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Abstract

We address a scheduling problem in the context of military
aircraft maintenance where the goal is to meet the aircraft
requirements for a number of missions in the presence of
breakdowns. The assignment of aircraft to a mission must
consider the requirements for the mission, the probability of
aircraft failure, and capacity of the repair shop that maintains
the aircraft. Therefore, a solution both assigns aircraft to mis-
sions and schedules the repair shop to meet the assignments.
We propose a dispatching heuristic algorithm; three com-
plete approaches based on mixed integer programming, con-
straint programming, and logic-based Benders decomposi-
tion; and a hybrid heuristic-complete approach. Experiments
demonstrate that the logic-based Benders variation combin-
ing mixed integer programming and constraint programming
outperforms the other approaches, that the dispatching heuris-
tic can feasibly schedule the repair shop in a very short time,
and that using the dispatching solution as a bound marginally
improves the complete approaches.

Introduction
For a many industries with expensive assets, repairing a
failed asset is significantly more economical than replac-
ing it. Furthermore, there is economic pressure to reduce
the number of such expensive assets so as to not waste
their capacity: companies often cannot afford an inventory
of back-up parts. Under such conditions, high-quality sched-
ules which integrate maintenance activities and “regular” ac-
tivities can have a substantial effect on the performance of
the overall system. For scheduling research, such problems
raise the dual challenges of dealing with the uncertainty of
breakdown and with simultaneously reasoning about main-
tenance and traditional scheduling metrics like makespan,
through-put, and on-time performance.

Following the case study presented in Safaei et al. (Safaei,
Banjevic, and Jardine 2010), we study the scheduling of a
military aircraft maintenance facility. In the problem, there
exists a flight program consisting of a number of missions
called waves, each with a requirement for a specific num-
ber of aircraft of various types. At the beginning of the time
horizon, an aircraft is either ready for a pre-flight check or
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is waiting to be repaired in the repair shop. The high-level
goal is to assign aircraft to waves under the constraints that:
• Aircraft are subject to breakdowns, detected during sys-

tematic pre- and post-flight checks. We assume that once
an aircraft fails, it leaves the system to be repaired during
the next scheduling horizon.

• An aircraft can fly in multiple waves, provided the waves
do not overlap and the aircraft does not breakdown.

• Aircraft in the repair shop must be repaired before being
sent on a wave.

• The repair shop has limited capacity.
A solution determines an assignment of aircraft to waves

and a schedule of repair jobs which maximizes the wave
coverage, considering the known failure probabilities, the
characteristics of the repair activities such as processing
times and resource requirements, and the capacity of the
repair shop. Wave coverage is the extent to which the air-
craft requirements of the waves are met. We assume that
the schedule is computed off-line at the beginning of the
scheduling horizon. It is then executed as is, with no dy-
namic reaction to actual aircraft failures. We study dynamic
re-scheduling in future work (Aramon Bajestani and Beck
2011). The flow of an aircraft during a single scheduling
horizon is illustrated in Figure 1.

We explore several techniques to solve this problem:
mixed integer programming (MIP); logic-based Benders de-
composition (LBBD) using either MIP or constraint pro-
gramming (CP); a dispatching heuristic motivated by the
Apparent Tardiness Cost (ATC) dispatching rule; and two
hybrid approaches which integrate the dispatching heuristic
with complete approaches (MIP and LBBD).
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Figure 1: A Flow Chart Representing the Aircraft Flow
among Waves, Checks, and the Repair Shop.



Our empirical studies indicate that the LBBD variation
that combines MIP and CP outperforms the other complete
approaches. The dispatching heuristic can provide the repair
shop with a feasible schedule in a very short time, however
the quality of the solution is likely to be insufficient. Finally,
the integration of the dispatching heuristic and complete ap-
proaches results in a small reduction in the mean time to
optimally schedule the repair shop.

The contributions of this paper are:
• Developing a logic-based Benders decomposition for

scheduling an aircraft repair shop.
• Designing a dispatching heuristic algorithm guaranteeing

a feasible schedule for the repair shop in a short time.
• Estimating aircraft availability and expected wave cover-

age by incorporating stochastic failure information.
The following section defines logic-based Benders de-

composition and our problem. We then describe the pro-
posed solution approaches and present our experiments and
results. We end with related work on maintenance schedul-
ing and conclude, discussing directions for the future work.

Background
In this section, logic-based Benders decomposition is intro-
duced and the formal definition of the problem is given.

