
A Hybrid Quantum-Classical Approach to Solving Scheduling Problems

Tony T. Tran+,‡,†,∗, Minh Do‡,†, Eleanor G. Rieffel+,
Jeremy Frank‡, Zhihui Wang+,∗∗, Bryan O’Gorman+,†, Davide Venturelli+,∗∗, and J. Christopher Beck∗

+ Quantum Artificial Intelligence Lab., NASA Ames Research Center, Moffett Field, CA
‡Intelligent Systems Division, NASA Ames Research Center, Moffett Field, CA

∗∗ Universities Space Research Association, Mountain View, CA
†Stinger Ghaffarian Technologies, Inc., Greenbelt, MD

∗Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON

Abstract

An effective approach to solving complex problems is to de-
compose them and integrate dedicated solvers for those sub-
problems. We introduce a hybrid decomposition that incorpo-
rates: (1) a quantum annealer that samples from the configu-
ration space of a relaxed problem to obtain strong candidate
solutions, and (2) a classical processor that maintains a global
search tree and enforces constraints on the relaxed compo-
nents of the problem. Our framework is the first to use quan-
tum annealing as part of a complete search. We consider vari-
ants of our approach with differing amounts of guidance from
the quantum annealer. We empirically test our algorithm and
compare the variants on problems from three scheduling do-
mains: graph-coloring-type scheduling, simplified Mars Lan-
der task scheduling, and airport runway scheduling. While
we were only able to test on problems of small size, due to
the limitation of currently available quantum annealing hard-
ware, our empirical results show that information obtained
from the quantum annealer can be used for more effective
search node pruning and to improve node selection heuristics
when compared to a standard classical approach.

Introduction
Quantum annealing is a heuristic quantum algorithm that
solves combinatorial optimization problems on a quantum
computational device. Quantum computing is a nascent
technology without the decades of research and devel-
opment that classical computers have experienced. Cur-
rent quantum computational hardware of more than several
qubits consists of only limited quantum annealers, special
purpose quantum hardware designed to run the quantum an-
nealing metaheuristic. Our goal is to extend the use of quan-
tum annealing on currently available specialized quantum
hardware through integration with classical computing using
decomposition. We further explore a novel hybrid quantum-
classical framework, based on tree search, that we intro-
duced in (Tran et al. 2016). The quantum annealer sam-
ples from the configuration space of a relaxed problem to
obtain strong candidate solutions, while the classical algo-
rithms maintain a global search tree, as well as handling the
relaxed components of the problem to check the validity and
quality of the candidate solutions.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our framework takes advantage of the strength of quan-
tum annealing dedicated quantum hardware, and comple-
ments it with classical processing to enable the entire algo-
rithm to be complete. Our framework is the first that uses
quantum annealing as part of a complete search. Results re-
turned by the quantum annealer guide exploration and prun-
ing of the search tree. Specifically, we use the solution qual-
ity of samples returned by the quantum annealer from dif-
ferent parts of the configuration space to help guide further
search. A novel aspect of this work is that our approach
makes use of all results returned by the quantum annealer,
not just the optimal ones.

We evaluate the performance of six node-selection heuris-
tics, with progressively greater guidance from the results
obtained from the quantum annealer, on instances from
three scheduling domains: graph-coloring-type scheduling
and airport runway scheduling, as well as Mars Lander task
scheduling which we previously explored in (Tran et al.
2016). These three domains have varying complexity in their
decompositions: (1) a decision problem that is fully rep-
resented on the quantum annealer, but gains completeness
from our framework, (2) a decision problem in which the
quantum annealer samples from the configuration space of a
relaxation of the original problem, and (3) an optimization
problem in which the classical algorithm reasons about the
objective function.

This paper provide a proof of concept quantum-classical
hybrid framework that uses quantum annealing to guide tree-
search, and ensuring a systematic and complete search, not
a competitive state-of-the-art approach to solving combina-
torial problems. The main contributions of this work are:

• A novel framework for quantum-classical hybrid ap-
proaches to combinatorial problems.

• The use of quantum annealing in a complete search.

• An algorithm that makes use of all results returned by the
quantum annealer, not just the best ones.

Quantum Annealing
Quantum computing enables more efficient solution to cer-
tain classes of problems than classical computing (Rief-
fel and Polak 2011; Nielsen and Chuang 2001). While
large-scale universal quantum computers are likely decades
away, special-purpose quantum computational devices are



emerging, making it possible to empirically evaluate heuris-
tic quantum algorithms such as quantum annealing. Quan-
tum annealers run quantum annealing (Farhi et al. 2000;
Smelyanskiy et al. 2012), a metaheuristic algorithm that
makes use of quantum tunneling and interference (Das and
Chakrabarti 2008; Boixo et al. 2014). It is one of the most
accessible quantum algorithms to people versed in classi-
cal computing because of its close ties to classical optimiza-
tion algorithms such as simulated annealing and because the
most basic aspects of the algorithm can be captured by a
classical cost function and parameter setting.

A quantum annealer minimizes Quadratic Unconstrained
Binary Optimization (QUBO) problems of the form

C(x) =
∑
i

cixi +
∑
i<j

ci,jxixj ,

where {ci, ci,j} are real coefficients and x ∈ {0, 1}n. An
application problem must be mapped to a QUBO problem
to be solved on a quantum annealer. We describes QUBO
mappings for the three targeted scheduling domains later.

