
Decision Diagrams and Large Neighbourhood Search for
Earliness Tardiness Single Machine Scheduling with Sequence

Dependent Setups

by

Victor Lo

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Mechanical and Industrial Engineering
University of Toronto

© Copyright 2022 by Victor Lo

Decision Diagrams and Large Neighbourhood Search for Earliness Tardiness
Single Machine Scheduling with Sequence Dependent Setups

Victor Lo
Master of Applied Science

Graduate Department of Mechanical and Industrial Engineering
University of Toronto

2022

Abstract

Industrial manufacturing environments often penalize job earliness and tardi-
ness or the sum of setup times, yet little work has addressed the combination
of these complexities. This thesis formalizes and investigates the Earliness
Tardiness Scheduling with Setups (ETSS) problem, which is a single machine
scheduling problem minimizing weighted earliness/tardiness and setup costs.
We develop several solution methodologies utilizing the following optimiza-
tion techniques: Integer Programming (MIP), Constraint Programming (CP),
Decisions Diagrams (DD), and Large Neighbourhood Search (LNS). Our com-
putational studies demonstrate scalability issues with the complex objective
function and find that LNS is the best technique developed, suggesting that
LNS is an appropriate method for solving the ETSS problem.

ii

iii

Acknowledgments

First and foremost, I want to express my gratitude to my supervisor, Professor
J. Christopher Beck, for his invaluable support, encouragement, and guidance
throughout the past years. His dedication and thoughtfulness pushed me to
always strive for better and really taught me to think critically.

I would also like to thank my committee member, Professor Andre Cire,
for providing invaluable feedback on my thesis. Thank you to our industry
client, Visual8, for providing the data used in this thesis and for their ongoing
support.

Thank you, Professor Merve Bodur, for really challenging me in your courses
and offering your support when I struggled. Thank you to all of the TIDEL
members for being a family away from home. To Eldan, Kyle, and Margarita,
thank you for being incredibly welcoming and helpful with getting me situated
in a new environment. I appreciate the technical help, especially when all else
seemed to fail, and our casual banter. To Jason, thank you for always offering
a much-needed laugh and for being a great course partner. Lastly, I want to
thank Alex, Anton, Arik, Arnoosh, Evghenii, Giovanni, Jasper, Litong, Louis,
Luke, Minori, Ryo, and Tanya. I wish you all the best in your endeavors.

A most sincere thank you to my family and friends. To my parents and sis-
ter, for their ongoing love, support, and encouragement. To Basil, Catherine,
Douglas, Graham, Keyur, Linda, Liz, and Sasha, for keeping me positive and
offering a fresh perspective. For crazy adventures and balancing the academics
with the non-academics.

Finally, I would like to thank my students for showing me the joys of teach-
ing and reigniting my passion of learning.

Just keep pedalling...

iv

Contents

1 Introduction 1
1.1 Dissertation Outline . 2
1.2 Summary of Contributions . 3

2 Problem Preliminaries 5
2.1 Problem Definition . 5
2.2 Data Overview . 6

2.2.1 Instance Generation 6
2.3 Client Heuristic . 6

2.3.1 Initial Solution . 7
2.3.2 Improvement Procedures 8
2.3.3 Perturbation Procedure 9

2.4 Summary . 9

3 Literature Review 10
3.1 Earliness Tardiness Scheduling with Setups 10
3.2 Related Problems . 13

3.2.1 Earliness Tardiness Scheduling 13
3.2.2 Scheduling with Sequence Dependent Setups 15

3.3 Mixed Integer Programming 15
3.4 Constraint Programming . 17
3.5 Decision Diagrams . 19

3.5.1 Decision Diagrams and Single Machine Scheduling . . . 20
3.6 Large Neighbourhood Search 22
3.7 Summary . 23

4 MIP and CP for Earliness Tardiness Scheduling with Setups 24
4.1 Mixed Integer Programming Formulations 24

4.1.1 Base Model . 25
4.1.2 AAA Model . 26
4.1.3 MTZ AM Model . 26
4.1.4 Simplified Model . 27

4.2 A Constraint Programming Formulation 28
4.3 Experimental Setup . 29

v

4.4 Numerical Results . 29

4.4.1 Mean Relative Error 29

4.4.2 Average Run Time . 30

4.4.3 Instances Solved . 30

4.4.4 MRE Over Time . 30

4.4.5 MIP and CP Warm Start 31

4.4.6 CP Objective Function Propagation 33

4.4.7 Root Node Lower Bound Analysis 34

4.5 Discussion . 36

5 DDs for Earliness Tardiness Scheduling with Setups 37

5.1 Decision Diagram Formulations 38

5.1.1 An Exact Decision Diagram For Job Sequence 38

5.1.2 An Example . 40

5.1.3 A Relaxed Decision Diagram 42

5.1.4 Filtering . 42

5.1.5 Refinement . 44

5.2 Bound Strengthening Via Timing Algorithm 45

5.2.1 An Example With Strengthened Bounds 46

5.3 Implementation . 47

5.4 Numerical Results . 47

5.4.1 Mean Relative Error 48

5.4.2 Instances Solved . 48

5.4.3 Average Run Time . 48

5.4.4 MRE Over Time . 49

5.4.5 MDD Warm Start . 49

5.4.6 Root Node Lower Bound Analysis 50

5.5 Discussion . 53

6 LNS for Earliness Tardiness Scheduling with Setups 54

6.1 Large Neighbourhood Search Formulations 54

6.1.1 Neighbourhoods . 55

6.1.2 Neighbourhood Solving Criteria 57

6.1.3 Diversification . 58

6.2 Numerical Results . 59

6.2.1 LNS Selection . 60

6.2.2 Mean Relative Error 61

6.2.3 Instances Solved . 61

6.2.4 MRE Over Time . 62

6.2.5 LNS Warm Start . 62

6.3 Discussion . 64

vi

7 Conclusion 65
7.1 Summary and Contributions 65
7.2 Future Work . 66
7.3 Concluding Remarks . 68

A Mixed Integer Programming and Constraint Programming
Graphs With Error Bars 69

B Decision Diagram Graphs With Error Bars 72

C Large Neighbourhood Search Graphs With Error Bars 75

Bibliography 78

vii

List of Tables

2.1 ETSS Problem Notation . 6

3.1 Categorization of ETSS variants. 12
3.2 Categorization of ET variants. 14
3.3 A three job example instance. 21

5.1 A three job example instance. 40
5.2 Decision diagram calculations for two job instance in Table 5.1. 41

6.1 Top 5 CP and MIP LNS methods by MRE. 60

viii

List of Figures

3.1 An example decision diagram. 20
3.2 An exact decision diagram for Table 3.3. 21
3.3 A 1-width relaxed DD and a 2-width relaxed DD for the Table

3.3 instance. 22

4.1 Mean Relative Error for MIP and CP models. 30
4.2 Average run time for MIP and CP models. 31
4.3 Mean Relative Error over time. 32
4.4 Mean Relative Error for Simplified MIP and CP with heuristic

warm start and non-warm start. 32
4.5 Mean Relative Error for Simplified MIP and CP with heuristic

warm start. 33
4.6 Mean Relative Error over time for Simplified MIP and CP with

heuristic warm start and client heuristic. 34
4.7 Root node lower bound deviation from best-known solution. . 35
4.8 Time to obtain root node lower bound. 36

5.1 A decision diagram for a three job instance. 40
5.2 A decision diagram formulation for the instance in Table 5.1. . 42
5.3 Mean Relative Error for MDD models and previous techniques. 48
5.4 Average run time for MDD models and previous techniques. . 49
5.5 Mean Relative Error over time for MDD models and previous

techniques, using 10, 20, and 50 job instances. 50
5.6 Mean Relative Error for MDD models with heuristic warm start

and non-warm start. 51
5.7 Mean Relative Error for MDD models with heuristic warm start

and previous warm start techniques. 51
5.8 Mean Relative Error over time for MDD models with heuristic

warm start and previous warm start techniques. 52
5.9 Root node lower bound deviation from best known solution for

MDD models and previous techniques. 52
5.10 Average computation time for root node lower bounds. 53

6.1 Mean Relative Error for LNS models and previous techniques. 61
6.2 Mean Relative Error for LNS and client heuristic. 61

ix

6.3 Mean Relative Error over time for best LNS methods and pre-
vious methods. 62

6.4 Mean Relative Error for best LNS methods with heuristic warm
start. 63

6.5 Mean Relative Error for best LNS methods with heuristic warm
start and previous warm start methods. 63

6.6 Mean Relative Error over time for best LNS methods with
heuristic warm start and previous warm start methods and
heuristic. 63

A.1 Mean Relative Error for MIP and CP models with standard
deviation error bars. 70

A.2 Mean Relative Error for Simplified MIP and CP with heuristic
warm start and non-warm start with standard deviation error
bars. 70

A.3 Mean Relative Error for Simplified MIP and CP with heuristic
warm start with standard deviation error bars. 71

A.4 Root node lower bound deviation from best-known solution with
standard deviation error bars. 71

B.1 Mean Relative Error for MDD models and previous techniques
with standard deviation error bars. 73

B.2 Mean Relative Error for MDD models with heuristic warm start
and non-warm start with standard deviation error bars. 73

B.3 Mean Relative Error for MDD models with heuristic warm start
and previous warm start techniques with standard deviation
error bars. 74

B.4 Root node lower bound deviation from best known solution for
MDD models and previous techniques. 74

C.1 Mean Relative Error for LNS models and previous techniques
standard deviation error bars. 76

C.2 Mean Relative Error for LNS and client heuristic standard de-
viation error bars. 76

C.3 Mean Relative Error for best LNS methods with heuristic warm
start standard deviation error bars. 76

C.4 Mean Relative Error for best LNS methods with heuristic warm
start and previous warm start methods standard deviation error
bars. 77

x

xi

Chapter 1

Introduction

The main focus of this thesis is the investigation of optimization techniques for
better solving the Earliness Tardiness Scheduling with Setups (ETSS) prob-
lem. The penalization of job earliness/tardiness arises from the Just-In-Time
(JIT) methodology, which aims at increasing production efficiency by penaliz-
ing both early and tardy delivery [18, 60]. JIT was first used in manufacturing
environments, however, it has recently seen uses in other industries including
call centres, healthcare, and software development [22, 64, 35]. Similarly, min-
imizing setup times and costs in scheduling is also motivated by practical con-
siderations. Machines cannot be used for the duration of a setup time between
jobs, causing increased manufacturing times, which inflates production costs.
Several sectors address this problem such as manufacturing, transportation,
and logistics [68]. Together, these two complexities form the ETSS problem.
The particular ETSS problem that we study is based on the heat treatment
of rolled metals within manufacturing sectors that our industry client is in-
volved with. The scheduling problem is typically solved multiple times a day,
possibly every few hours as conditions change on the shop floor. Optimal or
near-optimal schedules are required to be found within 10 minutes.

