
Counterfactual Explanations for Discrete Optimization

by

Anton Korikov

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Department of Mechanical and Industrial Engineering
University of Toronto

© Copyright 2022 by Anton Korikov

Counterfactual Explanations for Discrete Optimization

Anton Korikov
Master of Applied Science

Department of Mechanical and Industrial Engineering
University of Toronto

2022

Abstract

This thesis develops the first application of counterfactual explanations to optimal solutions of

discrete optimization problems. The techniques studied respond to a contrastive question: why

did the optimal solution did not satisfy a previously unstated specification? The explanations take

the form of alternative objective parameters which would have resulted in the optimal solution

satisfying the additional specification, while minimally perturbing the initial objective parameters.

Such explanations are formalized as the Nearest Counterfactual Explanation (NCE) problem, which

is based on a variant of inverse optimization. A novel cutting plane algorithm is developed to solve

NCEs which explain problems with linear objectives and constraints. Two special cases of NCEs

are also studied, based on restrictive question and answer forms.

ii

Acknowledgements

I would like to thank my thesis advisor, Christopher Beck, for his amazing guidance. His vision,

knowledge, and commitment to excellence were essential to developing the contributions of this

thesis. He has also taught me a great deal about being a researcher.

Thank you to Alexander Shleyfman for his help in developing the theoretical contributions in

Chapter 4, and for being a co-author on the first conference paper published from this work [1].

I would also like to thank my second committee member, Merve Bodur, for all of her insightful

feedback, and for teaching me much of the foundation of discrete optimization.

Thank you to all of my lab mates from TIDEL. They were always there when I needed their

help, and I always found our discussions immensely valuable.

Finally, thank you to all of the researchers from various conferences and presentations who have

shared their ideas about this work with me. They have made this thesis much better.

iii

Contents

1 Introduction 1

1.1 Contributions . 2

1.2 Organization of Thesis . 3

2 Literature Review 5

2.1 Introduction . 5

2.2 Explainable AI . 6

2.2.1 Explainability concepts . 6

2.2.2 Transparency . 8

2.2.3 Post-hoc Explanations . 10

2.2.4 Summary . 14

2.3 Counterfactual Explanations . 14

2.3.1 The Form of Counterfactual Explanations . 14

2.3.2 Benefits of Counterfactual Explanations . 15

2.3.3 Counterfactual Explanations in Machine Learning 16

2.4 Contrastive Explanations in AI planning . 19

2.5 Explanations in Constrained Optimization & Satisfaction 20

2.5.1 Simulatability . 21

2.5.2 Infeasibility Based Explanations . 21

2.5.3 Eliciting Constraint Preferences from Solution Preferences 23

2.5.4 Summary . 24

2.6 Inverse Optimization . 24

2.6.1 Problem Definitions . 24

2.6.2 Solution Methods . 26

2.6.3 Inverse Optimization for Explanations . 32

iv

2.7 Conclusion . 32

3 A General Counterfactual Explanation Problem 33

3.1 Notation . 33

3.2 Nearest Counterfactual Explanations . 34

3.3 Feasibility Conditions . 36

3.4 Discussion and Limitations . 37

3.5 Conclusion . 39

4 Single Variable Explanations 40

4.1 Single Variable Restrictions . 40

4.2 Binary Linear Objective Problems . 42

4.2.1 Formulation . 42

4.2.2 Solution Method . 43

4.3 Integer Variable Problems . 45

4.3.1 Formulation . 45

4.3.2 Solution Method . 46

4.4 Conclusion . 51

5 Multivariate Explanations Under Partial Assignment Restrictions 52

5.1 Partial Assignment Nearest Counterfactual Explanations 52

5.2 Theoretical Results . 54

5.3 Inverse Constraint Programming . 55

5.3.1 Scope . 56

5.3.2 Pure Inverse CP . 56

5.3.3 Hybrid Inverse CP . 57

5.3.4 Algorithm Summary . 57

5.4 Models . 57

5.4.1 0-1 Knapsack Problem . 58

5.4.2 Single Machine Scheduling with Release Dates, 1|rj |
∑
wjCj 58

5.4.3 Bounded Objectives . 60

5.5 Experimental Setup . 60

5.5.1 Problem Instance Generation . 60

5.5.2 Solving PA-NCEs . 62

v

5.5.3 Computational Details . 63

5.6 Experimental Results . 64

5.6.1 Strongest PA-NCE Algorithms . 64

5.6.2 Early Stopping Criteria . 64

5.6.3 CP Master Problems . 67

5.6.4 Instance Breakdown . 67

5.7 Conclusion . 67

6 Solving General Nearest Counterfactual Explanation Problems 69

6.1 Introduction . 69

6.2 Solution Methodology . 70

6.2.1 The NCXplain Algorithm . 70

6.3 Experimental Method . 72

6.3.1 Forward Problems . 73

6.3.2 Contrastive Questions . 73

6.3.3 Counterfactual Objectives . 74

6.3.4 NCE Feasibility . 74

6.4 Experimental Data . 76

6.4.1 Forward Instances . 76

6.4.2 Contrastive Question Instances . 76

6.4.3 Computational Details . 77

6.5 Results . 78

6.6 Conclusion . 80

7 Conclusions and Future Work 81

7.1 Summary of Contributions . 81

7.2 Future Work . 83

7.2.1 Inverse Optimization Based Extensions . 83

7.2.2 Extensions Inspired by Explanations in Machine Learning 84

7.2.3 Conclusion . 85

vi

List of Tables

3.1 General Notation. 33

5.1 KP PA-NCE Instance Breakdown . 67

5.2 Scheduling PA-NCE Instance Breakdown . 68

vii

List of Figures

2.1 Explainability Concept Map . 8

5.1 PA-NCE Mean Solve Times. 63

5.2 Mean Solve Times for Initial Forward and Optimal Foil Problems. 63

5.3 KP PA-NCE Solve Time Distributions . 65

5.4 Single Machine Scheduling PA-NCE Solve Time Distributions 66

6.1 Mean Solve Times for NCE and Forward Problems 77

6.2 NCE Solve Time Distributions . 78

6.3 Number of NCE Instances Solved to Optimality . 78

6.4 Cumulative Time in NCE Master Problem vs Subproblem 79

viii

Chapter 1

Introduction

Automated systems are increasingly being deployed to make high-impact decisions [2, 3]. However,

there is also a growing recognition of the negative outcomes that result from the implementation

of under-scrutinized AI systems [2, 3, 4, 5]. For instance, Eubanks [3] has shown that automated

decision systems, designed with no malicious intent, can propagate inequalities and biases across

services providing child care or combating homelessness. In an effort to mitigate such undesirable

effects by encouraging more interpretable decision-making, newly passed legislation in the European

Union [2] states that an individual subjected to an adverse automated decision has a right to an

explanation. While the legality and form of such a right to explanation is a topic of debate [6], there

is widespread consensus on the need to make automated decision systems more explainable [4, 5, 7].

This thesis develops the first application of counterfactual explanations [8, 9] to optimal solutions

of discrete optimization problems. A counterfactual explanation is a response to a contrastive

question posed by a person (the explainee) asking why a decision was not different in a specified

way; for example, a borrower may ask “Why was I denied a loan instead of approved?”. The

explanation then takes the form of the minimal change to the world that would lead to the decision

being different in the way specified by the explainee. For instance, the borrower may be told “You

would have been approved a loan if your income was $10,000 higher.”

In this thesis, contrastive questions asking why the optimal solution of a discrete optimization

problem does not lie in a different region of the feasible set are answered using counterfactual expla-

nations based on objective parameters. First, the explainee identifies some additional constraints,

not present in the initial problem definition, that are not satisfied by the initial optimal solution and

asks “Why did the optimal solution not satisfy these additional constraints?”. For instance, if an

1

CHAPTER 1. INTRODUCTION 2

optimization problem is used to schedule a production order at an automotive factory, a manager

may ask “Why was the brake order not completed before next week?”. Then, finding an explanation

involves computing a modified objective vector so that an optimal solution to the modified problem

would satisfy the additional constraints, and so that the initial objectives are minimally perturbed.

In the scheduling example above, if the orders are scheduled based on some priority levels, an ex-

planation may be “The brake order would have been completed within one week if its priority was

at least two levels higher.” The manager could then produce a new schedule with the brake priority

increased by two levels, and assess whether this change is worthwhile given any changes to the rest

of the schedule. In general, such explanations are meant to help an explainee better understand the

effects of objective parameters on optimal decisions, and if necessary, change these parameters or

contest objectives they believe to be unfair [8]. The practical use of counterfactual explanations is

discussed further in Sections 2.3 and 3.4.

1.1 Contributions

This thesis formulates counterfactual explanations as an optimization problem called the Nearest

Counterfactual Explanation problem (NCE), which can be interpreted as a variant of inverse opti-

mization (Section 2.6.1). Solution approaches to NCEs are considered within the scope of explaining

discrete optimization problems with linear objectives and constraints. The feasibility of NCEs, and

thus the existence of explanations, is investigated and a set of feasibility conditions are identified.

In addition, practical considerations such as privacy and the meaningfulness of objective parameters

to a person are discussed.

As will be discussed in Chapter 3, NCEs are challenging problems to solve. However, several

real-world cases can be identified where the form of the contrastive question and the objective

parameters that the explainee is interested in can be used to simplify the solution process. One such

case, studied in Chapter 4, is when all the information concerning the explainee in the objective

function is isolated to one decision variable and one objective parameter. In these settings, it is

shown that solving an NCE requires solving at most a logarithmic number of slightly modified

versions of the initial problem. Another special case of NCEs, studied in Chapter 5, occurs when the

explainee wants to know why a subset of variables were not assigned to a set of specified values. It is

shown how NCEs of this kind can be solved with the help of classical inverse optimization algorithms

(Section 2.6.2), and numerical experiments are used to test several explanation algorithms.

With the help of insights drawn from studying the special cases of NCEs above, the general NCE

CHAPTER 1. INTRODUCTION 3

is revisited. A solution algorithm, NCXplain (Algorithm 6.1), is developed by modifying a well-

known inverse optimization cutting plane algorithm [10], relying on recent advances in quadratic

programming solvers. Numerical simulations demonstrate the process of using NCEs to explain

optimization problems, including the formulation of contrastive questions given an initial optimal

solution. In these simulations, it is shown how the conditions for the feasibility of an NCE can be

met, leading to the guaranteed existence of explanations when meeting these conditions is possi-

ble. Finally, future research directions for NCE-based explanations are identified, based on ideas

in the literature on inverse optimization (Section 2.6) as well as the literature on counterfactual

explanations in machine learning (Section 2.3.3).

1.2 Organization of Thesis

In addition to providing a literature review (Chapter 2), this thesis is organized as follows.

Chapter 3 formulates the problem of finding an explanation as the NCE and discusses its rela-

tionship to inverse optimization. Several feasibility conditions for the NCE are discussed, one being

that the alternative feasible region identified by the explainee in the contrastive question must be

non-empty. Then, some practical aspects of using NCEs in the real world are examined, including

privacy, trivial explanations, and outcomes when explanations do not exist.

Chapter 4 studies the first special case of NCEs, called the Univariate-NCE (U-NCE) in which

both the question and explanation isolate a single decision variable and a single objective parameter,

respectively. Several use-cases are given for the U-NCE, with the primary one being an explainee

desiring an explanation concerning only themselves in a multi-user system. When the contrastive

question is based on a binary decision variable, it is shown that solving the U-NCE requires only

solving a slightly modified version of the initial problem. If the decision variable in the question

is integer, a solution method is proposed that involves solving at most a logarithmic number of

modified initial problems.

Chapter 5 studies the second special case of NCEs, called Partial Assignment NCEs (PA-NCE),

in which the explainee asks why the optimal solution did not satisfy a partial assignment. As with

the U-NCE, an important application of the PA-NCE is enabling an explainee to isolate decisions

that concern themselves from decisions related to other people. It is proven that a PA-NCE can be

solved in two steps: 1) finding the best solution in the user-specified region; and 2) solving a classical

inverse optimization problem based on the solution from the first step. To explain problems which

are constraint programs, Chapter 5 introduces inverse constraint programming (CP) as a novel

CHAPTER 1. INTRODUCTION 4

inverse optimization methodology. The inverse CP algorithms include pure inverse CP and two

inverse mixed-integer linear programming (MILP)/CP hybrids. Numerical experiments are then

performed demonstrating the explanation process using PA-NCEs, and showing that an explanation

approach using a MILP/CP hybrid inverse algorithm can outperform alternatives when CP is the

state of the art for the initial problem.

Chapter 6 returns to the general NCE defined in Chapter 3. It develops a solution algorithm,

called NCXplain, which extends a cutting plane algorithm for inverse MILP [10], in part by intro-

ducing a new set of bilinear quadratic constraints. Due to recent progress in discrete optimization

solvers, these constraints can be implemented directly in Gurobi 9.0. Numerical simulations are then

carried out, demonstrating that NCXplain can be used to answer much more complex questions than

those in Chapters 4 and 5.

Chapter 7 concludes the thesis, identifying several directions for future work.

Chapter 2

Literature Review

2.1 Introduction

While the machine learning (ML) community has produced a great amount of explainability (or

interpretability)1 research over the last five years [12], explainability in optimization has attracted

far less attention in this period [13]. Much of the work on explainability in optimization was done

well before 2016 [14, 15, 16, 17, 18, 19], and has focused on explaining infeasibility, not optimality

[13]. While some new research on explainable optimization has emerged in the last five years [20,

21, 22, 23], all of it builds on existing ideas about infeasibility-based explanations.

In contrast, in AI planning, the recent surge of explainable AI (XAI) research has inspired

several new approaches to be adopted, including that of contrastive explanations [24, 25, 26, 27, 28].

Research interest towards explainability in AI planning has increased considerably, as evidenced by

several recent workshops on explainable AI Planning (XAIP) [29]. One popular form of contrastive

explanation, especially in ML, is that of counterfactual explanations [8]. Inspired by the work on

contrastive explanation research in AI planning, this thesis applies the technique of counterfactual

explanations to optimal solutions of discrete optimization problems.

Section 2.2 reviews XAI concepts and methods, looking at the processes by which explainability

techniques provide useful information to the explainee. Then, Sections 2.3 and 2.4 review counter-

factual explanations in ML and contrastive explanations in AI planning, respectively. Section 2.5

surveys past work on explanations in discrete optimization. Finally, Section 2.6 focuses on inverse

combinatorial optimization [30], which forms part of the methodological basis for this thesis.

1Explainability and interpretability will be used interchangeably, as they are in the literature (e.g. [5, 11]).

5

CHAPTER 2. LITERATURE REVIEW 6

2.2 Explainable AI

2.2.1 Explainability concepts

A structured outline of XAI is somewhat challenging. Lipton, Doshi-Velez, and Kim [5, 31] argue

that much of the literature suffers from ambiguous or under-justified claims, in which a technique

is argued to achieve interpretability without an adequate discussion of how, when, or under what

assumptions. Likely due to these issues, as well as the nascent nature of the literature, there is limited

coherency between XAI surveys [12, 32, 33, 34, 35], with most using quite different frameworks for

classifying explanation approaches.

Rather than review each available framework, this discussion will be organized using a key dis-

tinction that appears consistently across the literature: transparency versus post-hoc explanations

[5]. The transparency2 of an AI is the extent to which its decision-making algorithm is understand-

able to people. Transparency can be considered on two levels: the level of the entire algorithm,

called simulatability ; and at the level of individual parts of the algorithm, called decomposability

[5]. Further, given a decision algorithm and an accurate, complete description of it, we can define

the algorithm’s intrinsic transparency as the extent to which it is understandable to people without

any additional information. When an AI’s intrinsic transparency is insufficient to satisfy the need

for an explanation, post-hoc explanations can be used to provide additional information about the

AI’s decisions or its decision-making process. For instance, each input to an intrinsically opaque

(non-transparent) deep neural network (DNN) may be assigned an importance value representing

the input’s impact on the output [37, 38]. Though it is useful to distinguish between the concepts

of transparency and post-hoc explanations, they are not mutually exclusive. In fact, in the previous

example, a post-hoc explanation attempts to increase transparency by providing information, using

feature importance, about the algorithm’s decision-making mechanism.

While transparency and post-hoc explainability are used quite consistently across the XAI lit-

erature [32, 33, 34, 35], there remains little coherency in classifications of post-hoc methods. For

instance, Du et al. [34] propose an organization based on local versus global methods. Local ex-

planations are only applicable for a single decision instance; for example, in a medical prediction

system, a local explanation may address the question “Why is John’s predicted illness the flu?”. In

contrast, global explanations can address any decision the AI is capable of making, which, in our

2While this definition is generally accepted in the XAI literature (e.g. [4, 32, 33]), other areas may use the term
differently. For instance, some work in the human factors literature uses transparency to connote that some part of a
technology is invisible to the user, providing them with a unobstructed interface to “look through” while completing
a task [36].

CHAPTER 2. LITERATURE REVIEW 7

medical example, might respond to the question “How much of an impact does the presence of a

headache have on the prediction of flu?”. Alternatively, Lipton [5] considers four categories of post-

hoc explanations: local explanations, verbal explanations, visual explanations, and explanations by

example.

Instead of selecting one of such classifications for this review, it will be argued that a useful way

to organize post-hoc explanations is based on the kind of information they convey. This information

can broadly be divided into three categories: 1) relationships between inputs and outputs that

increase transparency, 2) examples of inputs and outputs that do not increase transparency, and

3) relationships between the AI and human beliefs and concepts. These categories are introduced

briefly below and discussed in more detail in Section 2.2.3.

The first category of information consists of relations between inputs and outputs that reveal

something about how the decision mechanism works beyond its intrinsic transparency. This informa-

tion is meant to increase the algorithm’s transparency through an additional relation that describes

some effect that inputs have on outputs; thus, we call this a proxy relation. For instance, such a proxy

relation was established in the previous example by the importance levels assigned to the inputs of a

DNN representing the inputs’ impacts on the decision. Similar notions describing proxy models, also

called surrogate models, exist in the literature [39, 32, 12], however, most commonly, they describe

a function that could replace the real decision algorithm and thus serve as an explanation of it.

Our definition is more general because a proxy relation does not need to provide decision-making

capability. For example, identifying feature importance levels is not enough to produce decisions,

but still increases transparency.

In contrast, a second category of information that could be communicated with a post-hoc

explanation consists of examples of inputs and outputs that do not provide insights into how the

decision mechanism works. For instance, case-based explanations [11], identify decisions that are

similar to each other. As another example, counterfactual explanations [8] identify inputs that would

have resulted in different outputs. In contrast to proxy functions, neither of these two methods rely

on any understanding of the mechanism by which decisions are made, and are often called example-

based explanations [32].

Finaly, post-hoc explanations could impart a third type of information: a relationship between

an AI and beliefs or concepts that are meaningful to an explainee. We call this type of information

a relationship to a human concept or belief, and note that these concepts and beliefs may or may

not be used by the AI. For instance, in work by Kim et al. [4], given an image classifier that

predicts whether an image contains a zebra, a person may ask “How important are stripes to this

CHAPTER 2. LITERATURE REVIEW 8

prediction?”. The classifier may not have any internal representation of the notion of stripes, so a

meaningful explanation needs to establish a relationship between the human concept of stripes and

the AI’s decision mechanism.

Similar to the distinction between transparency and post-hoc explanations, these three categories

are not mutually exclusive. Though the information conveyed by some post-hoc explanations is well

characterized by a single category, it is possible for an explanation to provide information from

multiple categories, as will be shown shortly. Figure 2.1 summarizes the concepts defined in this

section for classifying explainability techniques. We now turn to a more detailed discussion of each

concept, presenting examples from the XAI literature.

Figure 2.1: Explainability Concept Map

2.2.2 Transparency

Simulatability

The strongest notion of a transparent algorithm is one that a person can comprehend in its entirety,

called simulatability. By this definition, given the inputs, a person should be able to simulate

the steps of the algorithm to reproduce its output in a reasonable amount of time [5]. Given

that a person understands the meaning of the inputs, this type of interpretability is claimed to be

exhibited by sparse linear models [40] and sparse decision trees [41]. Sparsity is typically beneficial

for simulatability, since, given an algorithm group (e.g., linear models, decision trees), algorithms

with n components (e.g. variables, decision nodes) are generally more simulatable than algorithms

with n+ 1 components [40, 41].

Whether or not an algorithm is simulatable depends not only on the algorithm itself, but also

on the capabilities of the explainee and the task for which an explanation is needed. For instance,

an algorithm designer is usually more capable of understanding an algorithm than a layperson.

Additionally, the task at hand influences what constitutes a reasonable amount of time for simulating

CHAPTER 2. LITERATURE REVIEW 9

the algorithm. For example, a driver selecting a route might only spend seconds attempting to

understand a routing algorithm, while a lawyer arguing that an automated loan approval system

is discriminative may spend weeks. However, Lipton [5] argues that this ambiguity in how much

time should be considered reasonable may only comprise several orders of magnitude, due to natural

limits on human cognitive abilities.

In the context of constraint satisfaction and optimization problems, some algorithms used on

very small problem instances could be considered simulatable. For instance, if a solver follows simple

inference rules to solve a Sudoku or small logic puzzle, a person could follow the same inference steps

to recreate the solution. Sqalli and Freuder [42] explore this type of interpretability for small logic

puzzles, observing that their solver’s inference traces closely resemble human generated explanations.

However, after the number of decision steps in these algorithms exceeds a certain threshold, they

are no longer simulatable because the number of steps is too large.

Decomposability

Transparency can also be considered at the level of the algorithm’s components, called decomposabil-

ity. From this perspective, how clear is the meaning of each parameter or variable? Are individual

steps and calculations understandable? For instance, linear models are considered highly decompos-

able, assuming their inputs are understandeable, because they can be split into meaningful terms

and coefficients [43]. Similarly, a person may be able understand which features (e.g. age, gender)

are used by a single node in a decision tree, even though the entire tree may be too large to be

simulatable [5].

Since most research on explainability, driven by the rise of neural methods, has focused on ML,

there has been little recent discussion of the transparency of AI techniques that use some form

of symbolic reasoning [44]. However, approaches which reason using symbols that have a human-

understandable meaning, by definition, exhibit a certain level of decomposability. For instance, in

constrained optimization paradigms such as constraint programming (CP) or mixed integer pro-

gramming (MIP), there is typically a human-understandable meaning attached to the variables,

constraints, objective function, and coefficients. Similarly, AI planning algorithms often use human-

interpretable states, actions, goals, or costs, making them decomposable at the level of these symbols

[44]. These algorithms may also be decomposable at the level of individual steps: for instance, a sin-

gle inference step performed by a CP solver to fill an empty square in a Sudoku puzzle may be easy to

understand, given that a person understands the rules of Sudoku. In contrast to declarative, model-

based methods, DNNs are much more difficult to decompose into distinct, human-understandable

CHAPTER 2. LITERATURE REVIEW 10

steps and components.

Using Intrinsic Transparency

Given that some algorithms are more intrinsically transparent than others, one XAI research di-

rection is the design of efficient and intrinsically transparent algorithms that require no additional

explanation [41]. Some authors even argue that no other algorithms should be used for high-stakes

decisions [41]. However, other researchers caution against premature dismissals of more powerful but

more opaque algorithms simply because they are not intrinsically transparent, arguing that post-hoc

methods are a possible way to meet the goals of XAI [5].

2.2.3 Post-hoc Explanations

For algorithms whose intrinsic transparency is not sufficient to meet the demands for interpretability,

post-hoc explanations provide additional information that aims to meet these needs. An advantage of

post-hoc explanations is that they allow for separate approaches to decision-making and explanation;

one method, perhaps efficient but opaque, can be used to make the decision, followed by a second

method to explain it [5]. We now present a more thorough analysis of post-hoc methods based

on the three categories of information that were identified above: proxy relations, example-based

information, and relations to human beliefs and concepts.

Proxy Relations

Recall that proxy relations attempt to increase transparency by identifying a new relationship be-

tween inputs and outputs that reveals something about how the decision mechanism works. These

relations may or may not be faithful to the real decision algorithm to varying degrees. Three ex-

amples of methods that use proxy relations are: local approximations, feature importance methods,

and explanations learned from people.

• Local Approximations: Instead of attempting to explain how an algorithm would make a

decision for any input, local explanations attempt to explain a single decision. In the work of

Ribeiro et al. [38], the decision of any classifier is explained by learning a sparse linear model

in the vicinity of a given input. When a sparse linear model is trained on a small region,

it may achieve comparable performance to the initial classifier for predictions in that region.

However, the new model’s performance may be unpredictably bad for far-away inputs [8].

CHAPTER 2. LITERATURE REVIEW 11

• Feature Importance Methods: Feature importance methods identify values that represent

how much impact each input has on the output. These methods include local linear approx-

imations discussed above, since the weight assigned to each term in a linear function can be

interpreted as its importance coefficient. Another well known method is SHapley Additive

exPlanation (SHAP) [37] in which a feature’s importance is represented by its Shapley value:

a game-theoretic measure which represents the marginal contribution of a feature to the out-

come (i.e. the effect of the feature being present as opposed to absent) averaged across all

possible combinations of features.

• Learned Explanations: People regularly explain how certain facts lead to certain outcomes.

Algorithms can learn to recreate these human explanations and use them as proxy relations.

For example, Krening et al. [45] train one algorithm to play a video game, and a second one to

generate verbal explanations of strategy based on a training set of human explanations. Such

explanations are not necessarily faithful to the decision – the explanation algorithm simply

minimizes the difference between predicted explanations and previously observed explanations.