Variables in the QUBO formulation are mapped to qubits
on the hardware. Because the physical hardware has lim-
ited connectivity, it is often necessary to represent a single
variable using multiple qubits (connected to each other in a
subtree). These subtrees are chosen to ensure that each pair
of variables appearing in a quadratic term in the QUBO are
connected through a pair of qubits within their respective
subtrees. Minor embedding is the process of determining
which physical qubits will represent which variables (Choi
2011). O’Gorman et al. (2015) provide more details about
embedding and the process of using a quantum annealer.

Quantum Annealing Guided Tree Search
We are interested in using our framework to enable the use
of current quantum annealing hardware for scheduling prob-
lems where: (1) a complete search is desired, (2) the prob-
lem has properties that require more resources than available
on the hardware, whether with respect to number of qubits,
precision of coefficients, or both. To realize these objectives,
we decompose problems so that the relaxed problem can be
embedded on the quantum annealing hardware given its cur-
rent limitations in terms of size, connectivity, and precision.
The precise relaxation is problem dependent. In this section,
we will present details of the general framework and provide
domain specific details in later sections.

Our classical-quantum tree search algorithm (Figure 1)
has three components: a global component that maintains
the search tree and handles the problem decomposition, and
two solvers, a quantum annealer to solve a relaxation of the
problem and a solver run on a classical computer that con-
siders the remaining portions of the problem. The global tree
search manager decides when each sub-solver is called and
what problem will be solved on that sub-solver.

The global search tree manager maintains a partial binary
tree that is constructed from configurations found in the mas-
ter problem. The manager then navigates through the tree
systematically, identifying sub-spaces for which the quan-
tum annealer and classical subproblem solver are called to
further expand the tree.

Global Search Tree
Manager

(Classical Computer)

Master Problem
(Quantum Annealer)

Subproblem
(Classical Computer)

Figure 1: Tree-search based Quantum-Classical Algorithm.

Problem definition: Consider problems of the form:

min f(x) (1)
s.t. x ∈ Φ, (2)

Here, x is a vector of binary decision variables, f is a real-
valued objective function, and Φ is the feasible space of x
defined by the problem constraints. It is possible to repre-
sent this problem as an unconstrained optimization problem
by moving the constraints into the objective function and pe-
nalizing assignments that break constraints. Let the penalties
on the constraints be represented by a function g(x), where
g(x) = 0 if x ∈ Φ and g(x) > 0 otherwise. Thus, finding

min f(x) + λg(x) (3)

is equivalent to solving the general problem described by (1)
and (2), where λ is a constant used to ensure that constraint
violations out-weigh the optimization function. If it is a de-
cision problem, it can be represented as min g(x) where a
configuration with g(x) = 0 is a feasible solution. We con-
sider (3) the global problem to be solved.
Problem decomposition: The quantum annealer will be
used only on decision problems, i.e., C(x) = g(x). If the
problem of interest is an optimization problem, we relax it
by focusing on g(x) and ignore f(x). We can further relax
the problem by removing constraints so that constraint (2)
becomes x ∈ Φ̄, where Φ ⊂ Φ̄. The master problem is then

min ḡ(x) (4)

where ḡ(x) are the penalties for violating constraints in the
relaxed problem. It is not generally true that quantum an-
nealers are unable to solve problem (3) directly; in practice,
due to current hardware limitations on precision, i.e., lim-
itations on the precision of the coupling strength between
qubits that affect the range of the values that the coefficients
can be set to in the objective function, it may not always be
possible to define a penalty function g(x) and multiplier λ
that can be used on the quantum hardware, which still guar-
antees the set of feasible solutions will result in a lower cost
solution than infeasible solutions. Furthermore, even if pre-
cision is not a problem, it may still not be possible to fit the
decomposed problem on the hardware. In order to formulate
constraints in the QUBO model, additional variables may be
required. Even without the additional variables used to rep-
resent constraints, it is often the case that adding quadratic
terms to the QUBO formulation greatly increases the con-
nectivity of the resulting problem, which will increase the



4 1 0

A

C

B

X1 = 0

X2 = 0

X3 = 0 X3 = 1

X2 = 1

X3 = 0

X1 = 1

[3]

X2 = 0

X3 = 1

X2 = 1

4 1 0

A

C1 0

B

[3][0]

X1 = 0

X2 = 0

X3 = 0 X3 = 1

X2 = 1

X3 = 0

X1 = 1

X2 = 0

X3 = 0 X3 = 1 X3 = 1

X2 = 1

Figure 2: A partial binary search tree example with open nodes indicated by shaded nodes and pruned nodes crossed out in red.
The master problem objective function, C(x), is presented in the node itself and subproblem solution presented as [·] below
the nodes with C(x) = 0. (Left) Tree after the first iteration through solving the master problem and subproblem. (Right) Tree
after the second iteration through solving the master problem and subproblem, where node (B) was expanded.

number of required qubits in the embedded problem. Thus,
to solve even small and medium sized problems, it is essen-
tial that problem (3) is relaxed to problem (4) in order to be
solved on the quantum annealing hardware.

The subproblem is then to enforce the relaxed compo-
nents of the global problem by calculating,

f(x∗) + λg(x∗) (5)

for a configuration x∗ returned by the quantum annealer.
As an example, assume we wish to solve the problem,

min 2x1 + x2 − 2x3 (6)
s.t. x1 + x2 + x3 = 2, (7)

x1 ≥ x2, (8)
xi ∈ {0, 1} i = 1, 2, 3. (9)

We can represent constraints (7) and (8) as,

g1(x) = (2− x1 − x2 − x3)2,

and
g2(x) = x2 − x1x2,

respectively. If the constraints are satisfied, then
g1(x) + g2(x) = 0. Otherwise, g1(x) + g2(x) > 0
and the solution is invalid. The original problem is an
optimization problem, so the master problem is

min g1(x) + g2(x) (10)

The subproblem is then to evaluate expression (5). In our
example, we need only to evaluatef(x∗) in expression (5)
since any feasible solution will have g(x∗) = 0. However,
in general this is not the case and it may be necessary to
also evaluate g(x) if some of the constraints were relaxed or
removed for the master problem.
Solving the master problem: The quantum annealer runs
the relaxed problem defined by (4) to obtain configurations
to populate the global search tree. For each job submitted to
the quantum annealer,K anneals are performed and K̄ ≤ K
unique configurations of varying quality are returned. We
denote the unique set of returned configurations as Ψ.

