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Abstract

Schedules define how resources process jobs in diverse do-
mains, reaching from healthcare to transportation, and, there-
fore, denote a valuable starting point for analysis of the un-
derlying system. However, publishing a schedule may dis-
close private information on the considered jobs. In this pa-
per, we provide a first threat model for published sched-
ules, thereby defining a completely new class of data privacy
problems. We then propose distance-based measures to as-
sess the privacy loss incurred by a published schedule, and
show their theoretical properties for an uninformed adver-
sary, which can be used as a benchmark for informed attacks.
We show how an informed attack on a published schedule
can be phrased as an inverse scheduling problem. We instan-
tiate this idea by formulating the inverse of a well-studied
single-machine scheduling problem, namely minimizing the
total weighted completion times. An empirical evaluation for
synthetic scheduling problems shows the effectiveness of in-
formed privacy attacks and compares the results to theoretical
bounds on uninformed attacks.

Introduction
Schedule-driven systems are pervasive in our lives in ar-
eas such as outpatient clinics , production lines, and public
transportation systems. To investigate improvements in sys-
tem performance, it is common for an analyst to have access
to the schedules. For example, Zhang et al. (2019) use data
mining techniques to infer root-causes for failures based on
historical schedules, Li and Olafsson (2005) use schedules
to derive dispatching rules to solve future problem instances,
and Kim and Nembhard (2013) use past schedules to facili-
tate real-time decision making.

Publishing the schedule, as in any data publishing sce-
nario (Fung et al. 2010), may result in loss of private infor-
mation. Specifically, the schedule of jobs depends on their
features that are partially private and may constitute sensi-
tive information, such as a medical priorities of patients in a
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hospital. As we shall demonstrate, given an optimal sched-
ule, an adversary can potentially infer such private informa-
tion, especially in the presence of even minimal background
knowledge about the jobs in the published data (Narayanan
and Shmatikov 2008).

Despite the pervasiveness of the analysis of schedule-
driven data, the induced privacy risks have not yet been
studied in the literature. Techniques for privacy-aware rec-
ommender systems (Yang, Qu, and Cudré-Mauroux 2018),
which may seem related, are not directly applicable, due to
fundamental differences in the problem structure: in sched-
ules, certain features are unknown for all jobs, whereas com-
mon attacks on recommender systems are based on the full
set of features being available for some items.

In this paper, we provide a first study of privacy attacks
on schedule-driven data. To this end, we contribute a threat
model that clarifies the knowledge to be used by an adver-
sary. Next, we focus on the privacy gain that an adversary
may achieve and develop measures for the privacy loss in-
curred by a published schedule.

Turning to the actual privacy attack, we first consider an
uninformed adversary, who ignores the schedule and guesses
randomly. For this baseline, we study formal properties of
our loss functions and derive bounds on the expected value
of the total privacy loss. For effective attacks, we present a
framework for an informed adversary, who uses the pub-
lished schedule for an attack based on inverse schedul-
ing (Brucker and Shakhlevich 2009). For an important, basic
scheduling problem, namely minimizing the total weighted
completion time in a single-machine setting (Pinedo 2016,
Chap. 3.1), we formulate the attack as a constraint satisfac-
tion problem and explore its computational complexity.

We summarize our contributions as follows:
1) We present a threat model for schedules based on the

public and private features used to derive an optimal
schedule.

2) We devise measures for the privacy loss incurred by a
published schedule.

3) We analyze the properties of our privacy loss measures



for a randomly guessing adversary.
4) We present a framework for informed privacy attacks on

schedules following the idea of inverse scheduling and
provide complexity results.

Experiments with synthetic schedules indicate that informed
privacy attacks indeed pose a threat and allow adversaries to
make inference on private attributes of jobs.

Background
Privacy Preservation. Privacy-preserving release of
datasets has been widely studied (Fung et al. 2010; Wagner
and Eckhoff 2018), with differential privacy (Dwork 2008)
emerging as the most prominent privacy guarantee. Usually
this guarantee is achieved by adding noise to the results of
queries, so that the information that an adversary can learn
is limited by bounding the impact one individual has on the
query result.