Logic-based Benders Decomposition
Logic-based Benders decomposition (LBBD) was intro-
duced in the context of circuit verification and then gener-
alized integer programming (Hooker and Yan 1995; Hooker
and Ottosson 2003). The LBBD approach partitions the
problem into a master problem (MP) and a set of sub-
problems (SPs). The former is a projection of the global
model to a subset of decision variables, denoted y, and the
constraints and objective function components that involve
only y. The rest of the decision variables, x, define the sub-
problems. Solving a problem by Benders decomposition in-
volves iteratively solving the MP to optimality and using the
solution to fix the y variables, generating the sub-problems.
The inference duals (Hooker 2005) of the SPs are solved to
find the tightest bound on the global cost function that can
be derived from the original constraints and the current MP
solution. If this bound is greater than or equal to the current
MP solution (assuming a maximization problem), the MP
solution and the SP solutions constitute a globally optimal
solution. Otherwise, a constraint, called a “Benders cut” is
added to the MP to express the violated bound and another
iteration is performed.

To our knowledge, this is the first work using logic-based
Benders decomposition for maintenance scheduling.

Problem Definition
The problem is to assign aircraft to waves to maximize wave
coverage while at the same time creating a feasible mainte-
nance schedule. The problem definition is due to Safaei et
al. (Safaei, Banjevic, and Jardine 2010).

Figure 2 is a snapshot of the problem at time 0, where cir-
cles represent aircraft. Three waves and their corresponding
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Figure 2: Snapshot of the Problem at Time 0.

pre- and post-flight checks are already scheduled. A number
of aircraft (three in the diagram) are ready for the pre-flight
check while others are currently in the repair shop awaiting
maintenance before they can proceed to a pre-flight check.
Failure is only detected during a check and we assume that
a check will always correctly assess the status of an aircraft.

We adopt the following notation to represent the problem.
• N is the set of aircraft.
• K is the set of aircraft types. For each aircraft type k ∈ K,

there are Ak aircraft ready at the beginning of the time
horizon and λk is the mean failure rate.

• W is the set of waves and D is an ordered set of due
dates consisting of the wave start-times plus a big value,
B sorted in ascending order. Each wave, w ∈ W has a
start-time, stw ∈ D, and an end-time etw. Each wave re-
quires akw aircraft of type k.

• R is the set of repair resources (called “trades”). The max-
imum capacity of trade r ∈ R is Cr.

• J is the set of jobs (i.e., aircraft to be repaired). Each job
is associated with a specific aircraft and Ik denotes the set
of repair jobs for aircraft type k. Mr is the set of jobs re-
quiring trade r. Each job requires one or more trades. The
processing time and required capacity of job j on trade r
is pjr and cjr, respectively.

• T is the scheduling horizon (i.e., the maximum time).
To find the probability of failure of an aircraft in pre- and

post-flight checks for a specific wave, we need to track the
complete history of the aircraft. For example, assume that
a given aircraft is repaired and assigned to the first wave.
There are three possibilities: the aircraft fails the pre-flight
check; the aircraft passes the pre-flight check, flies the wave,
and fails the post-flight check; or the aircraft passes the pre-
flight check, flies the wave, and passes the post-flight check.
Therefore, the availability of the aircraft for the second wave
can be represented as a random variable whose expected
value depends on the probability of these three different pos-
sibilities. Similarly the availability of the aircraft for subse-
quent waves depends on its entire path through the checks
and waves. As the number of waves and aircraft increase, the
size of the state space will become prohibitive. Furthermore,
the scheduling decisions themselves impact the aircraft his-
tories: the probability that an aircraft is available for the third
wave is different depending on if it was repaired in time for
the first wave or only for the second wave.

To break this loop and avoid the growth of the state space,
we distinguish aircraft based on their type and use a recur-
sive equation (Eqn (4)) to estimate aircraft availability and



expected wave coverage. The failure rate, λk, is used to cal-
culate the probability of failure associated with each air-
craft type during pre- and post-flight checks, respectively:
ξprek = (1− e−αλk) and ξpostk = (1− e−βλk), where α < β
to reflect deterioration of the aircraft through use. This for-
mulation is different from that of Safaei et al. who used a
constant probability of failure for all aircraft type both in
pre- and post-flight checks.

Solution Approaches
In this section, the details of different solution techniques are
provided. In our preliminary experimentation, a pure con-
straint programming model performed very poorly and so
we did not pursue it.

