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Abstract

We consider scheduling electric vehicles in a charging fa-
cility where customers arrive dynamically and tend to park
longer than their charge time. In this setting, it is reasonable
and technologically feasible to have charging docks with mul-
tiple cables, although such docks do not currently exist in
practice. Assuming such a dock design, we study three in-
formation conditions: we know the number of electric vehi-
cles at each dock, we know stochastic information about ar-
rival and charging requirements, and we are able to observe
exact charging requirements for vehicles in the system. We
formulate a continuous-time Markov decision process (CT-
MDP) to optimize the system performance under the first two
conditions and demonstrate that it does not scale to realistic-
size problems with multiple docks. However, a single-dock
version of the CTMDP is tractable. We propose and numeri-
cally evaluate a number of admission and scheduling schemes
building on both the single-dock CTMDP and approaches
from the scheduling literature under each of the three infor-
mation conditions. Our results demonstrate (i) the value of
a multi-cable dock, (ii) the importance of obtaining actual
charging requirement information, and (iii) the integral role
of admission and scheduling policies based on available in-
formation to improve performance.

1 Introduction
Advances in battery, electric engine and charging technolo-
gies have resulted in significant improvements in the perfor-
mance of electric vehicles (EVs) in terms of range, charg-
ing time, etc. Although reduced emissions and lower fuel
and maintenance costs over their lifetime favor EV adoption
over internal combustion engine vehicles (CVs), range anxi-
ety prevents more people from owning an EV. Range anxiety
is the fear of being stranded because an EV has insufficient
capacity to reach a destination (Tate, Harpster, and Savagian
2008). Unlike CVs which run on gasoline, an EV requires
an electrical power source to recharge its battery and com-
pletely recharging a fully depleted battery can take from half
an hour to almost a full day. For example, a Nissan Leaf with
a 24 kWh capacity battery has a range of about 73 miles on a
single charge and requires 16-18 hours to fully charge from
a depleted battery under level I AC (120V) chargers. Level
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II AC (240V) chargers decrease the required charge time to
7 hours and level III DC (500+V) chargers further reduces
the time to approximately half an hour.1

To address range anxiety, charging stations are being
placed in convenient locations including highway rest stops
and gas stations. It is also becoming popular to place charg-
ing stations in parking lots. Cars generally spend a large
amount of time in parking lots, whether it is a shopping mall,
an airport, or work place. These charging stations provide a
convenient way to charge a battery by integrating the charg-
ing into time periods which drivers are naturally occupied.

Current charging docks have a single cable and can be
connected to one EV. In a gas station or rest stop, one would
expect customers to leave when charged and so a new car
can be connected immediately. However, in a parking lot,
a vehicle may be connected to a cable well after charging
has been completed. A charging dock which incorporates
multiple cables will allow as many connected cars as there
are cables, even if only one car can be charged at a time.
With a multi-cable dock, a car may complete its charge and
stay connected, while another EV immediately begins charg-
ing. Such a dock is an economical way to improve effective
charging capacity without purchasing more docks. For ex-
ample, the annual cost (purchase + maintenance) of a level
II AC charger ranges between $900 and $5000 USD over a
10-year life cycle, and only about 20% of the total cost is
due to initial capital investment (Botsford 2012). Although
the cost of adding a cable to a dock is not negligible, we ex-
pect much lower maintenance cost for the multi-cable dock
design in comparison to an equivalent system with multi-
ple single-cable docks. Hence, the multi-cable dock design
decreases the total cost of a charging facility due to fewer
docks needed to purchase and maintain, and lower initial in-
stallation cost.

In this paper, assuming multi-cable docks, we study the
admission and scheduling problem associated with manage-
ment of an EV charging facility. EVs arrive dynamically
over time and can be plugged into an available cable to be
charged. Admission and scheduling decisions must be made
immediately upon arrival of an EV and the system manager
aims to minimize the costs associated with rejecting and de-
laying customers. Given the relatively new application of

1http://www.nissan.ca/vehicles/ms/leaf/en.



