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Abstract. Bipartite b-matching is a classical model that is used for
utility maximization in various applications such as marketing, health-
care, education, and general resource allocation. Multi-attribute diverse
weighted bipartite b-matching (MDWBM) balances the quality of the
matching with its diversity. The recent paper by Ahmadi et al. (2020) in-
troduced the MDWBM but presented an incorrect mixed integer quadra-
tic program (MIQP) and a flawed local exchange algorithm. In this work,
we develop two constraint programming (CP) models, a binary quadratic
programming (BQP) model, and a quadratic unconstrained binary op-
timization (QUBO) model for both the unconstrained and constrained
MDWBM. A thorough empirical evaluation using commercial solvers and
specialized QUBO hardware shows that the hardware-based QUBO ap-
proach dominates, finding best-known solutions on all tested instances
up to an order of magnitude faster than the other approaches. CP is
able to achieve better solutions than BQP on unconstrained problems
but under-performs on constrained problems.

Keywords: Specialized Hardware · QUBO · Constraint Programming ·
Digital Annealer · Diverse Matching.

1 Introduction

Bipartite matching problems assign an agent on one side of a market to an agent
on the other side. Weighted bipartite b-matching generalizes such problems to
the setting where matches have real-valued weights and agents on one side of
the market can be matched to at most b agents on the other side. The weighted
bipartite b-matching problem serves as the core of applications such as general
resource allocation [6] and recommender systems [18].

The Multi-attribute Diverse Weighted Bipartite b-Matching (MDWBM) prob-
lem has been recently introduced to simultaneously maximize the quality and di-
versity of a bipartite b-matching [1]. The quality is measured by weighted costs of
assignments and the diversity is calculated in terms of differences across multiple
feature classes. Ahmadi et al. [1] proved that MDWBM is NP-hard and tackled
it with a mixed integer quadratic programming (MIQP) model and an exact lo-
cal exchange algorithm. However, there are flaws in both of these approaches. In
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this work, we address MDWBM and its constrained variant with three model-
based paradigms: Constraint Programming (CP), Binary Quadratic Program-
ming (BQP), and Quadratic Unconstrained Binary Optimization (QUBO). We
make three primary contributions:

1. We propose two CP models, a BQP model, and a QUBO model of MDWBM.
2. By adding several practical constraints, we introduce constrained MDWBM.
3. We obtain state-of-the-art results for the standard and constrained MDWBM

on software-based solvers with the CP and BQP models and on specialized
hardware with the QUBO model, demonstrating that recent hardware ar-
chitectures can be harnessed for combinatorial optimization problems.

2 Diverse Matching

A matching market often aims to maximize quality subject to some fairness
constraints, such as assuring equal opportunity amongst agents. Benabbou et
al. [5] study the trade-off between social welfare and diversity for the Singapore
housing allocation, modeling diversity with constraints added to a model of an
extension of the classic assignment problem.

Diverse bipartite b-matching [2] represents the trade-off between efficiency
and diversity, where a matching provides good coverage over different varieties
of agents. Diversity has been generally measured by some expression of cover-
age of the space of possible variation. Mathematically, researchers have used
submodular functions, which encode the diminishing returns of similarity. For
example, submodular diversity metrics are used in information retrieval com-
munities, including determinantal point processes [21] and Maximum Marginal
Relevance (MMR) [7]. Multi-attribute diverse weighted bipartite b-matching is
a more general problem as it deals with multiple classes of features. The goal is
to form diverse matchings with respect to all feature classes.

To our knowledge, there is no work on constrained diverse matching in the
literature other than that on conflict and degree constraints in non-diverse bi-
partite b-matching in e-commerce [8] and vehicular networks [14].

2.1 Multi-Attribute Diverse Weighted Bipartite b-Matching

In the Multi-Attribute Diverse Weighted Bipartite b-Matching problem (MD-
WBM) [1], there are two sets of nodes U and V in a bipartite graph. Every node
in V has multiple features, each of which belongs to a different feature class.
Let F be the set of feature classes, for example in a worker-team assignment
context, F = {Gender,Nationality}. For each f ∈ F , we use Gf to denote the
set of values for class f , such as GNationality = {France,Canada}. The set of
nodes in V with feature value gf for feature f is denoted by F

gf
f . A b-matching

on a bipartite graph allows a node from U to be connected to multiple (b) nodes
in V via edges. An example of the bipartite b-matching is illustrated in Fig. 1.
Each edge is weighted by a cost, hence connecting nodes comes with the cost.
The purpose of MDWBM is to minimize the weighted sum of cost and diversity.
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Fig. 1. Bipartite 2-matching.