The ETSS problem requires scheduling jobs on a single machine with unary
capacity. We are concerned with minimizing the total cost incurred from the
scheduled jobs, which is a combination of earliness/tardiness costs for each job
and the associated setup costs between each job. A job incurs an earliness cost
if it finishes processing before its due date. Conversely, a tardiness cost is paid
if a job finishes after its due date. Earliness/tardiness costs are multiplied by
each job’s quantity, resulting in a weighted earliness/tardiness cost. A setup
cost occurs between each job and represents a cost associated with switching
jobs on a manufacturing line. Setup costs are asymmetric. Between each pair
of jobs is a setup time, also asymmetric, during which the machine cannot
process any job. Further, jobs have release dates which dictate the earliest time
a job can start. Thus, the ETSS problem combines a traditional sequencing
problem via setup costs and times and a scheduling problem via determining
job completion times for earliness/tardiness costs. These combined intricacies

1

2 CHAPTER 1. INTRODUCTION

bolster the motivation for studying this problem.
Removing the minimization of earliness/tardiness costs from the ETSS

problem yields a single machine scheduling problem minimizing setup costs.
This simplified problem is NP-hard as it is analogous to the well-known Travel-
ling Salesman Problem which has been proven NP-hard [25]. Similarly, remov-
ing the consideration of setup costs results in a single machine scheduling prob-
lem minimizing job earliness/tardiness costs which is strongly NP-complete
[61]. Thus, the ETSS problem with its shared complexities is NP-complete.
We utilize four different methodologies including Mixed Integer Programming
(MIP), Constraint Programming (CP), Decision Diagrams (DD), and Large
Neighbourhood Search (LNS) to solve the ETSS problem. Empirical analyses
are conducted to understand each approaches’ benefits and drawbacks.

The experimental results demonstrated that MIP and CP faced scalability
issues, attributed to poor lower bounds and weak solution quality improvement
over time, and CP had weak objective function propagation. DDs faced sim-
ilar scalability issues but are promising for smaller instances. However, LNS
methods consistently performed better than the other techniques developed,
suggesting that LNS is a suitable, scalable approach for solving the ETSS
problem.

1.1 Dissertation Outline

Chapter 2 formally defines and provides the notation for the ETSS problem. It
describes a heuristic-based approach that the industry client currently uses to
solve the problem. This chapter discusses the real-world data provided by our
industry client and provides an explanation of the instance generation used
for experiments.

Chapter 3 provides a review of recent work on the ETSS problem, along-
side the related optimization problems: single machine scheduling with earli-
ness/tardiness costs and single machine scheduling with sequence dependent
setups. We also describe the solution techniques used in this work including
MIP, CP, DD, and LNS, noting where these methods have been previously
applied to solve the ETSS problem.

Chapter 4 investigates MIP and CP models to solve the ETSS problem.
Two state-of-the-art MIP models for single machine makespan minimization
were modified for the ETSS problem. One additional MIP model was devel-
oped and one CP model. These models were easy to implement and provided
a baseline for comparisons against more sophisticated techniques. Numeri-
cal results for the presented methods, a previous MIP model for ETSS, and
client heuristic are discussed and analyzed. Our CP model outperforms the
MIP models, but none of the proposed models are competitive with the client
heuristic. All of the models exhibit solution quality stagnation over time.

Chapter 5 develops a Multivalued Decision Diagram (MDD) and CP-based

1.2. SUMMARY OF CONTRIBUTIONS 3

approach for the ETSS problem. The MDD method works over the sequence
of jobs, providing an alternative technique for generating earliness/tardiness
and setup cost lower bounds. The underlying constraint programming opti-
mization engine works to propagate changes in decision variable domains to
the decision diagram and vice versa. Under certain conditions, the decision
diagram lower bound can be unsatisfactory. Thus, we develop a second, novel
approach that combines the MDD model with a timing algorithm to address
this shortcoming. Similar to Chapter 4, we show numerical results for the
new methods. Unfortunately, neither MDD method was competitive with the
previously developed models, including the client heuristic, as they failed to
find feasible solutions to the larger instances. However, for smaller instances
both MDD methods found stronger lower bounds than the base CP model.

Chapter 6 presents MIP and CP based LNS methods for the ETSS problem.
We develop 90 unique MIP and 90 unique CP LNS approaches, parameterized
by their neighbourhood function, neighbourhood solving criteria, and diversi-
fication procedure. We compare the effectiveness of MIP LNS and CP LNS
configurations and find that the CP-based LNS approaches tend to surpass
MIP-based LNS. The selected MIP LNS and CP LNS models outperform all
previous models, except for the client heuristic, which they remain closely
competitive with. The LNS methods greatly improve solution quality over
time, which previous techniques struggled with.

The thesis concludes with Chapter 7, which summarizes the results and con-
clusions made throughout the chapters and provides possible future research
directions.

1.2 Summary of Contributions

The following list describes the main contributions of this thesis:

• We formally defined the Earliness Tardiness Scheduling with Setups (ETSS)
problem, which is derived from real-world industrial scheduling applica-
tions.

• We provided an extensive review of the ETSS literature, demonstrating
a shortage in comparison to the ETSS subproblems: earliness/tardiness
scheduling and scheduling with setups.

• We modified two existing state-of-the-art single machine makespan min-
imization models for the ETSS problem and demonstrated the lack of
interchangeability between the two problems.

• We developed 187 solution approaches to the ETSS problem, including
a novel MDD method that uses a timing algorithm, drawing techniques
from MIP, CP, MDD, and LNS.

4 CHAPTER 1. INTRODUCTION

• We performed numerical experiments and found that the overall best
performing technique was the CP LNS method. The best approximate
technique was the client heuristic.

• We demonstrated CP’s poor objective function propagation and root
lower bounds for the ETSS. The MDD method solved these issues, but
faced scalability issues, similar to MIP.

• Adding the timing algorithm to MDD was ineffective at improving per-
formance, whilst taking longer to run.

• We showed the scalability of LNS for the ETSS problem and its compet-
itiveness with non-exact techniques.

Chapter 2

Problem Preliminaries

In this chapter, we formally define the Earliness Tardiness Scheduling with
Setups (ETSS) problem. We provide an overview of our instance generation
procedure and the real-world data provided by our industry client. Finally, we
discuss the current solution technique, a heuristic, used by the industry client.

2.1 Problem Definition

We define the ETSS problem by explaining the data and parameters required
to solve a given instance. We are given a set of jobs, j ∈ J , that must be
scheduled on a single machine with unary capacity. Each job has a processing
time pj, release date rj, due date dj, and quantity qj. Each pair of distinct
jobs, j, j′ ∈ J , have a sequence dependent setup time sj,j′ and setup cost Sj,j′ .
Consequently, switching between jobs on the machine results in a setup time,
during which no job is run, and a setup cost penalty. Setup time and costs
are not assumed to follow the triangle inequality. Jobs are non-prememptive,
meaning that once a job has started it must run for pj time units. Jobs can-
not start processing until the machine is free and it is past a job’s release
date rj. The problem’s objective function is to minimize total weighted earli-
ness/tardiness and setup cost. The earliness/tardiness cost for job j is defined
as qj×max{α (dj − cj) , β (cj − dj)}, where α (β) is an overall earliness (tardi-
ness) penalty and cj is the completion time of job j. α and β are not assumed
to be equal, thus leading to asymmetric earliness and tardiness costs. Then,
the ETSS objective function is the sum of each job’s earliness/tardiness costs
and the sum of setup costs for the job sequence:∑

j∈J

qj max{α (dj − cj) , β (cj − dj)}+
∑
i∈J

∑
j∈J

Sijxij

Where xij is a binary decision variable, which is equal to 1 if job j directly
follows job i; otherwise it takes a value of 0. A summary of the problem
notation is presented in Table 2.1.

5

6 CHAPTER 2. PROBLEM PRELIMINARIES

Table 2.1: ETSS Problem Notation

Symbol Definition

j ∈ J Set of jobs
pj Processing time of job j
rj Release date of job j
dj Due date of job j
qj Quantity of job j
si,j Setup time between job i and job j
Si,j Setup cost between job i and job j
α Earliness penalty
β Tardiness penalty

2.2 Data Overview

The ETSS problem data used to evaluate the techniques in this thesis is from
a combination of client-provided real instances and randomly generated in-
stances. The industry client provided two sample instances with 100 and 200
jobs.

2.2.1 Instance Generation

The remaining instances were randomly generated, following the characteris-
tics of the client data. For each instance, 20% of the jobs, rounded to the
nearest integer, were selected to be late; meaning these jobs have a negative
due date, following a uniform distribution between -10000 and 0. Otherwise, a
job’s due date was uniformly distributed between 0 and 2000. Job release dates
are the minimum between its due date and a random uniform number between
0 and 300. This formula ensures that release dates are before or at due dates.
Processing times are distributed uniformly between 1 and 90. Job quantities
are uniform between 1 and 3000. Setup costs were distributed uniformly be-
tween 1 and 800, while setup times were uniformly distributed between 1 and
60. All of instance data is discrete and the time unit is assumed to be minutes,
as per the client data.

The following problem sizes were tested, denoted by the number of jobs: 10,
20, 50, 100, 150, 200, 250, 300, 350, and 400. For each problem size, 10 ran-
domly generated instances were created, resulting in 100 generated instances
and 2 client instances.

2.3 Client Heuristic

The industry client currently uses a heuristic to solve the ETSS problem, based
on a paper by Boctor in 2016 [13]. The only change from the paper imple-
mentation is that the client heuristic uses a fixed time limit instead of a fixed
number of iterations for termination criteria. The heuristic does not insert idle

2.3. CLIENT HEURISTIC 7

time within the schedule. Informally, the heuristic generates an initial feasible
solution following a greedy procedure. It then applies two improvement proce-
dures, which are intended to find the local minima within the initial sequence
neighbourhood. Then, a perturbation algorithm is run to promote diverse
neighbourhood exploration. Each time the perturbation algorithm finishes,
both improvement procedures are run. The perturbation and improvement
procedures are cyclically repeated until the time limit is reached and the best
solution is returned, as shown in Algorithm 1.

Algorithm 1 Client Heuristic

1: Generate initial solution
2: Run improvement procedures
3: while Time Remaining > 0 do
4: Run perturbation procedure
5: Run improvement procedures

6: return best solution

2.3.1 Initial Solution

An initial solution is generated following a simple construction rule. The
procedure starts at time t = a, which is the earliest time the machine is
available to run a job. Then, we calculate for each unscheduled, available
job j the incremental cost Cj of scheduling j at t. A Restricted Candidate
List (RCL) is built where only jobs meeting the following criteria are added:
Cj ≤ Cmin +α (Cmax − Cmin). Where Cj is the incremental cost of scheduling
job j at time t, Cmin (Cmax) is the minimum (maximum) incremental cost
of all unscheduled, available jobs, and α is drawn from a standard uniform
distribution between 0 and 1. From the RCL, a random job is selected, with
uniform probability, to schedule and the time is incremented to the end time
of this job. The process is repeated until all jobs are scheduled. Algorithm 2
outlines this construction rule.

