4% 0.3% 0.3% 0.5% 0.3% 0.2% 0.0% 0.0% 0.0%

A Combinatorial Cut-and-Lift Procedure 37

Table 9 Nodes explored comparison across all techniques for SOC-K benchmark.

Nodes Explored

n m Ω CPLEX Cover CoverLift Cover+L B-Flow B-Flow+L B-Gen B-Gen+L B-Target B-Ta+Fl+L

100

10

1 2,187 9,493 3,407 3,808 13,279 5,055 191 170 173 159
3 15,911 38,018 18,616 13,374 77,135 11,973 127 100 92 167
5 56,024 73,318 34,888 11,065 197,240 24,390 182 171 214 165

20

1 12,093 84,852 36,813 37,479 152,371 56,573 1,929 1,128 1,088 1,015
3 275,046 498,671 367,255 326,495 1,061,138 271,931 3,062 1,465 1,591 1,181
5 796,298 1,030,628 1,073,455 431,804 1,648,577 655,462 1,461 607 578 559

125

10

1 2,557 26,109 5,254 6,707 59,136 22,296 3,864 4,875 2,747 3,476
3 16,810 89,336 35,721 28,278 190,740 39,481 8,114 4,436 4,720 4,751
5 157,561 301,041 253,128 87,198 1,290,400 89,930 6,137 4,415 3,665 3,521

20

1 243,540 1,134,038 628,234 584,492 2,016,914 568,773 120,849 90,177 83,596 68,425
3 445,816 902,386 476,674 513,874 2,206,133 1,047,598 86,749 30,173 24,841 26,485
5 - - - - - - - - - -

150

10

1 1,835 39,165 14,878 18,218 61,289 33,738 17,673 8,190 16,377 10,179
3 267,752 1,156,661 1,084,202 400,829 1,900,415 399,942 56,718 36,842 29,805 31,726
5 394,755 877,686 423,235 337,258 2,718,140 658,492 88,738 111,968 63,792 64,269

20

1 453,059 2,707,252 1,202,011 1,186,773 3,237,491 2,514,477 541,442 482,927 442,424 377,666
3 - - - - - - - - - -
5 - - - - - - - - - -

Average 209,416 597,910 377,185 265,843 1,122,027 426,674 62,482 51,843 45,047 39,583

Table 10 Solving time comparison across all techniques for SOC-K benchmark.

Solving Time (sec)

n m Ω CPLEX Cover CoverLift Cover+L B-Flow B-Flow+L B-Gen B-Gen+L B-Target B-Ta+Fl+L

100

10

1 3.3 2.7 1.4 7.2 13.5 7.6 138.5 31.5 37.2 24.4
3 9.4 12.0 6.5 9.8 46.2 9.6 170.2 48.8 61.1 36.4
5 32.3 24.6 13.0 9.0 97.2 13.1 391.8 55.2 72.5 33.0

20

1 19.1 38.5 18.8 30.0 121.3 39.7 457.6 149.4 135.5 84.2
3 317.8 273.7 217.1 190.3 762.6 162.8 753.6 260.4 235.7 179.6
5 970.4 718.5 744.6 331.2 1330.4 473.2 1232.0 374.7 373.7 220.1

125

10

1 3.3 6.8 2.4 12.1 36.2 16.1 100.3 29.1 44.2 27.0
3 11.8 23.7 12.7 18.4 80.6 20.9 415.5 67.2 88.9 46.6
5 105.5 101.0 83.4 41.9 400.6 39.6 826.3 80.9 113.5 55.3

20

1 357.6 567.0 322.3 323.5 1031.0 279.5 409.6 227.1 220.0 146.7
3 645.0 668.3 338.0 425.5 1716.2 652.4 946.3 518.6 523.2 275.1
5 - - - - - - - - - -

150

10

1 2.9 10.0 5.2 18.6 36.1 22.8 85.2 32.1 41.7 29.1
3 183.1 387.3 345.0 140.5 759.0 129.2 323.6 94.8 98.9 61.2
5 252.5 260.5 156.5 127.5 1080.5 213.2 559.7 182.4 148.7 100.9