For privacy-preserving publishing of a dataset inde-
pendent of a specific query, guarantees such as k-
anonymity (Sweeney 2002) and l-diversity (Machanava-
jjhala et al. 2007) have been proposed. The former ensures
that at least k individuals are indistinguishable from each
other in a published dataset, whereas the latter extends the
guarantee to sensitive information for a group of individuals.
Both types of strategies guarantee a level of privacy with-
out bounding the generally inevitable loss in utility of the
published data for other purposes (Brickell and Shmatikov
2008). As such, techniques to optimize the resulting utility
are an active field of research (LeFevre, DeWitt, and Ra-
makrishnan 2006; Fioretto, Hentenryck, and Zhu 2021) with
approaches tailored to specific types of data and analysis
purposes. However, no work has investigated the privacy of
published schedules.

Although this paper is the first one to study privacy attacks
on published schedules, there is previous work on privacy-
aware scheduling. For example, some work focussed on
the construction of collective schedules maintaining pri-
vacy (Herlea et al. 2001; Wallace and Freuder 2005; Bilo-
grevic et al. 2011). Kadloor and Kiyavash analyze privacy
in the context of shared event schedulers, studying the trade-
off between utility and privacy of the schedules (Kadloor
and Kiyavash 2015). Unlike our paper, these approaches
generate a protected schedule, while considering privacy
loss to be part of the scheduling problem. This results in
sub-optimal, yet private schedules. Furthermore, these ap-
proaches focused on protecting the privacy between partic-
ipants in the scheduling process itself. In our approach, the
original scheduling problem is solved to optimality and we
consider the privacy loss implications of making the result-
ing schedule public.

Scheduling Models. We discuss the general class of prob-
lems for single-resource scheduling, before turning to the
problem types that we examine throughout this work. We
consider scheduling problems that comprise a set of n jobs
to be processed by a single resource. Each job is assigned
a vector of m input features (e.g., release times, due dates
and processing times). The resulting schedule must satisfy a
set of constraints and attempt to minimize a given objective

function. Formally, a single-resource scheduling problem is
a tuple Π = (J,X,C, ϕ) where:
• J = {ji}ni=1 is the set of jobs to be processed;
• X is an n×m job feature matrix with xi,j being the j-th

feature of the i-th job;
• C ⊆ 2R

n

is the set of constraints imposed; and
• ϕ is the objective function measuring schedule quality.

A solution, or schedule, is a vector of start times for the n
jobs, s ∈ Rn. We denote the domain of all possible job fea-
ture combinations as X = X1 × · · · × Xm with Xj repre-
senting the domain of feature j = 1, . . . ,m. For instance, if
feature j is the processing time, Xj = [10, 80] would define
that jobs run for at least 10 and at most 80 time units.

Every constraint c ∈ C is defined as a subset of schedules,
with every schedule in c satisfying a set of conditions that
may depend on features X . The set of feasible schedules for
problem Π is denoted SΠ , and it is the intersection of the
constraints in C. For example, single-resource scheduling
problems require the constraint that job executions do not
overlap. Further constraints, such as precedence constraints
between specific jobs, can be added. We only consider prob-
lems that assume non-preemptive schedules. That is, jobs
cannot be paused or stopped once their execution has started.

To assess the quality of a schedule, we define an objective
function, ϕ : Rn×X → R that assigns a real value to a given
schedule and job features. An optimal solution to Π is a
schedule, s∗ ∈ Rn, that satisfies the constraints, while ϕ(s∗)
is minimal among all vectors that satisfy the constraints. By
σ∗ ∈ N+, we denote the job permutation derived from s∗,
e.g., if s∗i is the smallest start time in s∗ then σ∗

1 = i.

TWCT Scheduling. As a specific type of the above class
of problems, we consider total weighted completion time
scheduling. Π = (J,X,C, ϕ) is defined by an arbitrary
number of jobs, each being described by two features: its
processing time and its weight. Formally, X is an n × 2
matrix, where xi,1 = pi > 0 is the processing time, and
xi,2 = wi > 0 is the weight of job i. All features are
assumed to have a finite, integer-valued domain. The only
constraints applied to the problem are non-overlapping and
non-preemptive job executions. The objective function is the
sum of weighted completion times of all jobs.

The optimal schedule for TWCT can be found in poly-
nomial time using the Weighted Shortest Processing Time
(WSPT) rule (Pinedo 2016). That is, in an optimal solution,
the jobs are ordered in a non-increasing manner based on
the ratios wi/pi. Note that optimal TWCT solutions will al-
ways be earliest-start schedules (jobs that can start are not
delayed), since any such delay would incur an increase in
the objective value.