EV charging facilities and EVs themselves, available func-
tionality varies. In particular, the information available to a
system manager from both his/her docks and the customers’
EVs will vary. We therefore propose three information avail-
ability characteristics: (i) the number of EVs at each dock
is known, (ii) stochastic information is available about EV
arrival and charging rates, and (iii) exact charging require-
ments for all EVs in and arriving to the system are known.
We create and study policies for admission and scheduling in
each information environment and compare the performance
of a multi-cable charging dock facility.

Our study demonstrates:
• the value of a multi-cable dock for parking lot facilities,
• the importance of obtaining actual charging requirement

information from EVs, and
• the increase in system performance arising from intelli-

gent admission and scheduling policies.
In the following section, the charging facility we study

is described in detail. Section 3 presents a continuous-time
Markov decision process (CTMDP) for the system. How-
ever, the model suffers from the curse of dimensionality and
hence does not scale well to real life problems. Thus, heuris-
tic methods for admission and scheduling decisions are in-
troduced in Section 4. Experimental results are presented in
Section 5, followed by a discussion in Section 6. Some re-
lated work on EV charging can be found in Section 7 and
Section 8 concludes the paper.

2 System Model
We consider an EV charging facility with N ∈ N docks,
each with K ∈ N cables. A cable connects a dock to a car
and enables charging. However, being connected does not
mean that the car is able to immediately start charging. Each
dock is limited to charging a single car at a time.

The parking lot system studied assumes cars arrive dy-
namically following a Poisson process with rate λ. The
amount of charging time each EV requires is exponentially
distributed with mean µ−1. In order for the vehicle to leave
the system, two conditions must be met: 1) the required
charge is completed and 2) the deadline specified by the
driver is reached. We assume the deadline is exactly L time
units after the arrival of the EV and represents the time at
which the customer has agreed to return to remove the EV.
This is a simplification of the real system which one can
think of as having customers with different deadlines. How-
ever, our assumption represents a parking lot that sells an
exact amount of parking time to all customers, but each
customer will have different charging times. If a vehicle is
charged before the deadline, it must wait until the deadline
before it can exit because, typically, the driver will not return
for the EV before the deadline. On the contrary, if charge
completion occurs after the deadline, the EV is delayed and
must wait until the charge completes before exiting the sys-
tem.2

2An alternative system could have EVs leaving at the time of the
deadline regardless of charge. The models presented in this paper
can just as easily handle these systems with minor alterations.

We assume three information conditions for our sys-
tem. The first is referred to as the cardinality condition: it
is known how many EVs are at each dock and of those,
whether or not a vehicle is delayed or charged. Under the
second, stochastic, condition, the arrival (λ) and charging
(µ) rates and their distributions are available. It corresponds
to assumptions common to stochastic modelling (Puterman
1994) and queueing theory (Gross and Harris 1998). Finally,
we wish to consider information natural to the schedul-
ing community (Pinedo 2008) which tends to include de-
terministic information about job durations and, often, ar-
rival times. While deterministic arrival times are unrealistic
in our application, it is reasonable to assume that charging
time information is known upon an EV arrival. For exam-
ple, the charging time can be found from either requesting
the customer give the charge level they wish to purchase or
by having a wireless transmitter from the vehicle broadcast
this information.3 Therefore, our third condition, which we
term observable, assumes that the actual remaining charg-
ing times of every EV in the system at each time point can
be observed. For an arriving EV j, the charging time pj is
available upon arrival.

The system manager makes two decisions. The first is
whether to accept or reject an incoming vehicle. If rejected,
then there is a finite cost cr ≥ 0 for losing a customer. The
second decision is how to schedule an accepted EV. Schedul-
ing comprises of the decision of assigning a dock for an EV
and determining the order that EVs are charged. If accepted,
an EV is immediately assigned to an available cable and can-
not be switched. When the owner returns to pick up his/her
EV, if charging is not yet complete, the delay is penalized. If
Tj is the tardiness of a late EV j, that is, the time between
the EVs deadline and when its charge is completed, then the
delay cost is cdTj where cd is finite and non-negative.