20

1 766.9 1506.0 808.8 750.1 2167.0 1341.7 914.8 391.4 375.5 324.3
3 - - - - - - - - - -
5 - - - - - - - - - -

Average 245.4 306.7 205.0 162.4 645.2 228.1 515.0 169.6 171.4 109.6

D Average Performance Comparison for General Chance
Constraints

We now present additional results for the SOC-CC dataset. Figure 6 shows two plots com-
paring the root gap of B-Gen+L and CPLEX for the SOC-CC instances and different values
of Ω and t. In each plot, an (x, y) point represents the root gap for an instance given by
the x-axis and the y-axis technique, respectively. Overall, we can see that B-Gen+L achieves
a smaller or equal root gap to CPLEX, however, the difference is considerably larger when
Ω ≥ 3 and t = 0.1.

38 Castro, Cire, and Beck

0% 25% 50% 75% 100%

25%

50%

75%

100%

CPLEX

B
-
G
e
n
+
L

Ω = 1

Ω = 3

Ω = 5

0% 25% 50% 75% 100%

25%

50%

75%

100%

CPLEX

B
-
G
e
n
+
L

t = 0.1

t = 0.2

t = 0.3

Fig. 6 Root node gap comparison with CPLEX for the SOC-CC instances. The plot on the
left considers different values of Ω, and the plot on the right different values of t.

The problems become more challenging with a larger Ω (i.e., a predominant quadratic
term) due to a weak SOC relaxation and linearization. Thus, our procedure can potentially
generate stronger cuts than CPLEX. In fact, the left plot in Figure 6 shows all instances with
Ω = 1 close to the diagonal, while problems with Ω ∈ {3, 5} have larger gap reductions.
Lastly, the right plot of Figure 6 shows that B-Gen+L has significantly smaller gaps than
CPLEX over instances with a small t (i.e., small solution sets). Our relaxed BDDs are close
to exact BDDs in these cases, thus, making our cuts more effective.

The following tables show average results for each parameter configuration over the
SOC-CC benchmark. We present results for our four variants (i.e., B-Flow, B-Flow+L, B-Gen,
and B-Gen+L), CPLEX, and best performing BDD-based cuts (i.e., B-Target and B-Ta+Fl+L).
All techniques add cuts only at the root node of the tree search. Tables 11, 12, and 13 show
the number of instances solved, average root gap, and average final gap for each n, m, Ω,
and t combination, with W = 4000. Similarly, Tables 14 and 15 show the average number
of nodes in the branch-and-bound search and the average run time for the instances that all
techniques solved to optimality.

We note that in most instances the BDD cut algorithms have better performance than
CPLEX. However, CPLEX is competitive when t = 0.3 and Ω = 1, as expected from the
behavior observed in Figure 6. We also note that CPLEX has similar performance to the BDD
techniques when n = 125, which suggest that a tighter BDD relaxation (i.e., bigger BDD
width) might be needed for larger problem instances.

A Combinatorial Cut-and-Lift Procedure 39

Table 11 Instances solved to Optimality comparison across all techniques for SOC-CC
benchmark.