As another example, McAuley and Leskovec [46] build a recommender system where a user’s

text reviews are considered as explanations of their item ratings. The recommender system is

simultaneously trained to predict a user-item rating and the likelihood of topics, learned via a

topic model, appearing in a review. It then outputs the most likely topics as an explanation

of its rating.

Example-Based Information

While the previous post-hoc examples work by providing some additional understanding of how the

decision mechanism works, post-hoc methods can also communicate information using examples of

inputs and outputs that do not increase transparency. In fact, Wacther et al. argue that a benefit of

this kind of information is that it may be easier to understand for users who do not have any previous

algorithmic knowledge [8]. Two broad classes of methods that convey this kind of information are

case-based explanations and counterfactual explanations.

• Case-based Explanations: People often provide case-based explanations, for example doc-

tors relying on case studies to justify treatment decisions [5], and furthermore, case-based rea-

soning has been demonstrated to be a fundamental human decision-making strategy [47, 48, 49].

For example, skilled firemen have been shown to make decisions by matching new situations

to prototypical cases where certain decisions are appropriate [48]. Kim et al. [11] argue that

CHAPTER 2. LITERATURE REVIEW 12

not only is case-based XAI useful for explanations, but it also allows AI to be more directly

integrated with human decision-making processes – one of the underlying motivations for XAI.

One example of this approach is work by Caruana et al. that provides a case-based explanation

for a DNN prediction by finding the k -nearest data points in the training set which result in

similar hidden layer activations [50]. This method is also used by word2vec, which learns word

embeddings, to examine which words a model considers similar [51]. In Bayesian methods,

Kim et al. [11] explain clustering results by identifying a prototype that best represents the

characteristics of each cluster; for instance, if an AI explains that Scream is a prototype for

a cluster of movies, a human might infer that the cluster represents horror films. Another

Bayesian example is work by Doshi-Velez et al. [52], who explain predicted document topics

based on their similarity to topics in pre-defined human ontologies, such as the ACM CCS

ontology [53].

• Counterfactual Explanations: In contrast to case-based explanations, which rely on similar

decisions, counterfactual explanations reveal alternative inputs that would have led to different

decisions [8]. Given a decision, these explanations address the contrastive question: “Why was

the decision not different in some way?” (e.g. “Why was I denied a loan instead of approved?”).

The explanation takes the form of a set of hypothetical inputs that would have resulted in the

decision being different (e.g. “If your income had been $10, 000 higher, you would have been

approved”). Typically, it is desirable for these hypothetical inputs to be minimally perturbed

from the initial ones. Counterfactual explanations are discussed in considerably more detail in

Section 2.3.

Relations to Human Beliefs and Concepts

A third kind of information that post-hoc explanations can convey are relationships between the

AI and human beliefs and concepts: beliefs and concepts that are meaningful to people, but may

not be used by the AI to make decisions. Kim et al. [4] point out that the space of mathematical

concepts used by an AI is often different from the space of concepts in which human reasoning takes

place. There are many reasons why this could be the case, including that people and AI often use

different information, have different goals, and represent knowledge differently. For instance, a deep

image classifier performs inference using low-level pixels inputs and neural activations, while a person

understands images through high-level concepts such as animals or body parts [4]. In declarative,

model-based AI systems, a person may have a different mental model of a system than the model

CHAPTER 2. LITERATURE REVIEW 13

used by the AI; for instance, given an AI planning problem, a solver and a person may have different

beliefs about goals, actions, states, or costs [54]. Thus, it may be useful for an explanation to establish

a relationship between the beliefs and concepts meaningful to the explainee and those used by the

AI. In fact, based on his review of social science research, Miller [55] argues that such relationships

are an important part of explanations because explanations are social. That is, explanations should

attempt to reflect not only the beliefs of the explainer, but also how those beliefs relate to the beliefs

of the explainee. Three examples of post-hoc methods which use this kind of information are model

reconciliation, concept activation vector techniques, and counterfactual explanations which allow

people to define their own questions.

• Model Reconciliation: In declarative, model-based settings where discrepancies between

human mental models and AI models are possible, such as the AI planning example above,

Chakraborti et al. [29, 54] argue that it can be useful to frame an explanation as a model

reconciliation process. Specifically, this process consists of finding a sequence of updates to

the two models until the human and AI models are in agreement.

• Concept Activation Vectors: Kim et al. [4] explain a DNN classifier by evaluating how

important a custom, human-defined concept is to a model’s decision, for instance addressing

the question “How important is the concept of stripes to the classification of zebra?”. They

first allow a user to define two sets of inputs: one set where each input contains the concept,

such as striped objects, and a second where the inputs do not have the concept, such as

random objects. After the two sets are mapped to a latent representation by the neural

network, a hyperplane is learned separating the two sets in the latent space, which allows a

vector orthogonal to this hyperplane and in the direction of the set including the concept to

be defined. This vector is called the concept activation vector, and, given some decision, the

directional derivative of the output score with respect to this vector can be used to represent

the importance that the human concept has on the DNN’s output. Not only does this post-hoc

method establish a relationship with a human concept, but it also identifies the importance

of this human concept to the decision, thus increasing transparency through a proxy relation.

This technique demonstrates that it can be useful for post-hoc explanations to convey more

than one kind of information.

• Counterfactual Explanations Using Human Questions: Some counterfactual explana-

tions allow people to use contrastive questions to describe custom properties of decisions they

are interested in. For instance, when inspecting automated loan decisions, a person might

CHAPTER 2. LITERATURE REVIEW 14

ask “Why were no residents of neighbourhood A′ selected to receive a loan?”, even though

the algorithm may not have used any representation of neighborhood A′ in its decision. An

explanation that answers this question not only provides example-based information, but also

establishes a relationship between the initial decision and the explainee-defined concept in the

question. Like the model reconciliation and concept activation approaches, a human introduces

a new concept that the AI must incorporate into its knowledge representation and respond to

in an explanation.

2.2.4 Summary

This section reviewed several approaches to explainability in AI, based on the distinction between

transparency and post-hoc explainability. Some simple algorithms, such as sparse decision trees, can

be simulated by people from start to finish, but most modern automated decision systems are not

transparent in this way. Though they may not be simulatable, some algorithms are decomposable,

meaning that they can be split into understandeable steps and components. By definition, this

kind of transparency is exhibited to some extent by any decision mechanism which reasons with

human-understandable symbols, and can typically be attributed to discrete optimization algorithms

which often use meaningful variables, parameters, objectives, and constraints. However, when the

intrinsic transparency of an algorithm is insufficient, post-hoc methods may help meet the demands

of explainability. Used in addition to the real algorithm, a proxy relation between inputs and

outputs may increase transparency by providing auxiliary information about the decision mechanism.

Alternatively, post-hoc explanations may provide example-based information which does not rely on

knowledge about how decisions are made. Finally, explanations may attempt to establish explicit

relationships between human beliefs and concepts and an AI’s decisions or decision-making process.

2.3 Counterfactual Explanations

This section focuses on the form and benefits of counterfactual explanations, including why they

were selected for this thesis, and reviews recent research on this technique in ML.

2.3.1 The Form of Counterfactual Explanations

Given some initial inputs g′ and an initial output p from a decision algorithm, a counterfactual

explanation responds to a contrastive question of the form: “Why p, and not some other decision

CHAPTER 2. LITERATURE REVIEW 15

q ∈ Q?” [8, 55]. Here, Q is a set of alternative decisions, called a foil set. Each hypothetical

decision q ∈ Q is called a foil, and, by definition, p /∈ Q. For instance, a customer may ask, “Why

was my shipment not scheduled to arrive before next month?”, in which case the foil set Q would

consist of all possible decisions where the customer’s shipment is scheduled next month. Given a

contrastive question, a counterfactual explanation presents the explainee with a set of alternative

inputs h′ which would have led to the decision being in Q. Typically, an explanation aims to find

alternative inputs h′ that are associated with the minimal modification of the initial inputs g′. In our

shipping example, such an explanation might be the statement: “Your delivery would have arrived

next month if you had paid at least $4, 000 more.” Counterfactual means “contrary to the facts”,

so these explanations are called counterfactual explanations because the hypothetical inputs h′ and

hypothetical decisions q ∈ Q are contrary to the actual inputs g′ and decision p, respectively.

2.3.2 Benefits of Counterfactual Explanations

As an explanation method, counterfactual explanations have several desirable properties, including

that they do not require an understanding of the decision mechanism, address the motivations of XAI,

and support human counterfactual reasoning. Wachter et al. [8] argue that because counterfactual

explanations do not require a person to comprehend how the algorithm works, they are better suited

to general users who may have no knowledge of algorithmic decision-making. Further, counterfactual

explanations can empower an explainee to understand, contest, or act to change a decision [8].

Regarding understanding, counterfactual reasoning has been demonstrated to be a fundamental

human reasoning strategy, functioning by invoking a comparison between an imagined event and a

factual event [56]. Counterfactual explanations help facilitate this type of human reasoning across

complex AI systems, thereby also addressing the general motivation of better integrating human and

AI decision-making. To help contest a decision, a person may receive an explanation showing that

a counterfactual relationship between the algorithm’s inputs and outputs is unacceptable according

to their beliefs. For instance, a rejected job applicant may discover that she would have been offered

a job if she was male instead of female. This kind of information can empower explainees, such as

our job applicant, to contest automated decisions. Finally, counterfactual explanations can enable

people to act to change the inputs in a way that will result in a different decision. For instance, in

the delivery example above, the customer may be able to pay $4,000 to expedite their shipment.

From his review of social science research on explanations, Miller [55] concludes that good ex-

planations should be contrastive, social and selective, which are all characteristics of counterfactual

CHAPTER 2. LITERATURE REVIEW 16

explanations. Contrastive explanations address not why event p occurred, but why it occurred

instead of event q. Counterfactual explanations are naturally contrastive due to their reliance on

contrastive questions. As discussed in Section 2.2.3, social explanations account for the relationship

between the beliefs of the explainer and the beliefs of the explainee. Counterfactual explanations

are able to reflect the beliefs of the explainee by allowing them to define the foil set Q. Finally,

counterfactual explanations are selective: out of the many alternative explanations that are possible,

these methods are able select a single explanation, usually based on the minimal change to the ini-

tial inputs. These benefits of counterfactual explanations have led to the development of a sizeable

literature on counterfactual explanations in XAI [9].

One of the goals of this thesis is to adapt an explainability technique from the general XAI litera-

ture and apply it to discrete optimization. Of the many approaches outlined in Section 2.2, counter-

factual explanations are particularly well-suited for this purpose because they provide example-based

information which is agnostic of the decision mechanism. Thus, while the content of an explanation

may change if the problem being solved changes, such as if a scheduling decision is explained instead

of an image classification decision, counterfactual explanations will not change because of differences

in decision algorithms. This property removes a level of difficulty in transferring research between

areas of AI which use very different decision algorithms, such as the areas of ML and discrete op-

timization. Though part of the contribution of this thesis is to adapt counterfactual explanations

to the structure of discrete optimization problems, there is a rapidly growing amount of research

on the general desiderata of counterfactual explanations such as diversity [8, 57, 58] and actionabil-

ity [59, 60] which may be readily transferable to discrete optimization in the future without much

modification (see Chapter 7).

2.3.3 Counterfactual Explanations in Machine Learning

This section focuses on recent research on counterfactual explanations in supervised learning, looking

briefly at strategies for computing explanations, as well as some proposed desiderata of explanations

such as sparsity, diversity, actionability, and causality.

Computation

Counterfactual explanations for supervised learning are introduced in Wachter et al.’s seminal work

[8], which discusses some of the above benefits and presents a method for computing counterfactual

explanations for differentiable models. Given some prediction function h : X −→ Y, an initial

CHAPTER 2. LITERATURE REVIEW 17

input ẋ ∈ X , and an initial decision ẏ ∈ Y, a counterfactual explanation finds a minimally modified

counterfactual input ẍ such that h(ẍ) results in a desired counterfactual prediction ÿ. The authors

generate explanations by solving an optimization problem which minimizes the loss Lẏ(·, ·) of the

counterfactual prediction h(ẍ) being different from the desired prediction ÿ together with the loss

Lẋ(·, ·) due to the counterfactual input ẍ differing from the initial input ẋ:

argmin
ẍ∈X
Lẏ(h(ẍ), ÿ) + Lẋ(ẍ, ẋ). (2.1)

If this optimization problem, which may, or may not be, convex [61], is differentiable, it can be solved

with a gradient-based method such as stochastic gradient descent, and if it is not differentiable, with

a gradient-free method such as Downhill-Simplex [61]. Looveron and Klaise [62] improve Wacther

et al.’s initial optimization objective by adding terms to keep the generated counterfactuals on

the data manifold of X and speed up optimization. Russell [57] also proposes a method to keep

computed counterfactuals coherent with the initial data distribution, which may include discrete

inputs, suggesting a MIP formulation for cases when the underlying classifier is linear. In general,

however, Artelt and Hammer [61] claim that, currently, the most efficient methods for computing

counterfactual explanations are specific to the underlying prediction model, and provide a survey of

these methods.

Sparsity

Wachter et al. [8] also propose that sparsity is a desiderata of counterfactual explanations because

it is easier to understand a few large changes to inputs rather than many very small changes, and

suggest that an L1 norm be used as part of the distance metric between inputs Lẋ(·, ·) to induce

sparsity. Mothilal et al. [58] suggest a post-hoc sparsity enhancement process which greedily restores

individual features in the counterfactual input ẍ to their initial values as long as the prediction h(ẍ)

does not change. In another approach, Le et al. [63] add a term to (2.1) which constrains the

maximum number of features in ẍ that can change.

Diversity

Another goal of counterfactual explanations proposed by Wachter et al. [8] is that, sometimes, they

should produce a diverse set of explanations. Wachter et al. suggest that when (2.1) is non-convex,

local minima encountered during optimization can be used to create this diverse set. In his MIP

formulation for linear classifiers, after a counterfactual explanation is generated, Russel [57] adds a

CHAPTER 2. LITERATURE REVIEW 18

constraint preventing any subsequent explanation from returning the same result. Mothilal et al.

[58] modify the optimization problem (2.1) to search for a set of explanations instead of a single one,

aggregating the losses over this set and adding a loss term to represent the diversity of the set using

a determinantal point process.

Actionability

A third desiderata for counterfactual explanations is that, in many contexts, they should be ac-

tionable; that is, explainees should be able to take steps to modify the inputs as described by the

counterfactual explanation. In reality, some input features can be changed through action, while

others cannot. An explanation that recommends actionable steps such as “If you increase your in-

come by $10,000/year, you will get a loan,” is usually more useful than one that suggests impossible

actions such as “If you become 5 years younger and change your country of birth to Canada, you

will get a loan.” For this reason, Ustun et al. [59] suggest a formulation in which there is a set

of actions representing feasible changes to the initial input ẋ, and each action is associated with

some cost. They then reformulate the optimization problem (2.1) to find an action with minimal

cost that results in the desired counterfactual prediction ÿ. Karimi et al. [60] extend this work,

introducing a causal model which captures more general relationships between the costs of actions

and the resulting changes to input features.

Causality

Karimi et al.’s work [60] is also an example of research that addresses a fourth goal of counterfactual

explanations, namely, that changes to inputs should respect some causal structure. For instance, the

explanation “If you start and complete a four-year degree, while your age remains the same, you will

receive a loan,” does not make any sense. Mothilal et al. [58] propose a post-hoc filtering approach

which filters a set of counterfactual explanations to remove those which do not respect known causal

relations. Mahajan et al. [64] suggest a more elaborate approach in which a partial causal model can

be used to define the loss term Lẋ(·, ·) based the degree to which causal relations to the initial input

ẋ are respected by the counterfactual input ẍ. They also suggest a second approach for cases when

causal models are not available a priori, in which users give feedback on the feasibility of proposed

counterfactual explanations and a variational autoencoder is trained to generate new explanations

that are consistent with user feedback.

CHAPTER 2. LITERATURE REVIEW 19

Summary

Many researchers have recently pursued counterfactual explanations in ML, leading to the emergence

of a literature which has quickly moved beyond basic applications of counterfactual explanations to

formulations incorporating more advanced notions such as sparsity, diversity, actionability, and

causality. This thesis aims to take a first step towards the development of a similar literature on

counterfactual explanations in discrete optimization.

2.4 Contrastive Explanations in AI planning

Before turning to discrete optimization, we briefly review recent work on contrastive explanations

in AI planning, which, like discrete optimization, relies on declarative models. As mentioned in

Section 2.3, contrastive explanations answer contrastive questions of the form “Why p and not q?”,

where q is an alternative outcome to p. Counterfactual explanations are a subset of contrastive

explanations,3 answering these questions by finding the counterfactual inputs which would have

made q occur instead of p. However, not all contrastive explanations rely on presenting the user

with such counterfactual inputs [65]. For instance, in a planning setting, given the question “Why

the initial plan π and not a different plan π′?”, a contrastive explanation may compare the two plans

and show that π′ has a higher cost.

This latter form of explanation is explored in recent AI planning work [24, 25, 26] in which

a contrastive plan π′ is generated based on some user-specified properties and then compared to

the initial plan π to show that π′ is worse, no better, or impossible. Borgo et al. [24] compute

a contrastive plan by allowing a user to select a set of actions in an initial plan and replace each

action with a suggested one. Other research [25, 26] generates contrastive plans for temporal and

numeric planning, facilitating user requests to include or exclude actions at certain states or times,

or to change the order of actions in the initial plan.

Eifler et al. [27, 28] build on this research, computing not a single contrastive plan, but the

properties shared by all plans that incorporate a user suggestion. Specifically, they formulate user

suggestions and plan properties using soft goals and oversubscription planning [66], a setting in

which it may be impossible to satisfy all soft goals. Then, the explanation for a user asking why

all the soft goals ĝ ∈ A were not achieved is given by one or more sets of goals Bi ∈ B, in which

3This terminology is slightly confusing because counterfactuals are actually used by both contrastive and counter-
factual explanations. Both explanations involve a counterfactual outcome q, however counterfactual explanations rely
on a second counterfactual, in the form of alternative inputs which would have led to q, to provide the explanation.
Contrastive explanations do not necessarily use this second counterfactual as the explanation method.

CHAPTER 2. LITERATURE REVIEW 20

the goals ĝ ∈ Bi cannot all be met if the user suggestion is satisfied; that is, one or more goals

ĝ ∈ Bi must be foregone for each set Bi ∈ B. For instance, in an oversubscription routing setting,

the explanation to “Why did you not transport person p4?” might be “Because then I would not be

able to transport one of people p1, p2, or p3.” A user study [67] of this explanation method indicated

that such explanations enable users to find better trade-offs between soft goals. This approach also

has similarities to Minimal Unsatisfiable Set based methods in discrete optimization, which will be

reviewed in Section 2.5.

Finally, recent work [68], done simultaneously with this thesis, has considered using counterfac-

tual explanations to explain certain planning problems, such as shortest path planning, as optimiza-

tion problems. A user is expected to provide a fully-defined alternative plan (e.g. a different route)

and inverse optimization is then used to compute the minimal change to the cost coefficients (e.g.

travel costs) in the optimization problem so that the user’s plan becomes optimal. This method, as

well as its differences with the methods proposed in this thesis, is explained in more detail in Section

2.6.

Thus, research on contrastive explanations has very recently made progress in AI planning.

Because AI planning models and plans are often decomposable into human understandable elements,

these explanations can benefit from using interpretable costs, actions, goals, or states to justify

decisions and communicate with explainees. The next section discusses how the decomposability of

constrained optimization and satisfaction frameworks also leads to similar benefits for explanation.

2.5 Explanations in Constrained Optimization & Satisfaction

This section reviews work on explanations in constrained discrete optimization and satisfaction.

Like AI planning, the models and algorithms are typically decomposable into human understandable

elements, such as variables, parameters, constraints, and objective functions, enabling explanations

to provide people with meaningful information in terms of these components. We first review Squalli

and Freduer’s [42] use of inference traces, which provide explanations of small constraint satisfaction

problems (CSPs) solvable with inference only. We then turn to infeasibility-based explanations,

which have been the predominant focus of the explainability literature [13]. Finally, we review a

method from Rossi and Sperduti [69] which elicits user preferences over soft constraints from user

preferences over solutions, and shows that their problem formulation is very similar to that used by

counterfactual explanation techniques.

CHAPTER 2. LITERATURE REVIEW 21

2.5.1 Simulatability

As mentioned in Section 2.2.2, Sqalli and Freuder [42] argue that inference-only algorithms, applied

to small CSP instances, are simulatable. Specifically, the authors use logic puzzles as a case study,

and provide explainees with a trace of the algorithm’s inference steps, presented using text templates.

For example, in a puzzle where musicians are matched with songs and instruments, an explanation

of a single inference step is “Guitar player must be Love composer because Guitar player can’t be any

of the others.”. The authors argue that sequences of phrases such as these are almost identical to

human explanations provided at the back of logic puzzle booklets.

However, this algorithm tracing approach has some disadvantages. Firstly, it cannot handle

search. The authors acknowledge that a trace of search steps is likely much more difficult for

a person to understand than a trace of inference steps, involving difficult-to-follow sequences of

phrases such as “I tried to assign this value, but found there was no solution, so I tried a different

value”. Secondly, this method requires custom text templates for each inference type. Finally, once

the problem instance size exceeds some threshold, it inevitably leads to traces that are too long for

a person to follow from start to finish. Thus, most research has not followed an algorithm tracing

approach, instead pursuing post-hoc explanation methods. However, recently, Bogearts et al. [20]

and Gamba et. al. [21] have followed up on Sqalli and Freuder’s work, combining their inference

sequence based method with post-hoc infeasibility explanations, discussed further in Section 2.5.2.

2.5.2 Infeasibility Based Explanations

By far, most post-hoc approaches have relied on explanations of why a constrained optimization

or satisfaction problem instance is infeasible [13]. Most methods identify sets of constraints that,

together, lead to infeasibility. Recently, some researchers have also used these constraint sets to

explain why any decision other than the decision made would be infeasible [20, 21, 22].

Finding Conflicting Constraint Sets

One such kind of constraint set is called a Minimal Unsatisfiable Set (MUS), also known as an

Irreducible Inconsistent Subsystem in the MIP literature [23]. If C is an unsatisfiable constraint

set, then M ⊆ C is an MUS of C iff M is unsatisfiable and all M ′ ⊂ M are satisfiable [14]. After

being shown an MUS (or set of MUSes), a person can identify not only that there is a conflict

among constraints, but also the subset(s) of constraints responsible for the conflict. Thus, an MUS-

based explanation provides additional information about how the inputs (the constraints) lead to

CHAPTER 2. LITERATURE REVIEW 22

the output (infeasibility), which fits the definition of a proxy relation.

Another type of constraint set used to explain infeasibility is called a Minimal Correction Subset

(MCS). M is an MCS of C iff C \M is satisfiable, but, for any M ′ ⊂M , C \M ′ is unsatisfiable [23].

Therefore, removing an MCS M from the initial constraint set C restores feasibility. Though they

have not yet been been discussed as such in the literature, MCS-based explanations are counterfactual

explanations, because they identify a minimal change to the constraint set C, in terms of constraints

M to be removed, that would result in a feasible instance.

Various methods have focused on generating MUSes and MCSes effectively. These include ap-

proaches to: generate a single MUS [14, 15, 16], out of which QuickXPlain [14] is especially well-

known; enumerate all MUSes, such as the MARCO [70] approach; or compute MCSes [17, 18, 19].

Additionally, due to the exponential number of MUSes and MCSes [23], some methods allow users

to express preferences over constraints and then generate the sets containing the least preferred

constraints [14, 71, 72]. Recently, Senthooran et al. [23] combined some of these computational

approaches into a user-centred infeasibility explanation system.

Explaining Decisions Via Conflicting Constraint Sets

Researchers have recently adapted MUS-based methods to show that, given an initial decision,

different decisions would be infeasible. One set of papers [20, 21] uses MUS-based methods for

problems similar to the ones considered by Squali and Freuder’s [42], namely, CSPs solvable with

inference only and that have a unique solution. In this setting, each inference step i, which assigns

a value vi to a variable xi, is explained by showing that, if the constraint xi ̸= vi is added, the

problem becomes infeasible. This explanation takes the form of an MUS which identifies which

initial constraints and previous inferences, made before step i, conflict with the new constraint

xi ̸= vi. The authors also consider that some MUSes may be more interpretable than others, such

as if they involve fewer or simpler constraints. Thus, though all sequences of inference steps will

lead to the same solution in their setting, a sequence of inference steps which is different than the

sequence used by the initial solver may result in more interpretable MUSes. Therefore, the authors

define an interpretability function which is assumed to measure how interpretable an MUS is, for

instance by using the cardinality of the MUS, and search for the sequence of steps that results in

the most interpretable sequence of MUSes according to this function. As with Squali and Freuder’s

work, this approach can, so far, handle only inference and not search.

In a different paper, Yelamanchili et al. [22] use MUSes to explain why it was not possible to

include a job in a schedule built with a greedy algorithm. Specifically, they first create an initial

CHAPTER 2. LITERATURE REVIEW 23

schedule using a greedy Squeaky Wheel Optimization [73] algorithm. At a given step i in this

greedy algorithm, it may not be possible to schedule job j given the partial schedule S ′ of jobs

scheduled before step i, and since no backtracking happens in the algorithm, job j is permanently

excluded from the schedule if not scheduled at step i. To explain why job j was not scheduled by the

algorithm, the authors compute an MUS from the initial constraints and constraints that j must be

in the schedule and that the partial schedule S ′ must be respected. The authors argue that, after

receiving such an explanation, an explainee may be able to change the parameters of the jobs in S ′,

such as their resource consumption or processing times, to remove the conflict at step i and thus

include job j in the schedule.