Mixed Integer Programming
We propose a novel mixed integer programming model
based on the common time-indexed formulation (Queyranne
and Schulz 1994). This model is different from and signifi-
cantly faster than that of Safaei et al. The variables are de-
fined in Table 1 and the model is shown in Figure 3. We refer
to this model below as MIP.

Var. Definition
Zkw The number of aircraft of type k assigned to fly in wave w
xij xij = 1 if the ith due date is assigned to job j
stjr The start-time of job j on trade r
Ukw The number of aircraft of type k whose repair due date is stw
Ekw The expected number of available aircraft of type k for wave w
etjr The end-time of job j on trade r

Table 1: The decision variables (top) and inferred variables
(bottom) for the MIP model.

The objective function (1) maximizes the number of air-
craft assigned to a wave subject to a bound on the number of
aircraft required and the expected number available (Con-
straint (5)). Equation (2) calculates the number of aircraft
of type k whose repair due date is stw. Equation (3) calcu-
lates the expected number of available aircraft for the first
wave. Equation (4) calculates the expectation for the other
waves. The first term includes those aircraft available but
not used for the previous wave and those newly arrived from
the repair shop. The second term sums over all aircraft that
become available because they have completed waves since
the previous wave started. Constraint (6) ensures that exactly
one due date is assigned to each job. As noted earlier, the or-
dered set, D, includes the wave start-times and a big value
B. If a failed aircraft cannot be repaired in time for one of
the waves, its due date is assigned to B so as to not to con-
strain the problem. Equation (7) calculates the end-time of
the jobs. The end-time of each job is guaranteed to be less
than or equal to the assigned due date by constraint (8). Con-
straint (9) enforces the capacity limit of each trade, where t
denotes each time point during which job j executes.
Zkw, the number of aircraft of type k that are assigned to

fly in wave w, is a true decision variable: we can choose to
send fewer aircraft on a wave than are currently (in expecta-
tion) available. In contrast, Ekw is the expected number of

max.
W∑
w=1

K∑
k=1

Zkw (1)

s.t. Ukw =
∑
j∈Ik

xij , if di = stw (2)

Ek1 = (Ak + Uk1)(1− ξprek ), ∀k (3)

Ekw = (Ek(w−1) − Zk(w−1) + Ukw)(1− ξprek ) +

w−1∑
v=1

Zkv(1− ξpostk )(1− ξprek ),

if stw−1 < etv ≤ stw,∀w 6= 1, k (4)
Zkw ≤ min(Ekw, akw), ∀k,w (5)
|D|∑
i=1

xij = 1, ∀j (6)

stjr + pjr = etjr,∀j, r (7)

etjr ≤
|D|∑
i=1

xijdi, ∀j, r (8)∑
j∈Mr

cjr ≤ Cr, if stjr ≤ t < etjr, ∀t, r (9)

xij ∈ {0, 1}, ∀i, j (10)
0 ≤ Ekw ≤ |N |, ∀k,w (11)

stjr, etjr ∈ Z+ ∪ {0}, ∀j, r (12)

Zkw ∈ Z+ ∪ {0}, Zkw ≤ |N |, ∀k,w (13)

Figure 3: The Global MIP Model for the Aircraft Mainte-
nance Scheduling Problem.

aircraft of type k available for wave w and is based on the
probabilistic outcomes of previous waves and the number of
newly repaired aircraft (Ukw).

The objective function (1) is not the expected wave cover-
age because each wave has specific plane requirements and
the maximum wave coverage for each wave is 1. If the ex-
pected number of available aircraft Ekw is more than the re-
quirement akw for a given wave, the extra aircraft do not fly
the wave and so do not have any contribution to the cover-
age. By not flying “extra” planes, we increase the probability
that they will be available for the next wave.

Logic-based Benders Decomposition
As the problem requires making two different decisions,
assigning aircraft to the waves and scheduling repair jobs
for failed aircraft, a decomposition approach may be
well suited. A logic-based Benders decomposition (LBBD)
method can be formulated where the master problem assigns
aircraft to waves to maximize wave coverage and the sub-
problems create the maintenance schedules given the due
dates derived from the master problem solution. We propose
three variations: Benders-MIP and Benders-MIP-T, where
the master problems are solved using MIP, the latter with a



tighter sub-problem relaxation; and Benders-CP, with a con-
straint programming-based master problem. All models use
CP for the scheduling sub-problems.