Inverse Scheduling. Inverse scheduling is a special case
of inverse optimization problems, where the forward op-
timization problem is a scheduling problem (Brucker and
Shakhlevich 2009). Using our notation, the inverse schedul-
ing problem (ISP) considers Π = (J,X,C, ϕ) that has an
optimal solution s0. The goal is to find a new set of job fea-
tures (e.g., processing times or due dates), X∗, close to X
under some norm || · ||, that would yield a target schedule



s∗. In the TWCT scenario, an inverse scheduling problem
would be to find a new set of weights w∗

i that would achieve
a target schedule s∗.

Privacy Attacks on Schedules
Motivating Example
Consider a physician’s clinic in a European country that
prioritizes patients according to the quality of their insur-
ance policy, rated 1, . . . , 5 (5 being the highest quality in-
surance policy). On a typical day, the clinic administrator
must schedule n = 10 patients, with each patient (i ∈
{1 . . . , 10}) requiring a service duration (pi), and having
an insurance ranking (wi). The aim of the administrator is
to minimize the sum of completion times, while taking into
account the fact that high quality patients should be served
earlier (naturally leading to the TWCT problem). The clinic
wishes to publish the schedule to inform patients and assure
timely arrivals. Uploading the data to the website exposes
it to a threat. Alternatively, an attacker might observe the
sequence in which patients are served. The adversary aims
to learn private patient data to sell to other health insurance
agencies. Similar situations can arise in other domains such
as the delivery scheduling, where high-value customers are
served before to low-priority customers.

Threat Model
Our threat model involves an adversary with insights into the
scheduling problem that was solved to obtain the published
schedule s. In particular, the adversary knows the set of jobs
J , the constraint set C, the objective function ϕ, and a subset
Xpub of the job features that govern the scheduling problem,
i.e., Xpub is an n × m′ matrix, with m′ < m and m being
the total number of features.

The adversary lacks full knowledge of the features and
wishes to determine the values of X that are not given
by Xpub , which we denote by Xpriv . It holds that X =
[Xpub Xpriv ] and we write Xpriv for the domain of all possi-
ble combinations of job feature values not known by the ad-
versary. Under this model, the adversary is rather powerful,
a realistic assumption in many applications. For instance, in
the case of the clinic from our motivating example, the num-
ber of patients can be directly derived from the published
schedule; many constraints are common knowledge (e.g.,
non-overlapping treatments); the objective is given through
prevalent operational principles (e.g., total weighted com-
pletion time); and some job features can be estimated based
on the schedule (e.g., treatment times).

Let Π(Xpriv ) denote the single-resource scheduling
problem with fixed J , C, ϕ, Xpub (information known to
the adversary), and varying Xpriv be the matrix of private
features (e.g., job weights). In addition, we define a solver
f for Π(Xpriv ) as a function of Xpriv : it solves Π(Xpriv )
and returns an optimal schedule s∗ ∈ Rn. In this work, we
assume that in case of a tie between optimal schedules, f
chooses one of them in a deterministic pre-defined manner.

The idea of the threat is illustrated in Figure 1. On the
left-hand-side, we see that the true values of private features
lead to the optimal, published schedule. Yet, this schedule

Xpriv SΠ

Xpriv s∗f

Xpriv

Xprivharm

g(s∗)

g

Figure 1: The threat model for a published schedule s∗. The
three ovals correspond to the domain of private features, the
space of feasible schedules, and again, the set of private fea-
tures, respectively. The rectangle denotes the set of values of
private features g(s∗) inferred through the attack.

denotes an opportunity for inferring a set of possible values
for the private features (see right-hand-side of the figure),
thus exposing Xpriv . Later, we discuss specific realizations
of the attack function, g. Note that the left-most and right-
most ovals of Figure 1 denote the same feature space.

Privacy Loss in Published Schedules
Next, we turn to quantifying the privacy risk for the afore-
mentioned threat. We first define a distance-based loss
(DBL) that assesses the similarity between the true Xpriv

and a set of candidate values Y generated by the adver-
sary. The set is based on the knowledge that the adversary
possesses (as discussed in the threat model) and an infer-
ence procedure that we purposely keep vague at this point.
Based on the DBL, we then define two privacy loss func-
tions, namely the local privacy loss (LPL) that reflects the
fact that losing privacy of a single feature j for a single job i
matters, and the total privacy loss (TPL) that aggregates LPL
by taking the maximum across multiple jobs and features.