2.5.3 Eliciting Constraint Preferences from Solution Preferences

The last method we review is Rossi and Sperduti’s [69] approach for acquiring user preferences over

a set of soft constraints by allowing users to specify preferences over a set of solutions. It will be

shown that, if this method were to be slightly repurposed, it would be a counterfactual explanation

technique. In their system, the authors first solve a fuzzy CSP [74] that uses soft constraints that

may be mutually unsatisfiable, but are associated with user preferences about which constraints are

more important to satisfy when it is not possible to satisfy them all. Their system then outputs

a set of solutions, organized in descending order of the degree to which the solutions respect the

preferences over the soft constraints. For instance, a person searching for a new home on a listing

site may indicate the importance of soft constraints such as a minimum square footage, minimum

number of bathrooms, and maximum distance from city centre, and then be shown a set of five

listings in the order of how well they satisfy their preferences over the constraints.

However, a person may find it easier to express their preferences over the solutions rather than

preferences over constraints. Thus, the authors design an iterative system where a user can specify

not only their preferences over constraints directly, but where constraint preferences can also be

learned after a user specifies preferences over the solutions that are shown to them. For instance,

a user looking at a set of three houses given equal preference may say “I like house h1 better than

house h2, and both better than house h3”. To learn constraint preferences from user feedback that

specifies a different preference order for the solutions than the order suggested by the system, a

reinforcement learning approach is used. Specifically, the reward function is the degree of agreement

between the preferred order of solutions computed by the system and the order acquired through

user feedback, the states are sets of constraint preferences, and actions represent changes to those

CHAPTER 2. LITERATURE REVIEW 24

constraint preferences.

Rossi and Sperduti design this system with the goal of developing a new method to elicit a

human’s preferences over soft constraints in a fuzzy CSP. However, if the goal was instead to answer

the question “Why were the solutions ordered in the sequence a∗ and not in an alternative sequence

aψ?”, their method would constitute a counterfactual explanation technique. Specifically, their

approach would generate the counterfactual constraint preferences that would have resulted in aψ

instead of a∗, thereby producing a counterfactual explanation in terms of constraint preferences.

2.5.4 Summary

Roughly five years ago, explainability began attracting significant attention in ML and AI planning.

However, many of the works cited in this section [14, 15, 16, 42, 69, 71, 72] date back to well before

the start of this period. Thus, Freuder [13] has recently called for a renewed focus on explainability

in discrete optimization. Some of the above work [20, 21, 22, 23] represents recent responses to this

call. However, all of these new methods rely on existing definitions of explanations as conflicting sets

of constraints. In this thesis, a new approach is pursued using counterfactual explanations based

on changes to objective parameters for discrete optimization problems. This methodology uses a

variant of inverse combinatorial optimization which aims to find minimal changes to the objective

parameters of a discrete optimization problem leading to a counterfactual decision.

2.6 Inverse Optimization

This section describes inverse optimization [75] and two of its variants [30, 76], reviewing relevant

problem definitions, solution approaches, and Brandao and Magazzeni’s [77] work on inverse opti-

mization for plan explanations.

2.6.1 Problem Definitions

Inverse Optimization

In a standard (or forward) optimization problem FW⟨c, f,X⟩, the purpose is to find values for deci-

sion vector x ∈ X ⊆ Rn given a parameter vector c ∈ D ⊆ Rs which optimize an objective function

f : D ×X −→ R. We assume a minimization problem unless otherwise stated, but if specification is

needed, FWmin⟨c, f,X⟩ denotes a minimization problem while FWmax⟨c, f,X⟩ denotes a maximiza-

tion problem. This assumption and notation holds for all subsequent types of forward problems. In

CHAPTER 2. LITERATURE REVIEW 25

a minimization problem, the goal is to find an optimal x∗ so that f(c, x∗) = minx{f(c, x) : x ∈ X}.

If f is omitted from a problem definition, it is assumed that f(c, x) = cTx.

While forward optimization seeks a variable assignment that satisfies a set of constraints and

optimizes an objective function, (classical) inverse optimization tries to find the minimal change in

the objective function such that a given feasible variable assignment is optimal. Given a forward

problem FW⟨c, f,X⟩, and a feasible target solution xd ∈ X, the inverse optimization problem is to

find the minimal modification to the parameter vector c so that xd becomes optimal. If d ∈ D is the

modified parameter vector and || · || is some norm, typically L1 or L∞, then the inverse optimization

problem IO⟨c,D, f, xd, X, || · ||⟩ [78] is

min
d∈D
||d− c|| (2.2)

s.t. f(d, xd) = min
x∈X

f(d, x). (2.3)

Assignment-Based Partial Inverse Optimization

The first variant of inverse optimization we review is one where, instead of being given a complete

target solution xd ∈ X, we are given a vector of values xp ∈ Rm, m = |M|, M ⊆ {1, ..., n},

which must be taken on by the optimal solution. We call this the assignment-based partial inverse

optimization problem, APIO⟨c,D, xp, X, || · ||⟩ [78], given by

min
d,x
||d− c|| (2.4)

s.t. f(d, x) = min
x̂∈X

f(d, x̂) (2.5)

xi = xpi ∀ i ∈M ⊆ {1, ..., n} (2.6)

d ∈ D, x ∈ X. (2.7)

In most of the inverse optimization literature, the above problem is simply called partial inverse

optimization [30]. However, Wang [76] uses the term partial inverse optimization to describe a more

general problem, in which the target solution is partially specified with a set of linear constraints

which is not necessarily a set of assignments. To differentiate between the two problems, we refer to

(2.4) - (2.7) as assignment-based partial inverse optimization, and Wang’s [76] formulation, reviewed

next, as constraint-based partial inverse optimization.

CHAPTER 2. LITERATURE REVIEW 26

Constraint-Based Partial Inverse Optimization

Wang [76] defines a variation of inverse optimization in which, instead of a target solution xd, we are

given an additional set of linear constraints Lx ≤ l, L ∈ Rm×n, l ∈ Rm, that the optimal solution

to the modified forward problem FW⟨d,X⟩ must satisfy. We call this the constraint-based partial

inverse optimization problem,4 CPIO⟨c,D, l, L,X, || · ||⟩, given by

min
d,x
||d− c|| (2.8)

s.t. f(d, x) = min
x̂∈X

f(d, x̂) (2.9)

Lx ≤ l (2.10)

d ∈ D, x ∈ X. (2.11)

This formulation is a generalization of both inverse optimization (2.2)-(2.3) and assignment-based

partial inverse optimization (2.4) - (2.7), since both full and partial assignments can be represented

by the linear constraint set (2.10) [76].

2.6.2 Solution Methods

Most research on inverse optimization has been in contexts when the forward problem is convex,

such as a linear program (LP) [78, 82, 83] or a conic optimization problem [84]. These approaches

use the Karush-Kuhn-Tucker (KKT) conditions to express the bilevel inverse problem as a single

level convex problem [85].

Work on solving inverse combinatorial optimization [75] problems, which include discrete deci-

sion variables, has been limited [78]. One set of papers [86, 87], focusing on mixed integer linear

programming (MILP) as the forward problem, reformulates the bilevel inverse problem into a single

level linear program using superadditive duality; however, the resulting problem is exponentially

large. An alternative solution approach by Wang [10] relies on an iterative, two-level cutting plane

method, and forms the basis of some of the algorithms in this thesis.

4Likely due to this ambiguity in nomenclature, none of the works [30, 79, 80] citing Wang [76] discuss his constraint-
based generalization (2.8) - (2.11) of inverse optimization, instead addressing only his contribution to assignment-based
partial inverse optimization. The authors of the works [1, 81] published as a result of this thesis, which rely on a
formulation of partial inverse optimization similar to Wang’s [76], were not aware of Wang’s formulation or his solution
methods for it until February 2022.

CHAPTER 2. LITERATURE REVIEW 27

Cutting Plane Algorithm for Inverse MILP

In Wang’s algorithm [10], we are given a forwardMILP⟨c,X⟩, which is a forward problem where

X = {x ∈ R+ : Ax ≤ b, xI ∈ N0} with A ∈ Rk×n, b ∈ Rk, and I ⊆ {1, ..., n}, a known target solution

xd ∈ X, and a feasible set D for parameter values, leading to the inverse problem IO⟨c,D, xd, X⟩.

The solution algorithm is a two-level iterative approach in which an LP master problem MPLP

(2.13) - (2.16) is initiated with a set of known solutions S0. MPLP is then used to search for a

new objective vector d minimizing ||d − c||1 so that, for the modified forward problem FW⟨d,X⟩,

xd gives a solution no worse than any solution in S0. Given di, an optimal solution to theMPLP

in a given iteration, a subproblem

SPMILP⟨di, X⟩ = FW⟨di, X⟩, (2.12)

is then solved to optimality to give x0, an extreme point of conv(X), the convex hull of X. If x0

is no better a solution to SPMILP⟨di, X⟩ than xd, then xd must be optimal to FW⟨di, X⟩, and

di constitutes an optimal solution to the inverse problem [10]. Otherwise, the extreme point x0 is

added to the set of known solutions S0 to generate a new cut, and the algorithm proceeds to the

next iteration of the master problem.

To formulate the master problemMPLP (2.13) - (2.16), the objective ||d− c||1 is first linearized

using g, h ∈ Rn+, such that c− d = g− h. Intuitively, the magnitude of the change to the parameter

cj is represented by gj if the change is negative and hj if it is positive. To avoid any d for which the

forward problem is unbounded, Wang introduces the decision variable u ∈ Rk and add the constraint

ATu ≥ d (2.14), ensuring that d results in a feasible dual problem [10]. Finally, constraints (2.15)

force xd to be at least as good as any known solution in S0 in terms of solution quality for FW⟨d,X⟩.

Thus,MPLP is given by

min
u,g,h

g + h (2.13)

s.t ATu ≥ c− g + h (2.14)

(c− g + h)Txd ≤ (c− g + h)Tx0 ∀x0 ∈ S0 (2.15)

g, h ∈ Rn, u ∈ Rk, (c− g + h) ∈ D. (2.16)

MPLP (2.13) - (2.16) is an LP, while the subproblem SPMILP⟨d,X⟩ is a MILP. Thus, Wang’s

algorithm will be called InvLP-MILP [10], with the complete definition given by Algorithm 2.1.

CHAPTER 2. LITERATURE REVIEW 28

Algorithm 2.1: InvLP-MILP [10].

1 Inputs : IO⟨c,D, xd, X⟩
2 Output : d∗

3 Step 1 : I n i t i a l i z e S0 ← ∅
4 Step 2 : So lve MPLP .
5 I f i n f e a s i b l e , r e turn INFEASIBLE .
6 Otherwise , get di = (c− gi + hi) .
7 Step 3 : So lve SPMILP ⟨di, X⟩ to get optimal s o l u t i o n x0 .

8 I f di,Txd ≤ di,Tx0 , s top . di = d∗ i s opt imal to IO⟨c,D, xd, X⟩ .
9 Otherwise , update S0 = S0 ∪ {x0} and return to Step 2 .

Improvements to InvLP-MILP [10]

Two subsequent works [85, 88] improve on InvLP-MILP . Duan and Wang [88] extend Wang’s algo-

rithm with a heuristic to parallelize cut generation. This heuristic also iteratively computes feasible

solutions as upper bounds for the inverse MILP, addressing the initial algorithm’s limitation that no

feasible solutions are found until termination. Recently Bodur et al. [85] demonstrated several im-

provements to InvLP-MILP based on a theoretical analysis of the feasible region of the inverse MILP

problem. Specifically, they showed that it is not necessary to use the extreme points of conv(X) to

build S0 for the algorithm to converge. In particular, they demonstrated that all the necessary cuts

for convergence can instead be generated using a relatively small set of interior points, motivating

the use of trust regions around xd to limit the subproblem’s search set to subsets of the interior

region of X. This modification allows the algorithm to find cuts more quickly and also use fewer

cuts overall. The above improvements from Duan and Wang [88] and Bodur et al. [85] are not

implemented in this thesis, but could be pursued in future work, as discussed in Chapter 7.

This thesis does implement another computational improvement to Wang’s algorithm [10] iden-

tified by Bodur et al. [85]: an early stopping criterion (ESC) which can reduce the amount of time

in the subproblem SPMILP after a valid cut (i.e. a point to be added to S0) has been found. In the

original algorithm [10], SPMILP is solved to optimality at every iteration. However, if a feasible,

but not necessarily optimal, solution xf has been found to SPMILP which gives a better objective

value than xd, d∗Txf < d∗Txd, then a valid cut can be generated by adding xf to S0. After such

an xf has been found, it may not be worth spending additional time searching for a better solution

to SPMILP because there is no guarantee this will lead to a stronger cut, and xf may already

be the optimal solution, just not yet proven optimal [85]. For this reason, if a valid cut has been

generated, the time spent in an iteration of the subproblem SPMILP is restricted to a time limit γ.

The algorithm modified with the ESC is called InvLP-MILP(ESC) and defined in Algorithm 2.2.

CHAPTER 2. LITERATURE REVIEW 29

Algorithm 2.2: InvLP-MILP(ESC)[85].

1 Inputs : c,D, xd, X, γ
2 Output : d∗

3 Step 1 : I n i t i a l i z e S0 ← ∅
4 Step 2 : So lve MPLP to get optimal s o l u t i o n di

5 Step 3 : whi l e TRUE:

6 get next f e a s i b l e s o l u t i o n xk to SPMILP ⟨di, X⟩
7 i f di,Txk ≤ di,Txd :
8 i f xk optimal :

9 i f di,Txk == di,Txd :
10 Stop . di = d∗ i s opt imal to the i nv e r s e problem .
11 e l s e :

12 Update S0 ← S0 ∪ {xk}
13 go to step 2
14 e l s e :

15 i f di,Txk < di,Txd :
16 i f time s i n c e end o f l a s t Step 2 i t e r a t i o n ≥ γ :
17 Update S0 ← S0 ∪ {xk}
18 go to step 2

Constraint-Based Partial Inverse Optimization Problems

Wang [76] is the only author to publish a general solution method for discrete partial inverse opti-

mization problems, addressing the case when the forward problem is a MILP. In this paper, Wang

solves the constraint-based variant of partial inverse optimization (2.8)-(2.11) by modifying InvLP-

MILP to be used in a branch-and-cut framework. Wang’s partial inverse optimization algorithm

B&CCPIO (Algorithm 2.3) [76] is not implemented in this thesis, but is reviewed for completeness.

Given a forwardMILP⟨c,X⟩ and additional linear constraint set Lx ≤ l, we obtain an instance

of CPIO⟨c,D, l, L,X⟩ (2.8)-(2.11). If we linearize the L1 objective as in InvLP-MILP , and let S be

the set of extreme points of conv(X), we can reformulate this problem as

min
g,h,x,u

g + h (2.17)

s.t ATu ≥ c− g + h (2.18)

Ax ≤ b (2.19)

Lx ≤ l (2.20)

(c− g + h)Tx ≤ (c− g + h)Tx0 ∀x0 ∈ S (2.21)

g, h, x, u ≥ 0 (2.22)

xI ∈ N+
0 . (2.23)

CHAPTER 2. LITERATURE REVIEW 30

Here, constraints (2.18) ensure d does not result in a problem with an unbounded objective, and are

equivalent to constraints (2.14).

Next, we define the continuous relaxation of (2.17) - (2.23) and discuss how this relaxation is

used in a branch-and-cut framework. This continuous relaxation, in which the integrality constraint

(2.23) is removed and constraints (2.19) - (2.20) are replaced by (2.26), is given by

min
g,h,x,u

g + h (2.24)

s.t ATu ≥ c− g + h (2.25)

x ∈ argmin
x̃
{(c− g + h)T x̃ : Ax̃ ≤ b, Lx̃ ≤ l, x̃ ≥ 0)} (2.26)

(c− g + h)Tx ≤ (c− g + h)Tx0 ∀x0 ∈ S (2.27)

g, h, x, u ≥ 0. (2.28)

This relaxation is a bi-level problem, and includes the non-linear, non-convex constraints (2.27).

However, (2.24) - (2.28) can be reformulated using complimentary slackness and strong duality as:

min
g,h,x,u,y,z

g + h (2.29)

s.t ATu ≥ c− g + h (2.30)

0 ≤ b−Ax ⊥ y ≥ 0 (2.31)

0 ≤ l − Lx ⊥ z ≥ 0 (2.32)

0 ≤ x ⊥ AT y + LT z − c− h+ g ≥ 0 (2.33)

bT y + lT z ≤ (c− g + h)Tx0 ∀x0 ∈ S (2.34)

g, h, x, u, y, z ≥ 0. (2.35)

In this reformulation, complementary slackness is first used to rewrite constraint (2.26) as constraints

(2.31) - (2.33), giving a single level problem. Here ⊥ denotes that two vectors of the same size are

complementary: a ⊥ b ⇔ aT b = 0. Then, strong duality gives (c − g + h)Tx = bT y + lT z,

y ∈ Rn, z ∈ Rp, allowing the bilinear LHS of constraints (2.27) to be linearized as bT y + lT z in

(2.34). Formulation (2.29) - (2.35) is a linear program with complementarity constraints (LPCC),

which can be reformulated and solved as a MILP with a big-M parameter [76, 89] or using a Benders

decomposition approach [90, 91].

If S, the set of extreme points of conv(X), was known a priori, then it would be sufficient to

CHAPTER 2. LITERATURE REVIEW 31

use the LPCC relaxation (2.29) - (2.35) in a branch-and-bound algorithm [76] to solve the discrete

problem CPIO⟨c,D, l, L,X⟩ [76]. Specifically, solving an LPCC relaxation (2.29) - (2.35) at each

node of the search tree would be analogous to solving an LP relaxation at each node if branch-and-

bound were used to solve a MILP.

However, since S is not known a priori, extreme points must instead be iteratively added to

a set of known points S0 in a branch-and-cut process [92]. Specifically, the solution of an LPCC

relaxation (2.29) - (2.35) at each node of the search tree is replaced with a subroutine SRCPI

(Definition 2.1), which iteratively solves the LPCC (2.29) - (2.35) with S0 replacing S, and updates

S0 until a branching decision needs to be made. The use of the subroutine SRCPI is analogous to

the use of an LP relaxation in a classical branch-and-bound procedure for solving MILPs. Wang’s

complete branch-and-cut algorithm [76] is given by Algorithm 2.3.

Definition 2.1. (SRCPI [76]).

1. Solve LPCC (2.29) - (2.34) plus any constraints obtained through branching, with the set

of known solutions S0 replacing S. If infeasible, return “infeasible”. Otherwise, get optimal

solution (gi, hi, xi, ui, yi, zi).

2. Solve MILP⟨(c − gi + hi), X⟩ to obtain x0. If (c − gi + hi)Tx0 < (c − gi + hi)Txi, update

S0 = S0 ∪ x0 and return to step 1. Otherwise, return (c− gi + hi, xi).

Algorithm 2.3: B&CCPIO[76].

1 Inputs : c,D, l, L,X
2 Output : d∗

3 Step 1 : I n i t i a l i z e S0 ← ∅
4 Step 2 : Set d∗ = null, v∗ =∞
5 Step 3 : Add LPCC (2.29) - (2.35) , with S0 r ep l a c i n g S , to l i s t o f problems P
6 Step 4 : While P not empty :
7 1 . Choose and remove an LPCC i from P
8 2 . So lve the subrout ine SRCPI (Def. 2.1) with the s e l e c t e d problem
9 3 . I f i n f e a s i b l e , r e turn to Step 4 . Otherwise , get

s o l u t i o n (g, h, x, u, y, z) , and s e t ob j e c t i v e va lue to v = g + h
10 4 . I f v ≥ v∗ , r e turn to Step 4
11 5 . I f x i s i n t ege r , s e t v∗ ← v, d∗ ← (c− g + h) , and return to Step 4

12 6 . Branch on a va r i ab l e xj /∈ N+
0 , j ∈ I , adding two new problems to P :

1) LPCC i plus the c on s t r a i n t xj ≤ ⌊xj⌋
2) LPCC i plus the c on s t r a i n t xj ≥ ⌈xj⌉

CHAPTER 2. LITERATURE REVIEW 32

2.6.3 Inverse Optimization for Explanations

The last publication we review is work by Brandao et al.5 [68] which uses classical inverse opti-

mization to generate counterfactual explanations of path plans. Specifically, the authors focus on

explaining a path planning problem in which, given a directed graph G = (V,E,W) consisting of

vertices v′i ∈ V , directed edges e′j ∈ E, and travel costs w′
j ∈ W for each edge, the goal is to find

the shortest path π∗ = (e′1, ..., e
′
n), n < |V |, from a start node v′s to a goal node v′g that minimizes∑n

k=1 wk. This forward problem has a linear programming formulation. After an initial shortest

path π∗ is found, an explainee is able to ask the contrastive question “Why is π∗ the shortest path,

and not some other path π̂?”. The authors solve a classical inverse optimization problem (2.2)-(2.3)

with π̂ as the target solution to find the minimally perturbed travel costs Ŵ that would have led

to π̂ being optimal. The counterfactual explanation is then: “π̂ would have been the optimal path

if Ŵ were the travel costs instead of W”. Though the authors focus on explaining path plans, their

techniques could be adapted to explain any problem that can be defined as an LP.

While this method is similar to the approach taken in this thesis, there are important differences.

In the work of Brandao et al. [68], the explainee needs to specify a complete alternative solution π̂,

while in this thesis, the alternative solutions can be partially defined. Since the solution method of

Brandao et al. [68], classical inverse optimization, cannot handle the more general case of partially

defined solutions, an important contribution of this thesis is providing new methodologies to solve

these problems.

2.7 Conclusion

This chapter reviewed past work relevant to the goal of developing a counterfactual explanation lit-

erature for discrete optimization. A high level outline of key concepts in XAI was provided and the

counterfactual explanation literature in ML was reviewed. We then looked at the emerging AI plan-

ning literature on contrastive explanations and outlined past work on explanations for constrained

optimization and satisfaction. Finally, we reviewed inverse combinatorial optimization.

5This work was published concurrently with the research done in this thesis.

Chapter 3

A General Counterfactual

Explanation Problem

This chapter formulates the problem of generating a counterfactual explanation for an optimiza-

tion problem using a variation of partial inverse optimization. Conditions for feasibility as well as

assumptions and limitations are discussed.

3.1 Notation

Table 3.1 summarizes the main notation used in the main chapters of this thesis, relying in part on

previous definitions in Section 2.6.

Table 3.1: General Notation.

Beginning of Table 3.1

Symbol Definition Section Defined

x Forward decision vector 2.6.1

c Initial forward objective vector 2.6.1

f Forward objective function 2.6.1

X Forward feasible set 2.6.1

x∗ Optimal solution to initial forward problem 2.6.1

n Number of forward decision variables 2.6.1

xd Target solution for inverse problem 2.6.1

33

CHAPTER 3. A GENERAL COUNTERFACTUAL EXPLANATION PROBLEM 34

Continuation of Table 3.1

Symbol Definition Section defined

d Modified objective vector 2.6.1

D Feasible set of modified objective vectors 2.6.1

d∗ Optimal solution to an inverse or an explanation problem 2.6.1

Xψ Foil set 3.2

XC
ψ Non-foil set 3.2

ψ Feasible set described by foil constraints 3.2

xp Vector of partial value assignments 2.6.1

m Number of auxiliary/foil constraints 2.6.1

M Subset of decision variables involved in question 2.6.1

g Vector of negative changes to c 2.6.2

h Vector of positive changes to c 2.6.2

S0 Set of known non-target solutions or non-foils 2.6.2

γ Early stopping criterion time limit 2.6.2

m0 Min./Max. decision variable value for univariate explanations 4

xψ,∗ Optimal foil for PA-NCE (Def. 5.1) problems 5.2

3.2 Nearest Counterfactual Explanations

We wish to generate a counterfactual explanation for an optimal solution x∗ to a forward problem

FW⟨c, f,X⟩. The explainee must first describe a set of alternative solutions Xψ ⊂ X, and ask the

contrastive question “Why x∗ and not a solution x ∈ Xψ?”. As per the terminology from Section

2.3.1, Xψ is called the foil set and each solution x ∈ Xψ is called a foil. To define the foil set,

the explainee must provide an additional set of constraints describing a feasible set ψ ⊂ Rn, with

x∗ /∈ ψ. We call these additional constraints foil constraints, and define the foil set as Xψ = X ∩ ψ.

Example 3.1. (Contrastive Question). Consider a delivery scheduling problem FW⟨c, f,X⟩ where

the variables x ∈ X ⊆ Nn0 represent the number of days before a shipment arrives, the objective

coefficients c ∈ D ∈ Nn0 are delivery priorities, and f = cTx. That is, the problem is to minimize

priority weighted delivery times. After seeing the optimal schedule x∗, a customer notices that for

her order j, x∗j = 14; that is, her delivery is scheduled in two weeks. She asks the contrastive

question “Why is my order scheduled in two weeks, and not sometime next week?”, a question that

CHAPTER 3. A GENERAL COUNTERFACTUAL EXPLANATION PROBLEM 35

can be rewritten as “Why x∗ and not a solution x ∈ Xψ?”, where Xψ = {x ∈ X : xj ≤ 7}. This foil

set Xψ is defined by the foil constraint xj ≤ 7 and ψ = {x ∈ Nn0 : xj ≤ 7}.