The Due-Date Assignment Master Problem (DAMP):
MIP Model To formulate the master problem as a MIP
model, we use a binary variable xij for each j ∈ J and
i ∈ D with the same meaning as in the global MIP model.
A MIP formulation of DAMP is as follows:

max. Objective (1)
s.t. Constraints (2) to (6), (10), (11), (13)∑

j∈Mr

cjrpjr ≤ Cr max
j∈Mr, i∈D

(xijdi), ∀r (14)

MIP cuts (15)

The master problem incorporates a number of the con-
straints in the global MIP model. It does not represent the
start-times of jobs nor does it fully represent the capacity
of the trades. As is common in Benders decomposition, the
master problem includes a relaxation of the sub-problems
(Constraints (14)) and Benders cuts (Constraints (15)).
The Sub-Problem Relaxation Constraint (14) is the relax-
ation of the capacity of a trade, expressing a limit on the
area of jobs that can be executed. The limit is defined using
the area bounded by the capacity of the trade and the time
interval [0,M ] where M is the maximum due date assigned
to the jobs on the trade. This relaxation is due to Sadykov &
Wolsey (Sadykov and Wolsey 2006).

As there are a relatively small number of waves, we can
tighten the relaxation by enforcing an analogous limit on
multiple intervals: [0, stw] for each wave w, plus [0,M ]. For
each interval, the sum of the areas of the jobs whose as-
signed due date is less than or equal to the end-time of the
interval must be less than the available area. Formally, the
tighter relaxation replaces Constraint (14) with:

∑
j∈Mr,

∑|D|
i=1 xijdi≤stw

cjrpjr ≤ stwCr, ∀r, w

The Benders Cuts Before defining the cut formally, we
demonstrate the intuition with an example. Consider a due
date set, D = {14, 17, 20, 100}, and, for a given trade
with five jobs, the current master solution: x21 = 1, x12 =
1, x43 = 1, x14 = 1, and x15 = 1. Job 1 is assigned to the
second due date, 17, Job 2 has the first due date, 14, and so
on. If the current solution is infeasible due to the resource
capacity of the trade, then we know that at least one of the
jobs must have a later due date. We can, therefore, constrain
the sum of the consecutive xij up to and including the ones
assigned to 1 to be one less than the number of jobs. In our
example, the cut would be:

(x11 + x21) + (x12)+

(x13 + x23 + x33 + x43) + (x14) + (x15) ≤ 5− 1

Formally, assume that in iteration h, the solution of the
DAMP assigns a set, Q, of due dates to the jobs on trade r.
Assume further that there is no feasible solution on trade r
with the assignments in Q. The cut after iteration h is:∑

j∈Mr

∑
i∈Irjh

xij ≤ |Mr| − 1, ∀r (16)

where Irjh = {i′|i′ ≤ i, and xhij = 1} is the set of due dates
indices less than or equal to the due date index assigned to
job j and |Mr| is the number of jobs on trade r. The validity
of this cut is proved in the following section.

The Due-Date Assignment Master Problem: CP Model
We also formulate the MP using CP. Let dj be the variable
corresponding to the due date for job j.

max. Objective (1)
s.t. Constraints (3) to (5), (11), (13)

GCC([Ukw], [st1, st2, ..., stW ], [dj∈Ik ]), ∀k,w
(17)∑

j∈Mr

cjrpjr ≤ Cr max
j∈Mr

(dj), ∀r (18)

dj ∈ {st1, st2, ..., stW , B} (19)
CP cuts

Constraint (17) defines a global cardinality constraint for
each aircraft type. The global cardinality constraint enforces
that the cardinality variables (Ukw) count the number of
times that each value in the due date set appears over the
due date variables (dj). Constraint (18) guarantees that the
sum of processing areas for the set of jobs on the same trade
does not exceed the maximum available area.

The CP cut is based on the same reasoning as with the
DAMP MIP model. If Jr is the set of job indices on trade
r and the assigned set of due dates is not a feasible solution
for the SP, the cut will guarantee that in the next iteration at
least one of the assigned due dates will have a greater value.
Formally, the cut is:∨

dj > dhj , ∀j ∈ Jr (20)

where dhj is the due date assigned to job j in iteration h.