Algorithm 2 Initial schedule construction

1: t = 0
2: while Unscheduled jobs remain do
3: Calculate Cj for each job at time t
4: Calculate Cmin and Cmax

5: Generate α from U[0,1]
6: Put jobs on RCL where Cj ≤ Cmin + α (Cmax − Cmin)
7: Randomly select and schedule a job from RCL
8: Increment t to the end of scheduled job

9: return final sequence

8 CHAPTER 2. PROBLEM PRELIMINARIES

2.3.2 Improvement Procedures

The improvement neighbourhood is a two-part local search technique. The
first improvement procedure iterates through each job in the current sequence
and inserts that job into the position which yields the largest cost reduction.
It stops when no improvement can be found for any job. Thus, the neighbour-
hood is all the neighbour sequences where only one job is moved to a different
position. See Algorithm 3 for details.

Algorithm 3 First Improvement Procedure

1: procedure I1(sequence)
2: while improvement = true do
3: improvement = false
4: for j = 1; j ≤ n do
5: for p = 1; p ≤ n, p ̸= j do
6: Calculate Djp, the cost if job j moved to position p

7: if minp{Djp} < 0 then
8: improvement = true
9: Move job j to argminp{Djp}

10: return final sequence

The second procedure considers all possible pairs of jobs and looks for the
pair that, when swapped, provides the maximal cost reduction. Again, the
procedure stops when no job pair swap will decrease the overall cost. This
neighbourhood is all sequences where only one pair of jobs exchange their
position in the current sequence. See Algorithm 4 for details.

Algorithm 4 Second Improvement Procedure

1: procedure I2(sequence)
2: while improvement = true do
3: improvement = false
4: for j = 1; j ≤ n do
5: for l = 1; l ≤ n, l ̸= j do
6: Calculate Djl, the cost of swapping jobs j and l

7: if minj,l{Djl} < 0 then
8: improvement = true
9: Swap jobs i and k, where i, k = argminj,l{Djl}

10: return final sequence

To calculate the cost reduction in I1 and I2, sequences must have their job
completion times recalculated. For example, every time a job is inserted into
a different position with I1, the job completion times need to be optimally re-
calculated to determine the new earliness/tardiness costs. A similar situation
occurs with the second improvement procedure.

Setup costs are trivial to determine given the job sequence. For the earli-
ness/tardiness cost, the client heuristic assumes that the earliness penalty (α)

2.4. SUMMARY 9

is less than the tardiness penalty (β). As the client heuristic does not insert
idle time, it solves the job timing problem by shifting all job completion times
to their earliest possible for a given sequence. This would not yield a minimum
cost in the ETSS problem where idle time is permitted.

2.3.3 Perturbation Procedure

The perturbation repeats n times, where n is the number of jobs. In each
iteration it randomly selects x, a value between 0 and 1. If x is less than a set
threshold ξ, the procedure randomly selects three jobs and circularly permutes
them. If x ≥ ξ, the procedure will not permute any jobs for that iteration. ξ
is used to control the level of perturbation that will occur. A higher value of ξ
increases the probability that a circular perturbation will occur each iteration.
The client heuristic uses ξ = 0.3. Algorithm 5 outlines the procedure.

Algorithm 5 Heuristic Perturbation Procedure

1: procedure Perturbation(ξ)
2: for j = 1; j ≤ n do
3: Generate x from U[0,1]
4: if x < ξ then
5: Generate p, q, r from U(1,n)
6: Move job in position p to position q
7: Move job in position q to position r
8: Move job in position r to position p

9: return final sequence

2.4 Summary

In this chapter, we formally defined the ETSS problem and provided the prob-
lem notation used throughout this thesis. A data overview was provided,
explaining how instances are randomly generated in addition to the client pro-
vided instances. Finally, this chapter provided a description of the industrial
client’s heuristic, which is the current solution technique used to solve the
ETSS problem.

Chapter 3

Literature Review

In this chapter we explore the literature concerning the Earliness Tardiness
Scheduling with Setups (ETSS) problem, alongside some related scheduling op-
timization problems, namely Earliness Tardiness (ET) single machine schedul-
ing and single machine scheduling with sequence dependent setups. We ex-
plore these latter problems as there are few discussions of the ETSS problem
in the literature. Next, we present a summary of four solution techniques
used to solve scheduling optimization problems that are utilized in this work:
Mixed Integer Programming (MIP), Constraint Programming (CP), Decision
Diagrams (DD), and Large Neighbourhood Search (LNS).

3.1 Earliness Tardiness Scheduling with Setups

Unfortunately, the literature is sparse regarding earliness/tardiness single ma-
chine scheduling with sequence dependent setups. Kate, Wijngaard, and Zijm
were the first to combine earliness and tardiness costs with setup times and
costs in their 1995 paper [38]. Within their framework, jobs were assigned
to families, such that families of jobs shared the same processing times, due
dates, and setup times. Although, in this approach, one can assign each job to
its own family, yielding a similar result to the ETSS problem structure. How-
ever, the paper does not use job-weighted earliness/tardiness as is the case in
the ETSS framework. Additionally, the authors assume that tardiness costs
are strictly larger than earliness costs for all jobs. Two exact optimization
techniques were used: a MIP model and a customized branch and bound im-
plementation, along with four heuristic methods: an Earliest Due Date (EDD)
rule, a shortest processing time rule, a greedy insertion procedure, and a lo-
cal search procedure. The authors found best results from the local search
procedure using a starting sequence from EDD. The branch and bound im-
plementation outperformed MIP due to poor scalability. Unfortunately, there
are no comparisons between the exact and heuristic methods.

In 1997, Wang and Wang developed a hybrid algorithm that uses a heuristic
within a genetic algorithm for the ETSS problem [65]. To the best of our

10

3.1. EARLINESS TARDINESS SCHEDULING WITH SETUPS 11

knowledge, these authors are the first to tackle the full ETSS problem, which
includes job specific earliness, tardiness, and setup penalties. Their results
showed that the hybrid approach beat the standalone heuristic and standalone
genetic algorithm.

In their 2005 paper [60], Sourd proposes a new, time-indexed MIP formu-
lation for the ETSS problem, deriving lower bounds from a new valid cut
and a Lagrangian relaxation. A branch and bound algorithm, using a weaker
but faster lower bound and new dominance rules is developed. Finally, Sourd
proposes a novel multi-start heuristic procedure.

The time-indexed model was selected over a disjunctive model due to pro-
viding strong lower bounds: Sourd’s experiments demonstrated a lower bound
improvement by a factor of 400, while taking less time [60]. The MIP model
then assigns jobs to time slots to minimize overall cost, using the costs of as-
signing any part of job i to time t: cit. Overall, the model was only able to
solve small instances with 20 jobs and short processing and setup times, likely
due to the increase in model size when the time horizon increases.

Two lower bounds are generated from the time-indexed model: a linear
relaxation and Lagrangian relaxation. The linear relaxation is improved with
a new valid cut based on preventing preemptive jobs. The linear relaxation
with the valid cut improves the lower bound by a few percent over strictly the
linear relaxation; however, it increases computation time typically by a factor
of 10.

The Lagrangian relaxation is based on the removal of the non-preemptive
constraints, yielding a linear programming model, that can be regarded as
a path in a graph structure. This graphical Lagrangian relaxation shares
similarities with decision diagram based Lagrangian relaxations, such as in
the multicommodity pickup-and-delivery Travelling Salesman Problem (TSP)
[19]. Finding the shortest path from root to terminal node in this graph solves
the Lagrangian relaxation and takes O(nT) time, where n is the number of jobs
and T is the length of the time horizon. The Lagrangian relaxation parameters
were selected via a subgradient algorithm to maximize the lower bound. This
lower bound provides a slightly weaker lower bound than the linear relaxation
of the MIP but is much faster to compute.

Finally, Sourd’s branch and bound approach branches on job sequence, such
that a complete path in the search tree represents a valid job sequence assign-
ment. The technique uses a lower bound at each node that considers the partial
sequences of jobs. Further, the implementation considers new dominance rules
for partial sequences.

Overall, Sourd’s MIP formulations are limited to instances with less than 10
jobs and for the branch and bound, 20 jobs. However, the paper additionally
proposes a multi-start heuristic which works well for instances between 100 and
500 jobs. This heuristic begins with a random job sequence and performs an
iterative improvement procedure using the new partial sequence dominance
rules. The heuristic is then restarted with a new random solution and the

12 CHAPTER 3. LITERATURE REVIEW

Table 3.1: Categorization of ETSS variants.

Paper Problem Characteristic Approach

[38] Total earliness/tardiness MIP, branch and bound, heuristics
[65, 60, 59] Weighted earliness/tardiness Heuristics, genetic algorithm, branch and bound, LNS

improvement procedure is repeated. The best solution is returned.

In a later work, Sourd turns to a very large neighbourhood search imple-
mentation for the ETSS problem using a dynasearch neighbourhood, which
runs in pseudo-polynomial time [59]. A dynasearch neighbourhood is a com-
position of an arbitrary number of independent operators, yielding an exponen-
tial neighbourhood size, but a dynamic programming algorithm can compute
the optimal schedule in polynomial time. Given an initial sequence of jobs,
(J1, . . . , Jn), and a pair of indices i < j, the algorithm defines three neigh-
bourhood operators that act on the sequence σ = αJiβJjγ, where α is the
sequence of jobs before Ji, Ji (Jj) is the job at position i (j), β is the sequence
of jobs between jobs Ji and Jj, and γ is the sequence of jobs after job Jj. The
neighbourhood operators are as follows:

• SWAPij (αJiβJjγ) = αJjβJiγ. If β is an empty sequence, the swap is
adjacent.

• EBSRij (αJiβJjγ) = αJjJiβγ. Stands for extraction and backward shifted
reinsertion.

• EFSRij (αJiβJjγ) = αβJjJiγ. Stands for extraction and forward shifted
reinsertion.

Using these neighbourhoods, the dynasearch problem starts with a job se-
quence and searches to find a neighbour that has minimal cost or cost less
than some parameter. Sourd found that combining SWAP, EBSR, and EFSR
was critically important for producing an efficient search algorithm. Their
best solution technique involved running a simple descent procedure and then
running dynasearch if the solution found was within 3% of the best-known
solution. Otherwise, the descent procedure is run again. The simple descent
procedure is based on the union of the three identified neighbourhoods, while
the dynasearch neighbourhood is seen as a composition of these neighbour-
hoods. Thus, dynasearch is time consuming but generates good quality so-
lutions. The largest instance run was 100 jobs with 10 job groups for setup
costs/times with a four-minute time limit. Unfortunately, the results were
only compared between dynasearch and the simple descent procedure.