We address this type of question by looking for counterfactual objective parameters d ∈ D ⊆ Rn

that would lead to one of the foils x ∈ Xψ being optimal to the modified problem FW⟨d, f,X⟩.1

Here, D can express restrictions on the counterfactual objective parameters. Additionally, we aim to

find a d which is minimally different from the initial parameters c as measured by some norm || · ||.

If such a d is found, we can provide the counterfactual explanation: “A solution x ∈ Xψ would have

been optimal if the objective parameters had been d instead of c.” Formally, we define the Nearest

Counterfactual Explanation (NCE) problem NCE⟨c,D, f, ψ, x∗, X, || · ||⟩ as

min
d∈D
||d− c|| (3.1)

s.t. min
x∈Xψ

f(d, x) = min
x∈X

f(d, x). (3.2)

If f and || · || are omitted, it is assumed that f(d, x) = dTx and || · || is L1. Additionally, let the set

of non-foils be denoted XC
ψ = X \Xψ, a definition that will become useful in subsequent chapters.

An NCE can also be formulated for maximization forward problems, in which case the minimization

terms in constraint (3.2) are replaced with maximization terms. NCEmin and NCEmax can be used

to specify whether the forward problem is a minimization or maximization problem, respectively,

and if no direction is specified, minimization is assumed. This thesis focuses on NCEs based on

discrete forward optimization problems with linear objectives and constraints.

Example 3.2. (Counterfactual Explanation). Continuing Example 3.1, assume that customer j

initially paid $30 for the lowest priority (“Standard”) shipping option, and cj = 1. To demonstrate

how restrictions on counterfactual parameters can be useful, assume also that the customer is only

interested in possible changes to their own order priority cj , but not the order priorities of other

customers. This can be expressed by setting D = {d ∈ Nn0 : di = ci ∀ i ̸= j}. After solving the

NCE (3.1) - (3.2), assume that the optimal solution is d∗j = 3, d∗i = ci ∀ i ̸= j, where a shipping

priority level of 3 corresponds to “Express Shipping” and costs $100. The customer is given the

counterfactual explanation: “Your delivery would have arrived within a week if you had paid $100

for Express Shipping instead of $30 for Standard Shipping.”

1Note that the feasible set is X, not Xψ , since the explainee wants to know why a foil was not optimal to the
initial problem, not a restricted version of it.

CHAPTER 3. A GENERAL COUNTERFACTUAL EXPLANATION PROBLEM 36

3.3 Feasibility Conditions

Next, we can identify conditions under which an NCE is guaranteed to have a non-trivial feasible

solution (i.e. d ̸= [0]n), considering both the general case and NCEs with linear objectives.

Theorem 3.1. An NCE⟨c,D, f, ψ, x∗, X, || · ||⟩ has a non-trivial feasible solution if and only if the

following two conditions are met:

1. The foil set Xψ includes one or more extreme points of conv(X).

2. The restrictions on d do not prevent all of these extreme points from being optimal to

FW⟨d, f,X⟩.

Proof. If the first condition is not met, then Xψ lies entirely in the interior region of X and thus

cannot contain an optimal solution. If the first condition holds, it is trivial to see that the second

condition guarantees the existence of a feasible solution.

We now turn to NCEs with linear objectives f(c, x) = cTx, which are the focus of this thesis, and

identify a sufficient condition guaranteeing feasibility.

Theorem 3.2. An NCE⟨c,D, f, ψ, x∗, X, || · ||⟩ with f(c, x) = cTx has a non-trivial feasible solution

if both following conditions are met:

1. For all i ∈ {1, ..., n}, let xi,min = minx{xi : x ∈ X} and xi,max = maxx{xi : x ∈ X}.

• If the forward objective is minimization (i.e. the NCE is an NCEmin), then the foil set

Xψ must include at least one point x̃ψ such that ∃ j ∈ {1, ..., n} for which x̃ψj = xj,min.

• If the forward objective is maximization (i.e. the NCE is an NCEmax), the foil set Xψ

must include at least one point x̃ψ such that ∃ j ∈ {1, ..., n} for which x̃ψj = xj,max.

2. Dfj ⊆ D given

Dfj = {d ∈ Rn : 0 < dj ≤ dUBj , di = 0 ∀ i ̸= j}, (3.3)

where dUBj = maxd{dj : d ∈ D}.

Proof. For any df ∈ Dfj , the term xj is the only component contributing to the forward objective

value (df)Tx. If the forward objective is minimization, no minimization of xj is possible below its

value in x̃ψ. Similarly, if the forward objective is maximization, no maximization of xj is possible

above its value in x̃ψ. Therefore, x̃ψ is optimal to FW⟨d,X⟩ for any d ∈ Dfj , making any d ∈ Dfj a

feasible NCE solution.

CHAPTER 3. A GENERAL COUNTERFACTUAL EXPLANATION PROBLEM 37

3.4 Discussion and Limitations

We now consider some assumptions about what makes an NCE a useful problem to solve in practice.

Infeasibility Though Theorems 3.1 and 3.2 provide conditions for feasibility, it may not always be

easy to satisfy them, as we will see in Chapter 5. Thus, in cases when these conditions are not met,

instead of receiving a counterfactual explanation, an explainee will be told “There are no alternative

objective parameters under which a solution in Xψ would have been optimal.” Such information

may be useful in some contexts, for example for a transportation engineer investigating whether or

not a certain behaviour (e.g. route choices in a city) could be achieved by changing the objective

parameters (e.g. travel costs). In other cases, however, informing an explainee that a counterfactual

explanation does not exist may not be particularly helpful. In future work it may be possible to

design a variation of the NCE to search for counterfactual parameters that would minimize the

sub-optimality of a foil instead of searching for parameters that would make a foil optimal.

Alternative Optimal Solutions A related issue to infeasibility is the possibility that the foil

set contains an alternative optimal solution x̂∗ to FW⟨c, f,X⟩, and thus no change to the objective

parameters is needed to make a foil optimal. For instance, the reason that x∗ was selected as opposed

to x̂∗ may have been the result of tie-breaking in the optimization algorithm. Whether it is helpful

to provide an explainee with information that the initial solution may just as well have been x̂∗ ∈ Xψ

rather than x∗ /∈ Xψ may depend on how much decision-making authority is wielded by the explainee

as opposed to the automated system. For example, consider an explainee with complete decision-

making authority, such as a driver who is given route suggestions by an optimization system. After

discovering that one of his preferred routes is just as good as the system’s suggestion, the driver

may proceed to take his preferred route knowing that this route is optimal. In contrast, consider

an explainee with very little decision-making authority, such as a loan applicant who has no control

over a bank’s decision process. The applicant is unlikely to find the following information useful:

“You were just as qualified to receive a loan as the candidates that were approved, but you were

denied one because of an arbitrary tie-breaking process in our software.”

Meaningfulness of Objective Parameters A key assumption of using an NCE for explanations

is that the objective parameters c and d are meaningful, or can be made meaningful, to the explainee;

in other words, the forward problem is decomposable (as defined in Section 2.2.2) with respect to

these parameters. For instance, meaningful parameters might include cost in terms of money, time,

CHAPTER 3. A GENERAL COUNTERFACTUAL EXPLANATION PROBLEM 38

or distance. It is also possible that the explainee may not initially understand the meanings of

objective coefficients, but can be made to understand them after receiving an additional explanation

of the what the coefficients represent. For instance, the explanation “Your order would have been

delivered this week if it was associated with priority level 3 instead of priority level 1,” may not be

meaningful to an explainee who does not understand what these priority levels mean. However, as

in Example 3.1, this explanation can be made meaningful if the explainee is also told that priority

level 1 corresponds to “standard” shipping and would cost her $30 while priority level 3 corresponds

to “express” shipping and would cost her $100. In fact, by showing how changes in decisions could

be achieved through changes in objective parameters, counterfactual explanations may empower

explainees to question other parts of a decision system, such as the assignment of coefficients. For

instance, the customer from Example 3.1 may argue that it is not reasonable to need to pay an

additional $70 to get her order delivered next week, and that the delivery service should re-evaluate

how priorities are assigned in its system.

Differences from the Initial Solution While the foil constraints are satisfied by the optimal

solution to the modified problem FW⟨d,X⟩, this new optimal solution may be arbitrarily different

from the initial solution x∗. In practice, large changes to x∗ may be problematic. For instance, if

a scheduler at a factory wishes to decide whether it is worth changing an order priority to satisfy

a foil constraint, it may be difficult for him to make a meaningful comparison between objectives c

and d if the schedules resulting from FW⟨c,X⟩ and FW⟨d,X⟩ are very different from each other.

Further consideration of this limitation is left for future work, and revisited in Chapter 7.

Privacy The goal of providing an explanation may be at odds with the goal of protecting the

privacy of other people involved in the system. For example, the amount of time a patient needs to

wait for his surgery may depend on the priority levels assigned to other patients, which depend on

their private medical data. For this reason, it may sometimes be preferable to restrict explanations to

involve only the objective parameters that do not violate anyone’s privacy, even if such explanations

are less informative to the explainee. These restrictions can be implemented through the definition

of the set D.

No Constraint Parameter Changes In an NCE, explanations can only be provided in terms

of objective parameters, not constraint parameters. There has been far less work on inverse opti-

mization where constraint parameters are allowed to change [93, 94], with one of the challenges of

CHAPTER 3. A GENERAL COUNTERFACTUAL EXPLANATION PROBLEM 39

these approaches being that they must handle multiple alternative feasible regions. Explanations

that allow counterfactual changes to constraint parameters are a possible direction for future work.

3.5 Conclusion

This chapter defined the NCE (3.1) - (3.2) and discussed how it can be used to generate counter-

factual explanations for forward optimization problems. Chapter 4 introduces methods to solve an

NCE when the explainee is interested in a single variable and a single objective parameter, and

Chapter 5 explores solution approaches for a useful subclass of multivariate explanations. Chapter

6 develops solution methods for NCEs which explain forward problems with linear objectives and

constraints.

Chapter 4

Single Variable Explanations

This chapter develops solution methods for an NCE (3.1) - (3.2) for cases when an explainee is

interested in changes to a single variable and single objective parameter. These methods assume

that the forward objective function is linear, f(c, x) = cTx, and that the decision variables in the

forward problem are either binary or integral. We also assume that the contrastive question is either

“Why did x∗ not satisfy x∗j ≤ m0?”, or “Why did x∗ not satisfy x∗j ≥ m0?”, m0 ∈ N0. That is,

it is assumed that the foil constraint is a linear constraint on a single variable. We focus on the

more difficult case of integer objective parameters c, d ∈ Nn0 , though the methods below could easily

be modified for continuous parameters. It is shown that in the case of binary decision variables, a

solution to the explanation problem can be found in closed form after solving a slightly modified

version of the forward problem. For integer variables, the NCE can be solved with a binary search

that involves solving a logarithmic number of modified forward problems. Unlike the subsequent

chapters, this chapter does not rely on the assumption that the constraints defining X must be

linear. As long as the foil constraint is linear, the explanation methods in this chapter are applicable

to non-linearly constrained forward problems.

4.1 Single Variable Restrictions

There is a useful subset of explanations in which the explainee only asks about possible changes to a

single decision variable xj and is given an explanation only in terms of changes to the corresponding

objective parameter cj . The primary motivation for this restricted setting arises from forward prob-

lems in which, given f(c, x) = cTx, each decision variable xj and objective parameter cj correspond

to exactly one person j. For example, such formulations are common in medical scheduling, for

40

CHAPTER 4. SINGLE VARIABLE EXPLANATIONS 41

instance when xj is used to represent the completion time of patient j’s procedure, cj represents

that patient’s acuity (priority level), and the goal is to minimize acuity weighted completion times.

If all the information in the objective function concerning a person j is represented with decision

variable xj and objective parameter cj , explainee j may wish to ask questions only about the decision

that concerns himself, xj , and receive an explanation only in terms of a parameter that corresponds

to himself, dj . In other words, explainee j may be indifferent to the decisions concerning other

people xi, i ̸= j, or possible changes to the corresponding objective parameters di. One reason may

be that person j has no control over the parameters di, i ̸= j that correspond to other people. For

instance, in Example 3.2 in which a number of customers ordered deliveries, if customer j has no

control over another customer i, it is likely not useful to tell customer j that “Your order would have

arrived next week if customer i had selected “standard” instead of “express” shipping.” It may also

be important to protect the privacy of people i ∈ {1, ..., n}, i ̸= j from explainee j, in which case the

explainee may only be allowed to reason about possible changes to xj and cj . Finally, we can also

envision useful univariate questions and explanations in cases where xj and cj do not correspond to

a single person j; for example, customer j may place several orders, but only be interested in the

possibility of changing the priority level of one order.

Let us formally define a univariate version of an NCE, denoted U-NCE. In addition to requiring

that only one variable xj be involved in the contrastive question, we assume that this question can be

represented using a single linear foil constraint xj ≤ m0 or xj ≥ m0, m0 ∈ N0. That is, the explainee

must ask either “Why does x∗ not satisfy xj ≤ m0?” or “Why does x∗ not satisfy xj ≥ m0?”. The

restriction that only the parameter dj can be involved in an explanation is expressed by requiring

that di = ci for all i ̸= j.

Definition 4.1. (Univariate NCE (U-NCE)). The U-NCE is an NCE ⟨c,D, f, ψ, x∗, X⟩ in which

D = {d ∈ Nn0 : di = ci ∀ i ̸= j}, j ∈ {1, ..., n}, ψ is either ψ = {x ∈ Nn : xj ≤ m0} or

ψ = {x ∈ Nn : xj ≥ m0}, m0 ∈ N0, and f(c, x) = cTx.

Example 4.1. (U-NCE). The problem defined in Examples 3.1 and 3.2 is an example of a U-

NCE. The question “Why is order j not scheduled to arrive next week?” is represented using

ψ = {x ∈ Nn : xj ≤ 7}. Additionally, the customer is only interested in possible changes to the

shipping priority of order j, and this restriction is represented with D = {d ∈ Nn0 : di = ci ∀ i ̸= j}.

CHAPTER 4. SINGLE VARIABLE EXPLANATIONS 42

4.2 Binary Linear Objective Problems

We now focus on cases in which the underlying forward problem has only binary decision variables,

and show that U-NCEs for these problems can be solved in closed form after solving a slightly

modified version of the forward problem.

4.2.1 Formulation

For this class of problems, the forward problem has a linear objective, only binary decision variables,

and is called a Binary Linear Objective (BLO) problem (Definition 4.2). BLOs constitute a useful

subset of combinatorial optimization problems, including, for instance, the 0-1 knapsack (KP) prob-

lem (Example 4.2), which will be used to demonstrate that using a U-NCE to explain BLOs can

produce meaningful explanations (Example 4.3).

Definition 4.2. (Binary Linear Objective Problem (BLO)). A BLO⟨c,X⟩ is a forward problem

FW⟨c, f,X⟩ where X ⊆ {0, 1}n, c ∈ Nn0 , and f(c, x) = cTx. As with all forward problems,

BLOmin⟨c,X⟩ is a minimization problem while BLOmax⟨c,X⟩ is a maximization problem, and min-

imization is assumed if no direction is specified.

Example 4.2. (0-1 Knapsack Problem (KP)). In a KP, we are given a set of n ∈ N items, a profit

vector c ∈ Nn0 , a weight vector w ∈ Nn0 , and a knapsack capacity W ∈ N0, with W <
∑n
i=1 wi.

The objective of the KP is to maximize the sum of the profits of the items that are included in

the knapsack, without having the sum of the weights of those items exceed W . A decision variable

xi ∈ {0, 1}, i ∈ {1, ..., n}, is assigned to 1 if item i is included in the knapsack and 0 otherwise,

and the complete problem KP⟨c,X⟩ is maxx{cTx : x ∈ X}, X = {x ∈ {0, 1}n : wTx ≤ W}, which

is NP-Complete [95]. The KP is used in many real-life applications, including selecting people to

receive a limited service [96], in which case ci represents the benefit of extending the service to person

i and wi represents the resources required to provide the service to that person. For example, if the

service is a loan, ci may be the expected interest a bank will receive from customer i over the life

of the loan, wi may be the value of i’s loan, and W may be the total funds that a bank can loan

out. A KP used to select people to receive a limited service is an example of the setting discussed

in Section 4.1 where all the information in an objective function concerning person j is represented

only by xj and cj .

Let a U-NCE in which the forward problem is a BLO be denoted U-NCE0-1 when the forward

optimization direction is minimization and U-NCE0−1
max when the forward direction is maximization.

CHAPTER 4. SINGLE VARIABLE EXPLANATIONS 43

Due to the requirement in Definition 4.1 that the foil constraint must be linear and involve only one

variable xj , in a U-NCE0-1 the foil constraint must be either xj = 1 or xj = 0. In the first case, the

foil set would be Xψ = {x ∈ X : xj = 1} and the non-foil set would be XC
ψ = {x ∈ X : xj = 0}.

Example 4.3 shows how a U-NCE0-1 can be used to explain a KP.

Example 4.3. (U-NCE0-1 for a KP). Consider a KP⟨c,X⟩ used to determine which customers

i ∈ {1, ..., n} will be selected to receive a loan, as discussed in Example 4.2. Let cj = $50, 000,

representing the maximum amount of interest client j is expected to be able to pay safely over the

life of the loan, a value limited by j’s yearly income of $40,000. The KP problem is solved to give

an optimal solution x∗, in which x∗j = 0, meaning that customer j denied a loan. Customer j asks

“Why was I denied a loan instead of approved?”, a question which can be rewritten as “Why x∗

and not an x ∈ Xψ?”, where Xψ = {x ∈ X : xj = 1}. We can search for an explanation using a

U-NCE0−1
max with ψ = {x ∈ {0, 1}n, xj = 1} and D = {d ∈ Nn : di = ci ∀ i ̸= j}. Assume that the

optimal solution to this problem is d∗j = $75,000, a value that the bank estimates customer j could

pay safely if her income was $60,000 per year. The explanation given to j might be “You would

have been approved a loan if you could safely pay $75,000 in interest instead of $50,000, which you

could do if your yearly income was $60,000 instead of $40,000.” This example also demonstrates

that, as discussed in Section 3.4, it can be possible to express changes to objective parameters in

a meaningful way to explainees, for instance using changes to their income, even if the objective

parameters themselves, such as bank interest revenues, may not be meaningful to the explainee.

4.2.2 Solution Method

We now prove that a U-NCE0-1 can be solved in closed form after solving a slightly modified

version of the initial forward problem. Below we assume that the foil constraint is xj = 1 and

the forward optimization direction is maximization, but this content is easy to reformulate for the

case of minimization or a foil constraint of the form xj = 0. The U-NCE0−1
max can be written as:1

min
d∈D
||c− d||1 (4.1)

s.t. max
x∈X

d · x = max
x∈Xψ

d · x (4.2)

We will show that this problem can be solved based on the difference between the optimal objective

value of the initial forward problem BLO⟨c,X⟩ and that of BLO⟨c,Xψ⟩, a modification of the initial

1dT x may be written as d · x where it is obvious from context.

CHAPTER 4. SINGLE VARIABLE EXPLANATIONS 44

forward problem in which X is replaced by the Xψ. Intuitively, any loss to the objective function

of the forward problem incurred by forcing the solution to lie in Xψ as opposed to X must be

compensated by the change to cj .

To develop our solution approach, we define two auxiliary functions given an arbitrary objective

vector p ∈ Rn+. The first function, ∆X
ψ (p), is the difference between the optimal objective values

of the unrestricted forward problem and the forward problem where the solution must be a foil,

BLO⟨p,X⟩ and BLO⟨p,Xψ⟩, respectively:

∆X
ψ (p) = max

x∈X
p · x− max

x∈Xψ
p · x. (4.3)

The second function, ∆
XCψ
ψ (p), is the difference between the optimal objective values of the for-

ward problem where the solution must be a non-foil and that where the solution must be a foil,

BLO⟨p,XC
ψ ⟩ and BLO⟨p,Xψ⟩, respectively:

∆
XCψ
ψ (p) = max

x∈XCψ
p · x− max

x∈Xψ
p · x. (4.4)

In any feasible solution to a U-NCE0−1
max, due to constraint (4.2), ∆X

ψ (p) = 0 and ∆
XCψ
ψ (p) ≤ 0.

Theorem 4.1. The U-NCE0−1
max ⟨c,D, ψ, x∗, X⟩ with a non-empty foil set Xψ ̸= ∅ and ψ = {x ∈

X,xj = 1} has an optimal solution d∗ in which d∗j = cj +∆X
ψ (c), and d∗i = ci for all i ̸= j.

Proof. If Xψ contains an alternative optimal solution to BLO⟨c,X⟩, then ∆X
ψ (c) = 0, and d∗ = c.

Otherwise, all optimal solutions to BLO⟨c,X⟩ are non-foils and lie in XC
ψ . Thus, we can write

∆X
ψ (c) = max

x∈XCψ
c · x− max

x∈Xψ
c · x. (4.5)

Since xj = 0 for each x ∈ XC
ψ , and di = ci for all i ̸= j, for the last term:

max
x∈XCψ

c · x = max
x∈XCψ

d · x ∀d ∈ D. (4.6)

Similarly, for each x ∈ Xψ, since xj = 1 the contribution of the non-j components, d · x− dj , must

be identical for every d, giving

max
x∈Xψ

c · x− cj = max
x∈Xψ

d · x− dj ∀d ∈ D. (4.7)

CHAPTER 4. SINGLE VARIABLE EXPLANATIONS 45

Since ∆
XCψ
ψ (d) ≤ 0 in a feasible solution to the U-NCE0−1

max, using equations (4.5) - (4.7) gives

0 ≥ ∆
XCψ
ψ (d)

0 ≥ max
x∈XCψ

d · x− max
x∈Xψ

d · x

0 ≥ max
x∈XCψ

c · x− max
x∈Xψ

c · x+ cj − dj

0 ≥ ∆X
ψ (c) + cj − dj .

This gives dj ≥ cj +∆X
ψ (c), and therefore the optimal d∗ satisfies d∗j = cj +∆X

ψ (c). It is also clear

that d∗j is integer because both c ∈ Nn0 and x ∈ Nn0 , and therefore ∆X
ψ (c) ∈ N0.

Thus, since an optimal solution x∗ to BLO⟨c,X⟩ is known before the explanation begins, it is

sufficient to solve BLO⟨c,Xψ⟩ and use Theorem 4.1 to find the optimal solution to a U-NCE0-1.

4.3 Integer Variable Problems

We now turn to forward problems with integer decision variables and a linear objective, which we

call Integer Linear Objective (ILO) problems (Definition 4.3). We show that in the resulting U-

NCEs, the difference between the optimal objective value in X and the optimal objective value

in Xψ changes monotonically with dj . After proving that the optimal value of dj lies on a closed

interval, we show that binary search can be used over this interval to solve the U-NCE.

4.3.1 Formulation

Definition 4.3. (Integer Linear Objective Problem (ILO)) An ILO⟨c,X⟩ is a forward problem

FW⟨c, f,X⟩ where X ∈ Nn0 , c ∈ Nn, and f(c, x) = cTx.

An example of an ILO is the forward problem in Example 3.1, a scheduling problem with integer

delivery times and importance weights, the goal of which is minimizing weighted delivery times. Let a

U-NCE in which the underlying forward problem is an ILO be denoted U-NCEN0 , and recall that the

foil constraint in a U-NCEN0 must have the form xj ≤ m0 or xj ≥ m0. These explanation problems

are well suited for scheduling problems and questions such as “Why was task j not completed before

m0?”.

CHAPTER 4. SINGLE VARIABLE EXPLANATIONS 46

4.3.2 Solution Method

Solving a U-NCEN0 is more involved than solving a U-NCE0-1, because we must consider multiple

possible values of xj in both the foil and non-foil sets. This section assumes that the optimization

direction of the forward problem is minimization and the foil constraint has the form xj ≤ m0, but

the content below can be easily reformulated for the case of maximization or foil constraints of the

form xj ≥ m0. As in Section 4.2.2, we define an auxiliary function,2

∆X
ψ (p) = min

x∈Xψ
p · x−min

x∈X
p · x, (4.8)

noting that in any feasible solution to an NCE, ∆X
ψ (p) = 0.

Theorem 4.2. Consider a U-NCEN0 ⟨c,D, ψ, x∗, X⟩ with Xψ ̸= ∅, ψ = {x ∈ X : xj ≤ m0},m0 ∈

N0, and where no foil x ∈ Xψ is an alternative optimal solution to the initial problem ILO⟨c,X⟩.3

There exists a constant p∗j ∈ R+ such that d ∈ D results in feasible solutions to the U-NCEN0 iff

dj ≥ p∗j . The optimal solution to the U-NCEN0 is d∗ ∈ D, with d∗j = ⌈p∗j⌉, d∗i = ci for all i ̸= j.

Theorem 4.2 will allow us to find the optimal U-NCEN0 solution using a binary search over the

values of dj ∈ N0, at each search step checking whether a given dj results in a feasible solution to

the U-NCEN0 . Theorem 4.2 can be easily proven if Lemma 4.1 below holds.

Lemma 4.1. Given the U-NCEN0 ⟨c,D, ψ, x∗, X⟩ from Theorem 4.2:

1. ∆X
ψ (p) is a monotonically non-increasing function in pj , given p ∈ P = {p ∈ Rn+ : pi = ci ∀ i ̸=

j}.