Instances Solved

t n m Ω CPLEX B-Flow B-Flow+L B-Gen B-Gen+L B-Target B-Ta+Fl+L

0.1

75

10

1 5 5 5 5 5 5 5

3 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

20

1 5 5 5 5 5 5 5

3 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

100

10

1 5 5 5 5 5 5 5

3 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

20

1 0 0 0 1 1 2 2

3 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

125

10

1 4 3 3 4 4 5 4

3 0 0 0 0 0 1 0

5 0 0 2 1 1 1 1

20

1 0 0 0 0 0 0 0

3 0 0 1 1 1 2 1

5 0 0 1 2 2 3 2

0.2

75

10

1 5 5 5 5 5 5 5

3 2 3 4 5 5 5 5

5 1 1 3 5 5 5 5

20

1 2 2 3 3 4 4 3

3 0 0 0 0 1 0 1

5 0 0 0 0 1 1 1

100

10

1 5 5 5 5 5 5 5

3 0 0 1 2 2 3 2

5 0 0 0 0 0 0 0

20

1 0 0 1 1 2 2 2

3 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

125

10

1 5 5 5 5 5 5 5

3 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

20

1 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

0.3

75

10

1 5 5 5 5 5 5 5

3 5 5 5 5 5 5 5

5 4 4 5 5 5 5 5

20

1 5 5 5 5 5 5 5

3 0 0 1 4 4 4 4

5 0 0 0 2 3 4 4

100

10

1 5 5 5 5 5 5 5

3 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

20

1 4 3 4 5 5 5 5

3 0 0 0 1 1 1 1

5 0 0 0 0 0 0 0

125

10

1 5 5 5 5 5 5 5

3 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

20

1 5 4 5 5 5 4 5

3 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

Total 137 135 149 162 167 172 168

40 Castro, Cire, and Beck

Table 12 Root Gap comparison across all techniques for SOC-CC benchmark.

Root Gap (%)