The system manager wants to find an admission and
scheduling policy to minimize the overall system cost. How-
ever, the control a system manager has over a parking lot
may vary. One can see in most common parking lots, cus-
tomers arrive and choose a spot themselves. Here, a system
manager would have no direct control over customers. Thus,
an indirect method to control the system is by limiting the
available spots (docks and cables). Although we do not ex-
plore the capacity planning problem, we will observe some
of the effects of adding cables and docks to the system in
our experiments. A system with moderate admission control
could be seen as having a gate at the entrance of the park-
ing facility to turn customers away. Once admitted, the cus-
tomer is free to choose whichever spot they please. Finally,
we can imagine a facility where customers must purchase a
spot first and will then be assigned to a specific location. In
this way, complete control over the admission and schedul-
ing of a vehicle is possible upon arrival. Specific admission
and scheduling policies will be discussed in Section 4.

3Such transmitters are already available (Botsford 2012), but
not used widely.



3 Continuous-Time Markov Decision Process
We present a CTMDP model to handle the admission and
scheduling of a charging facility when only cardinality and
stochastic information is available. Our current definition of
deadlines being a fixed L time units after arrival does not
adhere to the memoryless requirement of a CTMDP. There-
fore, we assume that deadlines are not deterministic, but ex-
ponentially distributed with mean L.4 We further simplify
the CTMDP representation by enforcing first-come, first-
served (FCFS) ordering of EVs once assigned to a dock.

The state of the system at time t is represented by, S(t) =
{Q(t), W(t), D(t)}. Here, Q(t), W(t), and D(t) are vectors
of sizeN . Q(t) indicates the number of EVs in the system at
time t that are waiting for a charge and not yet due on each
of the N docks. W(t) represents the number of vehicles that
have completed their charge, but are waiting for the deadline
and D(t) is the number of vehicles that are not yet charged
but have already reached their deadline, on each of the N
docks. We represent the element in each of the vectors using
a lowercase letter with index n to indicate the dock (e.g., the
nth dock is fully described by qn(t), wn(t), and dn(t)).

There are N + 1 possible actions when an EV arrives. An
action, a ∈ A, can either assign the EV to one of the N
docks or to reject the vehicle. Therefore, A ∈ {0, 1, . . . , N}
where 0 represents rejection. An EV cannot be assigned to
a dock with no available cables (i.e., if qn(t) + wn(t) +
dn(t) = K). The cost function, C(S(t), a) defines the ex-
pected cost associated with action a in state S(t). When
a vehicle is rejected, independent of the current state, the
cost is cr. If a vehicle is admitted, then we must calculate
the expected cost associated with the additional vehicle for
each particular state. We denote the time that an EV j com-
pletes its charge as φj . Thus, the delay cost of a vehicle is
max{0, (φj − L)cd}.

We calculate the expected delay of an accepted vehicle
by conditioning on the state of the system at time t and
the dock n that will be assigned the vehicle. Since there are
qn(t)+dn(t) vehicles not yet charged on dock n, admission
of a new vehicle requires a total of B = qn(t) + dn(t) + 1
exponentially distributed charges until the arriving vehicle
has completed its charge. B is the number of EVs present in
the system that requires a charge plus the new arriving job.
Thus, the expected delay given a state i and assignment to
dock n is,

E[delay|S(t), a = n] =

∫ ∞
L

(x− L)f(x;B,µ)dx,

where f(x;B,µ) is the density function of the Erlang distri-
bution. This yields

E[delay|S(t), a = n] =

[
µ−1Γ(B + 1, µL)− LΓ(B,µL)

]
Γ(B)

.