For MDWBM, the objective function to be minimized is:

obj = S +W =
∑
f∈F

∑
u∈U

∑
gf∈Gf

(
λf ·

(
cu,f,gf

)2
+ λ0 · wu,f,gf · cu,f,gf

)
, (1)

where S represents the similarity of the matching and W represents the weighted
assignment cost. cu,f,gf denotes the number of nodes in V connected to node
u ∈ U having value gf for feature class f . Accordingly, if Sf is the similarity of
a matching w.r.t. feature class f , then S can also be represented by:

S =
∑
f∈F

λf · Sf =
∑
f∈F

λf ·
∑
u∈U

∑
gf∈Gf

(
cu,f,gf

)2
. (2)

where λf ∈ Z+ is a weight expressing the importance of feature f . Minimizing S,
namely the supermodular similarity function1 w.r.t. multiple features, has been
proved to be NP-hard [1].

A weight is associated with a connection between a feature value gf to a node
u ∈ U . Specifically, the weight wu,f,gf ∈ Z+ represents the cost of assigning a
node in V whose feature class f value is gf to node u ∈ U . The costs are assumed
to be integers [1]. The total cost of a matching is

W = λ0

∑
f∈F

∑
u∈U

∑
gf∈Gf

wu,f,gf · cu,f,gf (3)

where λ0 ∈ Z+.
Each node u ∈ U has a degree of du, specifying that the number of nodes

in V connected to u is exactly du in a matching. Each node v ∈ V can only be
connected to at most one node in U . Ahmadi et al. address problems with these
degree constraints, a special case of the general MDWBM.

Constraints. Assignment/allocation problems often contain constraints that,
to our knowledge, have not been included in any formulations of MDWBM. In
this paper, we address six types of constraints as follows.

1 The negative submodular diversity is equivalent to the supermodular similarity.
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– Conflict (C): Two nodes v1, v2 ∈ V cannot both be assigned to a node u ∈ U .
Consider an example in the worker-team assignment context: two workers
cannot be assigned to the same team due to a personal conflict.

– Binding (B): Nodes v1, v2 ∈ V must be assigned to the same node u ∈ U .

– Conflict Assignment (CA): A node v ∈ V cannot be assigned to a node
u ∈ U . For example in the paper review context, a reviewer cannot be
assigned to a paper due to the conflict of interest.

– Binding Assignment (BA): A node v ∈ V must be assigned to a node u ∈ U .
For example, a particular reviewer must be assigned to a specific paper.

– Must-Have (MH): A node u ∈ U must be assigned at least one node v ∈ V
with a specific value gf ∈ Gf . For instance, in an engineering course project,
a team must have at least one student who is good at coding.

– Not-Alone (NA): A node u ∈ U is assigned either 0 or at least E (E ≥ 2)
nodes in V , which have value gf ∈ Gf . For example in engineering course
projects, each group must have either 0 or at least two female students.

We call the multi-attribute diverse matching with degree constraints the stan-
dard MDWBM and the extension including any of the six practical constraints
the constrained MDWBM.

2.2 Related Work

There is only one work in the literature that studied the MDWBM. Ahmadi et
al. [1] proposed an mixed integer quadratic programming (MIQP) model for the
standard MDWBM and also introduced an local exchange algorithm based on
negative cycle detection. However, both the model and the algorithm are flawed.

The key problem of the MIQPmodel is that it uses cu,f,gf defined above as the
decision variable. However, cu,f,gf does not represent an assignment but rather
the number of nodes with a particular feature value assigned to a node. Thus,
there is no bijection between the set of assignments and the set of solutions to the
MIQP model. In fact, the decision variable choice decouples the combination of
feature values from an assignment and hence can provide superoptimal solutions
(i.e. the model is a relaxation of the true problem).

The local exchange algorithm uses the identification of negative cycles to
improve a matching. A series of moves that leads to a decrease in the objective is
called a negative cycle. In each iteration, the algorithm evaluates a neighborhood
of solutions via node movement and detects the existence of negative cycles. The
algorithm stops when it cannot find any negative cycle. The authors claimed and
proved that the algorithm terminates at a global optimum [1]. However, the claim
is false as there exists potential objective decrease that cannot be captured by
the negative cycles.