Job Scheduling Sub-Problem Given a set of due dates as-
signed to the jobs on a trade, the goal of the job scheduling
sub-problem (JSSP) is to assign start-times to the jobs to sat-
isfy the due dates and the trade capacity. The JSSP for each
trade can be modeled using cumulative constraints (Hooker
2005). We use a CP formulation:

cumulative([tj |dhj ], [pjr|dhj ], [cjr|dhj ], Cr), ∀r
0 ≤ tj ≤ dhj − pjr, ∀j, r (21)

where t is an array of variables such that tj is the start-time
of job j, d is an array of values such that dhj is the due date
assigned to job j in master problem in iteration h. The vari-
ables pjr, cjr, Cr are as defined above. Constraint (21) en-
forces the time windows: the job cannot be started later than
dhj − pjr.



A Dispatching Heuristic
Since the problem modeled in this paper is NP-hard, solv-
ing it to optimality may be prohibitive. We therefore inves-
tigate a heuristic approach, inspired by the Apparent Tar-
diness Cost (ATC) heuristic, a composite dispatching rule
that is typically applied to single machine scheduling with
the sum of weighted tardiness objective (Pinedo 2005). The
heuristic computes a ranking index for each job and sorts
the jobs in ascending order of the index. The heuristic then
iterates through the jobs, scheduling each job at its earliest
available time. The ranking index we use is as follows:

Ij = ST (kj) exp(−
FNj
FCj

), ∀j

If we let kj denote the type of aircraft j, then ST (kj) is the
start-time of the first wave that requires an aircraft of type
kj . FNj is the fraction of the total number of aircraft of
type kj required by the first wave that requires kj , and FCj
is the maximum proportion of the capacity needed by job j
over all its required trades, as follows.

FCj = max
r

(
pjrcjr

ST (kj)Cr
), ∀r

Intuitively, the earlier the start-time of the first relevant
wave, the higher proportion of aircraft required by that wave,
and the lower the proportion of capacity required before the
wave, then the higher the job will be ranked. The exponential
function is used to place more weight on the start-time.

Hybrid Heuristic-Complete Approaches
A hybrid heuristic-complete approach in which the heuristic
provides an initial solution may improve the performance
of the complete approaches. Therefore, a simple hybrid first
runs the dispatching heuristic and then uses the objective
value as a starting lower bound for the complete approaches.
Assume that the heuristic finds a solution, S, with cost f(S).
Any of the complete approaches can now be modified by
adding the following constraint:

W∑
w=1

K∑
k=1

Zkw > f(S)

Theoretical Results
To guarantee the finite convergence of an LBBD model to a
globally optimal solution, the Benders cuts must be valid and
the master decision variables must have finite domains. A
Benders cut is valid in a given iteration, h, if and only if (1)
it excludes the current globally infeasible assignment in the
master problem without (2) removing any globally optimal
assignments (Chu and Xia 2004). The former guarantees the
finite convergence and the later guarantees the optimality.
As the decision variables in DAMP have a finite domain, it
is sufficient to prove the satisfaction of the two conditions.

Theorem 1. Cut (16) is valid.

Proof. For condition (1), for the sub-problem in iteration h
on trade r, by definition:

∑
j∈Mr

∑
i∈Irjh

xij = |Mr|

Consequently, cut (16) excludes the current assignment of
master problem.

For condition (2), consider a global optimal solution S
that does not satisfy cut (16) as generated in iteration h. As
the cut states that at least one job must have a greater due
date than it had in h, to violate the cut, all jobs in S must
have equal or lesser due dates than they had in iteration h.
However, because the sub-problem was infeasible in itera-
tion h, any sub-problem with only equal or lesser due dates
must also be infeasible as the available area on the trade is
the same or less. Therefore, S must be infeasible and we
contradict the assumption that S is globally optimal.

Therefore, the cut is valid.

An analogous argument holds for cut (20).

Experimental Results
The next sub-section describes the problem instances and
the experimental details. We then compare our solution ap-
proaches experimentally and present insights into each algo-
rithm’s performance through a deeper analysis of the results.

Experimental Setup
The problem instances have 10 to 30 aircraft (in steps of 1),
3 or 4 trades, and 3 or 4 waves. Five instances for each com-
bination of parameters are generated, resulting in 420 in-
stances (21 total aircraft counts by 2 trade counts by 2 wave
counts by 5 instances).