4We found numerically through simulation that a system with
deterministic deadlines does not behave differently from the cal-
culated CTMDP with exponentially distributed deadlines under
FCFS. Due to space restrictions, we do not present these details.

Here, Γ(b) is the gamma function and Γ(b, µL) is the upper
incomplete gamma function. Therefore, for any action a, we
know the expected delay, which we multiply by cd to obtain
the expected delay cost.

The transition rates depend on the current state of the sys-
tem, {Q(t),W(t),D(t)}. Transitions occur because of three
types of events: EV arrival, charge completion, and meeting
a deadline. Actions only affect transition rates for the arrival
events; the other events are independent of the actions taken.

We define an N-sized vector en that has 1 as the nth el-
ement and the rest 0. A deadline can occur on any dock
which has qn(t) + wn(t) > 0. If wn(t) > 0, then a transi-
tion occurs with rate qn(t)+wn(t)

L and will change the state
to {Q(t),W(t) − en,D(t)}. If wn(t) = 0, a transition
occurs with rate qn(t)

L to state {Q(t) − en,W(t),D(t) +
en}. Charge completions can occur on any dock which has
qn(t) + dn(t) > 0. If qn(t) + dn(t) > 0, a transition oc-
curs with rate µ to {Q(t),W(t),D(t) − en} if dn(t) > 0,
and {Q(t)− en,W(t) + en,D(t)} otherwise. For an arrival
event, we must consider the action taken. If an EV is re-
jected, then there is no transition. If we decide to assign an
arriving vehicle to the nth dock, then there is a transition rate
of λ to {Q(t) + en,W(t),D(t)}. Since we consider expo-
nentially distributed inter-arrival times, charging times, and
deadlines, the system is memoryless and we can restrict the
decision epochs to only the times when the state changes.

A policy, π, specifies the action, aπ(S), for each state S =
{Q,W,D}. We can use uniformization (Lippman 1975) to
discretize the MDP and solve for an optimal policy using
policy iteration (Howard 1960) since we have a finite state
space with bounded costs (Puterman 1994).

The CTMDP suffers from the curse of dimensionality:
solving the CTMDP for real life problems is intractable as
the number of states grows exponentially. The number of
states for any particular system is (K + 1)2N . With five
cables and five docks, we see that there are more than 60
million states. Thus, such a model is intractable for park-
ing facilities of even moderate capacity. Nevertheless, this
model can guide us to heuristics that use stochastic informa-
tion which we present in the following section.

4 Admission and Scheduling
We propose admission and scheduling policies to manage
the charging facility for each of our information availabili-
ties. Depending on the particular conditions of information
availability, some policies may not be possible to perform.

4.1 Admission Policies
The admission policy decides whether to accept or reject an
EV upon arrival. The policies consider each dock and de-
cides which docks are able to be assigned the EV. We present
three policies which represent systems that, respectively, use
cardinality, stochastic, and observable information:

• Free Cable - A vehicle is admitted if there are available
cables - i.e., if ∃n : qn(t) + wn(t) + dn(t) < K. Any
dock with an available cable may be assigned the EV.



• CTMDP1 - Consider a single-dock version of the model.
Solve for the optimal single-dock policy using CTMDP
of Section 3 with the same parameters of the original
multi-dock model (µ, L, cd, cr) except an arrival rate
of λ

N . Given the state of the system S, for every dock
n = 1, 2, . . . , N , check whether an arriving EV would
be admitted in state (qn(t),wn(t),dn(t)) under the opti-
mal single-dock policy. The docks that accept an arriving
EV are the only ones that can be assigned the EV.

• Myopic - Using the charging times, calculate the delay
cost of scheduling an EV on each dock. If the cost of ac-
cepting the EV on the dock is less than the cost of reject-
ing the EV, then accept and assign to one of these docks.

Although the admission policy will limit how one can assign
an EV, it does not assign a dock.