Continuing with our example, let us assume that the quan-
tum annealer is called K = 3 times on problem (10)

and three unique configurations are found for (x1, x2, x3):
(0, 0, 0), (0, 0, 1), and (1, 1, 0). The calculated value of
C(x) for these three solutions are 4, 1, and 0, respectively.
From these configurations, only (1, 1, 0) is found to be valid
with respect to constraints (7) and (8).
Solving the subproblem: Since the configurations found by
the quantum annealer are solved only for the (relaxed) mas-
ter problem, we must check that the relaxed constraints in
the global problem are properly enforced when a configura-
tion x ∈ Ψ is found with cost C(x) = 0. Any configuration
with greater cost is invalid for the global problem and so the
subproblem does not need to be solved for these configura-
tions. Thus, from our example, we see that only configura-
tion (1, 1, 0) requires the use of the subproblem solver. Us-
ing the returned quantum annealing configurations as input,
the subproblem will calculate the expression (5) and send
the result to the global tree manager to update to the correct
values. For our example, the configuration (1, 1, 0) evalu-
ates to an objective value of f(x) = 3. As this configuration
satisfies all constraints (C(x) = 0), we know that it is an
incumbent solution with a cost of 3.
Building the partial tree and generating open nodes: Us-
ing the set of unique configurations Ψ returned by the quan-
tum annealer, build a partial binary tree with a fixed variable
ordering. The left (right) branch of a node corresponds to the
variable being set to 0 (1) in Ψ (see Figure 2). The costC(x)
of a configuration is shown inside the corresponding node.
Where a configuration x∗ is feasible, i.e., C(x∗) = 0, the
true objective function f(x∗) is presented in brackets below
the node. The partial tree is traversed to generate all open
nodes (the shaded nodes), nodes that have not yet been ex-
plored but have a parent node that is already expanded.
Node pruning: Open nodes are pruned by inference algo-
rithms based on the problem-specific constraints and objec-
tive function. At any open node (shaded nodes), a subset
of decision variables have been set. Based on this partial
configuration, a check is performed to see whether any con-
straints are violated. For example, consider a bounding func-
tion h(x̄) = minx̂ g(x̄), where x̄ is the set of instantiated
variables and x̂ is the set of variables still to be decided at
open node N . If h(x̄) > 0, then the node N is pruned. This
process is a standard inference technique in constraint pro-



gramming that is sound, but incomplete. The same can be
done for f(x) to remove partial configurations that would
lead to sub-optimal solutions when the bounding function
on the objective is greater than the current incumbent solu-
tion objective. This approach is similar to the bounding that
is found in standard branch-and-bound approaches.

If no constraints have been violated, then a forward check-
ing procedure (Haralick and Elliott 1980) is performed. It
is often the case that some uninstantiated variables have a
single feasible value remaining based on the partial config-
uration, further simplifying the problem at the open node.
However, our current approach maintains a static ordering
of variables in the tree. Thus, forward checking is only use-
ful if inferences can be made on the next variables. Using a
dynamic ordering could enable more effective pruning using
forward checking, but is not considered in this initial study.

Based on our running example, we must evaluate each
open nodes to check whether it can be pruned. We check if a
constraint has been violated or if a lower bound on the objec-
tive function is worse than the incumbent solution objective
currently equal to 3. Open node (A) corresponds to the par-
tial configuration (0, 1) and this node is pruned as the partial
solution violates constraint (8). Node (B), corresponding to
partial configuration (1, 0), does not violate any constraints.
We can also calculate a simple lower bound by instantiating
all commited variables in the partial configuration, and then
including the value of any negatives terms in the objective
function (6) associated to the uncommitted variables. Thus
for node (B), we can first calculate the cost of the partial so-
lution so far to be 2 ·1 + 1 ·0 = 2, and then subtract 2 as it is
still possible to set x3 = 1 and reduce the objective function.
Therefore, open node (B) has a lower bound of 0, which is
not pruned as the current incumbent is 3. Finally, open node
(C) corresponds to the configuration (1,1,1), which is pruned
since the solution violates constraint (7).
Node selection and exploration: Once the partial tree is
built and open nodes are generated, unless the tree has been
fully explored, search must continue. Since open nodes rep-
resent sub-spaces that have not been a part of any configu-
ration found for the master problem, the global tree search
manager will select one of these nodes to explore next. Ex-
ploration of an open node means that the master problem is
invoked at the particular location in the tree. Since we wish
to start the search from a partial configuration, the QUBO is
updated with x̄ and the rest of the decision variables x̂ are
solved for in the master problem. At the node, the master
problem and subproblem are solved again to create a new
partial sub-tree and the process is repeated.

In our running example, the only open node still to be
considered is node (B). However, in general, one can expect
many more open nodes to be present. These nodes are to
be given some heuristic ordering for expansion. To expand
node (B), which has a partial configuration already, we must
update the master problem. The resulting master problem
after the correct values for x1 and x2 are set is,

min g(x) = 1− x3. (11)
The master problem is now significantly simpler as most de-
cisions are already made and the only decision left is x3.
New configurations are found for this master problem and
are used to build the tree below node (B).