Aircraft The number of aircraft types is equal to |N |5 , where
|N | is the number of aircraft. The aircraft are randomly as-
signed to different types with uniform probability. The num-
ber of aircraft of type k is nk. The failure rate for each
aircraft is randomly chosen from the uniform distribution
[0, 0.1]. The failure rate for aircraft of type k, λk, is the mean
failure rate over all aircraft of type k. The values of α and β
are 1 and 3, respectively.
Waves The plane requirement for each wave is randomly
generated from the integer uniform distribution [1, nk]. The
length of each wave was drawn with uniform probability
from [3, 5]. To make an instance loose enough to permit fea-
sible solutions yet tight enough to be challenging, a lower
bound on the time horizon is needed. The sum of the pro-
cessing areas of the jobs in each trade, r, divided by the
trade capacity is denoted by Sr. LB = maxr(Sr) is a lower
bound on the time required to schedule the jobs and we set
the scheduling horizon to T = 1.2 × LB. The end-time for
each wave, etw, is generated as etW = T−rand[0, 3] for the
final wave, W , and etw = stw+1 − rand[0, 3] for w < W .
Trades The capacity limit for each trade is set at Cr = 10.
Repair Jobs Eighty percent of the aircraft are in the re-
pair shop at the beginning of time horizon, resulting in
|J | = 0.8|N | repair jobs. The jobs are randomly assigned
to the trades with replacement such that the number of jobs
per trade is equal to |J |/2. Each job requires at least one
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Figure 4: Run-times of the Four Complete Models

Mean # MP Time (s) SP Time (s) %
Method Time (s) Iter. per Iter. per Iter. Unsolved
Benders-MIP-T-Hybrid 995.25 14.15 71.24 0.13 11.90
Benders-MIP-T 1155.34 14.97 78.01 0.13 14.52
Benders-MIP 1842.61 16.75 111.81 0.08 23.10
MIP-Hybrid 3338.24 - - - 42.86
MIP 3566.19 - - - 46.90
Benders-CP 4181.72 34.71 123.04 0.02 52.86
Dispatching Rule 0.01 - - - 65.71

Table 2: The mean run-time, the mean number of master
problem iterations, the mean run-time spent on the master
problem and the sub-problems per iteration, and the percent-
age of unsolved problems for all approaches.

trade and some require more than one trade. The capacity of
trade r used by job j, cjr, is drawn from [1, 10] while the
processing time, pjr, is drawn from [r, 10r]: jobs on trades
with lower indices have shorter expected processing times
than those on trades with higher indices.

All experiments were run with a 7200-second time limit.
The MIP solver is IBM CPLEX 12.1 and the CP solver is
IBM ILOG Solver/Scheduler 6.7.

Computational Results
Figures 4 show scatter-plots of run-times of the four com-
plete approaches. Both axes are log-scale, and the points
below the line y = x indicate a lower run-time for the al-
gorithm on the y-axis. The numbers in the boxes indicate
the number of points below or above the line. Run-times are
counted as equal if they differ less than 10%.

The graphs indicate a clear benefit for Benders-MIP over
Benders-CP and MIP and for Benders-MIP-T over Benders-
MIP while the performance comparison of Benders-CP and
MIP is more even. Table 2 presents further data, sorted in as-
cending percentage of unsolved problems, for all algorithms.

Benders-MIP vs. MIP The Benders-MIP approach
achieves a better run-time than MIP on 63% of the test prob-

lems and a worse run-time on 16%, achieving a lower mean
run-time and solving a higher proportion of the problem in-
stances. When the time horizon is short, the MIP approach
is faster due to the tightness of the time-index model. With
larger horizons and more jobs, the number of time-index
variables grows, substantially reducing the performance.

Benders-CP vs. MIP The Benders-CP approach does bet-
ter than MIP in terms of run-time on 28% of the instances
while performing worse on 32%. When the CP master prob-
lem can be solved within the time limit, Benders-CP is su-
perior to the MIP. However, Table 2 favors MIP in terms of
the overall performance.

Benders-MIP vs. Benders-CP The Benders-MIP ap-
proach achieves a better run-time than Benders-CP on just
over 61% of the test problems, performing worse on about
17%. The branching heuristics for Benders-CP (smallest to
largest due date) often lead to an initial feasible master solu-
tions with tighter due dates than the initial master solution in
Benders-MIP. The tighter, globally infeasible initial solution
means that the CP-based model requires more than twice as
many iterations to find a globally feasible solution. However,
when the initial master solutions are identical, Benders-CP
often finds and proves optimality faster than Benders-MIP.
We believe this is due to the different forms of the cut, but
further research is necessary to fully understand this point.
These observations suggest, however, that more intelligent
branching heuristics may substantially improve Benders-CP,
perhaps, to the point of being better than Benders-MIP.