2. There is a p0 ∈ P such that ∆X
ψ (p0) = 0.

Intuitively, we will prove Lemma 4.1 by demonstrating that if pj increases by δp ∈ R+, both com-

ponents of ∆X
ψ (p) will increase, but the negative component minx∈X p · x will increase faster, thus

showing that ∆X
ψ (p) is monotonically non-increasing in pj and will eventually vanish. A sketch of

the steps in the following proof of Lemma 4.1 is:

1. It is shown using Lemma 4.2 that for an increase in pj of δp ∈ R+:

• The optimal objective of ILO⟨p,XC
ψ ⟩, the forward problem where solutions are non-foils,

increases by at least δp(m0 + 1).

2This function differs from (4.3) because the forward optimization direction is minimization.
3To determine whether Xψ contains an alternative optimal solution to ILO⟨c,X⟩, we can check if minx{c ·x : x ∈

X} = minx{c · x : x ∈ Xψ}. If yes, ∃ x ∈ Xψ that is an optimal solution to ILO⟨c,X⟩, and therefore the optimal

solution to the U-NCEN0 is d∗ = c.

CHAPTER 4. SINGLE VARIABLE EXPLANATIONS 47

• The optimal objective of ILO⟨p,Xψ⟩, the forward problem where solutions are foils,

increases by at most δpm0.

2. The bounds from Lemma 4.2 are used to show that foils become better solutions as pj increases

with respect to non-foils (i.e. ∆X
ψ (p) is monotonically non-increasing in pj).

3. A formula is derived for a p0, which is guaranteed to exist, at which a foil is guaranteed to be

optimal to the forward problem ILO⟨p0, X⟩ (i.e. ∆X
ψ (p0) = 0).

In what follows we consider two vectors p− ∈ P and p+ ∈ P with p−j ≤ p+j , and define the

positive difference between their jth components as δp = p+j − p
−
j . We start by observing that if p−

increases by δp, the optimal objective value of the forward problem where the solution must be a

non-foil, ILO⟨p−, XC
ψ ⟩, must increase by at least δp(m0 + 1), while the optimal objective value of

the problem where the solution must be a foil, ILO⟨p−, Xψ⟩, can increase by at most δpm0.

Lemma 4.2.

1. For all x ∈ XC
ψ , we have:

min
x∈XCψ

p+ · x− min
x∈XCψ

p− · x ≥ δp(m0 + 1). (4.9)

2. For all x ∈ Xψ, we have:

min
x∈Xψ

p+ · x− min
x∈Xψ

p− · x ≤ δpm0. (4.10)

Proof. (Lemma 4.2). By the definition, for all x ∈ X,

p+ · x = p− · x+ δpxj . (4.11)

To prove statement (1) of Lemma 4.2, let xC,− be an optimal solution to ILO⟨p−, XC
ψ ⟩ and xC,+ be

an optimal solution to ILO⟨p+, XC
ψ ⟩. By optimality, p− · xC,− ≤ p− · xC,+, which we use together

with (4.11) to deduce

min
x∈XCψ

p+ · x− min
x∈XCψ

p− · x = p+ · xC,+ − p− · xC,− ≥ p+ · xC,+ − p− · xC,+ = δpx
C,+
j ≥ δp(m0 + 1).

Similarly, to prove statement (2) of Lemma 4.2, let xψ,− be an optimal solution to ILO⟨p−, Xψ⟩

and xψ,+ be an optimal solution to ILO⟨p+, Xψ⟩. This gives

p+ · xψ,+ ≤ p+ · xψ,− = p− · xψ,− + δpx
ψ,−
j ≤ p− · xψ,− + δpm0.

CHAPTER 4. SINGLE VARIABLE EXPLANATIONS 48

We can use this result to write

min
x∈Xψ

p+ · x− min
x∈Xψ

p− · x = p+ · xψ,+ − p− · xψ,− ≤ p− · xψ,− + δpm0 − p− · xψ,− ≤ δpm0.

Equipped with Lemma 4.2, we proceed to prove Lemma 4.1.

Proof. (Lemma 4.1). First, we consider statement (1) of Lemma 4.1: that ∆X
ψ (p) is monotonically

non-increasing in pj , given p ∈ P. We prove this by showing that

∆X
ψ (p−) ≥ ∆X

ψ (p+).

Let us look at the three following cases:

1. The case ∆X
ψ (p+) = 0 is trivial, since by definition ∆X

ψ (p−) ≥ 0 for every p− ∈ Rn0+.

2. Let ∆X
ψ (p−) = 0. Recall that xψ,− is an optimal solution to ILO⟨p−, Xψ⟩ and xC,− is an

optimal solution to ILO⟨p−, XC
ψ ⟩. Due to the foil constraint, xψ,−j ≤ m0 < xC,−j , and in order

for ∆X
ψ (p−) = 0, we must have p− · xψ,− ≤ p− · xC,−, which implies

p+ · xψ,+ = p− · xψ,− + δpx
ψ,−
j ≤ p− · xC,− + δpx

C,−
j = p+ · xC,+.

Since p+ · xψ,+ ≤ p+ · xC,+, then ∆X
ψ (p+) = 0.

3. Lastly, assume

min{∆X
ψ (p−),∆X

ψ (p+)} > 0 (4.12)

For ∆X
ψ to be monotonically non-increasing in pj , the following difference of ∆’s must be

non-positive:

∆X
ψ (p+)−∆X

ψ (p−) = min
x∈Xψ

p+ · x−min
x∈X

p+ · x− min
x∈Xψ

p− · x+min
x∈X

p− · x. (4.13)

We can observe that (4.12) holds iff, for both p− and p+, all foils x ∈ Xψ are suboptimal to the

respective forward problems ILO⟨p−, X⟩ and ILO⟨p+, X⟩, meaning that all optimal forward

solutions to these problems lie in XC
ψ . Using this condition and rearranging (4.13),

∆X
ψ (p+)−∆X

ψ (p−) = min
x∈Xψ

p+ · x− min
x∈Xψ

p− · x− min
x∈XCψ

p+ · x+ min
x∈XCψ

p− · x.

CHAPTER 4. SINGLE VARIABLE EXPLANATIONS 49

Next, we insert bounds on these terms from Lemma 4.2. From Lemma 4.2 part 1, we have

min
x∈Xcψ

p+ · x− min
x∈Xcψ

p− · x ≥ δpm0 + δp.

Similarly, Lemma 4.2 part 2 gives

min
x∈Xψ

p+ · x− min
x∈Xψ

p− · x ≤ δpm0.

Applying these two inequalities to 4.13, we have

∆X
ψ (p+)−∆X

ψ (p−) ≤ δpm0 − δpm0 − δp ≤ 0,

which gives ∆X
ψ (p+) ≤ ∆X

ψ (p−) and concludes the proof of statement (1) of Lemma 4.1.

Next, we prove statement (2) of Lemma 4.1: that there is a p0 ∈ P such that ∆X
ψ (p0) = 0. We must

show that

min
x∈Xψ

p0 · x ≤ min
x∈Xcψ

p0 · x. (4.14)

Let us define a vector xmin ∈ Nn0 , where every entry other than xj is zero and xmin
j = m0 + 1. For

every x ∈ XC
ψ , we observe that xmin

i ≤ xi for any i ∈ {1, ..., n}. Thus, for any p ∈ Rn0+ it holds that

p · xmin ≤ minx{p · x : x ∈ XC
ψ }. Therefore, (4.14) will hold if we can satisfy

min
x∈Xψ

p0 · x ≤ p0 · xmin = p0j (m0 + 1). (4.15)

To this end, we pick an arbitrary xψ ∈ Xψ and recall that xψj ≤ m0, and observe that we will satisfy

(4.15) if we can find a p0j ∈ R0+ such that

p0 · xψ ≤ m0p
0
j +

∑
i ̸=j

cix
ψ
i ≤ p

0
j (m0 + 1).

We can pick

p0j =
∑
i ̸=j

cix
ψ
i (4.16)

using any foil x ∈ Xψ. Therefore p
0 ∈ P must exist since Xψ ̸= ∅.

Using Lemma 4.1, proving Theorem 4.2 is simple.

Proof. (Theorem 4.2). Let p∗ ∈ P = {p ∈ Rn+ : pi = ci ∀ i ̸= j} such that ∆X
ψ (p∗) = 0 and

CHAPTER 4. SINGLE VARIABLE EXPLANATIONS 50

∆X
ψ (p∗ − ϵ) > 0, given an ϵ ∈ E = {ϵ ∈ Rn+, ϵj > 0, ϵi = 0 ∀ i ̸= j} and assuming p∗j − ϵj ≥ 0.

Recalling that:

• ∆X
ψ (p) is monotonically non-increasing in pj

• ∆X
ψ (c) > 0 since no foil is optimal to ILO⟨c,X⟩

• ∃ p0 such that ∆X
ψ (p0) = 0

we conclude that p∗j must be the smallest real number on the interval (cj , p
0
j] such that ∆X

ψ (p∗) = 0.

Since ∆X
ψ (p) is monotonically non-increasing in pj , all d ∈ D with dj ≥ p∗j must be feasible U-

NCEN0 solutions because all such d’s would give ∆X
ψ (d) = 0, proving the “if” direction of Theorem

4.2. Similarly, since any d ∈ D with dj < p∗j would result in ∆X
ψ (d) > 0, all such d’s would be

infeasible to the U-NCEN0 , proving the “only if” direction of Theorem 4.2. Therefore, the optimal

solution to the U-NCEN0 is d∗ ∈ D such that d∗j = ⌈p∗j⌉, and we can note that d∗j must be the

smallest integer on the interval (cj , ⌈p0j⌉] for which ∆X
ψ (d∗) = 0.

Since ∆X
ψ is monotonically non-increasing, and d∗j is in the interval (cj , ⌈p0j⌉], we can find d∗j

with binary search. Because ∆X
ψ (c) > 0, the smallest possible value for d∗j is cj + 1, limiting the

search interval to [cj + 1, ⌈p0j⌉]. We can compute p0j with equation (4.16), but we must first find

a feasible foil, x ∈ Xψ. The smallest possible value of p0j computed from (4.16) will be given by

x ∈ argmin{c · x − cjxj : x ∈ Xψ}. Alternatively, it may be more convenient to use the original

forward objective function so that x ∈ argmin{c · x : x ∈ Xψ}, though this may result in a higher

value for p0j . Since x, c ∈ N0, equation (4.16) gives an integer value for p0j , letting us simplify the

search interval to [cj + 1, p0j].

For each di that is searched, we must check whether ∆X
ψ (di) = 0. This can be done by solving

the two modified problems ILO⟨di, XC
ψ ⟩ and ILO⟨di, Xψ⟩ and observing that ∆X

ψ (di) = 0 iff

min
x∈XCψ

di · x ≥ min
x∈Xψ

di · x.

Given that the complexity of binary search is logarithmic in the size of the search set, we can make

the following statement:

Proposition 4.1. The U-NCEN0 problem from Theorem 4.2 can be solved with at most log2(p
0
j −

cj − 1) solutions of ILO⟨di, XC
ψ ⟩ and ILO⟨di, Xψ⟩.

CHAPTER 4. SINGLE VARIABLE EXPLANATIONS 51

4.4 Conclusion

This chapter developed explanation approaches for combinatorial problems with binary or integer

linear objectives for cases when an explainee is interested in a single variable xj ∈ X and its

corresponding objective parameter cj ∈ D. Such explanations are particularly well suited when

there are n people represented in a forward problem and xj and cj correspond to exactly one person

j. In this case, explainee j may have no interest in the decisions xi or parameters ci corresponding to

other people, and it may also be important to protect the privacy of other people’s information from

explainee j. Our methods are valid when expainee j wants to know either “Why did x∗j not satisfy

xj ≤ m0?” or “Why did x∗j not satisfy xj ≥ m0?”. For problems with binary decision variables, an

explanation can be generated in closed form after solving one modified forward problem BLO⟨c,Xψ⟩.

When the decision variables are integer, an explanation requires at most a logarithmic number of

solutions to the problems ILO⟨d,Xψ⟩ and ILO⟨d,XC
ψ ⟩.

Given these theoretical results, it was decided that numerical experiments would not constitute

a substantial research contribution. Specifically, in the binary case, experiments would have sim-

ply measured the speed of solving BLO⟨c,Xψ⟩, which is the initial forward problem plus a single

assignment constraint. In the integer case, experiments would have measured how long it takes

to solve a small (logarithmic) number of forward problems ILO⟨d,Xψ⟩, and ILO⟨d,XC
ψ ⟩ when d

is updated using the binary search strategy above. Neither of these experiments seemed likely to

produce interesting methodological contributions, so research and experimental effort was instead

focused on investigating multivariate explanations.

Chapter 5

Multivariate Explanations Under

Partial Assignment Restrictions

This chapter develops approaches to multi-variable explanations for a subset of NCEs with linear

forward problems and discrete decision variables. Specifically, it is assumed that an explainee is

interested in alternative value assignments to a subset of decision variables xi, i ∈ M ⊆ {1, ..., n},

and would like an explanation in terms of corresponding alternative objective parameters di, i ∈M.

It is shown that this subset of NCEs can be solved as a classical inverse optimization problem (2.2)-

(2.3) that uses the optimal solution to FW⟨c,Xψ⟩ as the target solution in the inverse problem.

Furthermore, this chapter considers cases when the forward problem is a constraint program and

introduces inverse constraint programming (CP) as part of the solution method. Inverse CP is

developed by modifying Wang’s [10] cutting plane algorithm, Algorithm 2.1, to use CP instead of

integer programming, and results in both pure CP and hybrid MIP-CP inverse algorithms. The

performance of these algorithms is evaluated for generating explanations to two combinatorial op-

timization problems: the 0-1 knapsack problem and single machine scheduling with release dates.

Numerical experiments show that a MIP-CP hybrid approach can outperform a pure MIP approach

particularly when CP is the state of the art for the forward optimization problem.

5.1 Partial Assignment Nearest Counterfactual Explanations

We consider a subset of NCE problems where the explainee is interested in a subset of m variables,

xi, i ∈ M ⊆ {1, ..., n}, m = |M|, and desires to know why they were not assigned to specific

52

CHAPTER 5. MULTIVARIATE EXPLANATIONS UNDER PARTIAL ASSIGNMENT RESTRICTIONS 53

values, xpi ∈ Rm, i ∈ M. To express this requirement, the foil constraints must constitute m

partial assignments, giving ψ = {x ∈ Rn : xi = xpi ∀ i ∈ M}. Furthermore, it is assumed the

explainee is interested in an explanation in terms of only the corresponding counterfactual objective

parameters di, i ∈ M. This requirement is expressed by setting D = {d : dj = cj ∀ j ∈ MC},

whereMC = {1, ..., n} \M. Such a problem is called a Partial Assignment NCE (PA-NCE), given

by Definition 5.1, and an example of which is given in Example 5.1. Observe that if n = m, the

PA-NCE is equivalent to the classical inverse optimization problem (2.2) - (2.3). The PA-NCE can

also be interpreted as a variant of assignment-based partial inverse optimization (2.4)-(2.7), where

D is used to establish additional restrictions on changes to objective parameters.

Definition 5.1. (Partial Assignment NCE (PA-NCE)). The PA−NCE⟨c,D, ψ, x∗, X⟩ is an NCE

⟨c,D, ψ, x∗, X⟩ in which ψ = {x ∈ Rn : xi = xpi ∀ i ∈M} whereM⊆ {1, ..., n}, xp ∈ Rm, m = |M|,

D = {d ∈ Rn+ : di = ci ∀ i ∈MC}, andMC = {1, ..., n} \M.

The reasons for considering this subset of NCEs are similar to those for considering single variable

explanations in Chapter 4. Mainly, an explainee may be indifferent to possible changes to some

variables, xj , and their corresponding objective parameters, dj , j ∈ MC . For instance, consider

explaining the scheduling problem described in Example 3.1, and assume that the orders j ∈ MC

come from customers of which the explainee has no knowledge of or control over. In this case,

an explanation indicating how the order priorities dj would need to change for the explainee to

be satisfied with the schedule may have no value. Further, it may be important to restrict the

explanation to involve only the decisions and parameters directly associated with the explainee in

order to protect the privacy of others in the system.

Example 5.1. (PA-NCE). Consider again the scheduling problem FW⟨c,X⟩ from Example 3.1.

Assume that the explainee has placed two orders,M = {1, 2} and paid $30 for “Standard” shipping

for both, so that c1 = c2 = 1. However, the explainee is disappointed to learn that in an optimal

soltuion x∗, both orders are scheduled to arrive in two weeks, so that x1 = x2 = 14. They ask

“Why could order 1 not arrive in two days, and order 2 not arrive in five days?”. To generate an

explanation, a PA-NCE is created where M = {1, 2} and ψ = {x ∈ N0 : x1 = 2, x2 = 5}. If the

optimal solution to this problem is, for instance, d∗1 = 3 and d∗2 = 2, the explanation would be:

“Order 1 would have arrived in two days if you paid $100 for Express Shipping (d∗1 = 3) and order

2 would have arrived in five days if you paid $50 for Priority Shipping (d∗2 = 2).”

CHAPTER 5. MULTIVARIATE EXPLANATIONS UNDER PARTIAL ASSIGNMENT RESTRICTIONS 54

5.2 Theoretical Results

This section shows that, because of its structure, the PA-NCE can be solved as a classical inverse

optimization problem that uses the optimal solution to FW⟨c,Xψ⟩ as the target solution. While

in classical inverse optimization, there is a single, fully defined target solution xd ∈ X that must

become optimal to FW⟨d,X⟩, in an NCE (3.1) - (3.2), it is sufficient for any x in the set Xψ to

become optimal to FW⟨d,X⟩. The possible multiplicity of Xψ therefore adds a degree of difficulty to

the NCE when compared to classical inverse optimization. Fortunately, this section shows that the

structure of a PA-NCE guarantees that there exists a foil xψ,∗ ∈ Xψ will be optimal to FW⟨d,X⟩

for any d ∈ D, implying that none of the other foils x ∈ Xψ, x ̸= xψ,∗ need to be tracked if

xψ,∗ is known. In particular, it will be demonstrated that xψ,∗, called the optimal foil, is given by

the optimal solution to FW⟨c,Xψ⟩. This observation means that a PA-NCE can be solved in two

steps: first, by solving FW⟨c,Xψ⟩ to find xψ,∗, and then solving the inverse optimization problem

IO⟨c,D, xd, X⟩ (2.2)-(2.3) with xd = xψ,∗.

Theorem 5.1. The PA−NCE⟨c,D, ψ, x∗, X⟩ is equivalent to the inverse optimization problem

IO⟨c,D, xd, X⟩ with xd = xψ,∗ ∈ argmin{c · x : x ∈ Xψ}.

Proof. (Theorem 5.1). Both the IO⟨c,D, xd, X⟩ and the PA−NCE⟨c,D, ψ, x∗, X⟩ share the same

objective, mind∈D ||d − c||1, and the two problems differ from each other only in their constraints.

For a solution d to be feasible to IO⟨c,D, xd, X⟩, it must satisfy constraint (2.3):

d · xd = min
x∈X

d · x,

while for d to be feasible to PA−NCE⟨c,D, ψ, x∗, X⟩, it must satisfy constraint (3.2):

min
x∈Xψ

d · x = min
x∈X

d · x.

These two constraints differ only in their left-hand sides, therefore to show that the two problems

are equivalent, it is sufficient to demonstrate that

d · xd = min
x
{d · x : x ∈ Xψ}, ∀ d ∈ D. (5.1)

Given that xd is optimal to FW⟨c,Xψ⟩ and separating the objective into the contributions from the

CHAPTER 5. MULTIVARIATE EXPLANATIONS UNDER PARTIAL ASSIGNMENT RESTRICTIONS 55

variables inM and the variables inMC , then

c · xd =
∑
i∈M

cix
d
i +

∑
j∈MC

cjx
d
j ≤

∑
i∈M

cixi +
∑
j∈MC

cjxj , ∀x ∈ Xψ.

The form of ψ requires that xpi = xdi = xi for all i ∈ M and x ∈ Xψ, so the above equation can be

simplified as ∑
j∈MC

cjx
d
j ≤

∑
j∈MC

cjxj , ∀x ∈ Xψ.

Next, due to the constraints in D, dj = cj for j ∈MC , giving

∑
j∈MC

djx
d
j ≤

∑
j∈MC

djxj , ∀ x ∈ Xψ, ∀ d ∈ D.

Further, because the values of xi, i ∈ M, must be xpi in all foils x ∈ Xψ, the contribution of∑
i∈M dixi, is equivalent in all foils given a value of d. Adding this contribution to both sides of the

above inequality gives

∑
i∈M

dix
d
i +

∑
j∈MC

djx
d
j ≤

∑
i∈M

dixi +
∑
j∈MC

djxj , ∀ x ∈ Xψ, ∀ d ∈ D. (5.2)

Thus d · xd ≤ d · x for all x ∈ Xψ and all d ∈ D, satisfying (5.1).

Theorem 5.1 holds for anyM ⊆ {1, ..., n}, includingM = {1, ..., n}. In this case, the explainee

specifies a fully defined solution xp ∈ X and the foil set is a singleton, Xψ = {xp}. Such a problem

can be solved directly as an inverse optimization problem IO⟨c,D, xd, X⟩ with xd = xp.

5.3 Inverse Constraint Programming

The two step approach for solving PA-NCEs from Section 5.2 can be used to explain forward prob-

lems FW⟨c,X⟩ that are constraint programs with linear objectives and feasible sets that can be

defined with linear constraints.1 The first step, solving FW⟨c,Xψ⟩, is straightforward, since it sim-

ply requires solving the initial constraint program FW⟨c,X⟩ plus the foil assignment constraints.

However, for the second step, a method needs to be found to solve inverse optimization problems

IO⟨c,D, xd, X⟩ when the underlying forward problem is a constraint program. No such approaches

1The requirement that the constraint set is linear is in place to guarantee a finite number of extreme points, which
is a condition for the finite termination of InvLP-MILP (Algorithm 2.1) [10], the algorithm that forms the basis of
the inverse optimization methods in this chapter.

CHAPTER 5. MULTIVARIATE EXPLANATIONS UNDER PARTIAL ASSIGNMENT RESTRICTIONS 56

are available in the literature, motivating the development of inverse CP.

An inverse CP approach can be created by modifying Wang’s [10] cutting plane algorithm for

inverse MILP, InvLP-MILP (Algorithm 2.1), which iteratively solves an LP master problemMPLP

(2.13) - (2.16) and a MILP subproblem SPMILP⟨d,X⟩ (2.12). Specifically, Wang’s algorithm can

be used directly if the master problem and subproblem are reformulated as constraint programs.

5.3.1 Scope

Before modifying InvLP-MILP to incorporate CP, the scope of the forward problems to be studied is

narrowed slightly. Due to the discrete nature of CP, in this chapter, it is assumed that the objective

parameters are integer, c, d ∈ Nn0 . To compare CP and MILP explanation algorithms, a version

of InvLP-MILP is defined with discrete objective parameters; the integrality of these parameters

is enforced by constraint (5.5). Additionally, most constraint programs involve finite domains and

therefore have bounded objectives. This chapter assumes that the forward problems are of this type

and thus the duality constraints preventing unbounded objectives (2.14) inMPLP can be ignored.

Section 5.4 will show that the problems used for the experiments in this chapter indeed have finite

domains. Let the master problem with integer decision variables and no duality constraints be called

MPMILP , given by

min
g,h

g + h (5.3)

(c− g + h)Txd ≤ (c− g + h)Tx0 ∀x0 ∈ S0 (5.4)

g, h ∈ Nn0 , (c− g + h) ∈ D. (5.5)

The above master problem can be solved as a MILP, so the variant of InvLP-MILP whereMPLP

is replaced withMPMILP will be called InvMILP-MILP. Next, InvMILP-MILP is modified to use

CP, establishing a method to solve inverse constraint programs using both pure inverse CP and two

inverse MILP-CP hybrids.

5.3.2 Pure Inverse CP

Letting MPMILP and SPMILP⟨d,X⟩ expressed as constraint programs be called MPCP and

SPCP⟨d,X⟩, respectively, the pure inverse CP algorithm InvCP-CP (Definition 5.2) uses the cutting

plane approach of InvLP-MILP to iteratively solveMPCP and SPCP⟨d,X⟩.

CHAPTER 5. MULTIVARIATE EXPLANATIONS UNDER PARTIAL ASSIGNMENT RESTRICTIONS 57

Definition 5.2. (InvCP-CP). Follow steps 1-3 in InvLP-MILP (Algorithm 2.1) using CP to solve

MPCP and SPCP instead of using LP and MILP to solveMPMILP and SPMILP , respectively.

5.3.3 Hybrid Inverse CP

Since the master problem (5.3) - (5.5) can be expressed using either MILP or CP, an inverse MILP-

CP hybrid, called InvMILP-CP , can be created by following the steps of InvLP-MILP and using

MILP to solve MPMILP and CP to solve SPCP⟨d,X⟩. This hybrid takes advantage of MILP

algorithms being well suited to problems with simple linear structures such as (5.3) - (5.5), while

allowing the forward (sub) problem to be expressed and solved with CP.

A second hybrid is motivated by the fact that the forward problems in this chapter’s experiments

can be formulated as both MILPs and constraint programs, allowing SPMILP⟨d,X⟩ and SPCP⟨d,X⟩

to be interchangeable. When this is the case, a second hybrid, InvCP-MILP , can be defined, which

follows the steps of InvLP-MILP to solveMPCP using CP and SPMILP⟨d,X⟩ using MILP.

5.3.4 Algorithm Summary

Four inverse algorithms have been defined, which can be used interchangeably for inverse problems

in which the master problem and subproblem can be formulated with both CP and MILP:

• Pure inverse MILP, InvMILP-MILP

• Pure inverse CP, InvCP-CP

• Two hybrids, InvMILP-CP and InvCP-MILP .