4.2 Scheduling Policies
Once an EV is admitted, a policy is used to assign a dock.
Again, each policy represents systems that, respectively, use
cardinality, stochastic, and observable information.

• Random - Randomly choose among one of the possible
docks determined by the admission policy.

• CTMDP2 - Similar to CTMDP1, restrict the CTMDP
model to a single dock and solve the Bellman equations
to find the expected cost of being in each state. From the
set of possible docks as defined by the admission policy,
choose the dock in a state that yields the minimum ex-
pected cost.

• Earliest - From the set of possible docks defined by the
admission policy, choose the dock that will result in the
earliest completion time for the EV if all other already
assigned EVs complete charge first.

These policies represent different levels of control from
no involvement, where we expect customers to enter and
choose a cable randomly, to complete control where a
customer is sent to a particular dock in order to maximize
performance. Once assigned to a dock, EVs are charged in
FCFS order.

A system manager couples an admission policy with a
scheduling policy to control the charging facility. It is ob-
vious that the information availability would limit his/her
choice of policies above. For example, CTMDP1-Earliest
can only be used if cardinality, stochastic, and observable
information conditions are met.

5 Experimental Results
We simulate the charging facility to observe the effects of
using multiple cables and different policy combinations. For
each experiment, 10 instances of 100,000 time units are sim-
ulated for every admission-scheduling policy pair. In all ex-
periments, customers set a deadline of exactly 1 time unit
after their arrival (L = 1) and docks have a charging rate
of µ = 6. For example, if our time unit is 3 hours, the pa-
rameters represents a parking lot which customers park for
3 hours and request on average 30 minutes charging time.
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Figure 1: Experiment 1 - Single Dock Charging Facility.

As mentioned earlier, we wish to understand the effects of
information availability. Since the underlying system does
not change, only the available information, we can observe
how having certain information affects performance.

The first experiment is a single dock charging facility.
EVs arrive to this system with a rate λ = 4 and K varies
from 1 to 10. The cost of rejecting an EV is cr = 1 and the
delay cost is cd = 5. Since there are no scheduling decisions
to be made, this system only tests the admission policies,
hence, comparing the three information availabilities.

Figure 1 presents simulation results for the single dock
system. In general, we see a large decrease in cost with ad-
ditional cables due to a significant increase in accepted EVs.
The cost gap between CTMDP1 and Myopic, especially for
K > 6, shows the extent of performance improvement that
can be achieved by obtaining the actual charging time infor-
mation.

Interestingly, the average cost per EV of the Free Cable
policy increases with eight or more cables. To get a bet-
ter idea of why the increase in cost occurs, we can think
of accepting an EV when there are 7 other EVs waiting for
a charge. In this scenario, it is likely that completing eight
charges will require more time than the deadline allows be-
cause the docks are expected to only charge 6 EVs in 1 time
period. Therefore, rejecting is generally a better choice. The
Free Cable policy does not do so and continues to accept
EVs when there are free cables.

The second experiment looks at a multi-cable, multiple
dock system. In this system, there are ten identical docks
with between one and ten cables each. Vehicles arrive at
a rate of λ = 50. The rejection cost is cr = 1 and the
delay cost is cd = 5. Results are shown in Figure 2 for
each combination of admission and scheduling policy. Note
that CTMDP1 does not always perform better than Free Ca-
ble. With observable information, using the Earliest policy
favours Free Cable. Figure 2 illustrates the importance of
information availability. The strong performance of Myopic-
Earliest shows the clear advantages of having observable in-
formation. Further, obtaining some control of the system is



Figure 2: Experiment 2 - Multiple Dock Charging Facility.

quite important as Free Cable-Random is found to perform
very poorly once there are seven or more cables. In fact,
even Myopic-Random suffers when K increases since there
is less control over the scheduling of EVs.