Privacy Loss Principles. To derive privacy loss functions,
we set the following three principles:
P1 The smaller the distance between Y and Xpriv , the more

successful the attack and the higher the loss.
P2 Gaining any information about a subset of the jobs is

considered a (partially) successful attack; fully success-
ful, if all feature values of all jobs are retrieved.

P3 The privacy loss for the entire schedule cannot be lower
than the highest privacy loss among the jobs.

Returning to our example, P1 states that there is a positive
privacy loss if the adversary finds weights that are close (in
some metric) to the actual weights. P2 states that inferring
private information about a subset of patients and features is
a negative outcome. Lastly, P3 implies that leaking private
information about a single patient is as negative as leaking
information about all patients. In the remainder of the sec-
tion, we build upon the three principles when defining our
privacy loss measures.

Distance-Based Loss. Let Y k be a single candidate matrix
of feature values from the set Y, with k = 1, . . . , N and
N = |Y|. Further, let Y k

i,j be the j-th feature of the i-th job
in the k-th guess, and let Yi,j = [Y 1

i,j , . . . , Y
N
i,j ] be the set of



N candidate values for job i and feature j. Note that Yi,j is
a multi-set, i.e., feature values may appear more than once.

We define d to be a metric that measures the distance be-
tween two feature values. The metric can be adapted accord-
ing to the feature domain. For example, for numeric domains
one can use the absolute distance, i.e.,

d(xi,j , Y
k
i,j) = |xi,j − Y k

i,j |, (1)

while for discrete domains one can use the discrete metric,
namely

d(xi,j , Y
k
i,j) =

{
0 if xi,j = Y k

i,j ,

1 otherwise.
(2)

Moreover, let p̂Y (x) be the (empirical) frequency of x in the
multi-set Yi,j (with p̂Y (x) = 0 if x /∈ Yi,j).
Definition 1 (Distance-based Loss (DBL)). Given a job-
feature value xi,j , a published schedule s, and Yi,j , the
distance-based loss (DBL) is defined as

D(xi,j , Yi,j) =

∫
x∈Xj

d(xi,j , x)p̂Y (x) dx, (3)

with the integral interpreted as the empirical Lebesgue mea-
sure, meaning that it turns into a sum for discrete domains.
The distance-based loss is equivalent to the expected value
under p̂Y of the distance between a random value of a feature
and the domain X .

Normalizing DBL. DBL will return smaller values when
the adversary guesses values in Y that are closer to Xpriv

(thus adhering to P1). However, the value of the DBL may
differ depending on the underlying feature domain. There-
fore, to compute the privacy loss across multiple feature do-
mains of different sizes, we must first normalize the DBL.
Intuitively, the closer the set Y of some feature j to the entire
domain Xj , the smaller the threat, since the adversary has
gained little information by obtaining Y. We integrate this
intuition into the normalized distance-based loss (NDBL).
Specifically, replacing Yi,j with Xj in Eq. (3) leads to the
following normalization factor for discrete domains:

D(xi,j ,Xj) =

∑
x∈Xj

d(xi,j , x)

|Xj |
. (4)

We can derive a similar expression for continuous domains.
The normalized DBL for a single feature-job pair can be
written as,

DN (xi,j , Yi,j) =
D(xi,j , Yi,j)

D(xi,j ,Xj)
.

Local Privacy Loss. The local privacy loss (LPL) quanti-
fies the loss for a single feature and single job. Intuitively,
if the values of Y resemble those of the domains of Xpriv

the privacy loss is considered low. However, if the values
in Y are close to the true values, the privacy loss should be
considered high.
Definition 2 (Local Privacy Loss (LPL)). Given a feature j
of job i and a published schedule s, the local privacy loss
ξi,j is defined as

ξi,j(s) = 1−DN (xi,j , Yi,j). (5)

Using LPL we can generate a privacy loss value for every
entry of the job-feature matrix Xpriv . Note that due to nor-
malization, the farther (closer) D(xi,j ,Y) from (to) a uni-
form distribution, the closer the LPL to 1 (0).