Algorithm 1 Quantum Annealing Guided Tree Search.

1: open nodes: a priority queue
2: push root node to open nodes
3: while open nodes 6= NULL do
4: pop n from open nodes
5: Ψ =solve master problem(n)
6: for x ∈ Ψ do
7: if quantum feasible(x) then
8: solve subproblem(x)
9: build partial tree(Ψ)

10: new open nodes = generate open node(Ψ)
11: push new open nodes to open nodes
12: prune(open nodes)

In our study, the ordering heuristic we consider uses the
weighted sum of two node selection heuristics based on:
slack and quantum annealer’s configuration quality. The
slack measure S at an open node quantifies the extent of
available options for the remaining decisions to be made. We

define S =
(∏

j∈J′ dj

) 1
|J′| , where J ′ is a set of decisions

to be made and dj is a domain-dependent measure of the re-
maining domain size of a decision j ∈ J ′. The domain size
and definition of J ′ will be expanded upon in later sections.
The quantum annealer’s configuration quality measure is
calculated using the quality of configurations returned by the
quantum annealer at an open node as: C∗ = minx∈Y C(x),
where the set Y contains all the configurations found so far
below the sibling node of the open node. We examine the
performance under different weightings of the two heuris-
tics, V = (1 − α)S − αC∗, for various values of α. Open
nodes with the highest value of V will be explored first.
Conditions for Termination: For decision problems, once
a feasible solution has been found or the open node list is
empty, the search is terminated. For optimization problems,
the search is terminated as soon as the open node list is
empty, indicating that all nodes have been either explored
or pruned.

Algorithm 1 presents the pseudo-code for our framework.
Starting from the root node, the master problem solver is
called on the relaxed problem to obtain a set of configura-
tions Ψ. If a configuration x ∈ Ψ is feasible for the mas-
ter problem, i.e., C(x) = 0, then the subproblem is solved
given the master problem solution x. The partial tree is then
built using Ψ, at which point open nodes are generated and
added to the open node list. All the nodes on the open node
list are checked for consistency and pruned if found to be
inconsistent. The process is then repeated for a node on the
open node list until no open nodes remain.

Scheduling Domain Description
We tested our approach on three scheduling domains.

Graph-Coloring-Type Scheduling
Consider a scheduling problem with a set of tasks and con-
straints that any pair of tasks competing for the same re-
source cannot be assigned the same time-slot. Such schedul-



ing problems can be viewed as vertex coloring problems
by representing tasks as vertices, resource contention be-
tween tasks as edges, and time slots as colors. Given a graph
G = (V,E), with vertices V and edges E, a κ-coloring
problem assigns one of κ colors to each vertex in such a
way that no two vertices that share an edge have the same
color. We consider the decision problem with κ = 3: given
a graph G, is there a 3-coloring of G?

Mars Lander Task Scheduling
The simplified Mars lander domain consists of tasks that the
lander must perform in the course of a Martian day. Each
task requires full use of the Mars lander for some duration
and consumes battery power at a task-dependent rate. Solar
panels on the Mars lander recharge the battery concurrently
while the lander performs other tasks. Each problem consists
of a set of tasks j ∈ J , each with processing time and set
of time points Hj at which it may be scheduled, contained
within a Martian day of length H . Tasks consume power
from an onboard battery at a rate of ej per time point while
being processed. The battery has maximum,Emax, and min-
imum, Emin, levels. Solar panels recharge the amount e+t
during time point t, which depends on available sunlight.
The goal is to construct a feasible schedule, one that assigns
each task a start time, adhering to the tasks’ time-windows,
precedence, and battery constraints.

Airport Runway Scheduling
The airport runway scheduling problem Gupta, Malik, and
Jung (2009) consists of a set of aircraft, F , approaching a
single runway, where each aircraft j ∈ F enters a queue,
q ∈ Q to be scheduled for take-off. Each aircraft is already
pre-assigned to a specific queue, qj , and cannot take-off un-
til all aircraft ahead of it in the same queue have left. Each
aircraft belongs to one of four size categories, which deter-
mines the minimum separation required between consecu-
tive departures. Between any two aircraft i and j, there must
be a minimum separation time of dij , dependent on the size
categories of those two aircraft. A feasible schedule of the
problem is an assignment of a take-off time zj to each air-
craft satisfying all constraints. We target the optimization
problem of minimizing the objective function

∑
j∈F zj .

Mapping scheduling problems to QUBO
The relaxed scheduling problems for the three different do-
mains have common features that enable us to discuss the
mapping of these problems to QUBO problems in a unified
way. We leave details specific to each relaxed problem to the
next section. The scheduling problems we consider involve
tasks to schedule and discrete resources (e.g., time slots).
In the QUBO formulations, a binary variable xj,r indicates
whether task j is assigned resource r.

Constraints are captured by penalty terms in the QUBO
cost function. Two basic types of constraints must be cap-
tured in all scheduling problems:

1. Unique assignment: this penalty term enforces that each
task j must be assigned exactly one resource:

Cunique
j = (

∑
r

xj,r − 1)2. (12)

2. Exclusive use of resource: this penalty term enforces that
assigning resource r to task j precludes assigning certain
resources to another task j′

Cexclusive
j,r,j′ =

∑
r′∈Rj,r,j′

xj,r × xj′,r′ (13)

where Rj,r,j′ is the set of resources that become inacces-
sible to task j′ if resource r is assigned to task j.