t n m Ω CPLEX B-Flow B-Flow+L B-Gen B-Gen+L B-Target B-Ta+Fl+L

0.1

75

10

1 7.6% 10.0% 6.9% 3.8% 3.8% 3.5% 3.7%

3 47.6% 45.4% 20.9% 16.4% 16.0% 15.6% 16.0%

5 56.1% 47.3% 22.0% 17.8% 17.4% 17.9% 17.3%

20

1 54.7% 56.5% 54.9% 47.0% 47.1% 47.1% 47.1%

3 83.0% 75.7% 31.1% 25.3% 23.2% 30.0% 23.1%

5 81.3% 26.0% 8.2% 5.9% 8.2% 16.6% 8.2%

100

10

1 6.1% 7.5% 6.5% 5.4% 5.3% 5.3% 5.3%

3 34.3% 34.0% 27.3% 23.3% 23.2% 23.3% 23.2%

5 40.8% 39.7% 27.1% 22.4% 22.6% 22.4% 22.4%

20

1 26.9% 28.8% 26.7% 23.2% 23.2% 23.2% 23.2%

3 65.3% 62.9% 48.6% 46.0% 46.0% 46.0% 46.0%

5 67.5% 59.6% 42.5% 39.7% 40.0% 39.7% 39.9%

125

10

1 4.4% 5.5% 4.7% 4.1% 4.1% 4.1% 4.1%

3 33.5% 33.3% 30.2% 29.2% 29.2% 29.2% 29.2%

5 38.0% 36.4% 32.1% 31.2% 31.2% 31.1% 31.2%

20

1 18.9% 19.8% 19.3% 18.0% 18.0% 18.0% 18.0%

3 56.4% 56.4% 53.0% 47.8% 47.7% 47.8% 47.7%

5 56.2% 55.0% 43.0% 40.4% 40.4% 40.4% 40.4%

0.2

75

10

1 2.9% 4.5% 3.6% 2.0% 2.0% 2.0% 2.0%

3 10.1% 10.7% 9.0% 5.4% 5.4% 5.4% 5.4%

5 13.1% 13.8% 11.1% 7.0% 7.0% 7.0% 7.0%

20

1 11.6% 13.9% 11.4% 7.8% 7.8% 7.8% 7.8%

3 30.6% 31.4% 30.2% 21.0% 21.0% 21.0% 21.0%

5 32.5% 32.9% 29.2% 20.5% 20.5% 20.5% 20.5%

100

10

1 2.6% 3.8% 3.1% 2.4% 2.4% 2.4% 2.4%

3 8.3% 8.8% 8.0% 6.2% 6.2% 6.3% 6.2%

5 11.8% 12.1% 11.5% 9.8% 9.8% 9.8% 9.8%

20

1 7.7% 9.2% 8.6% 6.5% 6.5% 6.5% 6.5%

3 24.6% 24.9% 24.1% 20.7% 20.7% 20.7% 20.7%

5 30.1% 30.2% 29.1% 25.6% 25.6% 25.6% 25.6%

125

10

1 1.6% 2.8% 2.6% 2.4% 2.4% 2.4% 2.4%

3 7.7% 7.9% 7.7% 7.4% 7.4% 7.3% 7.4%

5 9.4% 9.5% 9.2% 8.6% 8.6% 8.6% 8.6%

20

1 5.4% 6.3% 6.2% 5.5% 5.5% 5.5% 5.5%

3 20.6% 20.7% 20.5% 19.0% 19.0% 19.0% 19.0%

5 25.1% 25.2% 24.9% 22.9% 22.9% 22.9% 22.9%

0.3

75

10

1 1.2% 2.7% 1.9% 0.9% 0.9% 0.9% 0.9%

3 3.6% 4.4% 3.4% 1.8% 1.8% 1.8% 1.8%

5 4.3% 5.0% 4.0% 2.1% 2.1% 2.1% 2.1%

20

1 3.7% 5.5% 4.4% 2.4% 2.4% 2.3% 2.4%

3 7.7% 9.0% 7.5% 4.3% 4.3% 4.3% 4.3%

5 8.8% 9.8% 8.0% 4.8% 4.8% 4.8% 4.8%

100

10

1 1.0% 2.1% 1.7% 1.2% 1.2% 1.2% 1.2%

3 2.3% 3.1% 2.8% 2.1% 2.1% 2.1% 2.1%

5 2.9% 3.6% 3.5% 2.6% 2.6% 2.6% 2.6%

20

1 3.3% 4.6% 3.8% 3.1% 3.1% 3.1% 3.1%

3 6.0% 6.7% 6.0% 4.6% 4.6% 4.6% 4.6%

5 7.9% 8.6% 7.9% 6.1% 6.1% 6.1% 6.1%

125

10

1 0.3% 1.1% 1.0% 0.9% 0.9% 0.9% 0.9%

3 1.6% 2.2% 2.1% 1.9% 1.9% 1.9% 1.9%

5 1.8% 2.3% 2.0% 2.0% 2.0% 2.0% 2.0%

20

1 1.7% 2.8% 2.6% 2.4% 2.4% 2.4% 2.4%

3 4.8% 5.4% 5.2% 4.5% 4.5% 4.5% 4.5%

5 6.7% 7.2% 7.0% 6.0% 6.1% 6.0% 6.1%

Average 20.4% 19.5% 15.4% 13.0% 13.0% 13.3% 13.0%

A Combinatorial Cut-and-Lift Procedure 41

Table 13 Final Gap comparison across all techniques for SOC-CC benchmark.

Final Gap (%)

t n m Ω CPLEX B-Flow B-Flow+L B-Gen B-Gen+L B-Target B-Ta+Fl+L

0.1

75

10

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

20

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

100

10

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

20

1 17.4% 18.4% 12.4% 7.5% 7.5% 5.1% 5.5%

3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

125

10

1 0.3% 0.6% 0.7% 0.3% 0.4% 0.0% 0.2%

3 25.1% 22.8% 17.6% 15.0% 16.1% 14.5% 16.0%

5 28.0% 23.7% 13.0% 11.3% 11.3% 11.5% 11.3%

20

1 16.0% 16.9% 16.5% 14.6% 14.4% 14.4% 14.2%

3 52.0% 50.5% 32.3% 22.5% 21.8% 19.8% 22.1%

5 49.4% 28.3% 10.4% 6.7% 4.1% 2.5% 6.9%

0.2

75

10

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 1.4% 0.6% 0.1% 0.0% 0.0% 0.0% 0.0%

5 4.5% 3.6% 1.2% 0.0% 0.0% 0.0% 0.0%

20

1 3.2% 3.8% 2.5% 1.4% 0.5% 0.6% 0.7%

3 24.5% 23.7% 22.7% 13.6% 12.9% 13.6% 12.5%

5 25.1% 25.8% 21.9% 12.5% 12.3% 12.1% 12.0%

100

10

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 4.4% 4.5% 3.1% 1.8% 1.3% 1.3% 1.5%

5 8.4% 8.9% 8.0% 6.2% 6.1% 6.0% 6.0%

20

1 3.6% 4.6% 3.8% 2.1% 2.0% 1.7% 1.9%

3 21.3% 22.3% 21.6% 17.6% 17.4% 17.2% 17.3%

5 27.3% 28.0% 26.5% 22.7% 22.5% 22.5% 22.4%

125

10

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 5.4% 5.7% 5.4% 5.1% 5.0% 5.1% 5.1%