The detailed information and counterexamples for both the model and the
algorithm flaws are provided in the online appendix.2

2 https://tidel.mie.utoronto.ca/pubs/Appendix_Matching_CPAIOR22.pdf.
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3 Constraint Programming Models for MDWBM

We propose two constraint programming (CP) models for MDWBM. The first
is based on integer assignment variables, like most CP models for bin packing
problems. The second model manipulates a list of integer selection variables
for each node u ∈ U , requiring more effort to link variables and parameters. For
convenience, we use assignment CP (ACP) and selection CP (SCP), respectively,
to represent the two models.

3.1 Assignment CP Model

The ACP is as follows:

min
x

W + S (4a)

s.t. cardinality({x1, ..., x|V |}, {0, 1, ..., |U |}, {|V | −
∑
u∈U

du, d1, ..., d|U |}), (4b)

knapsack(xf,gf , {c0,f,gf , ..., c|U |,f,gf }, {1, ..., 1}), ∀f ∈ F,∀gf ∈ Gf , (4c)

spread({cu,f,1, ..., cu,f,|Gf |},
du
|Gf |

, σu,f ), ∀u ∈ U,∀f ∈ F, (4d)

W = λ0

∑
v∈V

Axv,v, (4e)

S =
∑
f∈F

∑
u∈U

λf ·
(
σ2
u,f · |Gf |+

d2u
|Gf |

)
, (4f)

xv ∈ {0, 1, ..., |U |}, ∀v ∈ V, (4g)

cu,f,gf ∈ {0, 1, ..., du}, ∀u ∈ U ∪ {0},∀f ∈ F,∀gf ∈ Gf , (4h)

xv1 ̸= xv2 , ∀(v1, v2) ∈ CC , (4i)

xv1 = xv2 , ∀(v1, v2) ∈ CB , (4j)

xv ̸= u, ∀(u, v) ∈ CCA, (4k)

xv = u, ∀(u, v) ∈ CCB , (4l)

cu,f,gf ≥ 1, ∀(u, f, gf ) ∈ CMH , (4m)

cu,f,gf ∈ {0, E,E + 1, ..., du}, ∀(u, f, gf , E) ∈ CNA. (4n)

The integer decision variable xv = u if the node v is assigned to node u, and
0 if the node u is assigned to a dummy node 0 /∈ U . The dummy node does not
have a fixed upper bound on degree and is used when some node in V is not
matched to any node in U . The integer variable cu,f,gf represents the number
of nodes in V connected to node u ∈ U ∪ {0} having value gf for feature class
f . In our implementation, the dummy node is assigned the last index instead of
the first one to better fit the typical default search algorithm of CP solvers.

In the model, constraint (4b) is the global cardinality constraint (gcc) ensuring
the number of nodes in V matched to node u ∈ U is exactly du. The rest of
the nodes are matched to the dummy node, which has degree |V | −

∑
u∈U du.
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Constraint (4c) is the multi-knapsack constraint that links variables x and c
together. The variable set xf,gf contains all the xv, where node v has gf as the
feature value of feature class f . Constraint (4d) is the spread constraint to obtain
the standard deviation σu,f of cu,f,gf (excluding the dummy node) over gf ∈ Gf .
Note that the mean value of cu,f,gf over gf ∈ Gf is the constant du/|Gf | as there
are exactly du nodes in V that are matched to u.

Constraint (4e) represents the assignment cost of the matching, which is also
the first component of the objective function to minimize.3 The (u, v) entry of
the matrix A is the cost of assigning v to u, which is pre-calculated by

Au,v =
∑

(f,gf ) if v∈F
gf
f

wu,f,gf . (5)

Constraint (4f) expresses the similarity of the matching, which is equivalent to
term (2). Constraints (4g) and (4h) address the variable ranges.

The standard MDWBM is modeled by objective (4a) and constraints (4b)
- (4h), while constraints (4i) - (4n) are for constrained MDWBM. Constraint
(4i) is the conflict constraint where CC contains pairs of conflict nodes in V .
Constraint (4j) is the binding constraint where CB contains pairs of binding
nodes in V . Constraint (4k) is the conflict assignment constraint where CCA

contains node pairs that cannot be connected. Constraint (4l) is the binding
assignment constraint where CBA contains node pairs that must be connected
by the assignment. Constraint (4m) is the must-have constraint where CMH

contains the 3-tuples ⟨node in U , feature class, feature value⟩. Constraint (4n)
is the not-alone constraint where CNA contains the 4-tuples ⟨node in U , feature
class, feature value, the number of eligible nodes in V ⟩. Note that constraints
(4k) - (4n) are implemented via direct domain pruning in the model.