We provide a categorization of these ETSS papers in Table 3.1.

3.2. RELATED PROBLEMS 13

3.2 Related Problems

Two closely related research areas to the ETSS problem are ET scheduling on a
single machine and single machine scheduling with sequence dependent setup
times. In the former problem, we are concerned with minimizing earliness
and tardiness, whereas in the latter usually it is the minimization of total
setup time. These two problems can be seen as subproblems within the ETSS
problem.

3.2.1 Earliness Tardiness Scheduling

There exists a large body of literature on ET scheduling, first introduced by
Kanet in 1981 [37]. ET single machine problems consist of a set of jobs to
schedule on a single machine with the objective of minimizing earliness and
tardiness costs which stem from job due dates. ET problems are typically
characterized by:

• ET penalties: equal is where earliness costs are equal to tardiness costs
per time unit, unequal earliness costs are not equal to tardiness costs
per time unit, weighted each job can have its own specific earliness and
tardiness cost.

• Due dates: common all jobs share the same due date, distinct/general
jobs have their own due dates.

• Setups: none there are no setup times between jobs, sequence independent
there are setup times between jobs, but it only depends on the current
job, sequence dependent setup times between jobs depend on both the
current job and the previous job, which is the same as the problems in
Section 3.2.2.

There are some other ET problem configurations, such as preventing ma-
chine idle time, but these complexities are outside the scope of this discussion.

Many approaches have been used to solve the ET problem. Sourd and
Kedad-Sidhoum develop a new lower bound based on the decomposition of
each job into unit time operations that are assigned to time slots. This lower
bound, along with new dominance rules, is integrated into a branch and bound
algorithm [62]. In later work, Sourd develops a new lower bound based on the
Lagrangian relaxation of a time-indexed MIP model reinforced with valid cuts
[61]. Then, this lower bound is used in a branch and bound algorithm to solve
the ET problem with both common and distinct due dates. Kedad-Sidhoum
and Sourd developed a LNS algorithm focusing on fast neighbourhoods for
larger problem sizes, such that good solutions can be found in a couple of sec-
onds [39]. For 50 job benchmark instances, for which the optimum is known,
the algorithm’s mean deviation is 0.01%. For instances with 100 to 500 jobs,

14 CHAPTER 3. LITERATURE REVIEW

Table 3.2: Categorization of ET variants.

Paper Problem Characteristic Approach

[62, 61, 39, 44] ET Branch and bound, LNS
[61] ET, common due dates Branch and bound
[20, 57, 40, 42] ET, setups, distinct due dates MIP, branch and bound, heuristics, genetic algorithm
[54, 6, 66] ET, setups, common due dates Branch and bound, beam search, genetic algorithm

where the optimum is unknown, the authors compared against Lagrangian-
based lower bounds and found a mean deviation of 5.5% from these lower
bounds. Thus, the LNS algorithm found solutions close to the optimal val-
ues. Laborie and Godard proposed a Self-Adapting LNS algorithm that uses
machine learning to converge on the most efficient neighbourhoods and neigh-
bourhood solving strategies [44]. The approach is very general; however, it did
not perform strongly on single machine earliness/tardiness problems.

ET with Sequence Dependent Setups

The first MIP formulation of an ET problem considering setup times was
proposed in Coleman’s technical note in 1992 [20]. This problem has been
solved with branch and bound and heuristic techniques with equal ET penalties
[57]. Similarly, it has been solved with weighted ET penalties using a time-
indexed formulation and a Lagrangian-based branch and bound algorithm [40],
in addition to a genetic algorithm [42].

ET with Sequence Dependent Setups and Common Due Dates

As well, work has been completed looking at ET problems with sequence de-
pendent setups and common due dates. Rabadi, Mollaghasemi, and Anagnos-
topoulos [54] investigate an equally weighted ET problem with a customized
branch and bound algorithm. The method uses a heuristic upper bound,
branches by assigning a job to each possible position in the sequence, and uses
a partial sequence lower bound calculation. Overall, the branch and bound
method outperformed a basic MIP model [54]. Another branch and bound
implementation and a beam search algorithm were developed by Azizoglu and
Webster [6]. Webster and Gupta also examine the ET problem with setups
and a common due date with a genetic algorithm [66]. Their model minimizes
total weighted ET, whilst using the common job due date as a decision variable
in their model.

Readers who are interested in more ET literature should refer to several
surveys [7, 63]. For an in-depth discussion on ET lower bounds, refer to
Schaller’s paper [56]. We provide a categorization of these ET papers in Table
3.2.

3.3. MIXED INTEGER PROGRAMMING 15

3.2.2 Scheduling with Sequence Dependent Setups

Similar to ET scheduling, there is a plethora of research on single machine
scheduling problems with sequence dependent setups. This problem is con-
cerned with minimizing the total setup time occurred from the scheduling of
all jobs on a machine. An analogous, well-known optimization problem is the
Travelling Salesman Problem (TSP) [2]. Solving the TSP requires finding the
shortest tour that traverses a set of locations, visits each location exactly once,
and returns to the starting location. Mapping the two problems: jobs become
locations, machine setup times between jobs become distances between loca-
tions, and the objective functions remain the same.

The TSP has complicated origins, rich with history, but one of the most
influential early TSP researchers was Flood in the 1930s [4]. One of the first
papers on scheduling with sequence dependent setups was by Gilmore and
Gomory, who modelled and solved the problem as a TSP [27].

There are many variants to the TSP/scheduling with setups; however, we
will briefly discuss the ones most pertinent to the ETSS problem:

• Symmetry: symmetrical - setups times do not depend on the job order
within a pair, asymmetrical - setup times depend on job sequence within
the job pair, i.e. sij ̸= sji.

• Release dates: none - jobs to not have release dates, present - jobs have
release dates.

A large number of techniques have been tried to solve general TSPs includ-
ing customized optimization algorithms [53], branch and bound algorithms
[14], dynamic programming [15], tabu search [45, 46], greedy randomized data
adaptive search procedures [24], and other heuristic rules [67]. Additionally,
Bianco, Salvatore, and Giovanni investigate a TSP with release dates via MIP
and a heuristic algorithm with lower bounds and dominance criteria [10].

For more literature on TSPs, we refer the reader to two excellent books:
The Traveling Salesman Problem: A Computational Study and The Traveling
Salesman Problem and Its Variants [4, 29]. Likewise, approaching from the
scheduling lens, we recommend an extensive survey by Allahverdi, Gupta, and
Aldowaisan [2].

3.3 Mixed Integer Programming

Now, we shift our ETSS and related literature discussion to optimization tech-
niques that are used to solve scheduling problems in this thesis. MIP is a
well-known and successful exact technique for solving optimization problems
involving continuous and discrete decision variables [36]. A generic MIP is
expressed as follows:

16 CHAPTER 3. LITERATURE REVIEW

min c⊤x+ h⊤y

s.t. Ax+Gy ≤ b

x ∈ Zn
+

y ∈ Rk
+

Where c and h are objective function vector coefficients of size n and k,
A is a m × n matrix and G is a m × k matrix, b is a vector of size m, x is
a vector of integer decision variables, and y is a vector of continuous decision
variables. If the model does not have any integer variables, it is a linear
programming model. Conversely, a model without any continuous variables
would be a pure integer programming model. The integer variable restrictions
make MIPs challenging to solve, yielding an NP-hard problem [11], whereas
solving a linear programming can be done in polynomial time with interior
point methods [41].

There are two common MIP formulations for solving scheduling problems:
disjunctive and time-indexed [43]. A disjunctive formulation focuses on the
sequence of jobs, for example if job i is sequenced before or after job j. These
models utilize two decision variables to model this disjunction: Cj ≥ 0 are
continuous decision variables that track the completion time of each job and
xij ∈ {0, 1} are binary decision variables that take a value of 1 iff job i comes
before job j. The disjunction based on job sequence is then modelled as:

Cj ≥ Ci + pi −M (1− xij) ∀i, j ∈ J , i < j (3.1)

Ci ≥ Cj + pj −M (xij) ∀i, j ∈ J , i < j (3.2)

Where pi (pj) is the processing time of job i (j) and M is a sufficiently
large number. Constraint (3.1) ensures that the completion time of job j is
after job i’s completion time if xij = 1. Similarly, constraint (3.2) sets the
completion time of job i to be greater than job j’s completion time if xij = 0.
These disjunctive constraints prevent jobs from overlapping on a machine and
are commonly known as big-M constraints. One drawback with disjunctive
formulations are that they tend to have weaker linear relaxations if a poor
choice of M is selected [16].

The second formulation type is the time-indexed model. This model fo-
cuses on assigning jobs to time slots as opposed to reasoning about job se-
quence. This formulation uses a binary decision variable xjt that is 1 iff job j
is scheduled to start at time t. As jobs are assigned to timeslots, a set of time
points, T = {1, . . . , T}, is required. A time-indexed MIP uses the following
constraints to schedule jobs:

3.4. CONSTRAINT PROGRAMMING 17

∑
t∈T

xjt = 1 ∀j ∈ J (3.3)

∑
j∈J

t∑
t′=t−pj+1

xjt′ ≤ 1 ∀t ∈ T (3.4)

Constraint (3.3) ensures each job starts exactly once and constraint (3.4) makes
sure that at any time point, at most one job is executing. A drawback with
time-indexed formulations are that the number of decision variables is pro-
portional to the length of the time horizon. However, linear relaxations of
time-indexed formulations for scheduling problems often provide strong lower
bounds [1, 50].

3.4 Constraint Programming

Constraint programming (CP) is a technique for solving combinatorial con-
straint satisfaction and constraint optimization problems [55]. CP has been
successfully applied to a wide range of optimization problems, including schedul-
ing problems [8]. A constraint optimization problem consists of a tuple (X ,D, C,Z),
where X = {x1, x2, . . . , xn} is the set of decision variables, D = {D1, D2, . . . , Dn}
is the set of domains of the variables in X , C = {c1, c2, . . . , cm} is the set of
constraints involving the variables in X , and Z is the objective function. A
solution to this problem is a complete assignment of the variables that satis-
fies all of the constraints and obtains a global minimum or maximum objective
function value.

Similar to MIP, CP problems can be solved using branch and bound. How-
ever, at each node in the tree CP performs constraint propagation algorithms
to reduce the variable domains and enforce consistency [32].