Which resources become inaccessible varies in different do-
mains, resulting in slightly different Cexclusive

j,j′ terms:

• Color difference (Graph Coloring): if two vertices j and
j′ are connected by an edge, they cannot share the same
color. Thus, xj,r × xj′,r is added for all colors r.

• Precedence relations (Mars-Lander and Airport Runway):
if task j is supposed to precede task j′, penalty term xj,r×
xj′,r′ is added for any time r > r′.

• Job length (Mars-Lander): during each job j execution,
no other job j′ can start. Thus, xj,r × xj′,r+τ is added for
τ = [0, pj), where pj is the processing time of j.

• Flight separation (Airport Runway): successive flights re-
quire a minimum separation time between their depar-
tures, which is dependent on the sizes of the two aircrafts.
Thus, xj,r × xj′,r+δ is added for δ ∈ [0, dj,j′).
The final QUBO cost function is thus

C =
∑
j∈J

Cunique
j +

∑
j,j′∈J

∑
r

Cexclusive
j,r,j′ , (14)

where J is the set of all tasks. A feasible solution hasC = 0.
If C > 0, at least one constraint is violated.

Domain-Specific Details
The three domains suggest quite different decompositions:
(1) no decomposition, (2) decomposition of a decision prob-
lem into a simpler decision problem and a constraint-check
and (3) decomposition of an optimization problem into a de-
cision problem and an optimization problem.

Graph Coloring
Problem Decomposition: The full graph coloring problem
is mapped to a QUBO and run on the quantum annealer with
no decomposition. The classical processor is used only to
prune and maintain the tree search and to compute which
node to try next using the node selection heuristic.
Node Pruning, Propogation and Selection Metric: We
prune a node from the tree when a classical check deter-
mines that the current partial configuration removes all pos-
sible colors for an uncolored vertex. This forward checking
procedure ensures that each remaining decision variables x̃
has at least one value that is consistent with the assignment
to x̄. For every vertex not yet colored, we check all neigh-
boring colored vertices and remove those colors from the
uncolored vertex’s domain. Any vertex left with an empty
potential color set open node is pruned. If the next vertex to
be colored in the sequence defined by our tree has only one
color available in its domain or has already been colored, the
remaining variables associated to the vertex are assigned ap-
propriately and the open node is updated to a deeper node



corresponding to the new partial solution. The alternative
branches between the original open node and the new open
node do not require exploration because these branches lead
to infeasible colorings. The size dj of the color domain for
vertex j is used to compute the slack.
Problem generation: Following (Rieffel et al. 2015), we ex-
tended Culberson et al.’s graph generator program (Culber-
son, Beacham, and Papp 1995) to generate 20 Erdös-Rényi
graphs at the colorable-uncolorable phase transition with 16
nodes that have a feasible 3-coloring.

Mars Lander Task Scheduling
Problem Decomposition: The subproblem handed to the
quantum annealer ignores battery constraints. The classical
processor must check whether the battery level is violated
at any time in any configuration returned by the quantum
annealer with C(x) = 0,
Node Pruning, Propogation and Selection Metric: For
each unscheduled task j in a partial solution, we remove
from Hj all task starting times which would conflict with
an already scheduled task. We define the cardinality of the
remaining potential starting times for j as dj and prune any
open node with an unscheduled task that has dj = 0. If the
next unscheduled task has dj = 1, the partial solution at the
open node is appended to schedule the job at the remaining
time point and the deeper node is used instead. Similarly, if
a task j has already been scheduled, i.e., xj,r = 1 for some
time point r, but the partial solution does not assign values
for all variables associated to task j, the open node can be
updated accordingly by setting all remaining xj,r values to
0 and continuing exploration at the deeper node. Further-
more, if any of the resulting scheduled tasks conflict with
each other, the node is pruned.
Problem generation: We consider problems with six tasks,
each of which is based on actual tasks performed by the
Phoenix Mars lander, but the detailed values of the durations
(between 0.5 and 2 hours), time-windows (task-dependent,
within a 16-hour horizon), and battery consumption rate (be-
tween 3-11% per 0.5 hours) are fabricated. Only the initial
and maximum battery charges and charging rates were var-
ied across the 21 instances we considered.

Airport Runway Scheduling
Problem Decomposition: The quantum annealer decides
whether or not there is a valid runway schedule and the clas-
sical processor calculates the objective function of minimiz-
ing the total take-off time for all aircraft.
Node Pruning, Propogation and Selection Metric: As in
the Mars Lander case, for each node j, we remove variables
for slots that conflict with the departure times of scheduled
aircraft, and calculate the cardinality dj of the set of remain-
ing available take-off times for flight j. Open nodes are up-
dated using the same propogation mechanisms as for the
Mars Lander problem. The classical processor then calcu-
lates the objective function, and keeps track of the best so-
lution found so far. The classical processor also computes,
for each open node, a lower bound by summing the start
times of all the already scheduled departures in the partial
schedule. For each unscheduled departure, the earliest start
is determined, and is added to the lower bound. If this lower

bound is greater than the cost of the best solution found so
far, the open node is pruned.
Problem Generation: We generate problem instances sim-
ilar to Gupta, Malik, and Jung (2009), but with reduced
size in order to obtain instances that can be fit on to the
D-Wave 2X hardware. Specifically, we generate 20 prob-
lem instances with 6 aircraft that arrive during a 5 minute
time-period, with time discretized into 30 second segments.
Arrival times are randomly generated following a uniform
distribution. Each aircraft will enter one of three queues. All
flights are to depart within a 7.5 minute horizon. We ensure
all instances can be embedded on the hardware and have fea-
sible solutions since we are interested in how well the hybrid
decomposition is able to find and prove optimality.