3.2 Selection CP Model

The SCP is as follows:

min
x

W + S (6a)

s.t. alldifferent({xu,k,∀u ∈ U,∀k = 1, ..., du}), (6b)

table(T, xu,k, {z1u,k, ..., z
|F |
u,k}), ∀u ∈ U,∀k = 1, ..., du, (6c)

cardinality({{zfu,1, ..., z
f
u,du

}, {1, ..., |Gf |}, {cu,f,1, ..., cu,f,|Gf |}}),
∀u ∈ U,∀f ∈ F, (6d)

spread({cu,f,1, ..., cu,f,|Gf |},
du
|Gf |

, σu,f ), ∀u ∈ U,∀f ∈ F, (6e)

W = λ0

∑
u∈U

∑
1≤k≤du

Au,xu,k
, (6f)

3 We use (4e) instead of (3) according to the superior results in our experiments.
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S =
∑
f∈F

∑
u∈U

λf ·
(
σ2
u,f · |Gf |+

d2u
|Gf |

)
, (6g)

xu,k ∈ {1, ..., |V |}, ∀u ∈ U,∀k = 1, ..., du, (6h)

cu,f,gf ∈ {0, 1, ..., du}, ∀f ∈ F,∀gf ∈ Gf , (6i)

count({xu,1, ..., xu,du}, v1) + count({xu,1, ..., xu,du}, v2) ≤ 1,

∀u ∈ U,∀(v1, v2) ∈ CC , (6j)

count({xu,1, ..., xu,du}, v1) = count({xu,1, ..., xu,du}, v2),
∀u ∈ U,∀(v1, v2) ∈ CB , (6k)

xu,k ̸= v, ∀k = 1, ..., du,∀(u, v) ∈ CCA, (6l)

count({xu,1, ..., xu,du}, v) = 1, ∀(u, v) ∈ CCB , (6m)

cu,f,gf ≥ 1, ∀(u, f, gf ) ∈ CMH , (6n)

cu,f,gf ∈ {0, E,E + 1, ..., du}, ∀(u, f, gf , E) ∈ CNA. (6o)

The integer decision variable xu,k = v if v is the k-th node selected by node
u. The integer variable cu,f,gf is the same as in ACP. In the model, constraint
(6b) is the all-different constraint guaranteeing that nodes in U select distinct
nodes in V . Constraint (6c) is the table constraint that links x and z. T is the
feature matrix, where the (v, f) entry is the value of feature f of node v. Then,

zfu,k represents the feature value of the k-th node matched to u. Constraint (6d)
is the gcc constraint that links c and z. Constraint (6e) is the same as (4d) and
constraint (6f) represents the assignment cost of the matching, with the same
cost matrix A as in ACP. Constraint (6g) is the same as (4f). Constraints (6h)
and (6i) express the variable ranges.

The standard MDWBM is modeled by (6a) - (6i), while constraints (6j) -
(6o) are for the constrained MDWBM. Similar to ACP, constraints (6j), (6k),
(6l), (6m), (6n), and (6o) represent the conflict, binding, conflict assignment,
binding assignment, must-have, and not-alone constraints, respectively.

4 Quadratic Models for MDWBM

In this section, we propose a Binary Quadratic Programming (BQP) model and
a Quadratic Unconstrained Binary Optimization (QUBO) model for MDWBM.