A set of constraints, C, can have various types of consistency. The most
basic, arc consistency, involves two decision variables and a binary constraint
[12]. xi is arc consistent with xj if for every value a in the domain of xi

there exists a value b in the domain of xj such that (a, b) satisfies a binary
constraint between xi and xj. If the reverse is also true, then the constraint is
arc consistent. If two variables are not arc consistent with a constraint, domain
values that do not satisfy the constraint are pruned, resulting in either the
constraint becoming arc consistent or infeasible if a variable domain becomes
empty. A basic constraint propagation algorithm can make the entire problem
arc consistent by repeating this process with all variable pairs. Basic arc
consistency for binary constraints can be extended to all constraints, which is
known as generalized arc consistency [12].

CP also utilizes more advanced constraint prorogation algorithms via global
constraints [12]. These algorithms are designed to exploit structure in com-

18 CHAPTER 3. LITERATURE REVIEW

binatorial optimization problems. A popular one, the AllDifferent global
constraint, enforces that each of its variables must take on distinct values by
ensuring generalized arc consistency over the given variables and their con-
straints.

Within CP search, inference techniques used at a given node reduce variable
domains. Branching can occur from setting variable values heuristically or by
branching on a constraint. If, during the search, a variable’s domain becomes
empty, the current node is infeasible and pruned, leading to a backtrack in the
search [12].

Interval variables, which represent an interval of time during which a job is
processed, are often used in a CP model for scheduling problems. An interval
variable a is a variable whose domain dom (a) is a subset of {⊥}∪{[s, e) | s, e ∈
Z, s ≤ e}, where s (e) is the start time (end time) of the interval variable [34].
An interval variable is absent when a =⊥ and the variable is present when
a = [s, e). An absent interval variable is not considered by any constraint or
expression involving it. For example, in a single machine scheduling problem,
permitting an interval variable to be absent allows the interval variable to
not be scheduled. We can model complex scheduling problems using inter-
val variables in CP. For instance, we can set constraints on interval variable
start times and end times without additional variables. Additional logic-based
constraints involving interval variables are easy to implement [34].

For scheduling problems, we are often concerned with the sequence of jobs.
CP offers a sequence variable that is defined on a set of interval variables A.
The value of sequence variable is a total ordering of the variables in A. More
formally, a sequence variable p on a set of interval variables A represents a
decision variable whose possible values are all the permutations of the intervals
of A [33]. It is easy to model constraints on the position of interval variables
in the sequence variable using constraints such as First, Last, Before, and
Prev. First (Last) specify what interval variable must be in the first (last)
position in the sequence. Similarly, Before and Prev enforce the ordering of
two interval variables within a sequence variable [33].

CP has many global constraints that further ease the modelling and solving
of scheduling problems [55]. For example, the NoOverlap constraint on a se-
quence variable ensures that the sequence does not have any interval variables
that overlap temporally. This constraint could be used to ensure a machine
does not process more than one job at a time, i.e. any interval variable in the
sequence is constrained to end before the start of the next interval variable in
the sequence [33]. Additionally, the NoOverlap constraint can be configured
to account for setup times between intervals variables, using a matrix of setup
times for the different interval variables in the given sequence variable. That is,
NoOverlap will enforce the minimal time that must separate two consecutive
intervals in the sequence.

3.5. DECISION DIAGRAMS 19

3.5 Decision Diagrams

Decision Diagrams (DD) are a graphical structure that encodes a set of so-
lutions to a discrete optimization problem and they have been recently used
for sequencing and scheduling problems [9]. DDs can either be exact or re-
laxed. An exact DD has a one-to-one encoding of the feasible solution set
of its discrete optimization problem. In the case of a minimization (maxi-
mization) objective function, an exact DD reduces the optimization problem
to a shortest (longest) path problem in its graph. Solving this path problem
yields the optimal solution and objective value to the original discrete opti-
mization problem. Conversely, a relaxed DD overapproximates the feasible set
and objective function of its underlying problem. When solved, a relaxed DD
provides bounds on its problem’s objective function. Additionally, DDs pro-
vide important inferences when used in conjunction with a base optimization
engine, such as with constraint programming, where the constraint program-
ming optimization engine propagates changes in decision variable domains to
the decision diagram and vice versa.

More formally, a DD is a layered directed acyclic multigraph, G = (V,A),
with node set N and arc set A. The out-degree of the nodes in N further
classify the DD: a Binary Decision Diagram (BDD) strictly permits an out
degree of less than or equal to 2 and a Multivalued Decision Diagram (MDD)
allows an out-degree larger than 2. The set of nodes, V , is partitioned into
n+ 1 layers L1, . . . , Ln+1. Layers L1 and Ln+1 are singletons representing the
root r and the terminal t respectively. An arc a = (u, v) of G is always directed
from a source node u in some layer Li to a target node v in the subsequent
layer Li+1, i ∈ {1, . . . , n}. We create a value, va ∈ J , for each arc a ∈ A,
which is used to map the meaning of an arc back to the discrete optimization
problem. In the case of a scheduling problem, arc values may represent job
indices. ℓ (a) indicates the layer of the source node u of the arc a and u ∈ Lℓ(a).
We denote a′ ∈ in (u) as the set of all arcs that are directed into node u and
a′ ∈ out (v) as the set of all arcs that are directed out of node v. Finally, we
define weighted decision diagrams, in which each arc a has an associated length
la. The length of a directed path p =

(
a(1), . . . , a(k)

)
rooted at r corresponds

to lp =
∑k

j=1 l
(j)
a .

A decision diagram is exact if the r–t paths in G precisely encode the
feasible solutions of the discrete optimization problem, and the length of a path
is the objective function value of the corresponding solution. However, due to
computational complexity, decision diagrams are often relaxed in practice [9].
A relaxed decision diagram represents a superset of the feasible solutions and
therefore, provides a discrete relaxation of the problem. A key advantage of
relaxed decision diagrams is that they can be much smaller than exact ones
while still providing a useful relaxation, if they are properly constructed [9].
A relaxed DD’s size is controlled by specifying an upper bound on the width
of the diagram. The width is the maximum number of nodes in any layer.

20 CHAPTER 3. LITERATURE REVIEW

r

u1 u2 u3

u4 u5 u6

t

1

2

3π1:

π2:

π3:

0 3 6

3 8 14 20 9 12

20 12 23

Figure 3.1: An example decision diagram.

We provide a simple DD example in Figure 3.1, where the decision diagram
is an MDD, has 4 layers, and has a width of 3. Each arc can take the value of
1, 2 or 3, and the shortest path is (r, u1) , (u1, u5) , (u5, t) with length 20.

3.5.1 Decision Diagrams and Single Machine Scheduling

Decision diagrams have been used to great success for sequencing and single
machine scheduling problems in combination with a constraint-based schedul-
ing solver [9]. Various objective functions have been explored, including makespan,
sum of setup times, and total tardiness. Further, more complex single machine
scheduling aspects have been studied such as precedence constraints, job dead-
lines, and time windows within an asymmetric TSP [9].

We provide an example of a single machine scheduling problem minimizing
makespan from Chapter 11 in Bergman, Cire, Van Hoeve, and Hooker [9].
Given a set of n jobs, J , to schedule on a unary capacity machine, with release
dates rj, processing times pj, deadlines dj, and setup times sij, the following
decision diagram formulation is used: each path in the DD represents a feasible
ordering of jobs in J . Job completion times must be before their deadline:
cj ≤ dj.

A three-job example instance is shown in Table 3.3 and the resultant DD in
Figure 3.2. There are four possible paths from r to t in our DD, and the path
traversing nodes r, u2, u4, t represents a solution sequence of j3 → j2 → j1.
The jobs have the following complexion times: c1 = 15, c2 = 9, c3 = 3. Note,
j1 cannot be first on the machine as this would violate the deadlines of j2 or
j3. Thus, there is no arc with va = j1 out of r.

Computing the orderings to determine the optimal makespan or sum of
setup times is polynomial in the size of the decision diagram [9]. For the case
of makespan, we define the earliest completion time of an arc, ecta, as the

3.5. DECISION DIAGRAMS 21

Table 3.3: A three job example instance.

(a) Instance

Job rj dj pj

1 2 20 3
2 0 14 4
3 1 14 2

(b) Setup times

1 2 3

1 0 3 2
2 3 0 1
3 1 2 0

r

u1 u2

u3 u4 u5

t

1

2

3

π1:

π2:

π3:

Figure 3.2: An exact decision diagram for Table 3.3.

earliest completion time of the job va, among all paths in the DD that contain
arc a. If a is directed out of r, then ecta = rva + pva , where rva is the release
date of job va and pva is the processing time of job va. The remaining arcs can
be calculated as follows:

ecta = max{rva ,min{ecta′ + sva,va′ : a
′ ∈ in (u)}}+ pva , (3.5)

where sva,va′ is the setup time between jobs va and va′ and a′ ∈ in (u) is the
set of all arcs that are directed into node u. Then, the minimum makespan is
mina∈in(t)ecta. An optimal job sequence is obtained by recursively retrieving
the minimizer of arc a′ ∈ in (u) in Equation 3.5 [9].

For the DD in Figure 3.2, we obtain ectr,u1 = 4, ectr,u2 = 3, ectu1,u3 = 10,
ectu1,u4 = 7, ectu2,u4 = 9, ectu2,u5 = 7, ectu3,t = 14, ectu4,t = 11, ectu5,t = 14.
The optimal makespan is min{ectu3,t, ectu4,t, ectu5,t} = ectu4,t = 11, corre-
sponding to the path (r, u1, u4, t) or equivalently (j2, j3, j1).

Alternatively, we can use a relaxed DD to obtain a lower bound on makespan.
Figure 3.3 shows a 1-width and 2-width relaxation for this sequencing problem.
Notice that both relaxed DDs contain all feasible orderings for our problem but
they also include infeasible solutions, such as the path representing (j3, j2, j2)
in the 2-width relaxation. The makespan lower bound is calculated following
the same approach as in the exact DD.

A relaxed DD can be trivially created using a 1-width relaxation. Then, the
DD is incrementally modified to strengthen its relaxation, whilst respecting
the maximum width specified. Two procedures are used to strengthen the DD
relaxation: filtering and refinement [9].

• Filtering: the process of removing infeasible arcs in the decision diagram.

22 CHAPTER 3. LITERATURE REVIEW

r

u1

u2

t

π1:

π2:

π3:

r

u1 u2

u3 u4

t

1

2

3

Figure 3.3: A 1-width relaxed DD and a 2-width relaxed DD for the Table 3.3 instance.

That is, an arc a is infeasible if all paths in the decision diagram containing
a represent infeasible job sequences.

• Refinement: splitting nodes to represent the problem structure more ac-
curately. For example, our single machine scheduling example, we wish
to better represent the AllDifferent structure over the jobs.