To further study the effects of the system parameters, we
experiment with varying the cost structure. Using the param-
eters from the multiple dock facility of the previous experi-
ment, we fix the number of cables to ten and vary cd between
1 and 200. Figure 3 shows the results of this experiment.

We see for most policy pairs, increasing cd leads to in-
creased overall costs per EV. However, this trend is not true
when Myopic is paired with Random or CTMDP2. A pos-
sible explanation for this anomaly is that increasing cd will
restrict potential candidate docks under the Myopic policy.
We believe Myopic can give guidance when delay costs are
high by removing the busier docks from consideration.

An interesting observation is that for cd = 200, Myopic-
CTMDP2 out-performs Myopic-Earliest. A scheduling pol-
icy using only stochastic information out-performs the pol-
icy that exploits exact information with Myopic admission.
In the previous experiments, we have seen a large dom-
inance when using observable information over stochastic
but clearly this is not always the case. We return to this ob-
servation below.

The last experiment studies a charging facility with ten
docks and ten cables each. Costs are as in the first two ex-
periment: cr = 1 and cd = 5. We vary the arrival rate
λ = {50, 55, 60} to observe how the policies behave un-
der varying system loads. Figure 4 graphs the results. We
see a larger increase in costs for the Free Cable based policy
pairs as load increases when contrasted with CTMDP1 and
Myopic. Of interest in particular is the performance of Free
Cable in comparison to CTMDP1 when using the Earliest
scheduling policy. As before, we see at λ = 50 that Free
Cable is better. However, as λ increases, CTMDP1 becomes
better.

Figure 3: Experiment 3 - Multiple Dock Charging Facility.

Figure 4: Experiment 4 - Multiple Dock Charging Facility.

6 Discussion and Future Work
The results from simulating the charging facility provide in-
sights into the facility designs as well as the directions for
building stronger system management models. For facility
design, we see that multi-cable docks provide large perfor-
mance improvements when there is a disparity between the
charging requirements of an EV and the expected deadlines
(pj < L). Botsford (2012) discusses such systems and pro-
vides two solutions: valet parking and reduced power charg-
ing docks to increase charging time. Although these solu-
tions increase dock utilization, they are not always practical
as the cost for valet parking or requiring a dock for every
customer can be high. If L is much larger than pj , adding
cables to a dock will greatly improve utilization.

Comparisons of the different policy combinations gives
us insight into how one would manage a charging facility.



The most important questions that must first be addressed
is what information is available and how much control ex-
ists for the admission and scheduling of a customer. Parking
facilities are used in a variety of settings and different park-
ing lots will have different features. As mentioned in Sec-
tion 2, management may not have substantial control over
a shopping mall parking lot. Customers arrive and choose
their spots freely as long as there is space. We can see the
similarities to Free Cable-Random where there is no con-
trol over the customers. Here, the only decision making re-
quired is one of capacity planning; how many docks should
be purchased and how many cables will these docks have.
As we can see from Figures 1 and 2, more cables may lead
to a decrease in performance, so choosing the right capacity
is very important to the overall system costs. If the man-
ager does have some control over the assignment of EVs
and stochastic information is available without observable
charging times, CTMDP1-CTMDP2 is the best performing
policy. Since exact charging times are not known, using the
Earliest scheduling rule is not possible and our experiments
show, as expected, that Free Cable does not outperform CT-
MDP1 in these circumstances.

Although the policies using observable information were
able to achieve the best overall performance, our results sug-
gest the potential for using stochastic information. With in-
creased delay costs, the best performing policy combina-
tion was Myopic-CTMDP2. This combination makes use
of cardinality, stochastic, and observable information. We
believe that to achieve the best performance, policies de-
signed to use the stochastic and observable information is
required. Myopic-CTMDP2 only achieves the lowest cost
in one scenario, but a more sophisticated scheduler that ac-
tively uses all the available information has potential to per-
form favourably on most, if not all, cases.