Benders-MIP-T vs. Benders-MIP The tighter relaxation
in Benders-MIP-T clearly speeds up LBBD: Benders-MIP-
T has a better run-time than Benders-MIP on 66% of prob-
lems instances and worse on only 17%. The mean run-time,
the percentage of unsolved problems, and the number of
iterations decrease by 40%, 40%, and 11%, respectively.
The solve time for the master problem decreases consider-
ably compared to Benders-MIP, while the sub-problem run-
time increases. This latter observation is because many sub-
problems for Benders-MIP that can be quickly proved in-
soluble by the initial propagation of CP sub-problem model,
violate the tighter relaxation in the Benders-MIP-T master
problem. Therefore, in the tighter model, the sub-problem
solver is not called on these “easy” sub-problems, increas-
ing the mean run-time per sub-problem.

Incomplete and Hybrid Approaches The dispatching
heuristic is fast, finding a feasible solution to all problems
in an average of 0.096 seconds. However, it finds (but, of
course, does not prove) an optimal solution in only 34% of
the instances and Benders-MIP-T finds and proves optimal-
ity for these instances in 30.4 seconds on average. It seems
that the heuristic can find the optimal solution only when
the problem instance is relatively easy. The mean quality of
the heuristic solution is 5% from optimal. In industries with
expensive assets, such a reduction in solution quality can
translate to costly under-use of a valuable resource (e.g., a
fighter aircraft costs in the vicinity of 100 million dollars).

To evaluate the effect of combining the dispatching
heuristic with the complete approaches, we examine using



 

0.01

0.1

1

10

100

1000

10000

0.01 0.1 1 10 100 1000 10000

M
IP

-H
yb

rid

MIP

MIP-Hybrid vs. MIP

0.01

0.1

1

10

100

1000

10000

0.01 0.1 1 10 100 1000 10000

B
en

de
rs

-M
IP

-T
-H

yb
rid

Benders-MIP-T

Benders-MIP-T-Hybrid vs. Benders-MIP-T

145 

87 

237 

115 

Figure 5: Run-time of Heuristic-Complete Approaches vs.
Complete Approaches.

the hybrid heuristic-complete approach. A smaller feasible
set is the direct consequence of defining a bound on the
cost function. As the MIP model searches the feasible set,
while LBBD methods explore the infeasible space, one intu-
ition is that the MIP model should benefit more from using
the heuristic solution. However, solving the master problem
in LBBD requires searching in a relaxed feasible space and
therefore the heuristic starting solution may also speed solv-
ing. Furthermore, as most of the LBBD run-time is taken up
in solving the master problem, any such speed up is likely to
impact the overall LBBD run-time.

Figures 5 and Table 2 show the effect of bounding the
complete approaches with the dispatching heuristic solution.
MIP-Hybrid achieves a better (worse) run-time than MIP
on 35% (21%) of the problem instances. Benders-MIP-T-
Hybrid has a better run-time than Benders-MIP-T on 60% of
the instances and a worse run-time on 27%. The mean run-
time decreases by 6% and 14% in MIP-Hybrid and Benders-
MIP-T-Hybrid, respectively. As Table 2 indicates both hy-
brid methods are able to solve more problems to optimal-
ity. However, bootstrap paired-t tests (Cohen 1995) indicate
that there is no significant difference in mean run-time at
p ≤ 0.01 for either hybrid.

Scalability Figure 6 shows our results as the number of
aircraft per wave increases. We aggregate results by trun-
cating |N |

|W | and using the instances with three waves and
both three and four trades. Note that each point represents 30
problem instances except x = 3 which has only 20 problems
instances. We omitted x = 10 as we only have 10 problem
instances for that point. The y-axis is log-scale.

The results show that the LBBD variations outperform the
other techniques across all ratios. Interestingly, the LBBD
hybrid approaches that include the dispatching heuristic
show increasing performance with more aircraft per wave.
This result suggests that the lack of statistical significance
noted above, is mainly due to the results on the instances
with a small number of aircraft per wave.

Summary The following observations are supported by
the empirical results.