Total Privacy Loss. The LPL satisfies P1 and P2, since
it is based on the distance between the true value and the
values collected by the adversary and partial success is taken
into account. Next, we derive the total privacy loss (TPL) of
a schedule across all jobs and features, taking into account
the third principle.
Definition 3 (Total Privacy Loss (TPL)). The total privacy
loss of a published schedule s is defined as

ξ(s) = max
i,j∈Xpriv

ξi,j(s). (6)

TPL satisfies all three principles (P1-P3) as it is based on the
distance-based privacy loss, takes into account partial adver-
sarial success, and the loss of the overall schedule is as high
as that of the job with the highest loss.

Loss Properties for Uninformed Attacks
Any privacy protection mechanism would strive to publish
a schedule that would result in a failed attack on the private
features. Therefore, we require an attack that would serve a
benchmark: if the TPL of a schedule is similar to that bench-
mark, we will consider the schedule to be well-protected.

In this part, we consider the failed attack benchmark to be
the total privacy loss under an uninformed attack, an attack
in which the adversary randomly guesses one value from
the domain of the private feature. We explore the theoretical
properties of TPL under an uninformed attack and establish
the following sequence of results: (1) the expected value and
the variance of the TPL, (2) a limit theorem for the behav-
ior of the TPL for an increasing size of the candidate set Y,
and (3) lower and upper bounds on the TPL. The third result,
which builds upon the first two, enables us to devise failure
benchmarks for published schedules.

Expectation, Variance, and a Limit Theorem
Since we assume that jobs and their features are independent
we consider the case of a single job and a single feature,
n = m = 1, which can be easily extended to multiple jobs
with multiple features.

Expectation and Variance of TPL. Let X ∈ X be a ran-
dom variable that corresponds to a single true feature-value
of a single job. Further, let Y be the random variable of a
single guess that the uninformed adversary makes. In an un-
informed attack the adversary does not observe the sched-
ule, Y is independent of s. Furthermore, since the adversary
is aware of the domain of X , they sample Y from X . Thus,
we can write the total privacy loss as

ξ(X,Y ) = 1− d(X,Y )

D(X,X )
. (7)

We shall now show that the expected total privacy loss for
a single random guess of the adversary is 0 and provide an
expression for the variance of the TPL.



For simplicity, we assume discrete domains; the concepts
are however easily extensible to continuous domains. We as-
sume that both X and Y are independently drawn from X
using uniform sampling (probability of 1/|X | is assigned to
each value) we can write,

E
[
d(X,Y )

D(X,X )

]
=
∑
x∈X

∑
y∈X

(
d(x, y)

d(x,X )
· P (X = x)P (Y = y)

)
=

=
∑
x∈X

∑
y∈X

(
d(x, y) · |X |∑

w∈X (x,w)
· 1

|X |2

)
=

=
∑
x∈X

( ∑
y∈X (x, y)∑
w∈X (x,w)

)
· 1

|X | = 1, (8)

and thus,

E[ξ(X,Y )] = E
[
1− d(X,Y )

D(X,X )

]
= 0. (9)

Moreover, the variance of the random variable is derived as

V ar[ξ(X,Y )] = V ar

[
d(X,Y )

D(X,X )

]
=

= E

[(
d(X,Y )

D(X,X )

)2
]
− E

[
d(X,Y )

D(X,X )

]2
=

=
∑
x∈X

∑
y∈X

(
d(x, y)2 · |X |2(∑

w∈X (x,w)
)2 · 1

|X |2

)
− 1 =

=
∑
x∈X

( ∑
y∈X d(x, y)2(∑
w∈X (x,w)

)2
)

− 1. (10)

Returning to the motivating example, we have an integer
weight domain X = {1, ..., 5}. Thus, using the absolute
difference as a distance measure yields a privacy loss with
expected value of 0 and variance of 0.49.

A Limit Theorem for TPL. Assume the adversary pro-
duces a set of candidates Y = {Y 1, Y 2, ...} for a single true
feature value X . Similar to Eq. (7), we now get

ξ(X,Y) = 1− D(X,Y)
D(X,X )

. (11)

Applying the definition of privacy loss, we can carry out the
following transformation:

D(X,Y)
D(X,X )

=
1

|Y|

(∑
Y ∈Y d(X,Y )

)
D(X,X )

=
1

|Y|
∑
Y ∈Y

(
d(X,Y )

D(X,X )

)
. (12)

This expression is equivalent to calculating the mean of sam-
ple size |Y|, where the single entries of the sample are drawn
from the exact same distribution whose expected value we
determined in Eq. (8). From the above we immediately ar-
rive at the following result.