Such hybrid reasoning in optimization has previously
been proposed in the literature. Recent work by Terekhov et
al. (2012) and Tran et al. (2013) looks at combining queue-
ing theory and scheduling models to incorporate stochastic
reasoning into combinatorial optimization. In Tran et al.’s
(2013) work, a queueing model, using stochastic informa-
tion, was shown to out-perform a number of scheduling
models that made use of observable information. The seem-
ing inconsistency with our result is interesting but is likely
due to the very different underlying systems and solution
approaches. However, the investigation of when combining
stochastic and observable information benefits performance
is a promising area of future work and our results from test-
ing a system with high delay costs is an example of how such
a combination can be advantageous.

Another direction for future work is online stochastic
combinatorial optimization (OSCO) (Van Hentenryck and
Bent 2006). OSCO creates schedules by generating and opti-
mizing over samples of future arrivals derived from stochas-
tic information. We see it as a promising direction, espe-
cially for more complicated scheduling problems.

We would like to expand this work by further examining
the CTMDP model and building more sophisticated schedul-
ing models that make use of stochastic reasoning. We believe
that a deeper understanding of the characteristics of the opti-

mal CTMDP policy will help provide necessary components
one can utilize when creating a sophisticated scheduler that
considers both the dynamics of the system and the combina-
torial complexities. As well, we would like to explore pos-
sible methodologies of solving the CTMDP. Factored rep-
resentations of an MDP, which uses dynamic Bayesian net-
works to represent the stochastic decisions of an MDP, are
an interesting possibility for being able to solve the CTMDP
(Boutilier, Dearden, and Goldszmidt 2000).

7 Related Work on EV Charging
While there are a few studies on EV charging, we are not
aware of any work that investigates our parking lot charg-
ing scenario with multi-cable docks and dynamically arriv-
ing customers. Furthermore, to the best of our knowledge,
our paper is the first to study the performance of a multi-
cable dock design where the cables in a charging dock are
modelled as a limited resource. In all other works, it is either
assumed that docks always switch to other cars immediately
or the system has unlimited single-cable docks.

Raghavan and Khaligh (2012) examine the effects of
EV charging in a smart grid environment. They emphasize
the differences between charging methods and time-of-day
(evening or night). Li et al. (2011) use dynamic program-
ming to minimize charging costs when electricity prices vary
over time. Sioshansi (2012) develops two mixed integer pro-
gramming models to minimize costs. These works consider
the larger power grid problem where people are charging at
home rather than in a shared charging facility.

Lee et al. (2011) focus on the problem of a charging sta-
tion system where there are multiple charging docks and ve-
hicles have different charge lengths, arrival times, and dead-
lines. In their work, they assume that complete information
is known a priori, including the number of EVs. Each vehicle
has a different power consumption profile and the objective
is to reduce peak power usage over all time periods.

Work on waiting time performance of charging EVs is
due to Qin and Zhang (2011). A network of roads is created
where nodes represent rest stops to recharge EVs. Drivers
are assumed to stop at nodes to charge when required and
immediately leave once they are charged. A performance
bound is derived and a distributed scheme is proposed which
is shown empirically to perform closely to the bound results.

8 Conclusion
We studied scheduling electric vehicles in a charging facil-
ity where customers arrive dynamically and tend to park
longer than their charge time. Our study considered three
information conditions: cardinality, stochastic, and observ-
able. We formulated a CTMDP to optimize the system per-
formance under the first two conditions and demonstrate
that it does not scale to realistic-size problems with multi-
ple docks. However, a single-dock version of the CTMDP
is tractable. We proposed and numerically evaluated a num-
ber of admission and scheduling schemes building on both
the single-dock CTMDP and approaches from the schedul-
ing literature under each of the three information conditions.
We found that the information available significantly alters



the overall performance of the system by limiting the admis-
sion and scheduling policies that can be implemented. Thus,
it is crucial for any system manager to properly understand
the information limitations of his/her system and choose the
appropriate methodology to optimize performance.
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