If a relaxed DD does not have any infeasible arcs and no nodes require re-
finement, then the DD is exact [9]. For the single machine scheduling problem,
there exist several filtering algorithms including: invalid permutations, prece-
dence constraints, time window constraints, and objective function bounds [9].
Refinement focuses on the permutation of jobs, which is represented by the
AllDifferent constraint.

For more information on decision diagrams and optimization, please refer
to Decision Diagrams for Optimization, especially Chapter 11 for sequencing
and single machine scheduling [9].

3.6 Large Neighbourhood Search

Large Neighbourhood Search (LNS) is a local search technique that defines
and searches large neighbourhoods for solutions [21]. LNS was first proposed
by Shaw in 1998 with their work Using Constraint Programming and Local
Search Methods to Solve Vehicle Routing Problems [58]. Since then, LNS
approaches have shown outstanding results in solving various transportation
and scheduling problems [26].

In LNS, an initial solution is generated and is iteratively modified by relax-
ing parts of the solution and resolving [58]. Relaxing a solution entails fixing
part of the existing solution, preventing it from changing during the resolve.
In a scheduling context, one may choose to fix the start times of the jobs or
the sequence in which jobs are processed. The rest of the variables are free to
change values when the solution is resolved. Solution relaxation is dependent
on a neighbourhood, which is defined as all the possible extensions of the fixed
solution. The size of a neighbourhood is crucial in LNS: larger neighbour-
hoods provide possibilities of better-quality local optima but they take longer

3.7. SUMMARY 23

to search through. Conversely, smaller neighbourhoods may offer poorer so-
lutions but faster solving time [26]. Within LNS, neighbourhoods tend to be
large, thus intelligent searching during the resolving phase is provided via tree
search, constraint programming, or mixed integer programming [21].

Algorithm 6 [26] details a general LNS structure, where xb is the best known
solution, N (x) is the neighbourhood function, which when solved returns the
new neighbour xt. Solving the neighbourhood can be done in various ways,
such as using an optimization framework like constraint programming or using
a heuristic. Further, considerations such as a time limit can be implemented.
Line 5 determines if we accept the new neighbour following some acceptance
criteria. The simplest choice is to only accept improving solutions. Line 7 is
used to track the best solution where c (x) denotes the objective function value
of solution x. Typical termination criteria include a fixed number of iterations
or a time limit.

Algorithm 6 Large Neighbourhood Search

1: Generate initial solution x
2: xb = x
3: while Termination criteria not met do
4: xt = N (x)
5: if accept(xt, x) then
6: x = xt

7: if c (xt) < c
(
xb
)
then

8: xb = xt

9: return xb

Some LNS algorithms include a diversification procedure which moves the
solution to a new part of the search space. This procedure is typically run if
the LNS algorithm stalls, that is, repeatably finds neighbours with the same
objective cost, for a selected number of iterations.

Several papers have used LNS techniques to solve a variety scheduling
problems such as cumulative [28], job shop [17], and total weighted earli-
ness/tardiness [39]. As well, Laborie and Godard provide an extensive study
on various scheduling problems and LNS [44].

3.7 Summary

In this chapter, we presented the literature available for the ETSS problem.
As the literature is sparse, we provided background information regarding
ET single machine scheduling and single machine scheduling with sequence
dependent setups, as these two problems are subproblems within the ETSS.
We also provided a brief explanation and overview of the solution techniques
used to solve scheduling problems similar to, and including, the ETSS problem:
MIP, CP, DD, and LNS.

Chapter 4

Mixed Integer Programming
and Constraint Programming
for Earliness Tardiness
Scheduling with Setups

This chapter investigates models to solve the Earliness Tardiness Single ma-
chine scheduling with sequence dependent Setups (ETSS) problem. These
models are basic and easy to implement, thus providing a baseline founda-
tion to compare against more sophisticated approaches. As well, we compare
these initial models against the state-of-the-art for the related single machine
scheduling problem with setups for minimizing makespan to determine if the
state-of-the-art for that problem can efficiently solve the ETSS. The initial
approaches include four Mixed Integer Programming (MIP) models and one
Constraint Programming (CP) model. We introduce the experimental setup
used for all of the experiments in this work. Finally, we present and discuss the
numerical results for the MIP and CP models and compare against the client
heuristic. The best performing exact technique is the CP model, followed by
the Simplified MIP, although neither outperformed the client heuristic. The
proposed methods face issues with improving solution quality over time. As
well, the CP model struggles with variable domain propagation with our com-
plex objective function.

4.1 Mixed Integer Programming Formulations

A total of four MIP models were developed and are denoted as Base, AAA,
MTZ AM, and Simplified. All of the models share a main binary decision
variable xij, which is equal to 1 if job j directly follows job i, otherwise it
takes a value of 0.

24

4.1. MIXED INTEGER PROGRAMMING FORMULATIONS 25

4.1.1 Base Model

The Base MIP model was developed by Li in her undergraduate thesis in
collaboration with the industry client [47]. This model uses the following
decision variables:

• gj ≥ 0 as the start time of job j

• ej ≥ 0 as the earliness of job j

• tj ≥ 0 as the tardiness of job j

Using the problem notation as presented in Chapter 2, Table 2.1, the model
is as follows:

min
∑
i∈J

∑
j∈J

Sijxij +
∑
j∈J

αqjej + βqjtj (4.1)

s.t.
∑
i∈J

xij = 1 ∀j ∈ J , j ̸= 0 (4.2)∑
j∈J

xij ≤ 1 ∀i ∈ J (4.3)∑
j∈J

xj0 = 0 (4.4)∑
j∈J

xjj = 0 (4.5)

gj − (sij + gi + pi) ≥M (xij − 1) ∀i, j ∈ J , i ̸= j (4.6)

gj ≥ rj ∀j ∈ J (4.7)

ej ≥ dj − gj − pj ∀j ∈ J (4.8)

tj ≥ gj + pj − dj ∀j ∈ J (4.9)

xij ∈ {0, 1} ∀i, j ∈ J (4.10)

gj ≥ 0 ∀j ∈ J (4.11)

ej ≥ 0 ∀j ∈ J (4.12)

tj ≥ 0 ∀j ∈ J (4.13)

Objective (4.1) minimizes the total setup cost plus earliness and tardiness
costs. Constraints (4.2) - (4.3) are subtour elimination constraints; they ensure
that the solution sequence executes each job exactly once and there is a path
from start to finish. Constraints (4.4) and (4.5) lock in the first job and prevent
a job from directly following itself (i.e., x11 ̸= 1). Constraint (4.6) tracks the
start time of each job and prevents overlap between the jobs using a disjunctive
big-M constraint with processing and setup times. Constraint (4.7) enforces
release dates on jobs. Constraints (4.8) and (4.9) track each job’s earliness and
tardiness. Finally, constraints (4.10) - (4.13) declare the decision variables.

26 CHAPTER 4. MIP AND CP FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

One can observe that the base model can be simplified by modifying several
of the constraints, which the next model takes into consideration.

4.1.2 AAA Model

The Avalos-Rosales et al. [5] (AAA) model was the state-of-the-art method,
without using decomposition, for minimizing makespan on single machine
scheduling problems with setup times and cost. It was recently outperformed
by the MTZ AM model, which is defined in Section 4.1.3. AAA appears sim-
ilar to the base MIP model, however it removes the unnecessary constraints.
We modify the objective function for our problem:

min (4.1)

s.t. (4.6)− (4.13)∑
i∈J ,i ̸=j

xij = 1 ∀j ∈ J , j ̸= 0 (4.14)∑
j∈J ,j ̸=i

xij ≤ 1 ∀i ∈ J (4.15)

The AAA model combines constraints (4.2) - (4.5) and simplifies them using
constraints (4.14) and (4.15). In the base model, the subtour elimination
constraints (4.2) and (4.3) do not prevent identical job transitions and do
not lock in the first job. However, we can modify the original constraints to
consider both, yielding constraints (4.14) and (4.15).

4.1.3 MTZ AM Model

The Miller-Tucker-Zemlin AM (MTZ AM) model is considered the state-of-
the-art for minimizing makespan on single machine scheduling problems with
setups without using a decomposition approach [23]. In their 2018 paper,
Fanjul-Peyro, Ruiz, and Perea [23] demonstrated that the MTZ AM model
outperformed the previous state-of-the-art AAA model. This model is derived
from the AAA model, except it uses the well-known Miller-Tucker-Zemlin
Subtour Elimination Constraints (SEC) and two valid inequalities that the
authors denote as AM.

MTZ AM introduces a new variable, Uj ∈ Z+, which is the lower limit on
the number of jobs processed before j on the machine where j is processed.
Unfortunately, this model had to be modified to track job start times due to
our complex objective function. The actual MTZ AM model does not require
gj, ej, and tj as, given a solution, one can calculate the makespan of the se-
quence without needing to time the jobs. However, in our problem, given a
sequence of jobs without start times, we must determine the these timings in

4.1. MIXED INTEGER PROGRAMMING FORMULATIONS 27

order to minimize earliness/tardiness in our objective function. The modified
MTZ AM model is as follows:

min
∑
i∈J

∑
j∈J

Sijxij +
∑
j∈J

αqjej + βqjtj (4.16)

s.t. (4.6)− (4.15)

Ui − Uj + |J |xij ≤ |J | − 1 ∀i, j ∈ J , i ̸= j (4.17)

Uj ≥ 0 ∀j ∈ J (4.18)

Constraint (4.17) is a redundant subtour elimination constraint as our model
eliminates subtours with job start times in (4.6). Additionally, due to con-
straint structure of (4.17), Uj is relaxed to be a continuous variable with-
out permitting infeasible solutions. Constraint (4.17) is from the well-known
Miller–Tucker–Zemlin (MTZ) constraints [48]. We wanted to investigate the
addition of these redundant subtour elimination constraints in our work, es-
pecially with their success in the original MTZ AM model. Further, we can
directly measure the impact of these constraints as they are the only difference
between the AAA and MTZ AM models in our work.

4.1.4 Simplified Model

The Simplified MIP model is based on the previous MIP models; however, we
utilize a variable fj to track the earliness/tardiness cost of each job, instead of
using one variable for earliness and another for tardiness. This cost tracking
simplification greatly reduces the model size and is possible as each job is
either early, on time or late; thus, we can track a job’s cost with only one
variable. As well, we use cj ≥ 0 to track job completion times. The model is
then as follows:

min
∑
j∈J

fj +
∑
i∈J

∑
j∈J

Sijxij (4.19)

s.t. (4.14)− (4.15)

cj ≥ ci + sij + pj −M (1− xij) ∀i, j ∈ J , i ̸= j (4.20)

cj ≥ rj + pj ∀j ∈ J (4.21)

fj ≥ αqj (dj − cj) ∀j ∈ J (4.22)

fj ≥ βqj (cj − dj) ∀j ∈ J (4.23)

xij ∈ {0, 1} ∀i, j ∈ J (4.24)

cj ≥ 0 ∀j ∈ J (4.25)

fj ≥ 0 ∀j ∈ J (4.26)

28 CHAPTER 4. MIP AND CP FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

Objective (4.19) minimizes the total earliness/tardiness and setup costs. Con-
straint (4.20) prevents overlap between jobs. Constraint (4.21) sets the job
completion time bounds. Constraints (4.22) and (4.23) track each job’s earli-
ness/tardiness cost. Finally, (4.24), (4.25), and (4.26) are the variable decla-
rations.