Theorem 1. As |Y| → ∞, the distribution of ξ(s) con-
verges to a normal distribution with mean 0 and variance
V ar[ξ(X,Y)] given by

V ar[ξ(X,Y)] =
V ar[ξ(X,Y )]

|Y|
.

The proof is straightforward from applying the central limit
theorem (Feller 1945).

Discussion. At this point, there are several important ob-
servations. First, the expected privacy loss for an uninformed
adversary is indeed 0, coinciding with our intuitive notion
that privacy is preserved when the adversary cannot do better
than simply guessing the private features. Second, the total
privacy loss can assume negative values. Hence, the unin-
formed adversary has equal chances of “doing better” and
“doing worse” than average. Note that a negative privacy
stems from our definition of distance-based loss, which is
not bounded below. It does not imply a “privacy gain”.

Bounds on Total Privacy Loss
In this part, we continue working with an uninformed ad-
versary to explore bounds on the expectation of the total
privacy loss. The aim is to derive reasonable privacy loss
benchmarks for a failed attack.

We have already shown that the total privacy loss for an
uninformed adversary over a set of candidates converges to a
normal random variable. Thus, we now write down the lower
and upper bounds on the expectation of the maximum of a
sample coming from a normal distribution.
Theorem 2 (Kamath 2015). Let ξ = max1≤i≤n ξi where
ξi ∼ N (0, σ2) are i.i.d. random variables. Then

1√
π log 2

σ
√

log n ≤ E[ξ] ≤
√
2σ

√
log n.

Since the bounds are valid only for random variables drawn
from a single distribution, which is not necessarily the case
when considering different features, the theorem is limited
to the maximum over one specific feature, and not over the
entire feature matrix. The overall bounds for all features
could be found by taking the maximum and minimum of
the individual feature bounds. Note that the values of these
bounds depend both on the number of jobs, n, and on the
number of guessed candidates in |Y|, for which we do not
have a fixed value for the uninformed adversary.

Figure 2 serves to illustrate the meaning of the described
bounds for the motivating example. Specifically, it shows
the upper and lower bounds of the expected value of the
total privacy loss for a range of different |Y|. The num-
ber of jobs is set to 10, while for a given |Y|, the variance
will be σ2 = V ar[ξ(X,Y)] = 0.49/|Y| as our domain is
X = {1, . . . , 5}. The figure shows a steady decline in the
bounds on the total privacy loss as the size of the candidate
set, |Y|, increases. This is expected as smaller candidate sets
have fewer possible values, making random guessing easier.

Discussion. In practice, one can use the following proce-
dure to achieve a benchmark for attempts to prevent privacy
loss when publishing schedules. First, obtain the lower and



upper bounds on the TPL under an uninformed attack. Set
one of them to be the representative of a failed attack. Use
an algorithm to alter the schedule with the aim of protecting
it, and compare an informed attack on the schedule to the
uninformed benchmark. If the gap is insignificant, conclude
that the protection attempt was indeed successful.

Note that Figure 2 shows that even an uninformed adver-
sary may still arrive at a positive TPL value. This is a con-
sequence of sampling the random weights from a relatively
small domain (compared to the number of jobs), which re-
sults in high probability of of having several samples that
agree with the true private value. One must take this prop-
erty of the TPL into account when using uninformed attacks
to set a benchmark for low values of the privacy risk.

Inverse Scheduling Attacks
We now turn to present an informed attack on a published
schedule based on the notion of inverse scheduling. Specifi-
cally, when presented with a published schedule, the adver-
sary uses inverse scheduling to collect all possible private
feature values that can lead to this optimal schedule (the ad-
versary knows the scheduling problem including the objec-
tive function). We consider attacks that enumerate all possi-
ble feature values and leave other solutions to future work.