4.1 BQP Model

We introduce a BQP model with binary assignment variables. The decision vari-
able xu,v = 1 if node v ∈ V is assigned to node u ∈ U , and 0 otherwise. Based
on the feature values of each node v ∈ V , we can generate a feature matrix
B = {bv,f,gf } where bv,f,gf = 1 if node v has value gf for feature f , and 0 oth-
erwise. Similarly, we can generate a weighted cost matrix C = {cu,v,f} based on
weighted cost parameters wu,f,gf . We use cu,v,f to represent the cost for feature
class f if node v ∈ V is assigned to node u ∈ U . We set cu,v,f = wu,f,gf if node
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v has value gf for feature class f and 0 otherwise. In addition, we also add a
dummy node indexed by 0 to deal with situations where a node in V might not
be matched to any node in U . Our BQP model is shown below.

min
x

λ0 ·
∑
f∈F

∑
u∈U

∑
v∈V

cu,v,f · xu,v+ (7a)

∑
f∈F

λf ·
∑
u∈U

∑
gf∈Gf

(∑
v∈V

bv,f,gf · xu,v

)2

(7b)

s.t.
∑
v∈V

xu,v = du, ∀u ∈ U, (7c)∑
u∈U∪{0}

xu,v = 1, ∀v ∈ V, (7d)

xu,v1 + xu,v2 ≤ 1, ∀u ∈ U,∀(v1, v2) ∈ CC , (7e)

xu,v1 = xu,v2 , ∀u ∈ U,∀(v1, v2) ∈ CB , (7f)

xu,v = 0, ∀(u, v) ∈ CCA, (7g)

xu,v = 1, ∀(u, v) ∈ CBA, (7h)∑
v∈V

bv,f,gf · xu,v ≥ 1, ∀(u, f, gf ) ∈ CMH , (7i)∑
v∈V

bv,f,gf · xu,v ≥ E · yu,f,gf , ∀(u, f, gf , E) ∈ CNA, (7j)∑
v∈V

bv,f,gf · xu,v ≤ du · yu,f,gf , ∀(u, f, gf , E) ∈ CNA, (7k)

xu,v ∈ {0, 1}, ∀u ∈ U ∪ {0},∀v ∈ V, (7l)

yu,f,gf ∈ {0, 1}, ∀u ∈ U ∪ {0},∀f ∈ F,∀gf ∈ Gf . (7m)

Term (7a) represents the weighted cost of the assignment. Term (7b) rep-
resents the supermodular similarity w.r.t. all feature classes. Constraint (7c)
guarantees that node u ∈ U (excluding the dummy node) has a degree of du.
Constraint (7d) ensures that each node in V is only assigned to one node in U .
These components form the BQP model for the standard MDWBM. Constraints
(7e) to (7i) model the conflict constraints to must-have constraints, respectively.

Constraints (7j) and (7k) represent the not-alone constraints. The variable
yu,f,gf = 0 if node u is not matched to any node in V with feature value gf of
feature f and yu,f,gf = 1 if the number of such nodes matched to u is greater
than or equal to E.

4.2 Quadratic Unconstrained Binary Optimization

The recent emergence of specialized hardware has opened up new ways to solve
specific computational tasks, such as combinatorial optimization problems [26].
Including adiabatic and gate-based quantum computers [23] and CMOS anneal-
ers [3], these novel technologies represent a variety of designs and underlying
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models of computation. Many of the designs for combinatorial optimization
target problems formulated as an Ising model or equivalently as a Quadratic
Unconstrained Binary Optimization (QUBO) model [9], which is the following
problem:

min y =
1

2

∑
i

∑
j ̸=i

Wi,jxixj +
∑
i

bixi + c, (8)

where x ∈ {0, 1}n are binary decision variables, W ∈ Mn,n(R) is a symmetric
weight matrix, b ∈ Rn is a bias vector, and c ∈ R is a constant [20]. QUBO
has been used to represent problems in combinatorial scientific computing [26],
machine learning [10], and finance [25]. With multiple feature classes, the super-
modular similarity function of MDWBM is naturally quadratic, suggesting that
it might be a good candidate for such novel hardware.

In our QUBO model, we use the same binary assignment variables xu,v as in
the BQP model. The QUBO model of MDWBM is shown below.

min
x

λ0 ·
∑
f∈F

∑
u∈U

∑
v∈V

cu,v,f · xu,v+ (9a)