5 7.2% 7.7% 7.7% 7.2% 7.1% 7.0% 7.1%

20

1 3.6% 4.3% 4.1% 3.5% 3.2% 3.3% 3.5%

3 19.2% 19.9% 19.7% 17.8% 17.8% 17.7% 17.8%

5 23.7% 24.5% 24.2% 21.8% 21.7% 21.7% 21.7%

0.3

75

10

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

5 0.3% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0%

20

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 3.1% 3.5% 2.1% 0.6% 0.4% 0.2% 0.2%

5 4.8% 5.4% 3.5% 1.0% 0.5% 0.5% 0.4%

100

10

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

20

1 0.2% 0.4% 0.3% 0.0% 0.0% 0.0% 0.0%

3 3.4% 3.8% 3.3% 1.9% 1.8% 1.8% 1.9%

5 5.9% 6.2% 5.7% 4.0% 3.9% 3.9% 3.9%

125

10

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

20

1 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0%

3 3.3% 3.9% 3.4% 3.0% 2.9% 2.8% 2.8%

5 5.5% 5.9% 5.6% 4.8% 4.8% 4.7% 4.7%

Average 7.4% 7.0% 5.5% 4.2% 4.1% 3.9% 4.1%

42 Castro, Cire, and Beck

Table 14 Nodes explored comparison across all techniques for SOC-CC benchmark.

Nodes Explored

t n m Ω CPLEX B-Flow B-Flow+L B-Gen B-Gen+L B-Target B-Ta+Fl+L

0.1

75

10

1 12,185 17,956 4,756 676 426 422 399

3 56,780 11,892 674 363 338 327 292

5 48,045 3,821 356 243 208 178 214

20

1 202,904 215,447 142,030 26,079 16,928 24,498 18,745

3 13,220 1,767 13 6 7 8 7

5 11,944 24 4 5 4 4 4

100

10

1 225,098 419,363 276,059 96,340 105,972 112,095 89,448

3 887,680 783,566 109,802 58,768 53,628 46,936 53,654

5 645,651 199,487 20,966 15,700 18,833 11,710 12,749

20

1 - - - - - - -

3 351,411 45,407 7,779 5,275 5,923 5,054 5,124

5 270,319 14,754 5,028 2,206 2,372 2,212 2,192

125

10

1 247,942 448,522 193,963 92,868 78,944 71,829 53,197

3 - - - - - - -

5 - - - - - - -

20

1 - - - - - - -

3 - - - - - - -

5 - - - - - - -

0.2

75

10

1 12,121 20,715 7,593 1,244 1,094 1,128 1,264

3 467,593 1,009,053 318,850 65,594 26,086 36,381 26,449

5 465,102 501,715 260,340 141,485 105,020 58,315 117,946

20

1 188,806 276,917 131,661 14,144 12,410 14,528 9,460

3 - - - - - - -

5 - - - - - - -

100

10

1 95,393 248,309 151,732 52,426 33,054 51,027 29,836

3 - - - - - - -

5 - - - - - - -

20

1 - - - - - - -

3 - - - - - - -

5 - - - - - - -

125

10

1 49,518 312,285 255,539 312,597 204,109 213,868 230,317

3 - - - - - - -

5 - - - - - - -

20

1 - - - - - - -

3 - - - - - - -

5 - - - - - - -

0.3

75

10

1 1,749 4,503 1,480 617 628 471 693

3 105,042 289,610 88,043 4,729 3,330 3,172 2,798

5 106,290 166,623 40,851 2,344 2,990 3,066 3,140

20

1 46,165 92,516 64,630 7,094 3,820 3,340 3,928

3 - - - - - - -

5 - - - - - - -

100

10

1 4,668 13,241 12,104 2,445 4,007 2,414 3,902

3 98,320 232,323 215,941 41,555 54,620 41,508 48,554

5 325,561 779,990 647,941 130,800 160,442 160,147 136,534

20

1 73,317 104,970 110,269 37,389 39,225 37,523 40,692

3 - - - - - - -

5 - - - - - - -

125

10

1 621 7,117 5,397 6,667 3,226 7,361 4,736

3 115,889 289,327 310,125 140,877 117,999 105,835 108,763

5 225,090 447,631 374,133 292,988 495,361 332,646 334,653

20

1 130,174 374,273 234,563 304,234 188,323 319,374 155,635

3 - - - - - - -

5 - - - - - - -

Average 182,820 244,438 133,087 61,925 57,977 55,579 49,844

A Combinatorial Cut-and-Lift Procedure 43

Table 15 Solving time comparison across all techniques for SOC-CC benchmark.