Empirical Evaluation and Analysis
We present experimental results on the three scheduling do-
mains described in the previous sections. In each case, the
computational effort is given in terms of how many times
an open node is expanded for exploration and the number
of unique configurations found when the algorithm termi-
nates. We provide tables that present the average values of
these metrics, as well as figures showing the median, 35th,
and 65th percentiles. These numbers are obtained for each
of the six values of the node search weight α that we tried.
In addition, we include the average performance metric of a
variant denoted as Random-Sample. This variant randomly
samples configurations rather than makes use of the quan-
tum annealer and was studied to verify that the quantum an-
nealer is in fact optimizing for the QUBO problem properly.

Running on the D-Wave 2X Quantum Annealer
We implemented our code in Python, using D-Wave’s
Python API to interface with the D-Wave 2X machine. Each
time the quantum annealer is invoked at an open node, K =
10, 000 anneals are performed, each with an anneal time of
20 micro-seconds. Embedding and parameter setting for the
embedded QUBO are done using D-Wave’s software with
default parameters (Cai, Macready, and Roy 2014) except
for setting the coupling strength between physical qubits
representing the same variable. Based on results in (Rief-
fel et al. 2015), we set this coupling strength to 1.4 for the
graph coloring problem. For the other problems, our own
experimentation suggested a coupling strength of 5.0.

When running on the D-Wave 2x machine, jobs are sub-
mitted to a queue while awaiting processing. As such, we do
not have immediate access to the hardware and must there-
fore idle between iterations of the master problem and sub-
problem. Although some aspects of runtime are available,
it is currently not possible to obtain a truly accurate run-
time for the quantum annealing process as part of our frame-
work, especially so if we were to consider having dedicated
hardware for our own use. We know the anneal time, which
can act as a lower bound on time, and the wall clock time
from when we initiate a call for the quantum annealer until
the time when the configurations are returned, but neither of
these are an accurate measurement for the effort required to
use the quantum annealer as part of a hybrid framework. The
current bottleneck of our implementation is waiting for the



results from the quantum annealer. The time spent perform-
ing other processes such as solving the subproblem, build-
ing the tree, and pruning nodes are negligible. We do not
expect that these processes are negligible in general, but for
the problems studied in this paper, these aspects account for
a minuscule fraction of the actual runtime.

Graph Coloring
Each problem instance has 48 logical variables, which re-
sults in embedding sizes of 125 to 310 qubits. The compu-
tational results for the different algorithm variants are pre-
sented in Figure 3a and Table 1. The results show that us-
ing the configuration quality of the solutions provided by
the quantum annealer can improve the performance over the
slack-only heuristic when sufficiently large α values are cho-
sen. The results on the number of open nodes explored sug-
gest that balancing αmay be important in this domain, since
α = 0.4 providing the best results. In particular, α value of
0.2 leads to worse performance than Slack-Only, but with
larger α values the performance improves.

Mars Lander
The QUBO for the master problem common to all 21 Mars
lander task scheduling problems contains 52 variables, and
is embedded in 764 qubits. The computational effort results
presented in Figure 3b and Table 1 show that, as we found
in the graph coloring domain, search node selections guided
by solutions returned by the quantum annealer improves per-
formance over the slack-only heuristic. Unlike in the graph
coloring domain, we see that any α > 0 chosen improves
performance over the slack-only condition. Of the different
α values tested, the range 0.4 ≤ α ≤ 1.0 yields the best
performance. Further investigation would be needed to dis-
tinguish differences in performance in this range.

Airport Runway
The QUBOs for the airport runway scheduling problem in-
stances all contain between 31 and 50 logical variables, with
embedded sizes between 645 and 981 qubits. The results are
presented in Figure 3c and Table 1. The median performance
shows no particularly strong trend when varying α. How-
ever, the mean performance as presented in Table 1 suggests
that guiding the search does improve average performance.
The difference between the results for the mean and median
indicate that the Slack-Only case, and to a lesser extent the
QA-Only variant, have heavy tails, with a few instances per-
forming very poorly.

The less definitive results in this domain stem from a sig-
nificant difference between this domain and the previous two
in which the problem is to find a feasible solution, whereas
the airport runway scheduling problem asks for an optimal
solution. The node selection heuristic does not take the ob-
jective function into account and so the heuristic is ignorant
of any information about the objective function when decid-
ing where to search next in the tree. For this reason, differ-
ences in these node selection heuristics tested may be harder
to detect because node selection itself has less of an effect
on the computational effort.
Summary: Our results show that this hybrid framework can
handle a variety of scheduling domains with different objec-

tive functions and decomposition strategies. For the decision
problems, the results obtained from the quantum annealer
not only focus the search by enabling effective pruning, but
also contribute positively to improved search node selection.
The same improvements are not as apparent for the opti-
mization problem, but using more sophisticated search tech-
niques within our framework would improve performance.

A tree search framework has long been recognized as an
effective methodology for solving combinatorial problems.
Table 1 shows that even using a random sampler within the
tree search framework is sufficient to solve these combina-
torial problems, as the pruning and node selection heuristics
are sufficient in guiding search even though the master prob-
lem solver used is ignorant to the problem. Introducing the
quantum annealer improves search by providing better guid-
ance for the traversal through tree.

Related Work
Given the relative novelty of quantum annealing hard-
ware, research in this area has been limited. (Rieffel et al.
2015; Venturelli, Marchand, and Rojo 2015). have expored
pure quantum annealing approaches for some planning and
scheduling problems. Instead of using the quantum annealer
to optimize, Benedetti et al. (2015), and Adachi and Hender-
son (2015) explore the possibility of using it as a Boltzmann
sampler to aid the training phase in deep learning, quite a
different use of sampling compared to our approach.