∑
f∈F

λf ·
∑
u∈U

∑
gf∈Gf

(∑
v∈V

bv,f,gf · xu,v

)2

+ (9b)

p1 ·
∑
u∈U

(∑
v∈V

xu,v − du

)2

+ (9c)

p2 ·
∑
v∈V

 ∑
u∈U∪{0}

xu,v − 1

2

+ (9d)

p3 ·
∑

(v1,v2)∈CC

∑
u∈U

xu,v1 · xu,v2+ (9e)

p4 ·
∑

(v1,v2)∈CB

|U |∑
u=1

(xu,v1 − xu,v2)
2
+ (9f)

p5 ·
∑

(u,v)∈CCA

xu,v+ (9g)

p6 ·
∑

(u,v)∈CBA

(xu,v − 1)2+ (9h)

p7 ·
∑

(u,f,gf )∈CMH

(∑
v∈V

bv,f,gf · xu,v − 1− s7

)2

+ (9i)

p8 ·
∑

(u,f,gf ,E)∈CNA

(∑
v∈V

bv,f,gf · xu,v + s8 − du · yu,f,gf

)2

. (9j)
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Term (9a) and (9b) are the same as (7a) and (7b). p1 to p8 are penalty
coefficients that are set to 10 ∗ |F |. Terms (9c) to (9i) are the penalized terms of
constraints (7c) to (7i). Take (7c) and (9c) as an example; as we are minimizing
the overall objective function, we want (9c) to evaluate to 0 when constraint
(7c) is satisfied and to a non-zero value proportional to its violation when it is
not. In term (9i), s7 is the non-negative slack variable. The lower bound of s7 is
0 and the upper bound is |V | − 1. Thus, we use binary variables z1, ..., z|V |−1 to
represent s7 in QUBO, i.e., s7 = z1+ · · ·+z|V |−1. Similarly, s8 = z1+ ...+zdu−E

is the slack variable in term (9j) for not-alone constraints. Note that yu,f,gf is
the same indicator variable as in ACP.

5 Empirical Evaluation

In this section, we present our experimental results on standard and constrained
MDWBM with the commercial constraint programming solver CP Optimizer
(CPO) v20.1.0, the commercial mathematical programming solver Gurobi v9.5.0,
a multistart tabu search algorithm for QUBO [24], and a computer architecture
designed for QUBO: the Fujitsu Digital Annealer. CPO/Gurobi are the state-
of-the-art for general purpose constraint/mathematical programming. Though
the multistart tabu search was developed more than 10 years ago, according to
recent work, it is still one of the best metaheuristic approaches to QUBO [13].We
use the software-based implementation of the multi-start tabu search version 2
by D-Wave [11].

5.1 Fujitsu Digital Annealer

The Fujitsu Digital Annealer (DA) is a recent computer architecture designed for
solving QUBO problems [22]. The third generation DA (DA3), a hybrid system
of hardware and software, can represent QUBOs with up to 100000 variables. For
our DA environment,4 the integer coefficients for the quadratic terms range from
−262 to 262 and those for the linear terms range from −273 to 273 [16]. The DA
algorithm is based on Simulated Annealing (SA), however it takes advantage
of the massive parallelization provided by the custom CMOS hardware. The
difference between the SA and DA algorithm are as follows:

– DA utilizes parallel tempering that runs a number of problem solving pro-
cesses (replicas) in parallel with different temperatures [12]. Replicas swap
temperatures to diversify the search. In each replica, each Monte Carlo step
considers all possible one-bit flips in parallel [4].

– DA employs a dynamic offset to raise the energy of a state to escape local
minima.

– DA supports a dedicated bit flip mechanism, over a subset of variables be-
longing to one-hot equivalent constraints when using DA3.

4 All experiments were conducted on the Digital Annealer environment prepared ex-
clusively for the research at the University of Toronto.
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– DA can deal with inequality constraints that are not modeled in QUBO. As
a consequence, the terms (9i) and (9j) are not included in the QUBO model
when using DA3. Instead, they are represented as the following constraints:

1−
∑
v∈V

bv,f,gf · xu,v ≤ 0, ∀(u, f, gf ) ∈ CMH . (9i’)

E · yu,f,gf ≤
∑
v∈V

bv,f,gf · xu,v ≤ du · yu,f,gf , ∀(u, f, gf , E) ∈ CNA. (9j’)

In our experiments, we run the DA3 on a remote computer and do not include
the communication time in our runtime limits and results. The programs (for
running DA, CPO, Gurobi, and tabu search) are written in Python 3.7 and
conducted on a Window PC with Intel(R) Core(TM) i7-8700K CPU @3.20GHz
with 16 GB RAM.

5.2 Experimental Setting

The proposed QUBO model is tested with three solvers (Gurobi, DA, and tabu
search), while the proposed CP and BQP models are tested with CPO and
Gurobi, respectively. The six model-solver combinations are each run for 600
seconds for each instance.