• The LBBD approach combining mixed integer program-
ming and constraint programming outperforms the mixed
integer programming model. Benders-MIP is over 300
times faster than MIP, on average, with a mean time ratio

1

10

100

1000

10000

3 4 5 6 7 8 9

M
ea

n
 R

u
n
-T

im
e

Aircraft/Wave

Benders-CP

MIP

MIP-Hybrid

Benders-MIP

Benders-MIP-T

Benders-MIP-T-Hybrid

Figure 6: Mean Run-Time vs. Number of Aircraft per Wave
(|W | = 3).

of 356.69. The time ratio for a given instance is calculated
as the MIP run-time divided by Benders-MIP run-time.

• A tighter relaxation speeds up LBBD. Benders-MIP-T has
a run-time over 50 times faster than Benders-MIP. (The
mean time ratio is 51.02).

• A dispatching heuristic can provide the optimal solution
for the easy problem instances. However, the mean per-
cent relative error of heuristic is almost 5% overall, indi-
cating that the dispatching rule by itself is not effective
enough for industries with high equipment cost.

• Both MIP and LBBD benefit somewhat from a simple hy-
bridization with the dispatching heuristic. While neither
benefit is statistically significant overall, on problems with
a larger number of aircraft per wave, the heuristic appears
to have a strong positive impact on the LBBD approach.

Related Work
While there is a significant literature on maintenance
scheduling for a deteriorating system, the majority of the ar-
ticles assume an infinite horizon and provide tactical-level
results, finding, for example, long-term maintenance fre-
quencies or control-limits for maintenance depending on the
state of components (Nicolai and Dekker 2008).

There are a number of pieces of work that examine oper-
ational level maintenance scheduling. Grigoriev et al. (Grig-
oriev, van de Klundert, and Spieksma 2006) took a deter-
ministic approach to deal with the problem of cyclically
scheduling maintenance activities assuming a fixed cycle
length. Several formulations based on integer programming,
flow formulation, and set-partitioning are proposed and their
computational behaviour is investigated.

Budai et al. (Budai, Huisman, and Dekker 2006) consid-
ered the problem of scheduling preventive railway mainte-
nance activities through a mathematical programming for-
mulation. Maintenance jobs are assigned to different time
periods to minimize the track down-time as well as the main-
tenance cost. The objective, unlike in many scheduling mod-
els, tends to force jobs close together.



Frost & Dechter (Frost and Dechter 1998) addressed the
problem of optimally scheduling preventive maintenance of
power generating units within a power plant. The goal was
to find the duration and sequence of planned outages while
minimizing operating and maintenance costs. The problem
is cast as a continuous satisfaction problem and an “iterative
learning” algorithm is used to solve the problem.

Haghani & Shafahi (Haghani and Shafahi 2002) stud-
ied the problem of scheduling bus maintenance activities. A
mathematical programming approach for the problem is pro-
posed to find the daily inspection and maintenance schedule
in order to minimize the interruption in the daily bus operat-
ing schedule and to maximize the reliability of the system.

Safaei et al. (Safaei, Banjevic, and Jardine 2010) modeled
the problem studied here as a MIP that includes an assign-
ment problem and two network problems. The former as-
signed the aircraft to the waves, while the latter were used
to calculate the expected number of available aircraft for the
waves as well as the expected number of available workers
for the repair jobs. The distinguishing feature of the prob-
lem is that the objective function (wave coverage) depends
not only on the scheduling decisions but also on the out-
comes of the pre- and post-flight checks. These two quite
different components of the problem motivated the decom-
position approach explored here.

Conclusion
In this paper, several algorithms are proposed to schedule
an aircraft repair shop. The scheduling system is responsi-
ble for determining the start-time of maintenance activities
to maximize the wave coverage considering the aircraft fail-
ure probabilities and maintenance capacity. Known statistics
of probability of failure for each aircraft type are used to
estimate the expected aircraft availability and therefore ex-
pected wave coverage.

The computational results showed that a logic-based Ben-
ders decomposition using a combination of mixed inte-
ger programming and constraint programming results in a
three orders-of-magnitude speed up over a pure MIP model.
A tighter relaxation in the master problem speeds up the
logic-based Benders model another 50 times. A dispatching
heuristic can provide a feasible schedule in a short time with
five percent relative error on average and can also be used
to speed-up the complete approaches, especially on harder
problems instances with more aircraft per wave.

A focus of our future work is to consider the repair sys-
tem in a dynamic environment. Above we assumed that the
failed aircraft cannot be scheduled within the current time
horizon. We are interested in relaxing this assumption such
that new maintenance jobs can be scheduled as soon as fail-
ure is detected (Aramon Bajestani and Beck 2011).
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