More formally, the adversary assumes that the published
schedule s is the optimal schedule s∗ that solves Π(Xpriv ).
Based thereon, we define the attack as an inverse schedul-
ing problem (ISP) to Π(Xpriv ). That is, the adversary aims
at finding Xpriv ∈ Xpriv , such that f(Xpriv ) = s∗. How-
ever, there may exist multiple matrices of feature values in
Xpriv that yield the published schedule. As shown on the
right-hand-side of Figure 1, the attack can be written as a
mapping,

g(s∗) 7→ {X ′ ∈ Xpriv | f(X ′) = s∗}, (13)

that relates a given schedule to a set of private values. In the
context of total privacy loss, we get that Y = g(s).

Inverse Scheduling Attack for TWCT
Focusing on the TWCT problem, we show how the above
attack can be instantiated for a published schedule s. Recall
that the TWCT scheduling problem defines two features for
each job, i.e., processing times and weights. Under the above
threat model, processing times are known by the adversary
as they can be estimated directly from the published sched-
ule (by observing start times). In contrast, the job weights
are private information that is not entirely disclosed, i.e.,

XT
priv = [wtrue = (w1, . . . , wn)]. (14)

With Xw being the domain of job weights, the ISP to find a
set of candidate matrices of weights is given by

gtwct(s) = X = {w ∈ Xw | f(w) = s}. (15)

For this setting, the inverse scheduling procedure, gtwct,
can be represented as the following constraint satisfaction
problem (CSP). The input parameters of the CSP are the job
permutation σ (derived from s), the known feature values,
namely the processing times p.

Moreover, understanding the problem solved to obtain
the schedule, the adversary knows the domain of weights
(which could also be estimated from the schedule, if un-
known). The vector of weights that the adversary attempts
to find is the only decision variable. Furthermore, the
adversary knows that the forward problem is TWCT and
the solver used is f . Hence, since they assume that the
schedule is optimal, they know that the jobs must be sorted
in a non-increasing order of their weight to processing time
ratio, and they are aware of the deterministic tie-breaking
mechanism in f that selects between multiple optimal
solutions. Based thereon, the ISP can be written as follows:
Inputs:
σ: permutation inferred from s.
p: processing times inferred from s.
Xw: weight domain.

Decision variables:
w ∈ Xw: vector of weights.

Constraints:
wσi

pσi

≥
wσi+1

pσi+1

∀ i ∈ {1, . . . , n− 1}.

Output:
W : a set of candidate weight vectors.

Note that, wi = pi is always a trivial solution to the problem.

TWCT ISP in our Motivating Example. Consider a
TWCT schedule of our clinic with 3 patients having process-
ing times p = (5, 3, 1), published permutation σ = (1, 2, 3),
and weight domain of Xw = {1, . . . , 5}. The result of the
inverse scheduling attack on schedule s is W = {(5, 3, 1)},
i.e., there is only a single weight vector that leads to s and
the adversary is able to fully infer the true weight vector.

Computational Complexity of TWCT ISP
For general ISPs, one can generate solutions by searching
through the feature domains and finding X ′ that lead to s.
Finding a single solution may not be polynomial, and finding
all solutions will typically require an exponential number of
steps. In fact, finding one solution to the inverse problem
may be polynomial or hard, depending on the norm || · || and
the adjusted feature (Brucker and Shakhlevich 2009). For
example, when || · || is Hamming distance and when adjust-
ing processing times, the inverse of the maximum lateness
problem is NP-hard. Yet, for the same norm, if one adjusts
the due dates, the problem of finding one solution is polyno-
mial. In other words, a polynomial scheduling problem, may
or may not result in a computationally hard inverse problem
when generating a single solution.

Below, we show that while the number of steps to generate
all solutions to the TWCT problem is indeed exponential,
one can efficiently generate a sequence of solutions.

Theorem 3. For the TWCT ISP with n jobs that have du-
rations p1, . . . , pn and a weight domain XW of size m, the
size of |W | is O(mn).

Proof. Denote w0 some solution to TWCT ISP (we know
that such solution exists, as we can assign wi = pi,∀i).



Then, any vector w >= w0 is also a solution. In the worst
case, every element in w0 can be min(Xw), and hence all
permutations of length n from domain Xw are also solu-
tions to the problem. Thus, in the worst-case we may get,
|W | = mn, solutions.

Even though it is practically infeasible to enumerate all solu-
tions in W , generating subsequent solutions into W is poly-
nomial due to the following result.