Combining quantum and classical computing in algo-
rithms have only recently begun being explored. Rosen-
berg et al. (2015) present a large-neighbourhood local search
with a method to integrate the quantum annealer as a sub-
routine within a classical algorithm. In a similar fashion,
Zintchenko, Hastings, and Troyer (2015) propose a hier-
archical search that decomposes the set of decisions vari-
ables into multiple groups and cycles through groups opti-
mizing the sub-problem of a particular group while fixing
all other variables, performing quantum annealing on each
group. However, both of these studies do not implement the
algorithm on a quantum annealer. Rosenberg et al. present
results using a tabu-search and Zintchenko, Hastings, and
Troyer use simulated annealing in place of quantum anneal-
ing. Importantly, our work is distinguished from these in that
our approach performs a complete search.

Conclusion and Future Work
We presented a tree-search based quantum-classical frame-
work in which results from a quantum annealer prune and
guide the search. We tested multiple node-selection heuris-
tics on instances from three different scheduling domains.
The framework enables the use of a stochastic quantum-
annealing solver within a complete search framework. Our
results show that quantum annealer output can effectively
prune and guide the search process in two of our tested
domains, suggesting that further exploration of node selec-
tion metrics incorporating quantum annealing results is war-
ranted, including other metrics of different form.

Our approach is not limited to strictly quantum-classical
algorithms. The framework can be applied as a pure classi-
cal decomposition, allowing the use of specialized heuristic
solvers for large and difficult problems.



(a) Graph Coloring

 0

 10

 20

 30

 40

 50

 60

 70

 0  0.2  0.4  0.6  0.8  1

N
u
m

b
e
r 

o
f 

O
p
e
n
 N

o
d
e
s 

E
x
p
lo

re
d

α

(b) Mars Lander Task Scheduling

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

N
u
m

b
e
r 

o
f 

O
p
e
n
 N

o
d
e
s 

E
x
p
lo

re
d

α

(c) Airport Runway Scheduling

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.2  0.4  0.6  0.8  1

N
u
m

b
e
r 

o
f 

O
p
e
n
 N

o
d
e
s 

E
x
p
lo

re
d

α

 0

 5000

 10000

 15000

 20000

 0  0.2  0.4  0.6  0.8  1

S
iz

e
 o

f 
S
e
a
rc

h
 T

re
e

α

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  0.2  0.4  0.6  0.8  1

S
iz

e
 o

f 
S
e
a
rc

h
 T

re
e

α

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  0.2  0.4  0.6  0.8  1

S
iz

e
 o

f 
S
e
a
rc

h
 T

re
e

α

Figure 3: Results for the algorithm variants on all problem instances considered: solving each instance ten times for each variant.
The median size of the number of open nodes explored (top) and the size of the search tree (bottom) is shown, with error bars
at the 35th and 65th percentiles. Here, search tree size refers to the number of unique leaf nodes (configurations) found.

Graph Coloring Mars Lander Airport Runway
avg. # of avg. # of avg. # of avg. # of avg. # of avg. # of

open nodes configurations open nodes configurations open nodes configurations
explored found explored found explored found

Random-Sample 190.55 1,653,772.67 420.27 4,088,269.03 247.56 2,285,348.67
Slack-Only 58.99 22,269.95 4.10 2,143.21 45.72 15,858.21

Weighted (Best α) 38.78 16,858.30 2.22 1,728.33 31.58 13,488.71
QA-Only 68.06 23,790.14 3.25 1,822.60 35.54 14,643.77

Table 1: Mean performance for the algorithm variants on the problem instances considered: solving each instance ten times for
each variant. We use the results from the best α value for the Weighted variant; these values are 0.4, 0.8, and 0.6, for the graph
coloring, Mars lander, and airport runway scheduling problems, respectively.

In general, we do not expect quantum annealers to be
competitive in the near-term against classical computing,
with its decades-long headstart on research and develop-
ment. Thus, one would expect that a classical-classical de-
composition would outperform a quantum-classical decom-
position. Our motivation in this work is to expand on the
capabilities of the current quantum annealers, to provide a
framework in which the benefits of even mature quantum
annealing technology would be complemented by classical
methods to obtain completeness and improve performance.

A potential extension of this work is to incorporate ad-
ditional classical heuristics into the tree search, borrowing
ideas from the extensive classical literature, such as vari-
able ordering (Beck, Prosser, and Wallace 2004), conflict
analysis and cutting planes (Achterberg 2007; Kelley 1960),
and discrepancy-based search (Harvey and Ginsberg 1995;
Beck and Perron 2000). One challenge to incorporating
these ideas is keeping the resulting problems small enough
that they can be run on current or near-term quantum an-
nealers. Additional variables would need to be added to the

QUBO formulation in order to incorporate constraints from
cutting planes or no-good cuts. For this reason, it is inter-
esting to explore the design of such extensions within the
restrictions of quantum annealers.

Another extension is the application of improved pruning
and selection algorithms within the our framework to obtain
better performance. Various inference methods for defining
bounding functions can be designed for particular problem
domains. Our framework lends itself to techniques found
in constraint programming (Van Hentenryck, Simonis, and
Dincbas 1992) and could benefit from the sophisticated in-
ference algorithms developed in that literature. Using a dy-
namic ordering to improve the effect of forward checking is
not currently performed, but is left as an area of improve-
ment that can be implemented to enhance performance.