Additionally, in the experiments in Section 5.6, the addition of the early stopping criteria (ESC) [85]

defined in Algorithm 2.2 will be evaluated for the algorithms using MILP master problems. These

algorithms will be denoted InvMILP-MILP(ESC) and InvMILP-CP(ESC) respectively.

5.4 Models

The two-step PA-NCE solution approach is numerically evaluated for two forward problems: the 0-1

knapsack problem (KP, Example 4.2) and single machine scheduling with release dates, 1|rj |
∑
wjCj .

The KP was selected because it is NP-complete [95], has a simple structure, and is easy to understand.

The scheduling problem was selected because CP often performs well in scheduling, matching a

potential use case for CP-based explanation techniques (i.e., explainable scheduling). It is also

CHAPTER 5. MULTIVARIATE EXPLANATIONS UNDER PARTIAL ASSIGNMENT RESTRICTIONS 58

a relatively simple, though strongly NP-Hard [97], scheduling problem. As shown below, both

problems can be represented as both MILPs and constraint programs.

5.4.1 0-1 Knapsack Problem

The KP is defined in Example 4.2.

MILP Model

Let x ∈ {0, 1}n be a decision vector where xi = 1 if item i ∈ {1, ..., n} is included in the knapsack

and 0 otherwise. The MILP model is

min
x
{cTx : wTx ≤W,x ∈ {0, 1}n}. (5.6)

CP Model

The KP CP model uses a packing global constraint, specifically binPackingCapa [98]. The first

argument of this constraint is a set of bins, with each bin ⟨l,Wl⟩ associated with an index l ∈ N0 and

a capacity Wl ∈ N. The second argument is a set of items, with each item ⟨xi, wi⟩ corresponding

to decision variable xi ∈ N0 identifying which container the item is placed in and an item weight

wi ∈ N. The constraint ensures that all items are placed in a container such that the sum of item

weights in any container does not exceed its capacity. The CP model for KP is

max c · x (5.7)

s.t. binPackingCapa({⟨0,∞⟩, ⟨1,W ⟩}, {⟨xi, wi⟩|i ∈ {1, ..., n}}) (5.8)

x ∈ {0, 1}n. (5.9)

The choice of whether to place an item in container 1 or container 0 is equivalent to the decision of

including or excluding that item in the knapsack, respectively.

5.4.2 Single Machine Scheduling with Release Dates, 1|rj|
∑

wjCj

In the 1|rj |
∑
wjCj problem, there are n ∈ N jobs, with each job i ∈ {1, ..., n} having a processing

time qi ∈ N, a weight2 ci ∈ N, and a release date ri ∈ N. The objective is to minimize the weighted

2This problem is typically defined with w representing the job weights. To keep notation consistent, w is replaced
with c, though the problem will be referred to by its typical name, 1|rj |

∑
wjCj .

CHAPTER 5. MULTIVARIATE EXPLANATIONS UNDER PARTIAL ASSIGNMENT RESTRICTIONS 59

sum of completion times of all jobs given that no two jobs can be processed at the same time, no

jobs can start before their release dates, and no jobs can be interrupted (no preemption).

Time-Indexed MIP Model

Though several MIP formulations exist for 1|rj |
∑
wjCj , a time-indexed formulation is used due to

its strong performance over a variety of instances [99]. Let xi,t ∈ {0, 1} be a binary decision variable

which is 1 if job i is scheduled to start at time t, and 0 otherwise. Given a time horizon T , which is

an upper bound on latest completion time of any job (a formula for T is given in Section 5.5), the

model is

min

n∑
i=1

T−qi∑
t=0

ci(t+ qi)xi,t (5.10)

s.t.

T−qi∑
t=0

xi,t = 1 ∀ i ∈ {1, ..., n} (5.11)

n∑
i=1

t∑
s=max(0,t−qi+1)

xi,s ≤ 1 ∀ t = 0, 1, ..., T − 1 (5.12)

ri−1∑
t=0

xi,t = 0 ∀ i ∈ {1, ..., n} (5.13)

xi,t ∈ {0, 1} ∀ i ∈ {1, ..., n}, ∀ t ∈ 1, ..., T − 1. (5.14)

Constraints (5.11) force each job to start exactly once. Constraints (5.12) ensure no two jobs are

processed at the same time, and constraints (5.13) enforce the release dates.

CP Model

To model this scheduling problem with CP, the jobs i ∈ {1, ..., n} are represented with a set of

interval variables {Ii} ∀ i ∈ {1, ..., n}, defined with the notation intervalV ar(qi, [si, ei]), where the

possible values of Ii are the intervals {[si, ei) : si, ei ∈ N0, si + qi = ei}. The model is

min

n∑
i=1

ciei (5.15)

s.t. NoOverlap({I1, ..., In}) ∀ i ∈ {1, ..., n} (5.16)

si ≥ ri ∀ i ∈ {1, ..., n} (5.17)

Ii = intervalV ar(qi, [si, ei]) ∀ i ∈ {1, ..., n}. (5.18)

CHAPTER 5. MULTIVARIATE EXPLANATIONS UNDER PARTIAL ASSIGNMENT RESTRICTIONS 60

Constraint (5.16) is the NoOverlap global constraint that forces jobs to be processed one at a time.

Constraints (5.17) ensure that jobs do not start before they are released.

5.4.3 Bounded Objectives

The objectives of both the knapsack and scheduling problems are guaranteed to be bounded for

any feasible parameter vector d. The domain of the KP decision vector x ∈ {0, 1}n is a finite set

and guarantees the objective function is bounded from above by
∑n
i=1 ci and from below by 0.

For 1|rj |
∑
wjCj , it is well known that a lower bound on the objective is given by the solution to

the problem without release dates, 1||
∑
wjCj [100], for which the shortest processing time (SPT)

dispatch heuristic gives an optimal solution. An upper bound on the 1|rj |
∑
wjCj objective is given

by
∑n
i=1 Tci. Since both objectives are guaranteed to remain bounded for any feasible value of d, it

is safe to remove the duality constraints (2.14) from the master problem when constructing inverse

problems.

5.5 Experimental Setup

The goal of the following experiments is to evaluate the PA-NCE based explanation approach for

the two combinatorial optimzation problems described above using the two-step solution method

described in Section 5.2. The experiments involve solving an initial forward problem, generating a

contrastive question, and solving the resulting PA-NCE, focusing on the latter.

5.5.1 Problem Instance Generation

To generate PA-NCE instances, a forward problem instance is created and solved, and then a set of

foil constraints is generated to represent a contrastive question.

KP Instances

The KP problem instance sizes tested were n ∈ {20, 30, 40}, the profit ci and weight wi values were

both drawn independently from the random uniform distribution [1, R] with R = 1000, and the

knapsack capacity was W = max{⌊P
∑n
i=1 wi⌋, R}, with P = 0.5. Each instance KP⟨c,X⟩ was

solved to produce an optimal solution, x∗.

To generate the contrastive question, m ∈ {5, 10, 15} items were randomly selected from {1, ..., n}

to create the set M. Each proposed assignment xpi , i ∈ M, was set to the opposite value of x∗i ,

CHAPTER 5. MULTIVARIATE EXPLANATIONS UNDER PARTIAL ASSIGNMENT RESTRICTIONS 61

that is, 0 if x∗i = 1 and 1 if x∗i = 0. The foil set Xψ was defined by adding the assignment

constraints xi = xpi , ∀i ∈ M, to the constraints defining X, and restrictions on changes to the

objective parameters were expressed with D = {d ∈ Nn0 : di = ci ∀ i ∈MC}. There were 20 problem

instances tested for each combination of (n,m). This instance generation procedure sometimes

resulted in infeasible PA-NCEs if the item assignments in M forced the knapsack to exceed its

capacity. In these cases, a new random set M was generated until a non-empty foil set Xψ was

found, but these cases were rare.

Single Machine Scheduling Instances

For the 1|rj |
∑
wjCj problem, forward instances of size n = {5, 10, 15} were generated with the

random uniform distributions qi ∈ [10, 100], ci ∈ [1, 10], and ri ∈ [0, ⌊αQ⌋], where α = 0.4 and

Q =
∑n
i=1 qi. The time horizon T was calculated as T = ⌊αQ⌋ + Q. Twenty instances were

generated for each value of (n,m), with values of m given in Section 5.6.

Generating a feasible set of foil constraints to assign start times to the jobs i ∈ M was non-

trivial for this problem due to the possibility of infeasible PA-NCEs. In an optimal solution for

a given complete sequence of jobs, all jobs are left-shifted subject to the release date constraints.

Therefore, an arbitrarily chosen start time for a job will not form part of an optimal solution unless

it happens to be equal to the job’s release date or to the completion time of another job in some

optimal sequence. Following the simple query generation approach used with the knapsack problem

is therefore likely to result in many infeasible explanation problems.

Thus, to generate instances more likely to have feasible explanations, a different approach is

followed, although the infeasibility of some PA-NCEs remains an issue (see Section 5.6.4). A random

permutation (ai)i∈M is created for a randomly chosen subset of m jobs,M. The original problem,

with added constraints requiring the jobs in M to follow the permutation (ai)i∈M, is then solved

to optimality. Finally, the job completion times for the contrastive question, xpi , i ∈ M, are set to

be the completion times from this solution.

Specifically, the constraints added to the CP forward problem were

endBeforeStart(Ij , Ii) ∀ i, j ∈M, ai > aj , (5.19)

which forces the end ej of interval variable Ij to be less than or equal to the start si of interval

CHAPTER 5. MULTIVARIATE EXPLANATIONS UNDER PARTIAL ASSIGNMENT RESTRICTIONS 62

variable Ii, ej ≤ si. For the MILP problem, the constraints added were

T−qj∑
t=0

txj,t <

T−qi∑
t=0

txi,t ∀ i, j ∈M, ai > aj . (5.20)

After obtaining the values xpi , i ∈ M, needed to define the foil set, the set of valid counterfactual

parameters is defined as D = {d ∈ Nn : di = ci ∀ i ∈MC}, giving a complete PA-NCE definition.

5.5.2 Solving PA-NCEs

The PA-NCE instances, PA−NCE⟨c,D, ψ, x∗, X⟩, are solved using the two-step approach from

Section 5.2: first finding the optimal foil xψ,∗ by solving FW⟨c,Xψ⟩, and then solving the inverse

problem problem IO⟨c,D, xψ,∗, X⟩, using xψ,∗ as the target solution.

Since the forward problems can be solved with both CP and MILP, and there are several inverse

algorithms available in Section 5.3, there are multiple ways to solve each PA-NCE instance. Two

groups of two-step PA-NCE algorithms were tested for each instance: in the first group, all forward

problems (including the subproblem in the inverse algorithms) were solved with CP, and in the

second group, all forward problems were solved with MILP. For each of these two algorithm groups,

three inverse algorithms were tested:

1. Using CP for the master problem

2. Using MILP for the master problem

3. Using MILP for the master problem and applying the ESC (Algorithm 2.2) [85] to the sub-

problem.

The two-step PA-NCE are named by first specifying the technique (CP or MIP) used to solve

the optimal foil problem FW⟨c,Xψ⟩, and then specifying the inverse algorithm. For instance,

CP/ InvMILP-CP is the algorithm that uses CP to find the optimal foil (step one) and InvMILP-CP

to solve the inverse problem (step two). Six two-step PA-NCE algorithms are tested in total for each

instance. In all PA-NCE algorithms, the optimal forward solution x∗ from the instance generation

stage is used in the inverse algorithm to initialize the set of known solutions as S0 = {x∗}.

Finally, the performance of CP and MILP for solving the initial forward problem FW⟨c,X⟩ is

also tracked. While this computation is part of instance generation and not explanation generation,

it is a useful proxy for the solver performance in the subproblem of the inverse algorithms, SP⟨d,X⟩,

since the subproblem differs from the initial problem only in its objective.

CHAPTER 5. MULTIVARIATE EXPLANATIONS UNDER PARTIAL ASSIGNMENT RESTRICTIONS 63

(a) KP (b) Single Machine Scheduling

Figure 5.1: PA-NCE Mean Solve Times.

(a) KP (b) Single Machine Scheduling

Figure 5.2: Mean Solve Times for Initial Forward and Optimal Foil Problems.

5.5.3 Computational Details

All two-stage algorithms were run for a global time limit tmax of 300 seconds (for both stages

together). If a PA-NCE instance was not solved within the global time limit, then tmax was recorded

as the solve time. For all inverse algorithms that used the ESC (see Section 2.6.2), γ was set to 1

second. The MIP solver used was ILOG CPLEX V12.10 and the CP solver was ILOG CPOptimizer

V12.10. Experiments were run on a single core of a 2.5 GHz Intel Core i7-6500U CPU and all

reported times are CPU times.

CHAPTER 5. MULTIVARIATE EXPLANATIONS UNDER PARTIAL ASSIGNMENT RESTRICTIONS 64

5.6 Experimental Results

Mean solution times are shown in Figure 5.1 for the two-stage PA-NCE algorithms and in Figure

5.2 for the optimal foil problem FW⟨c,Xψ⟩ (stage 1) and the initial forward problem FW⟨c,X⟩.

Box plots illustrating the distributions of PA-NCE solution times are shown in Figures 5.3 and 5.4.

5.6.1 Strongest PA-NCE Algorithms

Knapsack Problem For PA-NCEs based on the KP, the MILP/ InvMILP-MILP and

MILP/ InvMILP-MILP(ESC) algorithms are by far the most effective. Their efficiency is driven by

strong MILP performance on the forward problem, demonstrated in Figure 5.2a for the KP⟨c,X⟩,

which is not surprising since MILP solvers are typically very good for knapsack constraints.

Scheduling Problem For PA-NCEs based on the single-machine scheduling problem, the best

performing algorithm overall is CP/ InvMILP-CP(ESC). For instances with n ≤ 10, the success

of this algorithm is driven by the superiority of CP over MILP for the forward problem (Figure

5.2b). For instances with n = 15, though MILP is more efficient than CP for the forward problem,

CP/ InvMILP-CP(ESC) remains the best performing PA-NCE algorithm due to the beneficial effects

of the ESC for InvMILP-CP (Figure 5.1b).

5.6.2 Early Stopping Criteria

For both problems, the early stopping criteria was clearly beneficial for InvMILP-CP , when n was

sufficiently large. It had no effect for problems with small n since the time to solve the forward

problem was less than γ. Interestingly, the ESC did not produce improvements the forward MILP

based algorithm, InvMILP-MILP , even though Bodur et al. [85] showed that the ESC was beneficial

for InvLP-MILP . One possible reason for this disparity is that the inverse problem instances studied

in this chapter may be too small for the ESC to have an effect on inverse algorithms that use MILP for

forward problems. Regardless, Figure 5.1 demonstrates that the ESC may effect inverse algorithms

differently depending on whether the subproblems are solved with CP or MILP. One possible reason

why the ESC is more beneficial to InvMILP-CP than InvMILP-MILP in this chapter’s experiments

may be that CP algorithms encounter suboptimal feasible solutions more frequently than MILP,

resulting in the ESC being triggered more frequently with CP. Additionally, after an optimal solution

has been found, CP often requires much longer to prove the optimality of the solution than MILP.

Therefore, avoiding the proof stage with the ESC may be more beneficial for CP than for MILP.

CHAPTER 5. MULTIVARIATE EXPLANATIONS UNDER PARTIAL ASSIGNMENT RESTRICTIONS 65

(a) n = 20

(b) n = 30

(c) n = 40

Figure 5.3: KP PA-NCE Solve Time Distributions

CHAPTER 5. MULTIVARIATE EXPLANATIONS UNDER PARTIAL ASSIGNMENT RESTRICTIONS 66

(a) n = 5

(b) n = 10

(c) n = 15

Figure 5.4: Single Machine Scheduling PA-NCE Solve Time Distributions

CHAPTER 5. MULTIVARIATE EXPLANATIONS UNDER PARTIAL ASSIGNMENT RESTRICTIONS 67

Table 5.1: Number of KP PA-NCE Solutions Optimal (O) and Timeout (T). Algorithm names are
split into the first (optimal foil) and second (inverse) stage components.

Foil CP MILP
Alg

Inv CP-CP MILP-CP MILP-CP CP-MILP MILP-MILP MILP-MILP
Alg (ESC) (ESC)

n m O T O T O T O T O T O T

20 5 1 19 20 0 20 0 1 19 20 0 20 0
10 0 20 20 0 20 0 0 20 20 0 20 0
15 0 20 20 0 20 0 0 20 20 0 20 0

30 5 0 20 20 0 20 0 0 20 20 0 20 0
10 0 20 19 1 20 0 0 20 20 0 20 0
15 0 20 14 6 20 0 0 20 20 0 20 0

40 5 3 17 11 9 18 2 3 17 20 0 20 0
10 0 20 1 19 15 5 0 20 20 0 20 0
15 0 20 2 18 10 10 0 20 20 0 20 0

5.6.3 CP Master Problems

CP performs drastically worse than MILP when it is used to solve the master problem: CP/ InvCP-

CP and MILP/ InvCP-MILP both reach the time limit on most instances (Figure 5.2a and 5.2b).

MILP likely has a considerable advantage over CP because the master problem has a simple linear

structure for which MILP is very well suited. However, in future work, CP may be useful in the

master problem to model more complex explanation problems, for instance by expressing more

complicated constraints on the allowable objective parameters in D.

5.6.4 Instance Breakdown

Tables 5.1 and 5.2 provide more detailed data on the performance of the two-stage algorithms in

terms of the number of instances solved optimally, proved infeasible, and timed-out. Unfortunately,

there were a large number of infeasible PA-NCEs for the larger scheduling instances, even though the

instance generation approach (Section 5.5.1) aimed at reducing this number. This result warrants

more investigation into methods for dealing with infeasible NCE instances, a topic discussed further

in Chapter 6. In contrast to single machine scheduling, no PA-NCE instances were infeasible for

KP.

5.7 Conclusion

This chapter developed solution approaches to a subset of NCEs in which the contrastive question

describes alternative value assignments to a subset of decision variables. The resulting counterfactual

explanations are valid when the explainee is interested specifically in possible changes to the objective

CHAPTER 5. MULTIVARIATE EXPLANATIONS UNDER PARTIAL ASSIGNMENT RESTRICTIONS 68

Table 5.2: Number of 1|rj |
∑
wjCj PA-NCE Solutions: Optimal (O), Infeasible (I), Timeout (T).

Algorithm names are split into the first (optimal foil) and second (inverse) stage components.

Foil CP MILP
Alg

Inv CP-CP MILP-CP MILP-CP CP-MILP MILP-MILP MILP-MILP
Alg (ESC) (ESC)

n m O I T O I T O I T O I T O I T O I T

5 2 19 0 1 19 1 0 19 1 0 19 0 1 19 1 0 19 1 0
3 12 0 8 18 2 0 18 2 0 12 0 8 18 2 0 18 2 0
4 9 0 11 15 5 0 15 5 0 9 0 11 15 5 0 15 5 0

10 4 5 0 15 12 8 0 12 8 0 5 0 15 12 8 0 12 8 0
6 0 0 20 5 15 0 5 15 0 0 0 20 5 15 0 5 15 0
8 0 0 20 4 16 0 4 16 0 0 0 20 4 16 0 4 16 0

15 4 3 0 17 6 8 6 7 12 1 4 0 16 8 12 0 8 12 0
6 0 0 20 0 11 9 3 15 2 0 0 20 4 15 1 5 14 1
8 0 0 20 1 12 7 1 18 1 0 0 20 2 16 2 2 17 1

parameters corresponding to that variable subset. It was shown that for these explanation problems,

a single foil is guaranteed to be optimal with respect to all other foils for all values of d ∈ D, alleviating

the difficulties in needing to track multiple foils. This observation led to a two-step method to

generate explanations that involved first solving the forward problem FW⟨c,Xψ⟩ and then using

the result as the target solution in an inverse optimization problem. The case of explaining forward

constraint programs was also considered, leading to the development of inverse CP for the second

stage of the solution approach. Wang’s cutting plane algorithm, InvLP-MILP [10], was modified for

this purpose, resulting in a pure inverse CP algorithm and two inverse MILP-CP hybrids. Finally,

numerical experiments showed that explanations can be generated in a reasonable amount of time,

and that an inverse MILP-CP hybrid can outperform alternatives when CP is state-of-the-art for

the underlying forward problem.

Chapter 6

Solving General Nearest

Counterfactual Explanation

Problems

6.1 Introduction

In this chapter, an algorithm is presented for solving Nearest Counterfactual Explanation (NCE)

that can explain forward problems with linear objectives and constraints. The restrictions of the

previous two chapters are lifted: specifically, no objective parameters are required to remain fixed at

their initial values in an explanation, and the foil constraints are no longer required to take the form

of either a partial assignment (Chapter 5) or a linear constraint on a single variable (Chapter 4). In

this chapter, though the constraints defining X must be linear, the foil constraints can take the form

of any linear or quadratic constraint set. The new algorithm further modifies Wang’s cutting plane

method [10], introducing quadratic terms into the constraints of the master problem (2.13) - (2.16)

to address the possibility of non-singleton foil sets. To implement this new algorithm, this chapter

takes advantage of recent advances in optimization solvers: specifically a new feature in Gurobi 9.0+

which allows non-convex quadratic expressions to be modeled directly. The new algorithm is tested

on two forward problems, the 0-1 KP and single machine scheduling problems. It is demonstrated

that, if the foil set is non-empty, the sufficient conditions for the feasibility of an NCE derived in

Chapter 3 can be applied effectively.

69

CHAPTER 6. SOLVING GENERAL NEAREST COUNTERFACTUAL EXPLANATION PROBLEMS 70

6.2 Solution Methodology

This section presents an algorithm, NCXplain (for Nearest Counterfactual eXplanation), Algorithm

6.1, for solving NCEs where the forward problems have linear objectives and constraints and the foil

constraints are either linear or quadratic. It is developed by modifying the cutting plane approach

of InvLP-MILP (Algorithm 2.1) [10], specifically, by modifying the master problem (2.13) - (2.16)

and the condition used for cut generation and termination. While this chapter focuses on mixed-

integer linear programming (MILP) forward problems, a near-term extension is to consider cases

when the forward problems are constraint programs. Thus, as in Chapter 5, it is assumed that

forward problems have finite feasible sets, meaning the dual constraints (2.14) are not necessary

because there is no possibility of unbounded objectives (see Section 5.3.1).

6.2.1 The NCXplain Algorithm

Letting S be the set of all extreme points of conv(X), and decision vector x ∈ Xψ be a foil, the

NCE⟨c,D, ψ, x∗, X⟩ (3.1)-(3.2) can be expressed as the quadratic problem:

min
d,x
||d− c||1 (6.1)

s.t. d · x ≤ d · x0 ∀ x0 ∈ S (6.2)

x ∈ Xψ (6.3)

d ∈ D. (6.4)

Constraints (6.2) force a foil to give a forward objective no worse than any extreme point of conv(X),

and have a left-hand side which is bilinear (thus non-convex) in variables d and x.

As in InvLP-MILP , the objective can be linearized using d = c− g + h, where g, h ∈ Rn. Then,

relaxing constraints (6.2) by replacing S with a set of known extreme points S0 ⊆ S gives the master

problem for NCXplain, denotedMPNCE :

min
g,h,x

g + h (6.5)

s.t. (c− g + h) · x ≤ (c− g + h) · x0 ∀ x0 ∈ S0 (6.6)

x ∈ Xψ (6.7)

(c− g + h) ∈ D. (6.8)

CHAPTER 6. SOLVING GENERAL NEAREST COUNTERFACTUAL EXPLANATION PROBLEMS 71

Observe that since S0 ⊆ S, theMPNCE is either a relaxation of the NCE (6.1)-(6.4) (if S0 ⊂ S) or

equivalent to the NCE (if S0 = S). In either case, if a solution (d∗, x∗), where d∗ = c− g∗ + h∗, is

optimal toMPNCE and d∗ satisfies constraint (3.2),

min
x∈Xψ

d∗ · x = min
x∈X

d∗ · x

(i.e. d∗ is feasible to the NCE), then d∗ must be optimal to the NCE. Furthermore, if MPNCE is

found to be infeasible, the NCE must also be infeasible.

Given a solution (di, xi) which is optimal toMPNCE at iteration i of NCXplain, whether di satis-

fies (3.2) can be checked using the optimal solution x0,i to the subproblem SP⟨di, X⟩ = FW⟨di, X⟩.

If di is not shown to be feasible to the NCE at iteration i, then x0,i is added to S0, producing a new

cut in the master problem.

The complete NCXplain algorithm is given by Algorithm 6.1. Both the master problem and the

subproblem can be expressed directly in Gurboi 9.0+ due to recent advances which allow bilinear

constraints such as (6.6) to be modelled directly.

Algorithm 6.1: NCXplain.

Inputs : NCE⟨c,D, ψ, x∗, X⟩
Output : d∗

Step 1 : I n i t i a l i z e S0 ← x∗ .
Step 2 : So lve MPNCE .

I f i n f e a s i b l e :
Return INFEASIBLE .

E l se :
Get s o l u t i o n (di, xi) , with di = (c− gi + hi) .

Step 3 : So lve SP ⟨di, X⟩ to get s o l u t i o n x0,i .
I f di · x0,i = di · xi (Case 1) :

Stop and return d∗ = di .
E l se i f di · x0,i < di · xi and x0,i ∈ Xψ (Case 2) :

Stop and return d∗ = di .
E l se (Case 3) :

Update S0 = S0 ∪ {x0,i} and return to Step 2 .