Since the runtime limits are the same for the six approaches, we use the best
objective value, the time of finding the best objective, and the mean relative
error as performance measures. Denote by Bi,t,a the best solution attained by
runtime t of approach a for instance i. The relative error at time t for approach
a on instance i is given by

RE(i, t, a) =
Bi,t,a −Bi

Bi
(11)

where Bi represents the best solution over all approaches at the end of runtime.
For a minimization problem, this expression is always non-negative. The mean
relative error of approach a at time t, MRE(t, a), can be computed as

MRE(t, a) =
1

|I|
∑
i∈I

RE(i, t, a). (12)

5.3 Experiments on Standard MDWBM

For standard MDWBM, we first run the paper review [17] benchmark dataset
from UIUC [19] that were used by Ahmadi et al. It contains 73 papers accepted
by SIGIR 2007, 189 prospective reviewers, and 25 major topics. For each paper, a
25-dimensional label is provided based on its relevance to those topics. Similarly
for the 189 reviewers, a 25-dimensional expertise representation is provided.

Following Ahmadi et al., we first use spectral clustering to divide reviewers
into five clusters based on their topic vectors. We treat the cluster label as the
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first feature. The assignment cost of a reviewer to a paper is calculated as the
relevance of each cluster for each paper. We take the average cosine similarity of
label vectors of reviewers in that cluster and the paper. The reviewer demand
of each paper is set to 4 (b=4) and no reviewer is assigned to more than 1
paper. Again, following the methodology of Ahmadi et al., to increase the dataset
size and the feature number, we create a copy of each reviewer and invert the
gender in the copy. The gender is considered as the second feature. We set
λ0 = λ1 = λ2 = 1000 and round the assignment costs after multiplying by λ0 as
DA only supports integral coefficients. The results are summarized in Table 1.
The number of bits is the number of xu,v variables in the QUBO model.

Parameters Exact methods Non-exact methods

|U | |V | |F | #bits ACP SCP GBQP GBQB DA3 TABU

3 378 2 1512 45911 45911 45911 45911 45911 45911
13 378 2 5292 201139 201139 201139 201139 201139 201139
23 378 2 9072 356652 356652 356652 357927 356652 356652
33 378 2 12852 512177 512177 512177 513621 512177 512177
43 378 2 16632 669264 669264 669264 676947 669264 MemOut
53 378 2 20412 824742 824742 824742 MemOut 824742 MemOut
63 378 2 24192 979525 979525 979525 MemOut 979525 MemOut
73 378 2 27972 1136424 1136424 1136424 MemOut 1136424 MemOut

Table 1. Objective results of UIUC paper review instances.

GBQP and GBQB represent Gurobi with the BQP and QUBO models, re-
spectively. The results show that ACP, SCP, GBQP, and DA3 achieve the same
solutions, but none proves optimality for any instance. TABU finds the same so-
lutions for the first four instances, but runs out of memory on larger problems.
GBQB is outperformed by all other approaches.

Fig. 2. MRE plot of UIUC paper review instances.

MRE comparisons are shown in Figure 2. To avoid infinite MREs, for in-
stances that induce a memory error, we use a simple heuristic to find an initial
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solution and use it for each time point during the generation of MRE plots. The
heuristic assigns reviewer {1, 2, 3, 4} to the first paper, reviewer {5, 6, 7, 8} to
the second paper, and so forth. From the MRE plot we see that the non-exact
methods, TABU and DA3, reach solutions immediately and rarely improve the
quality after 10 seconds, though DA3 is much better than TABU. The exact
methods gradually increase their solution quality, with ACP, SCP, and GBQP
eventually finding the same solutions as DA3. The performance of GBQB, how-
ever, never surpasses DA3 at 10 seconds. While we have shown that the two
solution approaches of Ahmadi et al. are incorrect in the online appendix, we
note that that their reported runtimes are up to 4 orders of magnitude longer
than the runtime of DA3. These numeric results, therefore lead to very different
conclusions w.r.t. solving MDWBM problems in practice.

Parameters Exact Non-exact

ID |U | |V | |F | #bits ACP SCP GBQP GBQB DA3 TABU

1-5 25 100 10 2600 0.027 0.032 0.011 0.016 0.000 0.028
6-10 25 100 100 2600 0.030 0.035 0.006 0.008 0.000 0.014

11-15 50 200 10 10200 0.049 0.052 0.115 0.019 0.000 0.030
16-20 50 200 100 10200 0.073 0.065 MemOut 0.009 0.000 0.018

Table 2. MRE of randomly generated instances.