There remains much to learn about quantum anneal-
ing and the interplay between classical and quantum ap-
proaches. This work is an early step in an ongoing effort to
provide insights into how to design and use special-purpose
quantum hardware in service of practical applications.



Acknowledgements
The authors would like to acknowledge support from
the NASA Advanced Exploration Systems program and
NASA Ames Research Center. This work was supported
in part by the AFRL Information Directorate under grant
F4HBKC4162G001, the Office of the Director of National
Intelligence (ODNI), and the Intelligence Advanced Re-
search Projects Activity (IARPA), via IAA 145483. The
views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of ODNI, IARPA, AFRL, or the U.S. Government.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purpose notwithstanding
any copyright annotation thereon.

References
Achterberg, T. 2007. Conflict analysis in mixed integer pro-
gramming. Discrete Optimization 4(1):4–20.
Adachi, S. H., and Henderson, M. P. 2015. Application
of quantum annealing to training of deep neural networks.
arXiv:1510.06356.
Beck, J. C., and Perron, L. 2000. Discrepancy-bounded
depth first search. In Proceedings of the Second Interna-
tional Workshop on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization
Problems (CP-AI-OR 2000), 8–10.
Beck, J. C.; Prosser, P.; and Wallace, R. J. 2004. Try-
ing again to fail-first. In Recent Advances in Constraints.
Springer. 41–55.
Benedetti, M.; Realpe-Gómez, J.; Biswas, R.; and Perdomo-
Ortiz, A. 2015. Estimation of effective temperatures
in a quantum annealer and its impact in sampling appli-
cations: A case study towards deep learning applications.
arXiv:1510.07611.
Boixo, S.; Smelyanskiy, V. N.; Shabani, A.; Isakov,
S. V.; Dykman, M.; Denchev, V. S.; Amin, M.; Smirnov,
A.; Mohseni, M.; and Neven, H. 2014. Computa-
tional role of collective tunneling in a quantum annealer.
arXiv:1411.4036.
Cai, J.; Macready, W. G.; and Roy, A. 2014. A practical
heuristic for finding graph minors. arXiv:1406.2741.
Choi, V. 2011. Minor-embedding in adiabatic quantum com-
putation: II. minor-universal graph design. Quantum Infor-
mation Processing 10(3):343–353.
Culberson, J.; Beacham, A.; and Papp, D. 1995. Hiding our
colors. In CP95 Workshop on Studying and Solving Really
Hard Problems, 31–42. Citeseer.
Das, A., and Chakrabarti, B. K. 2008. Colloquium: Quan-
tum annealing and analog quantum computation. Rev. Mod.
Phys. 80:1061–1081.
Farhi, E.; Goldstone, J.; Gutmann, S.; and Sipser, M. 2000.
Quantum computation by adiabatic evolution. arXiv:quant-
ph/0001106.
Gupta, G.; Malik, W.; and Jung, Y. C. 2009. A mixed integer
linear program for airport departure scheduling. In 9th AIAA

aviation technology, integration, and operations conference
(ATIO), 21–23.
Haralick, R. M., and Elliott, G. L. 1980. Increasing tree
search efficiency for constraint satisfaction problems. Arti-
ficial intelligence 14(3):263–313.
Harvey, W. D., and Ginsberg, M. L. 1995. Limited dis-
crepancy search. In Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
607–615.
Kelley, J. 1960. The cutting-plane method for solving con-
vex programs. Journal of the Society for Industrial and Ap-
plied Mathematics 703–712.
Nielsen, M., and Chuang, I. 2001. Quantum Computing and
Quantum Information. Cambridge: Cambridge University
Press.
O’Gorman, B.; Rieffel, E. G.; Do, M.; Venturelli, D.; and
Frank, J. 2015. Compiling planning into quantum opti-
mization problems: a comparative study. Constraint Satis-
faction Techniques for Planning and Scheduling Problems
(COPLAS-15) 11.
Rieffel, E. G., and Polak, W. 2011. A Gentle Introduction to
Quantum Computing. Cambridge, MA: MIT Press.
Rieffel, E. G.; Venturelli, D.; O’Gorman, B.; Do, M. B.;
Prystay, E. M.; and Smelyanskiy, V. N. 2015. A case study in
programming a quantum annealer for hard operational plan-
ning problems. Quantum Information Processing 14(1):1–
36.
Rosenberg, G.; Vazifeh, M.; Woods, B.; and Haber, E. 2015.
Building an iterative heuristic solver for a quantum annealer.
arXiv preprint arXiv:1507.07605.
Smelyanskiy, V. N.; Rieffel, E. G.; Knysh, S. I.; Williams,
C. P.; Johnson, M. W.; Thom, M. C.; Macready, W. G.;
and Pudenz, K. L. 2012. A near-term quantum computing
approach for hard computational problems in space explo-
ration. arXiv:1204.2821.
Tran, T. T.; Wang, Z.; Do, M.; Rieffel, E. G.; Frank, J.;
O’Gorman, B.; Venturelli, D.; and Beck, J. C. 2016. Ex-
plorations of quantum-classical approaches to scheduling a
mars lander activity problem. In Workshops at the Thirtieth
AAAI Conference on Artificial Intelligence.
Van Hentenryck, P.; Simonis, H.; and Dincbas, M. 1992.
Constraint satisfaction using constraint logic programming.
Artificial intelligence 58(1):113–159.
Venturelli, D.; Marchand, D. J.; and Rojo, G. 2015.
Quantum annealing implementation of job-shop scheduling.
arXiv preprint arXiv:1506.08479.
Zintchenko, I.; Hastings, M. B.; and Troyer, M. 2015. From
local to global ground states in Ising spin glasses. Physical
Review B 91(2):024201.