Theorem 6.1. Given an instance of NCE⟨c,D, ψ, x∗, X⟩, the NCXplain algorithm will, in a finite

number of iterations, either solve the NCE to optimality or prove the NCE is infeasible.

Proof. (Theorem 6.1). MPNCE is a relaxation of the NCE (6.1)-(6.4) when S0 ⊂ S and equivalent

to it when S0 = S. Thus, in a given iteration ifMPNCE is infeasible, then the NCE must also be

infeasible, and if a solution d∗ is optimal toMPNCE and feasible to the NCE, then d∗ must also be

optimal to the NCE.

CHAPTER 6. SOLVING GENERAL NEAREST COUNTERFACTUAL EXPLANATION PROBLEMS 72

Each iteration of the subproblem SP ⟨di, X⟩ (Step 3) either terminates the algorithm or adds

a new extreme point to S0, and since the set S of extreme points of conv(X) is finite, an iteration

ofMPNCE must eventually be reached when S0 = S if the algorithm does not terminate in a prior

iteration. To prove Theorem 6.1, it remains to be shown that:

1. NCXplain only terminates in Step 3 if di from the preceding MPNCE solution, (di, xi), is

feasible to the NCE.

2. If an iteration of MPNCE is reached where S0 = S and the MPNCE is not infeasible, then

NCXplain will terminate in the next iteration of Step 3.

To prove (1), consider the stopping conditions in Step 3, given anMPNCE solution (di, xi) and

an optimal solution x0,i to SP ⟨di, X⟩. If di · x0,i = di · xi (Case 1), then the foil xi is optimal to

FW⟨di, X⟩, so di is feasible to the NCE. Otherwise, if di ·x0,i < di ·xi and x0,i ∈ Xψ (Case 2), then

x0,i, the optimal solution to FW⟨di, X⟩, satisfies the foil constraints and di is feasible to the NCE.

To prove (2), observe that an optimal solution x0,i to the subproblem SP ⟨di, X⟩ for any di ∈ D

must be an extreme point of conv(X) and thus a member of S. Therefore, if S0 = S in an iteration of

MPNCE , the solution (di, xi) must satisfy di ·xi ≤ di ·x0,i. Since xi cannot give a better subproblem

objective than x0,i, then di · x0,i = di · xi and NCXplain must terminate.

Because the number of extreme points of conv(X) must be finite to guarantee the finite termina-

tion of NCXplain, the scope of this chapter is limited to forward problems with linear constraints.

However, the foil constraints which define Xψ can be any set of linear or quadratic constraints.

6.3 Experimental Method

Similarly to Chapter 5, experiments testing NCXplain are performed in three steps, focusing on the

last:

1. Solving an instance of a forward problem FW⟨c,X⟩ to get x∗.

2. Simulating a contrastive question “Why x∗ and not an x ∈ Xψ?” to create an instance of an

NCE⟨c,D, ψ, x∗, X⟩.

3. Solving NCE⟨c,D, ψ, x∗, X⟩ with NCXplain.

CHAPTER 6. SOLVING GENERAL NEAREST COUNTERFACTUAL EXPLANATION PROBLEMS 73

6.3.1 Forward Problems

The same two forward problems are used for experiments as in Chapter 5: the 0-1 Knapsack Problem

(KP, Example 4.2) and single machine scheduling with release dates, 1|rj |
∑
wjCj (Section 5.4.2).

The MILP formulations (5.6) and (5.10) - (5.14) were used to represent the two forward problems,

respectively.1

6.3.2 Contrastive Questions

Knapsack Problem

For the KP experiments, given a subset of knapsack items Sψ ⊂ {1, ..., n}, Sψ ̸= ∅, the contrastive

question asks why some minimal number of items from Sψ were not included in the knapsack.

Specifically, given a parameter βψ ∈ (0, 1], and letting m = |Sψ|, the contrastive question is “Why

were at least βψm items from Sψ not included in the knapsack?”. The foil set corresponding to this

question is

Xψ = {x ∈ X :
∑
j∈Sψ

xj ≥ βψm}. (6.9)

Recall from Section 3.2 that Xψ must be defined so that x∗ /∈ Xψ.

Example 6.1. Consider a KP being solved to determine which people will receive access to a

limited service, where wj and cj , respectively, represent the cost of providing the service and the

expected benefit for person j. Letting Sψ represent a group of 100 people that has been identified

as disadvantaged (m = 100), a contrastive question of the form above with βψ = 0.75 is “Why were

at least 75 people from the disadvantaged group not selected to receive the service?”. The nearest

counterfactual explanation would then represent the minimal total change to the profits of all the

people in the system so that the optimal solution lies in Xψ.

Scheduling Problem

For the scheduling problem, the constrastive question asks why m jobs M ⊆ {1, ..., n} were not

scheduled earlier. Specifically, letting t∗ ∈ [0, T]n represent the start times in the initial solution x∗,

a vector tψ ∈ [0, T]m was created with tψj representing the maximal counterfactual start time of job

j ∈ M such that rj ≤ tψj < t∗Mj
. Then, the contrastive question asked “Why was each job j ∈ M

1See Chapter 7 for comments on the possibility of using constraint programming formulations in future work.

CHAPTER 6. SOLVING GENERAL NEAREST COUNTERFACTUAL EXPLANATION PROBLEMS 74

not completed by (tψj + qj), respectively?”. This question is represented with the foil set

Xψ = {x ∈ X :

T−qj∑
t=0

txj,t ≤ tψj ∀ j ∈M}. (6.10)

Example 6.2. Consider the 1|rj |
∑
wjCj problem being solved to schedule jobs J = {1, ..., 10} on

a machine at a factory, with c ∈ [1, 10]10 representing importance levels assigned to the jobs. In the

initial completion times (t∗ + q), measured in hours after the schedule starts, jobs M = {2, 3} are

scheduled to complete at times [100, 200], respectively. A manager asks, “Why not complete job 2

in under 50 hours and job 3 in under 100 hours?”. This question is represented with a foil set of the

form (6.10) with tψ2 = 50 − q2, tψ3 = 100 − q3. Assuming the manager’s query results in a feasible

NCE,2 the explanation reveals the minimal modifications to the job importance levels that would

result in job 2 completing in under 50 hours and job 3 completing in under 100 hours.

6.3.3 Counterfactual Objectives

The only parameter in the NCE⟨c,D, ψ, x∗, X⟩ that remains to be defined is the set of feasible

counterfactual objectives D. This set is defined as

D = {d ∈ Nn0 : 0 ≤ di ≤ cUBi ∀i ∈ {1, ..., n}}, (6.11)

where cUBi ∈ N is the maximum value possible for parameter ci in a forward problem instance (see

Section 6.4.1 for ci value distributions).

6.3.4 NCE Feasibility

Sufficient conditions for the feasibility of NCE instances are now described. In contrast to Chapter

5, it is possible to use these conditions to prevent NCE instances from being infeasible. The first

condition is that Xψ ̸= ∅. That is, the explainee must describe a set of alternative solutions that

includes at least one feasible solution. Next, the sufficient conditions for NCE feasibility described

by Theorem 3.2 (repeated below) are revisited.

2Sections 6.3.4 and 6.4 discuss how infeasible NCE instances can be avoided.

CHAPTER 6. SOLVING GENERAL NEAREST COUNTERFACTUAL EXPLANATION PROBLEMS 75

Theorem 3.2. AnNCE⟨c,D, ψ, x∗, X⟩ has a non-trivial feasible solution if both following conditions

are met:

1. For all i ∈ {1, ..., n}, let xi,min = minx{xi : x ∈ X} and xi,max = maxx{xi : x ∈ X}.

• If the forward objective is minimization (i.e. the NCE is an NCEmin), then the foil set

Xψ must include at least one point x̃ψ such that ∃ j ∈ {1, ..., n} for which x̃ψj = xj,min.

• If the forward objective is maximization (i.e. the NCE is an NCEmax), the foil set Xψ

must include at least one point x̃ψ such that ∃ j ∈ {1, ..., n} for which x̃ψj = xj,max.

2. Dfj ⊆ D given

Dfj = {d ∈ Rn : 0 < dj ≤ dUBj , di = 0 ∀ i ̸= j},

where dUBj = maxd{dj : d ∈ D}.

If Xψ ̸= ∅, it is shown that any NCE in the knapsack and scheduling experiments will meet

the conditions in Theorem 3.2, and thus have a non-trivial feasible solution. Looking at the second

condition of Theorem 3.2, it is simple to see that Dfj ⊆ D for any j ∈ {1, ..., n} when D is given by

(6.11) and Dfj by (3.3). Thus, it remains to be shown that the first condition of the theorem is also

satisfied by the NCE described in Sections 6.3.1 - 6.3.3 with non-empty foil sets.

For an NCE based on a maximization forward objective such as the 0-1 KP objective, the first

condition of Theorem 3.2 requires that there exists a feasible foil x̃ψ with at least one component

x̃ψj equal to its maximal feasible value in X. In the 0-1 KP the maximal value of any variable is

1, and given the foil constraints in (6.9), any foil x ∈ Xψ must assign a value of 1 to at least one

component xj . Therefore, both conditions of Theorem 3.2 are satisfied by the KP based NCEs in

the experiments.

Similarly, for an NCE based on a minimization forward objective such as the 1|rj |
∑
wjCj ob-

jective, the first condition of Theorem 3.2 is that there exists a feasible foil x̃ψ with at least one

component x̃ψj equal to its minimal feasible value in X. For the scheduling problem, taking any

schedule x ∈ Xψ (6.10) and left-shifting it causes the first job in the schedule, which will be called

job j, to start at its release date rj . Since rj is the minimal value of xj for any schedule x ∈ X, the

scheduling based NCEs also satisfy both conditions of Theorem 3.2.

Intuitively, if d ∈ Dfj is a feasible NCE solution, then in the case of the 0-1 KP this d implies that

there is no benefit from including any items in the knapsack other than item j. Similarly, in the case

of the 1|rj |
∑
wjCj problem, such a d implies that there is no benefit from the earlier completion of

any jobs other than job j.

CHAPTER 6. SOLVING GENERAL NEAREST COUNTERFACTUAL EXPLANATION PROBLEMS 76

6.4 Experimental Data

This section describes instance generation details for the forward problem and NCE instances, as

well as computational details.

6.4.1 Forward Instances

Knapsack Problem

0-1 KP instances of sizes n ∈ {250, 500, 1000} were generated using the same distributions for

item profits, weights, and knapsack capacity as in Section 5.5.1. These instance sizes result in

[500, 1000, 2000] quadratic terms in constraints (6.6) ofMPNCE , respectively.
3

Scheduling Problem

Instances of the 1|rj |
∑
wjCj problem of sizes n ∈ {6, 9, 12} were generated using random uniform

distributions qi ∈ [1, 10], ci ∈ [1, 10], and ri ∈ [0, ⌊αQ⌋], where α = 0.3 and Q =
∑n
i=1 qi, and

the time horizon T was calculated as T = ⌊αQ⌋ + Q. It can be shown that the tested values of

n correspond to average values of approximately [225, 530, 965] binary decision variables in the

forward problem and [450, 1060, 1930] quadratic terms in constraints (6.6) inMPNCE ,
4 which are

similar values to those in the 0-1 KP experiments.

6.4.2 Contrastive Question Instances

The process for generating the contrastive questions is described below. After a question was gen-

erated, it was checked whether the resulting foil set contained at least one feasible solution. If the

foil set was found to be empty, the data was re-randomized until a non-empty foil set was found,

though such cases were rare.

Knapsack Problem

The contrastive questions for the 0-1 KP were generated with β = 0.75 by randomly selecting m

items to form the set Sψ, such that x∗ did not satisfy the foil constraint (6.9).

3There are two quadratic terms in constraints (6.6) for each variable xi: gixi and hixi.
4The MILP model for 1|rj |

∑
wjCj uses T − qi binary variables for each job i ∈ {1, ..., n}, and the average value

of T across all instances for a given n is approximately Tµ ≈ (1 + α)Qµ, where Qµ is the average sum of processing
times. Since the average processing time is pµ = 5.5, then Qµ = qµn = 5.5n, and Tµ ≈ (1.3)(5.5n) = 7.15n. Thus,
the average number of forward decision variables is nµ,DV ≈ n(Tµ − qµ) ≈ 7.15n2 − 5.5n.

CHAPTER 6. SOLVING GENERAL NEAREST COUNTERFACTUAL EXPLANATION PROBLEMS 77

(a) 0-1 KP (b) Single Machine Scheduling

Figure 6.1: Mean Solve Times for NCE and Forward Problems

Scheduling Problem

The contrastive questions for the 1|rj |
∑
wjCj problem were created by randomly selecting m jobs

to form the set M. For each job j ∈ M, the maximal counterfactual start time tψj used in (6.10)

was randomly selected from the interval [tψ,LBj , tψ,UBj], where

tψ,UBj = t∗ − 1,

tψ,LBj = ⌈rj + θ(t∗j − 1− rj)⌉,

and θ was a parameter set to 0.5.

6.4.3 Computational Details

Twenty instances were tested for each value of (n,m). All algorithms were implemented in Gurobi

9.5 and tested on a single core of a 2.6 GHz Intel Core i7-10750H CPU. A time limit of 30 minutes

was used for the NCE algorithm, and if an NCE instance was not solved before this time limit, its

runtime was recorded as 30 minutes. Thus, the aggregated NCE solution times should be interpreted

as lower bounds on the true solution times, unless all instances of a given size were solved by the

time limit, in which case the reported times are the true solution times.

CHAPTER 6. SOLVING GENERAL NEAREST COUNTERFACTUAL EXPLANATION PROBLEMS 78

(a) 0-1 KP (b) Single Machine Scheduling

Figure 6.2: NCE Solve Time Distributions

(a) 0-1 KP (b) Single Machine Scheduling

Figure 6.3: Number of NCE Instances Solved to Optimality

6.5 Results

Figure 6.1 illustrates the mean solution times for the NCE instances using NCXplain as well as the

mean MILP solution times for the forward problem instances being explained, and the distributions

of the NCE solution times are represented with box plots in Figure 6.2. Figure 6.3 shows the

number of NCE instances that were solved to optimality; if an instance was not solved to optimality,

it is because NCXplain reached the time limit. These two figures show that for forward instances

with approximately 500 binary decision variables or less (n ≤ 500 for KP, n ≤ 9 for Scheduling),5

most nearest counterfactual explanations could be found in under 30 minutes. These instances sizes

involve up to approximately 1000 quadratic terms in constraints (6.6) inMPNCE .

5Section 6.4.1 discusses the number of binary decision variables in the 1|rj |
∑

wjCj problem.

CHAPTER 6. SOLVING GENERAL NEAREST COUNTERFACTUAL EXPLANATION PROBLEMS 79

(a) 0-1 KP (b) Single Machine Scheduling

Figure 6.4: Cumulative Time in NCE Master Problem vs Subproblem

These results also show that contrastive questions which are fairly expressive can be addressed

effectively by NCXplain. For instance, in the 0-1 KP experiments that simulated the contrastive

question “Why were at least 75% of a custom set Sψ of 33 items not included?”, 88% of NCE

instances were solved to optimality within 30 minutes, and when the custom set included 100 items,

60% of NCE instances were solved optimally within 30 minutes. The use of NCXplain allows

contrastive questions to be considerably more expressive than the questions in Chapter 5 which

must be represented with partial assignments or in Chapter 4 which must be represented with a

single linear constraint.

Figure 6.4 breaks down the mean time to solve an NCE instance into the cumulative time in the

master problem (MPNCE) and the cumulative time in the subproblem (SP). Clearly, much more

time is spent in the master problem than in the subproblem, with NCXplain spending at least 90% of

its time in the master problem and up to 99.95% for larger instances. Thus, future improvements to

NCXplain should focus on reducing the total time spent solving the master problem. Since it is much

faster to add a new point to S0 (by solving SP) than to solveMPNCE , it may be worth pursuing

a modification to NCXplain which can add multiple points to S0 for one iteration ofMPNCE , and

thus reduce the number of iterations ofMPNCE required. It is also worth performing a polyhedral

study for NCXplain similar to that done by Bodur et al. [85] for the InvLP-MILP algorithm (see

Section 2.6.2).

No NCE instances were found to be infeasible, consistent with Section 6.3.4 which showed that

the experimental setup guarantees the existence of an explanation for all problem instances given

that a non-empty foil set is provided. The ability to avoid infeasible NCE instances when the

CHAPTER 6. SOLVING GENERAL NEAREST COUNTERFACTUAL EXPLANATION PROBLEMS 80

conditions in Section 6.3.4 are met is an advantage of the NCXplain explanation approach over

the PA-NCE explanation approach of Chapter 5, where experiments resulted in large numbers of

infeasible NCEs for some instance sizes.

Finally, Figure 6.1a shows that for KP instances of size n = 250, increasing the value of m

resulted in more difficult NCE instances. Increasing the value of m increases the number of decision

variables involved in the foil constraints (6.3), but further investigation is needed to understand how

changes in m effect NCE difficulty before any generalizations can be made.

6.6 Conclusion

This chapter introduced the NCXplain algorithm, which is able to solve NCE problems based on for-

ward objectives and constraints which are linear, and foil constraints which are linear or quadratic.

Specifically, this algorithm takes advantage of new features in Gurobi 9.0+, using a cutting plane

approach that involves bilinear constraints (6.3) in the master problem. The process for explaining

forward problem solutions using a contrastive question and NCXplain was demonstrated with sim-

ulations based on the 0-1 KP and 1|rj |
∑
wjCj problems. Furthermore, given a non-empty foil set,

it was shown how meeting a set of conditions guaranteed the feasibility of NCE instances and the

existence of an explanation. The numerical experiments showed that, for tested instances with 500

or fewer forward decision variables, a nearest counterfactual explanation could usually be computed

in under 30 minutes. Most importantly, it was shown that NCXplain can handle significantly more

expressive contrastive questions and places fewer restrictions on the objective parameters used in an

explanation than the methods in the previous two chapters.

Chapter 7

Conclusions and Future Work

This chapter summarizes the contributions of this thesis and discusses directions for future work.

7.1 Summary of Contributions

This thesis applies the technique of counterfactual explanations to optimal discrete optimization

decisions. Specifically, after an explainee asks why the optimal decision was not different in some

way, the explanation takes the form of the minimal change to the objective parameters such that an

alternative solution which is different in the way specified becomes optimal.

The problem of finding an explanation is formalized in Chapter 3 as the Nearest Counterfactual

Explanation (NCE) problem (3.1)-(3.2), which can be interpreted as a variant of inverse optimization

(Section 2.6.1). The goal of an NCE is to explain an optimal soltuion x∗ to a forward problem

FW⟨c,X⟩. The NCE allows an explainee to express a contrastive question “Why was x∗ not

different?” by implicitly defining a set of alternative solutions called the foil set using a custom

constraint set (the foil constraints). The explanation that the NCE searches for is as minimal

modification to the objective parameters such that a solution in the foil set becomes optimal to

the forward problem with the modified objective. It is noted that the NCE is a generalization of

classical inverse optimization; in the latter, a single target solution must become optimal, while in

the former, it is sufficient for any solution in the foil set to become optimal. Next, solution methods

are presented for two useful subsets of the NCE (Chapters 4 and 5) and then for general NCEs based

on linear forward objectives and constraints (Chapter 6).

The first type of NCE that a solution method is developed for involves a contrastive question

that asks why a single variable x∗j did not satisfy a linear foil constraint x∗j ≤ m0 and gives an

81

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 82

explanation in terms of changes to the objective parameter cj (Chapter 4). The primary application

for these univariate NCEs (Definition 4.1) is explaining optimization problems where an explainee j

is represented with exactly one decision variable xj and one objective parameter cj , and desires an

explanation that concerns only themselves. When the forward problem involves only binary decision

variables, it is shown that explanations can be computed in closed form after the solution of a single

modified forward problem, FW⟨c,Xψ⟩. When the forward problem contains only integer variables,

it is shown that an explanation can be found after at most a logarithmic number of solutions to a

pair of modified forward problems.

The next subset of NCEs considered, called Partial Assignment NCEs (PA-NCEs, Definition 5.1),

assumes that an explainee asks why the variables in a subset of decision variables were not assigned

to specified values, and wants an explanation in terms of hypothetical changes to the objective

parameters associated with the variables in this subset (Chapter 5). PA-NCEs are intended to be

especially well-suited to cases when the explainee does not have complete information or control

over all the objective parameters in a problem. It is shown that in a PA-NCE, a single foil xψ ∈ Xψ

is guaranteed to remain optimal with respect to all other foils for any counterfactual objective

vector. Then, it is demonstrated that the PA-NCE can be solved with a two-step method by solving

the forward problem FW⟨c,Xψ⟩ to find the optimal foil xψ, and then solving a classical inverse

optimization problem with xψ as the target solution.

For the inverse optimization step, in addition to implementing a version of Wang’s cutting plane

algorithm, InvLP-MILP (Algorithm 2.1) [10], Chapter 5 also introduces several variations of this

algorithm that use constraint programming (CP). The resulting CP based inverse algorithms allow

explanations to be found for forward problems that are constraint programs. Numerical experiments

are performed testing the PA-NCE explanation approach for the 0-1 Knapsack and Single Machine

Scheduling with Release Dates forward problems. In addition to validating the PA-NCE explanation

approach, these experiments show that an inverse MILP-CP hybrid can outperform alternative

inverse algorithms when CP is state of the art for the underlying forward problem. The experiments

also revealed that one of the challenges of the PA-NCE explanation approach is that it can sometimes

be difficult to ask contrastive questions that result in feasible PA-NCE instances.

Finally, Chapter 6 introduces an algorithm, NCXplain (Algorithm 6.1), for solving NCE problems

with forward objectives and constraints which are linear, and foil constraints which are linear or

quadratic. NCXplain enables explainees to ask considerably more expressive questions than the

methods in Chapters 4 and 5, and does not require extra restrictions on which objective parameters

can be used in the explanation. The algorithm follows a similar cutting plane strategy to Wang’s

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 83

inverse MILP algorithm [10], but uses a master problem with bilinear quadratic constraints to

account for the feasibility of the NCE when any solution in the foil set becomes optimal to the

forward problem. Simulations are performed using the same two forward problems as in Chapter 5,

testing the NCXplain approach and also demonstrating how a simple set of conditions are sufficient

to produce feasible NCE instances.

7.2 Future Work

Several directions for further research are now described, broadly divisible into two categories: 1) ex-

tensions based on inverse optimization concepts, and 2) extensions inspired by the ML counterfactual

explanation literature (reviewed in Section 2.3.3).

7.2.1 Inverse Optimization Based Extensions

Finding feasible NCE solutions before proving optimality. One of the limitations of the PA-

NCE and NCXplain approaches is that no feasible NCE solutions are produced before the algorithms

terminate. Duan and Wang [88] observed a similar issue with the InvLP-MILP algorithm, which fails

to produce intermediate inverse solutions. This observation led them to extend InvLP-MILP with

a heuristic that parallelizes cut generation and also iteratively computes feasible solutions as upper

bounds for the inverse MILP. In the PA-NCE approach, Duan and Wang’s extended algorithm [88]

could directly replace the InvLP-MILP base for the inverse algorithms, allowing feasible explanations

to be provided before the inverse algorithm terminates. It is also worth investigating whether a

similar heuristic could be implemented for NCXplain, noting that if the conditions in Theorem 3.2

are satisfied, at least one feasible NCE solution is already known prior to starting the algorithm.

Improving CP master problem performance. The CP implementation of the inverse master

problem (Section 5.3) performed very poorly compared to the MILP implementation (see Figure

5.1), and it is worth investigating the root cause of this poor performance. Since CP algorithms

rely on intermediate feasible solutions, there is a possibility that implementing Duan and Wang’s

heuristic [88] would improve CP performance because feasible inverse solutions would be provided

for the master problem.

Minimizing Foil Sub-optimality This thesis assumes the explainee is only interested in under-

standing why no foils were optimal. Thus, if an NCE is infeasible, no explanation can be given and

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 84

the explainee is told “A foil will never be optimal given the possible modifications to the objective.”

However, if no foil can be made optimal, the explainee may wish to know which objective vector

d ∈ D minimizes the sub-optimality of the foil set. Techniques addressing similar problems have

been developed in inverse optimization, in which the sub-optimality of the target solution is mini-

mized if the target solution cannot be made optimal (e.g. [101, 102, 103]). It is worth investigating

if these approaches can be adapted to minimize the sub-optimality of a foil set instead of a single

target solution. If such techniques are developed, if an NCE is infeasible, an explainee could be told

“Though no foil can be made optimal, if the objective was d instead of c, a foil would be as close to

optimal as possible.”

Explanations Using Constraint Parameters While explanations of optimization decisions in

this thesis are expressed only in terms of counterfactual objective parameters, an explainee may

also want an explanation in terms of hypothetical changes to constraint parameters. A challenge

of computing such constraint-based explanations is that the feasible set X may change with the

constraint parameters. However, Chan and Kaw [93] have recently developed approaches for solving

inverse linear optimization problems where constraint parameters are allowed to change. A direction

for future work is to investigate whether similar approaches could be designed to address variations

of the NCE where the constraint parameters are allowed to change.