In the UIUC dataset, there are only two feature classes. In other application
contexts such as machine learning [15], the number of feature classes can be
very large. We hence uniformly randomly generated instances with more feature
classes [27]. The newly generated instances are of the sizes in terms of |V | × |U |:
{100×25, 200×50}, and the number of feature classes |F |: {10, 100}. The assign-
ment costs are uniformly distributed from 1 to 5. Each feature class randomly
has 2 to 10 different values. Each node in U needs to have a degree of 4 (b=4).
We generate 5 instances for each size and set λ0 = λ1 = ... = λ|F | = 1. The
MRE results are shown in Table 2 and Figure 3.

Fig. 3. MRE plot of randomly generated instances.
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For the 20 randomly generated instances, DA3 remains the best solution ap-
proach. Unlike for UIUC instances, DA3 gradually improves its solution quality,
though the improvement is small. For these instances, QUBO-based methods are
much better than CP/BQP-based methods, as Gurobi and CPO at 600s do not
produce a better solution than DA3/TABU/GBQB at 60s. CPO with both CP
models is worse than GBQP initially, but achieves better performance after 280s.
Also note that the performance of CP approaches degrades when the problem
size or the number of feature classes increases.

5.4 Experiments on Constrained MDWBM

In this section, we test constrained MDWBM. Focusing more on the constraints,
we consider the multi-class instances with IDs 1, 2, 6, and 7. Due to limited
paper space, we select four different constraint patterns according to the number
of each type of constraints, as shown in Table 3.

Constraint

Pattern C B CA BA MH NA

PT1 5 5 5 5 5 5
PT2 10 10 10 10 10 10
PT3 0 20 0 0 20 20
PT4 50 0 50 0 0 0

Table 3. Number of constraints in different patterns.

MDWBM with PT2 is more constrained than that with PT1. PT3 and PT4
are practically interesting constraint patterns. PT3 illustrates the situation that
nodes in V have binding preferences while nodes in U need to meet specific re-
quirements, while PT4 reflects the circumstances when there are only conflict
constraints. The constraints are randomly generated. The results of the con-
strained MDWBM are shown in Table 4 and Figure 4.

Constraint Exact Non-exact

ID Pattern ACP SCP GBQP GBQB DA3 TABU

1,2,6,7 PT1 0.032 0.026 0.004 0.040 0.000 0.035
1,2,6,7 PT2 0.027 0.026 0.006 0.071 0.000 0.065
1,2,6,7 PT3 0.028 0.019 0.004 0.114 0.000 0.127
1,2,6,7 PT4 0.043 0.034 0.008 0.014 0.000 0.016

Table 4. MRE of instances with constraints.

For constrained MDWBM, though DA3 with QUBO models is still the state-
of-the-art, CP/BQP-based methods perform better than other QUBO-based
methods. One of the reasons is that CP/BQP models can naturally deal with
constraints while QUBO has to convert constraints to penalty terms. Surpris-
ingly, though designed for constrained optimization, CP approaches are worse
than GBQP and DA3. We speculate that CPO might not deal with the six
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types of constraints efficiently as they are not expressed in terms of global con-
straints with effective filtering algorithms. TABU and GBQB are worse than
DA3 by around 6%. Though TABU and GBQB improve the solution quality
during their runs, the solutions at 600s are still far from competitive.

Fig. 4. MRE plot of instances with constraints.

6 Conclusions

We have developed two constraint programming, a binary quadratic program-
ming, and a quadratic unconstrained binary optimization models for the multi-
attribute diverse weighted bipartite b-matching problem and introduced practi-
cal constraints into the models. Experiments on the standard and constrained
MDWBM show that novel hardware DA3 with the QUBO model has an advan-
tage over CP Optimizer with the CP models, Gurobi with the BQP and QUBO
models, and tabu search on the QUBO model. We have also identified flaws in
existing approaches for standard MDWBM [1].

As traditional computers suffer from the end of Moore’s law, it is increas-
ingly important to understand how AI and OR problems can benefit from novel
hardware and computation architectures. Our work has demonstrated that for
multi-attribute diverse weighted bipartite b-matching, state-of-the-art perfor-
mance can be delivered by such hardware using a natural model.
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