Solving Time (s)

t n m Ω CPLEX B-Flow B-Flow+L B-Gen B-Gen+L B-Target B-Ta+Fl+L

0.1

75

10

1 22.8 18.5 9.5 50.1 17.9 18.1 12.1

3 54.2 14.4 4.3 17.8 5.1 10.4 5.1

5 52.5 8.2 3.4 10.5 3.5 6.7 3.7

20

1 1,184.5 641.2 531.6 438.8 244.4 178.2 165.2

3 58.3 24.9 10.3 32.3 11.1 29.5 11.7

5 59.8 15.2 8.5 15.7 8.9 13.8 9.0

100

10

1 557.1 494.3 368.6 218.8 176.5 173.3 141.8

3 1,648.1 948.1 216.3 194.8 122.0 135.2 132.3

5 1,039.0 327.3 46.1 87.1 55.3 54.9 41.7

20

1 - - - - - - -

3 1,733.5 234.3 49.2 99.3 50.1 108.3 52.4

5 1,177.4 87.7 36.9 53.1 31.2 81.6 31.2

125

10

1 547.3 469.8 366.5 154.1 140.2 95.1 83.3

3 - - - - - - -

5 - - - - - - -

20

1 - - - - - - -

3 - - - - - - -

5 - - - - - - -

0.2

75

10

1 20.8 21.4 13.6 39.6 29.8 25.7 18.6

3 1,851.3 1,889.4 892.7 192.2 99.6 74.5 84.4

5 1,418.2 854.6 490.0 356.2 337.9 164.8 199.9

20

1 1,361.3 1,216.9 776.6 307.7 192.4 176.1 114.0

3 - - - - - - -

5 - - - - - - -

100

10

1 209.1 257.1 169.8 93.5 63.5 83.8 47.5

3 - - - - - - -

5 - - - - - - -

20

1 - - - - - - -

3 - - - - - - -

5 - - - - - - -

125

10

1 112.0 239.0 228.6 255.0 190.2 210.2 205.3

3 - - - - - - -

5 - - - - - - -

20

1 - - - - - - -

3 - - - - - - -

5 - - - - - - -

0.3

75

10

1 4.7 11.3 9.3 33.3 19.1 25.7 20.6

3 249.8 392.1 109.6 137.0 93.4 63.0 53.4

5 214.8 233.3 78.6 130.3 66.1 63.5 40.3

20

1 236.1 270.0 200.0 161.2 84.8 78.1 64.7

3 - - - - - - -

5 - - - - - - -

100

10

1 11.0 21.2 21.8 31.6 25.4 27.0 24.3

3 245.3 374.1 319.2 118.7 144.6 105.6 122.1

5 1,081.2 1,282.5 1,448.4 348.5 438.7 446.1 390.4

20

1 550.6 315.5 317.7 166.8 144.2 137.7 176.7

3 - - - - - - -

5 - - - - - - -

125

10

1 2.5 19.2 18.5 24.2 19.2 25.0 22.9

3 301.2 468.9 445.3 238.9 146.6 196.7 152.8

5 655.2 703.1 566.7 439.0 817.1 418.0 466.0

20

1 1,255.8 1,490.4 639.7 1,251.0 962.6 1,211.9 752.7

3 - - - - - - -

5 - - - - - - -

Average 597.18 444.80 279.91 189.90 158.05 147.95 121.54

	Introduction
	Background
	Related Work
	Combinatorial Lifting
	Combinatorial Cutting-Plane Algorithm
	 Case Study: Second-order Cone Programming
	 Empirical Evaluation and Discussion
	Conclusions
	Relaxed BDD Construction Procedure for Second-Order Cones
	Experiments Comparing Different BDD Widths
	Average Performance Comparison for Knapsack Chance Constraints
	Average Performance Comparison for General Chance Constraints