7.2.2 Extensions Inspired by Explanations in Machine Learning

Diversity One of the ideas proposed by Wachter et al. [8] is that, sometimes, an explainee may

desire not a single counterfactual explanation but a diverse set of explanations. If a method is

developed to produce intermediate, feasible NCE solutions before optimality is proven (see Section

7.2.1), a simple way to generate multiple explanations would be to show the user some of these

intermediate NCE solutions. In the work of Russel [57] on counterfactual explanations for classi-

fiers, multiple iterations of explanation generation are performed, with a constraint added to each

subsequent iteration preventing previously encountered explanations from being returned. A similar

approach could be taken for NCE based explanations, where, after finding an optimal explanation,

the algorithm would not terminate but rather continue to look for alternative explanations. In

another work on counterfactual explanations for classifiers, Mothilal et al. [58] search for a set of

alternative explanations such that the diversity of the set is maximized while the change to the

initial parameters, aggregated across the set, is minimized. It may be possible to design a variation

of the NCE that implements a similar idea, searching for a set of explanations while balancing the

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 85

objectives of maximizing diversity and minimizing perturbation to the initial parameters.

Sparsity Another idea proposed by Wachter et al. [8] is that sparsity can be beneficial for coun-

terfactual explanations because it is easier to understand a few large changes to few parameters

rather than many small changes to many parameters. In future work, it is worth investigating if a

term that rewards sparsity, such as the L0 norm, could be added to the NCE objective.

Actionability Finally, another idea explored in the machine learning literature [59, 60] is that,

in certain settings, counterfactual explanations should prioritize actionability. That is, explanations

should prioritize parameters which are easier for the explainee to change, and avoid parameters

which the explainee has no control over. Chapters 4 and 5 already demonstrated how NCE-based

explanations can be prevented from featuring parameters the explainee has no control over by using

additional constraints on D. However, an idea for future work is to replace the simple L1 norm in

the NCE objective (3.1) with a weighted L1 norm, with each norm weight representing the difficulty

of changing a parameter.

Minimizing Difference from Initial Decision One of the limitations discussed in Section 3.4 is

that the optimal solution to FW⟨d,X⟩ could be arbitrarily far from x∗, making it difficult to modify

the objective vector in practice because large changes to the initial solution could be problematic. A

direction for future work is to study a variant of the NCE where a term minimizing the change to x∗

is added to the objective. For instance, the term ||x∗ − x||1 might be added to the master problem

of NCXplain (6.5)-(6.8). A similar loss term is present in the objective (2.1) studied by Wachter et

al. [8] for classifier explanations.

7.2.3 Conclusion

This thesis constitutes the first application of counterfactual explanations for optimal solutions of

discrete optimization problems. Such explanations support counterfactual reasoning, a fundamental

human reasoning strategy [56], across these complex problems. By allowing explainees to find coun-

terfactual objectives which lead to counterfactual solutions, these explanations improve a person’s

ability to understand the effect of objective parameters on discrete optimization problems. Fur-

thermore, this knowledge may enable a person to act to change these parameters, thus improving

human-AI interaction in discrete optimization contexts. In addition, explainees may be empowered

to contest decisions based on objectives that they believe were assigned unfairly. Finally, this thesis

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 86

also lays the groundwork for several directions for future work. These directions include technical

improvements to enhance algorithmic performance, but also more ambitious ideas such as generating

multiple diverse explanations or explanations based on minimizing a measure of foil suboptimality.

Bibliography

[1] A. Korikov, A. Shleyfman, and J. C. Beck, “Counterfactual explanations for optimization-

based decisions in the context of the GDPR,” in International Joint Conferences on Artificial

Intelligence (IJCAI), 2021.

[2] Parliament and Council of the European Union, “Regulation (EU) 2016/679 of the European

Parliament and of the Council of 27 April 2016 on the protection of natural persons with

regard to the processing of personal data and on the free movement of such data, and repealing

Directive 95/46/EC (General Data Protection Regulation),” 2016.

[3] V. Eubanks, Automating inequality: How high-tech tools profile, police, and punish the poor.

St. Martin’s Press, 2018.

[4] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, et al., “Interpretability

beyond feature attribution: Quantitative testing with concept activation vectors (tcav),” in

International conference on machine learning, pp. 2668–2677, PMLR, 2018.

[5] Z. C. Lipton, “The mythos of model interpretability,” Queue, vol. 16, no. 3, pp. 31–57, 2018.

[6] S. Wachter, B. Mittelstadt, and L. Floridi, “Why a right to explanation of automated decision-

making does not exist in the general data protection regulation,” International Data Privacy

Law, vol. 7, no. 2, pp. 76–99, 2017.

[7] F. Doshi-Velez and M. Kortz, “Accountability of AI under the law: The role of explanation,”

tech. rep., Berkman Klein Center Working Group on Explanation and the Law, Berkman Klein

Center for Internet and Society, 2017.

[8] S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations without opening the

black box: Automated decisions and the GDPR,” Harv. JL & Tech., vol. 31, p. 841, 2017.

87

BIBLIOGRAPHY 88

[9] S. Verma, J. Dickerson, and K. Hines, “Counterfactual explanations for machine learning: A

review.” NeurIPS Workshop on ML Retrospectives, Surveys and Meta-Analyses, 2020.

[10] L. Wang, “Cutting plane algorithms for the inverse mixed integer linear programming prob-

lem,” Operations Research Letters, vol. 37, no. 2, pp. 114–116, 2009.

[11] B. Kim, C. Rudin, and J. A. Shah, “The bayesian case model: A generative approach for case-

based reasoning and prototype classification,” in Advances in neural information processing

systems, pp. 1952–1960, 2014.

[12] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Explaining explana-

tions: An overview of interpretability of machine learning,” in 2018 IEEE 5th International

Conference on data science and advanced analytics (DSAA), pp. 80–89, IEEE, 2018.

[13] E. Freuder, “Explaining ourselves: human-aware constraint reasoning,” in AAAI, 2017.

[14] U. Junker, “Preferred explanations and relaxations for over-constrained problems,” in AAAI,

2004.

[15] O. Guieu and J. W. Chinneck, “Analyzing infeasible mixed-integer and integer linear pro-

grams,” INFORMS Journal on Computing, vol. 11, no. 1, pp. 63–77, 1999.

[16] J. Van Loon, “Irreducibly inconsistent systems of linear inequalities,” European Journal of

Operational Research, vol. 8, no. 3, pp. 283–288, 1981.

[17] M. H. Liffiton and K. A. Sakallah, “Algorithms for computing minimal unsatisfiable subsets

of constraints,” Journal of Automated Reasoning, vol. 40, no. 1, pp. 1–33, 2008.

[18] A. Felfernig, M. Schubert, and C. Zehentner, “An efficient diagnosis algorithm for inconsistent

constraint sets,” AI EDAM, vol. 26, no. 1, pp. 53–62, 2012.

[19] J. Marques-Silva, F. Heras, M. Janota, A. Previti, and A. Belov, “On computing minimal

correction subsets,” in Twenty-Third International Joint Conference on Artificial Intelligence,

2013.

[20] B. Bogaerts, E. Gamba, J. Claes, and T. Guns, “Step-wise explanations of constraint satisfac-

tion problems,” in 24th European Conference on Artificial Intelligence (ECAI), 2020.

[21] E. Gamba, B. Bogaerts, and T. Guns, “Efficiently explaining CSPs with unsatisfiable subset

optimization,” arXiv preprint arXiv:2105.11763, 2021.

BIBLIOGRAPHY 89

[22] A. Yelamanchili, J. Agrawal, S. Chien, J. Biehl, A. Connell, U. Guduri, J. Hazelrig, I. Ip,

K. Maxwell, K. Steadman, et al., “Ground-based automated scheduling for the mars 2020

rover,” 2020.

[23] I. Senthooran, M. Klapperstueck, G. Belov, T. Czauderna, K. Leo, M. Wallace, M. Wybrow,

and M. G. de la Banda, “Human-Centred Feasibility Restoration,” in 27th International Con-

ference on Principles and Practice of Constraint Programming (CP 2021) (L. D. Michel, ed.),

vol. 210 of Leibniz International Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany),

pp. 49:1–49:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

[24] R. Borgo, M. Cashmore, and D. Magazzeni, “Towards providing explanations for AI planner

decisions.” Presented at the IJCAI/ECAI 2018 Workshop on Explainable Artificial Intelligence

(XAI). Stockholm, July 2018.

[25] B. Krarup, M. Cashmore, D. Magazzeni, and T. Miller, “Model-based contrastive explanations

for explainable planning.” Presented at the ICAPS 2019 Workshop on Explainable Planning,

2019.

[26] M. Cashmore, A. Collins, B. Krarup, S. Krivic, D. Magazzeni, and D. Smith, “Towards ex-

plainable ai planning as a service.” Presented at ICAPS Workshop on Explainable AI Planning

(XAIP), 2019.

[27] R. Eiffer, M. Cashmore, J. Hoffmann, D. Magazzeni, and M. Steinmetz, “A New Approach

to Plan-Space Explanation: Analyzing Plan-Property Dependencies in Oversubscription Plan-

ning,” in AAAI, 2020.

[28] R. Eifler, M. Steinmetz, A. Torralba, and J. Hoffmann, “Plan-space explanation via plan-

property dependencies: Faster algorithms & more powerful properties,” in Proceedings of

the Twenty-Ninth International Conference on International Joint Conferences on Artificial

Intelligence, pp. 4091–4097, 2021.

[29] T. Chakraborti, S. Sreedharan, and S. Kambhampati, “The emerging landscape of explainable

automated planning & decision making.,” in IJCAI, pp. 4803–4811, 2020.

[30] T. C. Chan, R. Mahmood, and I. Y. Zhu, “Inverse optimization: Theory and applications,”

arXiv preprint arXiv:2109.03920, 2021.

[31] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine learning,”

CoRR, vol. abs/1702.08608, 2017.

BIBLIOGRAPHY 90

[32] A. Adadi and M. Berrada, “Peeking inside the black-box: a survey on explainable artificial

intelligence (xai),” IEEE access, vol. 6, pp. 52138–52160, 2018.

[33] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, “A survey

of methods for explaining black box models,” ACM CSUR, vol. 51, no. 5, pp. 1–42, 2018.

[34] M. Du, N. Liu, and X. Hu, “Techniques for interpretable machine learning,” Communications

of the ACM, vol. 63, no. 1, pp. 68–77, 2019.

[35] B. Mittelstadt, C. Russell, and S. Wachter, “Explaining explanations in AI,” in Proceedings

of the conference on fairness, accountability, and transparency, pp. 279–288, 2019.

[36] F. Rajabiyazdi and G. A. Jamieson, “A review of transparency (seeing-into) models,” in 2020

IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 302–308, IEEE,

2020.

[37] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” in

Proceedings of the 31st international conference on neural information processing systems,

pp. 4768–4777, 2017.

[38] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should I trust you?” Explaining the predic-

tions of any classifier,” in ACM SIGKDD, pp. 1135–1144, 2016.

[39] F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial intelligence: A survey,” in

2018 41st International convention on information and communication technology, electronics

and microelectronics (MIPRO), pp. 0210–0215, IEEE, 2018.

[40] R. Tibshirani, “Regression shrinkage and selection via the lasso: a retrospective,” Journal of

the Royal Statistical Society: Series B (Statistical Methodology), vol. 73, no. 3, pp. 273–282,

2011.

[41] C. Rudin, “Stop explaining black box machine learning models for high stakes decisions and

use interpretable models instead,” Nature Machine Intelligence, vol. 1, no. 5, pp. 206–215,

2019.

[42] M. H. Sqalli and E. C. Freuder, “Inference-based constraint satisfaction supports explanation,”

in AAAI/IAAI, Vol. 1, pp. 318–325, 1996.

BIBLIOGRAPHY 91

[43] Y. Lou, R. Caruana, and J. Gehrke, “Intelligible models for classification and regression,” in

Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and

data mining, pp. 150–158, 2012.

[44] J. Hoffmann and D. Magazzeni, “Explainable ai planning (XAIP): overview and the case

of contrastive explanation,” Reasoning Web. Explainable Artificial Intelligence, pp. 277–282,

2019.

[45] S. Krening, B. Harrison, K. M. Feigh, C. L. Isbell, M. Riedl, and A. Thomaz, “Learning

from explanations using sentiment and advice in RL,” IEEE Transactions on Cognitive and

Developmental Systems, vol. 9, no. 1, pp. 44–55, 2016.

[46] J. McAuley and J. Leskovec, “Hidden factors and hidden topics: understanding rating dimen-

sions with review text,” in Proceedings of the 7th ACM conference on Recommender systems,

pp. 165–172, 2013.

[47] A. Newell, H. A. Simon, et al., Human problem solving, vol. 104. Prentice-hall Englewood

Cliffs, NJ, 1972.

[48] G. A. Klein, “Do decision biases explain too much,” Human Factors Society Bulletin, vol. 32,

no. 5, pp. 1–3, 1989.

[49] M. S. Cohen, J. T. Freeman, and S. Wolf, “Metarecognition in time-stressed decision making:

Recognizing, critiquing, and correcting,” Human factors, vol. 38, no. 2, pp. 206–219, 1996.

[50] R. Caruana, H. Kangarloo, J. D. Dionisio, U. Sinha, and D. Johnson, “Case-based explana-

tion of non-case-based learning methods.,” in Proceedings of the AMIA Symposium, p. 212,

American Medical Informatics Association, 1999.

[51] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of

words and phrases and their compositionality,” in Advances in neural information processing

systems, pp. 3111–3119, 2013.

[52] F. Doshi-Velez, B. Wallace, and R. Adams, “Graph-sparse LDA: a topic model with structured

sparsity,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29, 2015.

[53] B. Rous, “Major update to acm’s computing classification system,” Communications of the

ACM, vol. 55, no. 11, pp. 12–12, 2012.

BIBLIOGRAPHY 92

[54] T. Chakraborti, S. Sreedharan, Y. Zhang, and S. Kambhampati, “Plan explanations as model

reconciliation: Moving beyond explanation as soliloquy,” arXiv preprint arXiv:1701.08317,

2017.

[55] T. Miller, “Explanation in artificial intelligence: Insights from the social sciences,” Artificial

Intelligence, vol. 267, pp. 1–38, 2019.

[56] K. Epstude and N. J. Roese, “The functional theory of counterfactual thinking,” Personality

and social psychology review, vol. 12, no. 2, pp. 168–192, 2008.

[57] C. Russell, “Efficient search for diverse coherent explanations,” in Proceedings of the Confer-

ence on Fairness, Accountability, and Transparency, pp. 20–28, 2019.

[58] R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning classifiers through

diverse counterfactual explanations,” in Proceedings of the 2020 Conference on Fairness, Ac-

countability, and Transparency, pp. 607–617, 2020.

[59] B. Ustun, A. Spangher, and Y. Liu, “Actionable recourse in linear classification,” in Proceedings

of the Conference on Fairness, Accountability, and Transparency, pp. 10–19, 2019.

[60] A.-H. Karimi, B. Schölkopf, and I. Valera, “Algorithmic recourse: from counterfactual expla-

nations to interventions,” in Proceedings of the 2021 ACM Conference on Fairness, Account-

ability, and Transparency, pp. 353–362, 2021.

[61] A. Artelt and B. Hammer, “On the computation of counterfactual explanations–a survey,”

arXiv preprint arXiv:1911.07749, 2019.

[62] A. V. Looveren and J. Klaise, “Interpretable counterfactual explanations guided by proto-

types,” in Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, pp. 650–665, Springer, 2021.

[63] T. Le, S. Wang, and D. Lee, “Grace: Generating concise and informative contrastive sample

to explain neural network model’s prediction,” in Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pp. 238–248, 2020.

[64] D. Mahajan, C. Tan, and A. Sharma, “Preserving causal constraints in counterfactual expla-

nations for machine learning classifiers,” arXiv preprint arXiv:1912.03277, 2019.

BIBLIOGRAPHY 93

[65] I. Stepin, J. M. Alonso, A. Catala, and M. Pereira-Fariña, “A survey of contrastive and

counterfactual explanation generation methods for explainable artificial intelligence,” IEEE

Access, vol. 9, pp. 11974–12001, 2021.

[66] D. E. Smith, “Choosing objectives in over-subscription planning.,” in ICAPS, vol. 4, p. 393,

2004.

[67] R. Eifler, M. Brandao, A. J. Coles, J. Frank, and J. Hoffmann, “Plan-property dependencies

are useful: A user study.” ICAPS 2021 Workshop on Explainable AI Planning, 2021.

[68] M. Brandao, A. Coles, and D. Magazzeni, “Explaining path plan optimality: Fast explanation

methods for navigation meshes using full and incremental inverse optimization,” in Proceedings

of the International Conference on Automated Planning and Scheduling, vol. 31, pp. 56–64,

2021.

[69] F. Rossi and A. Sperduti, “Acquiring both constraint and solution preferences in interactive

constraint systems,” Constraints, vol. 9, no. 4, pp. 311–332, 2004.

[70] M. H. Liffiton and A. Malik, “Enumerating infeasibility: Finding multiple muses quickly,”

in International Conference on Integration of Constraint Programming, Artificial Intelligence,

and Operations Research, pp. 160–175, Springer, 2013.

[71] J. Marques-Silva and A. Previti, “On computing preferred muses and mcses,” in International

Conference on Theory and Applications of Satisfiability Testing, pp. 58–74, Springer, 2014.

[72] D. Mehta, B. O’Sullivan, and L. Quesada, “Extending the notion of preferred explanations

for quantified constraint satisfaction problems,” in International Colloquium on Theoretical

Aspects of Computing, pp. 309–327, Springer, 2015.

[73] D. E. Joslin and D. P. Clements, “Squeaky wheel optimization,” Journal of Artificial Intelli-

gence Research, vol. 10, pp. 353–373, 1999.

[74] Z. Ruttkay, “Fuzzy constraint satisfaction,” in Proceedings of 1994 IEEE 3rd International

Fuzzy Systems Conference, pp. 1263–1268, IEEE, 1994.

[75] C. Heuberger, “Inverse combinatorial optimization: A survey on problems, methods, and

results,” Journal of combinatorial optimization, vol. 8, no. 3, pp. 329–361, 2004.

[76] L. Wang, “Branch-and-bound algorithms for the partial inverse mixed integer linear program-

ming problem,” Journal of Global Optimization, vol. 55, no. 3, pp. 491–506, 2013.

BIBLIOGRAPHY 94

[77] M. Brandao and D. Magazzeni, “Explaining plans at scale: scalable path planning explanations

in navigation meshes using inverse optimization,” in Workshop on XAI, IJCAI-PRICAI, 2020.

[78] M. Demange and J. Monnot, “An introduction to inverse combinatorial problems,” Paradigms

of Combinatorial Optimization: Problems and New Approaches, pp. 547–586, 2014.

[79] X. Li, X. Shu, H. Huang, and J. Bai, “Capacitated partial inverse maximum spanning tree

under the weighted hamming distance,” Journal of Combinatorial Optimization, vol. 38, no. 4,

pp. 1005–1018, 2019.

[80] K. Wei and V. Vaze, “Modeling crew itineraries and delays in the national air transportation

system,” Transportation Science, vol. 52, no. 5, pp. 1276–1296, 2018.

[81] A. Korikov and J. C. Beck, “Counterfactual Explanations via Inverse Constraint Program-

ming,” in 27th International Conference on Principles and Practice of Constraint Program-

ming (CP 2021) (L. D. Michel, ed.), vol. 210 of Leibniz International Proceedings in Informat-

ics (LIPIcs), (Dagstuhl, Germany), pp. 35:1–35:16, Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, 2021.

[82] J. Zhang and Z. Liu, “Calculating some inverse linear programming problems,” Journal of

Computational and Applied Mathematics, vol. 72, no. 2, pp. 261–273, 1996.

[83] R. K. Ahuja and J. B. Orlin, “Inverse optimization,” Operations Research, vol. 49, no. 5,

pp. 771–783, 2001.

[84] G. Iyengar and W. Kang, “Inverse conic programming with applications,” Operations Research

Letters, vol. 33, no. 3, pp. 319–330, 2005.

[85] M. Bodur, T. C. Chan, and I. Y. Zhu, “Inverse mixed integer optimization: Polyhedral insights

and trust region methods,” INFORMS Journal on Computing, 2022.

[86] A. J. Schaefer, “Inverse integer programming,” Optimization Letters, vol. 3, no. 4, pp. 483–489,

2009.

[87] J. B. Lamperski and A. J. Schaefer, “A polyhedral characterization of the inverse-feasible

region of a mixed-integer program,” Operations Research Letters, vol. 43, no. 6, pp. 575–578,

2015.

[88] Z. Duan and L. Wang, “Heuristic algorithms for the inverse mixed integer linear programming

problem,” Journal of Global Optimization, vol. 51, no. 3, pp. 463–471, 2011.

BIBLIOGRAPHY 95

[89] C. Audet, P. Hansen, B. Jaumard, and G. Savard, “Links between linear bilevel and mixed

0–1 programming problems,” Journal of optimization theory and applications, vol. 93, no. 2,

pp. 273–300, 1997.

[90] J. Hu, J. E. Mitchell, J.-S. Pang, K. P. Bennett, and G. Kunapuli, “On the global solution

of linear programs with linear complementarity constraints,” SIAM Journal on Optimization,

vol. 19, no. 1, pp. 445–471, 2008.

[91] J. Hu, J. E. Mitchell, J.-S. Pang, and B. Yu, “On linear programs with linear complementarity

constraints,” Journal of Global Optimization, vol. 53, no. 1, pp. 29–51, 2012.

[92] J. E. Mitchell, “Branch-and-cut algorithms for combinatorial optimization problems,” Hand-

book of applied optimization, vol. 1, pp. 65–77, 2002.

[93] T. C. Y. Chan and N. Kaw, “Inverse optimization for the recovery of constraint parameters,”

European Journal of Operational Research, vol. 282, no. 2, pp. 415–427, 2020.

[94] K. Ghobadi and H. Mahmoudzadeh, “Inferring linear feasible regions using inverse optimiza-

tion,” European Journal of Operational Research, vol. 290, no. 3, pp. 829–843, 2021.

[95] D. Pisinger, H. Kellerer, and U. Pferschy, “Knapsack problems,” Handbook of Combinatorial

Optimization, p. 299, 2013.

[96] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer Science & Business

Media, 2013.

[97] J. K. Lenstra, A. R. Kan, and P. Brucker, “Complexity of machine scheduling problems,” in

Annals of discrete mathematics, vol. 1, pp. 343–362, Elsevier, 1977.

[98] “Global Constraint Catalogue.” https://sofdem.github.io/gccat/. Accessed: 2021-08-5.

[99] A. B. Keha, K. Khowala, and J. W. Fowler, “Mixed integer programming formulations for

single machine scheduling problems,” Computers & Industrial Engineering, vol. 56, no. 1,

pp. 357–367, 2009.

[100] M. Pinedo, Scheduling, vol. 29. Springer, 2012.

[101] D. Bertsimas, V. Gupta, and I. C. Paschalidis, “Data-driven estimation in equilibrium using

inverse optimization,” Mathematical Programming, vol. 153, no. 2, pp. 595–633, 2015.

https://sofdem.github.io/gccat/

BIBLIOGRAPHY 96

[102] A. Aswani, Z.-J. Shen, and A. Siddiq, “Inverse optimization with noisy data,” Operations

Research, vol. 66, no. 3, pp. 870–892, 2018.

[103] P. Mohajerin Esfahani, S. Shafieezadeh-Abadeh, G. A. Hanasusanto, and D. Kuhn, “Data-

driven inverse optimization with imperfect information,” Mathematical Programming, vol. 167,

no. 1, pp. 191–234, 2018.

	Introduction
	Contributions
	Organization of Thesis

	Literature Review
	Introduction
	Explainable AI
	Explainability concepts
	Transparency
	Post-hoc Explanations
	Summary

	Counterfactual Explanations
	The Form of Counterfactual Explanations
	Benefits of Counterfactual Explanations
	Counterfactual Explanations in Machine Learning

	Contrastive Explanations in AI planning
	Explanations in Constrained Optimization & Satisfaction
	Simulatability
	Infeasibility Based Explanations
	Eliciting Constraint Preferences from Solution Preferences
	Summary

	Inverse Optimization
	Problem Definitions
	Solution Methods
	Inverse Optimization for Explanations

	Conclusion

	A General Counterfactual Explanation Problem
	Notation
	Nearest Counterfactual Explanations
	Feasibility Conditions
	Discussion and Limitations
	Conclusion

	Single Variable Explanations
	Single Variable Restrictions
	Binary Linear Objective Problems
	Formulation
	Solution Method

	Integer Variable Problems
	Formulation
	Solution Method

	Conclusion

	Multivariate Explanations Under Partial Assignment Restrictions
	Partial Assignment Nearest Counterfactual Explanations
	Theoretical Results
	Inverse Constraint Programming
	Scope
	Pure Inverse CP
	Hybrid Inverse CP
	Algorithm Summary

	Models
	0-1 Knapsack Problem
	Single Machine Scheduling with Release Dates, 1|rj|wjCj
	Bounded Objectives

	Experimental Setup
	Problem Instance Generation
	Solving PA-NCEs
	Computational Details

	Experimental Results
	Strongest PA-NCE Algorithms
	Early Stopping Criteria
	CP Master Problems
	Instance Breakdown

	Conclusion

	Solving General Nearest Counterfactual Explanation Problems
	Introduction
	Solution Methodology
	The NCXplain Algorithm

	Experimental Method
	Forward Problems
	Contrastive Questions
	Counterfactual Objectives
	NCE Feasibility

	Experimental Data
	Forward Instances
	Contrastive Question Instances
	Computational Details

	Results
	Conclusion

	Conclusions and Future Work
	Summary of Contributions
	Future Work
	Inverse Optimization Based Extensions
	Extensions Inspired by Explanations in Machine Learning
	Conclusion