4.2 A Constraint Programming Formulation

The base constraint programming model, denoted CP, is a basic, “off the shelf”
model, that represents each job with an interval variable, xj ∈ J . To consider
the sequence of jobs on the machine, we introduce a sequence variable u, which
represents a sequence of interval variables. A formal definition of interval and
sequence variables is found in Section 3.4. Informally, each interval variable
has a start time, completion time, and duration. For the ETSS problem, our
interval variables have a duration equivalent to the processing time of the
job that it represents. Interval variable start and end times are determined
by the constraint programming optimization engine, and thus are decision
variables. The sequence variable is used to determine the order of our interval
variables, or equivalently the sequence of jobs in the solution. Further, using
a sequence variable allows us to enforce no overlap between interval variables
by considering setup times.

We denote s as the setup time matrix from job i to j and S for the cost
matrix. The model is then:

min
∑
j∈J

max{α (dj − End (xj)) , β (End (xj)− dj)}

+
∑
i∈J

S (i, TypeOfNext (u, xj, |J |, |J |)) (4.27)

s.t. Pres (xj) = 1 ∀j ∈ J (4.28)

Length (xj) = pj ∀j ∈ J (4.29)

Start (xj) ≥ rj ∀j ∈ J (4.30)

End (xj) ≤ T ∀j ∈ J (4.31)

NoOverlap ({xj : ∀j ∈ J }, s) (4.32)

xj := intervalVar ∀j ∈ J (4.33)

u := sequenceVar
(
{x0, . . . , x|J |}

)
(4.34)

Objective (4.27) follows the same objective as the previous models. However,
the setup costs are formulated using TypeOfNext, which determines the type
of the next interval variable in our sequence. Each interval variable has its
own type to model heterogeneous setup costs, meaning that each job has a
unique set of transitions to other jobs. Using the max operator is valid in
constraint programming. Constraint (4.28) ensures that each job is scheduled.

4.3. EXPERIMENTAL SETUP 29

Constraint (4.29) sets each interval variable’s length to its associated job’s
processing time. Constraint (4.30) enforces release dates. Constraint (4.31)
is used to set an appropriate finite time horizon, following previous work on
ETSS problems [60]. Constraint (4.32) enforces no overlap between jobs as
explained in Chapter 3 Section 3.4. Finally, (4.33) and (4.34) declare our
model variables.

4.3 Experimental Setup

All of the experiments in this thesis were conducted using the same experi-
mental setup and were run on the SciNet Niagara Cluster. The MIP models
were solved using CPLEX 20.1 and the CP model with CP Optimizer 20.1.
All methods were coded in C++ except the client heuristic as mentioned in
Section 2.3. The models were tested using 100 randomly generated instances
and two industry client instances, following the discussion in Section 2.2.1.
Each instance was run for a maximum of 30 minutes.

4.4 Numerical Results

In this section, we compare the proposed MIP and CP models using quanti-
tative experiments. Graphs with error bars are located in Appendix A.

4.4.1 Mean Relative Error

As the MIP models and CP model use different optimization engines, Mean
Relative Error (MRE) was used to compare the different methods. For each
problem size, for example instances with 50 jobs, each model’s MRE is calcu-
lated using the best-known solution for each instance across all of the methods
in this thesis, using the formula below:

MRE =
1

N

N∑
i=1

|
(
Zi − Zbest

i

)
|

Zbest
i

Where MRE is the Mean Relative Error for the selected method for the
selected problem size, N is the number of instances in the selected problem
size, Zi is the selected method’s solution for instance i in that problem size,
and Zbest

i is the best-known solution for instance i across the all of the methods
in this thesis.

From Figure 4.1, the client heuristic almost always finds the best solutions
and dominates the other methods as the number of jobs increases. The base
CP model remains competitive with the heuristic until it begins to struggle
past 200 jobs. The MIP models have significantly worse performance that is

30 CHAPTER 4. MIP AND CP FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

20

40

60

80

100

120

140

M
RE

 %
Mean Relative Error

Heuristic
Base MIP
AAA
MTZ_AM
Simplified MIP
CP

Figure 4.1: Mean Relative Error for MIP and CP models.

more impacted by job size. Of the MIP models, the Simplified MIP method
performs the best.

The MRE suggests that the CP and Simplified MIP models are the most
promising exact techniques thus far.

4.4.2 Average Run Time

As shown in Figure 4.2, all of the methods utilize the maximum time for
medium sized instances. For smaller instances, the MIP models run much
faster than CP, and both are faster than the heuristic.

4.4.3 Instances Solved

All of the MIP and CP models were able to find feasible solutions within the
time limit.

4.4.4 MRE Over Time

To compare the solution quality over time, each method’s objective was sam-
pled every second for each instance. We then compute each method’s MRE
for every instance every second. The final MRE value at each second is the
average of a method’s MRE for each instance at that time point. For a selected
method, MRE at time t (MREt) is:

MREt =
1

N

N∑
i=1

|
(
Zi,t − Zbest

i

)
|

Zbest
i

4.4. NUMERICAL RESULTS 31

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

250

500

750

1000

1250

1500

1750
Ti

m
e

(s
)

Average Run Time
Heuristic
Base MIP
AAA
MTZ_AM
Simplified MIP
CP

Figure 4.2: Average run time for MIP and CP models.

Where N is the number of instances with solutions at time t for the selected
method, Zi,t is the selected method’s objective value for instance i at time t,
and Zbest

i is the best-known objective value for instance i across all of the thesis
methods.

Figure 4.3 shows a rapid increase in solution quality early on, until MRE
plateaus for the remaining time. Even with ample time remaining, none of the
methods make significant improvements past the first quarter of the time limit.
As expected from the MRE results, the heuristic and CP methods’ plateaued
quality is better than the MIP models.

4.4.5 MIP and CP Warm Start

As the Simplified MIP and CP model had difficulties improving solutions over
time, both were tested with an initial solution from running the heuristic for
5 seconds. Warm starting these methods will demonstrate the search tree
pruning effectiveness when given a strong starting upper bound. We denote
the CP method with warm start as CP warm and the Simplified MIP method
with warm start as Simplified MIP warm, and compare them to no warm start
and the heuristic in Figure 4.4. The benefit of warm starting with the heuristic
is evident in the large reduction of MRE for both warm start methods. Figure
4.5 shows that MIP warm is not as competitive with CP warm. These large
reductions in MRE demonstrate the importance and impact of finding a good
initial solution for both models. Further, it highlights MIP and CP’s ability
to be competitive with the client heuristic in this environment.

In Figure 4.6, we show the MRE over time for the warm start methods.
CP warm has better solution quality improvement over time compared to Sim-

32 CHAPTER 4. MIP AND CP FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

Time (s)

0

20

40

60

80

100

120

M
RE

 %

Mean Relative Error Over Time
Heuristic
Base MIP
AAA
MTZ_AM
Simplified MIP
CP

Figure 4.3: Mean Relative Error over time.

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

20

40

60

80

100

120

140

M
RE

 %

Mean Relative Error
Heuristic
Simplified MIP
Simplified MIP_warm
CP
CP_warm

Figure 4.4: Mean Relative Error for Simplified MIP and CP with heuristic warm start and
non-warm start.

4.4. NUMERICAL RESULTS 33

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

2

4

6

8

10

12

M
RE

 %

Mean Relative Error
Heuristic
Simplified MIP_warm
CP_warm

Figure 4.5: Mean Relative Error for Simplified MIP and CP with heuristic warm start.

plified MIP warm, similar to CP and Simplified MIP. Interestingly, we observe
little improve with time at all for Simplified MIP warm, whereas CP warm
continues to have large improvements for the majority of the time limit.

4.4.6 CP Objective Function Propagation

One hypothesis with the CP model is that its complex objective function
decreases the solver’s ability to propagate changes in the objective function
to changes in the interval variable domains. Constraint programming per-
formance critically depends on this ability as it determines variable domain
pruning whenever a new solution is found. To investigate this propagation,
the CP model was compared against another CP model which only differed
in its objective function. The latter model, denoted as CP cmax, minimizes
makespan subject to the same constraints as the base CP model. The CP cmax
objective function is: max{End (xj)}, contrasted to the CP objective function
in (4.27). Thus, the sole difference between these models is their objective
function which would result in different propagation to the decision variables.

To measure the level of back-propagation, or search space reduction, inde-
pendent of the lower bound quality for CP and CP cmax, we begin with an
initial propagation. Then we post an upper bound constraint and propagate
to measure the reduction in search space via the change in size of the variable
domain store. The posted constraint is as follows:

obj (i) ≤ opt (i)− ϵ

Where obj (i) is the objective function for instance i, opt (i) is the optimal
solution to instance i, and ϵ is a very small number. As we have two different

34 CHAPTER 4. MIP AND CP FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

Time (s)

0

1

2

3

4

5
M

RE
 %

Mean Relative Error Over Time
Heuristic
Simplified MIP_warm
CP_warm

0 1000
0

50

Figure 4.6: Mean Relative Error over time for Simplified MIP and CP with heuristic warm
start and client heuristic.

objective functions, each model independently has this constraint posted and
we use each model’s respective objective function and the optimal value of
the associated instance. The search space percentage reduction is calculated

as ||dom|−|domp||
|domp| , where |dom| is the cardinality of the domain store after the

upper bound propagation and |domp| is the domain store cardinality prior.

We obtained the optimal solutions to all 10-job instances for both the ETSS
and the makespan objective functions. On average, CP cmax had a search
space reduction of 88.3% after posting the optimal upper bound. Conversely,
CP had an average search space reduction of 0.2%. Thus, the ETSS objective
function propagates quite poorly, especially given that we provided optimal
upper bounds to use for propagation.

4.4.7 Root Node Lower Bound Analysis

Here we compare the root node lower bound strength between the best MIP
model, Simplified MIP, and CP. The CP model obtains its lower bound via
a combination of inference through constraint propagation and a linear pro-
gramming relaxation [52, 51]. This process reduces the domains of variables
and thus the possible assignment combinations. At the root node, no branch-
ing has been done and thus no backtracking is utilized either. We measure
the Mean Relative Error of the root node lower bound from the best-known
solution:

4.4. NUMERICAL RESULTS 35

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

10

20

30

40

50

60

70

80
M

RE
 %

Mean Relative Error
MIP_root
CP_root

Figure 4.7: Root node lower bound deviation from best-known solution.