Theorem 4. Assuming that pi are positive integers, a sin-
gle solution w that satisfies the WSPT constraints for n jobs
and weight domain size of |Xw| = m can be computed in
O ((n− 1)m).

Proof. The problem of finding a single weight vector
w1, . . . , wn can be solved via the following dynamic pro-
gramming procedure.

1. Set wn = max (Xw).
2. Set wn−1 such that it satisfies the WSPT constraint,

namely wn−1 ≥ wn
pn−1

pn
. If it does not, lower wn (po-

tentially until wn = pn, in which case wn−1 ≥ pn−1)
and repeat Step 2 until wn−1 satisfies the constraint. If it
does, set wn−1 and repeat Step 2 for wn−2.

The procedure requires at most m operations per instance of
Step 2 until wn−1 is set (in worst case to pn−1), and termi-
nates within at most n− 1 such instances.

Next, we define the notion of efficient enumeration.

Definition 4 (Efficient enumeration algorithms (Johnson,
Yannakakis, and Papadimitriou 1988)). An efficient enu-
meration algorithm has to enumerate all solutions in such
a way that the time between each pair of assignments, be-
tween the start of the algorithm and the first solution, and
between the last solution and the termination of the algo-
rithm is polynomial in the input size.

Corollary 1. Enumerating the solutions of TWCT ISP by
finding new solutions that satisfy the WSPT rule is efficient.

The proof is immediate due to Theorem 4.
In practice Corollary 1 states that if one sets a bound on

the number of solutions in g(s), generating a reasonably
large number of candidates is feasible in polynomial time.

Empirical Evaluation of Informed Attacks
Finally, we turn an empirical assessment of the introduced
attacks on published schedules based on inverse schedul-
ing1. In addition to the bounds on the expected TPL under
an uninformed attack, Figure 2 shows a box-plot of the total
privacy loss (TPL) under an informed attack. Specifically,
an informed adversary attacks 10, 000 synthetically gener-
ated schedules that all match our motivating example. For
each schedule, we solve the ISP by enumerating all possible
solutions, and compute the TPL based on the returned can-
didate set by the attack. For example, if for a given schedule
the candidate size was 10 and the TPL was 0.9, we add that
result to the value of x = 0.9.

1https://github.com/samadeusfp/aaai2023 schedule privacy
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Figure 2: Upper and lower bounds for the expectation of to-
tal privacy loss (TPL) for an uninformed attack and a box-
plot of TPL for an informed attack (when s is considered).

Our results illustrate a mild decrease, on average, for the
informed TPL. However, the decrease is less steep than the
two bounds. For relatively large candidate sets, the TPL is
close to 1, so job privacy is indeed under threat.

Moreover, we note that the values of TPL are typically
significantly above the upper bound on the expected loss of
the uninformed attack. This observation validates our intu-
ition that uninformed attacks are much less likely to lead to
privacy loss than informed attacks.

Lastly, we see that TPL does not decrease dramatically as
the candidate set grows. This behavior is due to the use of
the maximum function to aggregate the local privacy losses
of the jobs and features when computing the TPL.

When testing on larger domains, we consistently observed
a significant privacy loss. The shape of privacy loss decline
rate remained the same as in Figure 2 (bounded by the theo-
retical results). The efficiency of the attack often decreased
as the attacker needs to solve larger problems.

Conclusion
We considered a setting where a published schedule may
expose private information. To explore privacy attacks on
schedules we started by formulating a threat model for pub-
lished schedules. We defined several metrics for privacy loss
and provided theoretical properties of these measures for
uninformed attacks. These properties can be used to de-
rive reasonable benchmarks for assessing published sched-
ules. Then, we formulated a framework for informed attacks
on schedules using the notion of inverse scheduling. We
demonstrated the framework on a single-machine schedul-
ing problem, and proved the computational complexity of
the resulting inverse scheduling problem. Using syntheti-
cally generated schedules we demonstrated the effectiveness
of informed attacks. In future work, we plan to explore pri-
vacy protection mechanisms that would be able to minimize
the chances of successful inverse scheduling attacks. More-
over, we aim to show theoretical properties of informed ISP
attacks and devise sampling schemes to make these attacks
more efficient, which can be useful to efficiently test the ef-
fectiveness of protection mechanisms.
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