MREroot =
1

N

N∑
i=1

|
(
LBi − Zbest

i

)
|

Zbest
i

Where MREroot is the Mean Relative Error for the root Lower Bound (LB)
for the selected method for the selected problem size, N is the number of
instances for that problem size, LBi is the selected method’s root node LB
for instance i in that problem size, and Zbest

i is the best-known solution for
instance i across the various methods.

We investigate root node lower bounds as a strong lower bound is critical
for effective pruning in the search tree for both constraint and mathematical
programming. In Figure 4.4 we showed the impact of a strong upper bound
via heuristic warm start and now look to the effectiveness of the current lower
bounds. A method with a better root node lower bound will have a lower
MRE score.

Interestingly, Figure 4.7 demonstrates that the Simplified MIP finds very
good root node lower bounds for smaller instances but worsens as problem
sizes increase. However, the Simplified MIP model always finds better root
node lower bounds than CP. Although, the CP model is consistently faster
at finding root bounds as shown in Figure 4.8, suggesting that the MIP root
lower bound via linear relaxation is preferred for smaller problem sizes, while
CP’s slightly worse but faster root bound is preferred for larger instances.
Consequently, these differences in root node bounds may explain the difference
in performance between CP and MIP in Figure 4.1.

36 CHAPTER 4. MIP AND CP FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

25

50

75

100

125

150

175
Ti

m
e

(s
)

Average Run Time
MIP_root
CP_root

Figure 4.8: Time to obtain root node lower bound.

4.5 Discussion

Of the MIP and CP models presented in this chapter, the Simplified MIP and
CP models perform the best with regards to solution quality. However, they
have a significant performance gap with the client heuristic; although, the CP
model is more competitive than the Simplified MIP. All of the methods struggle
to improve solution quality over time after an initial strong performance. Thus,
finding a good initial solution is important for improving search efficiency,
as shown in the warm start experiments. Further, the proposed constraint
programming model struggles with variable domain propagation compared
to a model with a makespan minimization objective. Finally, the Simplified
MIP model finds better root node lower bounds than CP, however it takes
significantly longer as problem size increases. Thus, when considering time,
CP provides a better root node bound trade off for larger instances.

Additionally, state-of-the-art MIP models for minimizing makespan on a
single machine with setups are not competitive for this problem.

Chapter 5 addresses CP’s weak propagation and looks at improving CP’s
lower bounds via decision diagrams. Chapter 6 then turns to Large Neighbour-
hood Search with diversification methods to reduce solution quality plateauing,
along with the impact of warm starting via the client heuristic.

Chapter 5

DDs for Earliness Tardiness
Scheduling with Setups

In this chapter we investigate using Multivalued Decision Diagrams (MDD)
in combination with our base Constraint Programming (CP) model developed
in Chapter 4. Recall that the base CP model was the best exact technique
for solving the Earliness Tardiness Scheduling with Setups (ETSS) problem.
However, the model struggled with finding strong root node lower bounds and
propagating variable domain changes with its objective function. Integrating
decision diagrams with our base CP model aims at improving these two short
comings. As discussed in the literature review (see Section 3.5), decision dia-
grams have been successfully applied to scheduling problems, providing lower
bounds through solving the shortest path problem over a decision diagram.
Further, the constraint programming optimization engine is able to propagate
changes in decision variable domains to the decision diagram and vice versa.

We develop a novel approach that combines the MDD approach with a tim-
ing algorithm, addressing the potential lower bound weakness of the decision
diagram when it is used for our complex objective function. Given a sequence
of jobs, this timing algorithm efficiently determines job completion times to
minimize earliness/tardiness costs.

Finally, we compare and discuss the numerical results for our initial decision
diagram approach and one with the timing algorithm. We include an analysis
against the best performing methods from the previous chapter: the client
heuristic, the Simplified Mixed Integer Programming (MIP) model, and the
CP model. Neither MDD model was competitive with Simplified MIP, CP,
and the heuristic, as they were unable to find feasible solutions to the larger
instances in the time limit. However, for smaller instances the MDD methods
were able to outperform CP in solution quality, time, and root node bound
strength.

37

38 CHAPTER 5. DDS FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

5.1 Decision Diagram Formulations

We formulate a relaxed MDD for the ETSS problem. By computing the short-
est path in the relaxed decision diagram, we obtain a valid lower bound on
its objective function. Informally, the decision diagram formulation focuses
on the job sequence in our problem. Each layer of the decision diagram rep-
resents a position within the overall job sequence. That is, layer i represents
position i in the job sequence. Thus, in each layer, arcs represent a feasible
job assignment to the corresponding position in the sequence. Consequently,
all of the paths from root node to terminal node in the decision diagram rep-
resent feasible job sequences. For each arc, we assign a label denoting the job
that the arc represents. As well, each arc has a cost, stemming from the cost
that would occur if that arc was used in its layer. Or equivalently, the cost
that would occur if the job associated with that arc’s label was in the layer’s
position within the job sequence.

Unfortunately, as the decision diagram focuses on job sequence, we do not
have fixed completion times for the jobs on any given root-to-terminal path.
As a result, the costs associated with each arc are lower bounds as opposed
to true costs: we can track the setup times using parent arcs, but without
completion times, we can only calculate earliness/tardiness cost bounds using
earliest and latest completion times of the arc.

Recall that, generally, an exact decision diagram yields an optimal solution
for its corresponding optimization problem [9]. However, for the ETSS prob-
lem, the decision diagram only determines the sequence of jobs and not the
completion times, thus yielding only a lower bound, even if job sequence is
represented exactly. However, we can propagate using the lower bound and
infer the earliest and latest completion times of all jobs.

Using this mathematical framework, we then relax the decision diagram
regarding job sequence, which provides a weaker lower bound and variable do-
main propagation. Relaxing the decision diagram provides a trade off between
bound and inference strength and computational efficiency [9].

5.1.1 An Exact Decision Diagram For Job Sequence

For the ETSS problem, we utilize an MDD which represents all of the possible
job permutations. Thus, the MDD is exact for job sequence; however, it is not
exact for the objective function as we use earliness/tardiness and setup cost
lower bounds. That is, a path from root to terminal will represent a feasible
job sequence in an exact diagram. The explanation of the notation used for
this MDD formulation is in Section 3.5. Formally, our MDD is represented as
a layered directed acyclic multigraph G = (V,A), where V is a set of nodes
and A is a set of arcs. We utilize a Multivalued Decision Diagram to permit
an out-degree larger than two for the nodes in G. Each layer of the MDD
represents a position within the ETSS solution sequence. For example, the

5.1. DECISION DIAGRAM FORMULATIONS 39

first layer corresponds to the first sequence position. Then, each arc represents
sequencing a job in the corresponding layer of that arc. To map jobs to arcs,
we create a value, va ∈ J , for each arc a ∈ A, where va is the job that arc a
represents. Then, an arc-specified path (a1, . . . ,an) from the root node, r, to
terminal node, t, identifies the ordering πππ = (π1, . . . , πn), where πi = vai for
i = 1, . . . , n, in other words a sequence of jobs: πππ.

In an exact decision diagram, every feasible ordering is identified by some
path from r to t in G, and conversely every path from r to t identifies a feasible
job sequence. Sequence feasibility is ensured by using an AllDifferent global
constraint over πππ, which prevents any duplicate values within πππ. Figure 5.1
shows a decision diagram for an instance with three jobs, where there are three
layers representing each position in the job sequence. For example the path
(r, u1) , (u1, u4) , (u4, t) represents the job sequence 1→ 2→ 3.

We determine a lower bound on the cost associated with each arc a = (u, v)
in G, where u is the parent node and v is the child node for a, such that the
sum of these costs along an r− t path will be a valid lower bound for our
problem. To do so, we define the following arc states: earliest completion time
ecta and latest completion time lcta, ∀a = (u, v) ∈ A, where:

• ecta = max{rva ,min{ecta′ + sva′ ,va : a′ ∈ in (u)}} + pva , where rva is the
release time of job va, sva′ ,va is the setup time from job va′ to job va, in (u)
denotes the set of arcs that enter node u, and pva is the processing time
of job va. If a ∈ out (r), ecta = rva + pva , where out (r) denotes the set of
arcs that leave the root node.

• lcta = max{lcta′ − pva′ − sva,va′ : a′ ∈ out (v)}. If a ∈ in (t) , lcta =
T, where T denotes the instance time horizon: T = maxi di +

∑
i pi +∑

i maxj sij. The calculated time horizon is a valid upper bound on the
makespan of an optimal schedule for the ETSS problem [60].

We define the length la or cost associated with each arc a = (u, v) ∈ A
using the arc states defined above, such that the shortest path in G from r to
t represents a valid lower bound on our ETSS objective function:

la = qva max{0, α (dva − lcta) , β (ecta − dva)}+min{Sva,va′
: a′ ∈ out (v)}

where qva is the quantity of job va, α is the earliness penalty coefficient, β is
the tardiness penalty coefficient, dva is the due date of job va, and Sva,va′

is
the setup cost between job va and job va′ .

Once our decision diagram is created, its lower bound will be the shortest
r− t path. Within the ETSS problem, the shortest path will represent a
sequence of jobs in the given instance.

40 CHAPTER 5. DDS FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

r

u1 u2 u3

u4 u5 u6

t

1

2

3

π1:

π2:

π3:

Figure 5.1: A decision diagram for a three job instance.

Table 5.1: A three job example instance.

(a) Instance

Job rj dj pj

1 0 3 1
2 4 7 6
3 3 2 5

(b) Setup times

1 2 3

1 0 1 4
2 6 0 7
3 3 5 0

5.1.2 An Example

We introduce a simple, three job example in the decision diagram framework.
For this example, we set the earliness (α) and tardiness (β) coefficients to one
and set all job quantities (qj) to one for simplicity. Further, we ignore setup
costs as they are not required to demonstrate the formulation. Our three job
instance is in Table 5.1.

Before formulating the decision diagram, the time horizon is calculated:
T = maxi di +

∑
i pi +

∑
i maxj sij = 7+ (1+ 6+ 5) + (4 + 7+ 5) = 35. Next,

we compute the decision diagram arc states which are earliest completion
time and latest completion time. The earliest completion time is propagated
from the root node down, whereas the latest completion time is propagated
from the terminal node upwards. Once these two numbers are determined
for each arc in the decision diagram, we can calculate each arc cost. We
perform the calculations in Table 5.2 and show the associated decision diagram
in Figure 5.2. We label each arc in the decision diagram with its cost and
determine the shortest path in the decision diagram. The shortest path is
(r, u1) , (u1, u5) , (u5, t) with length 20, which represents the job sequence 1→
3 → 2. Thus, our lower bound for this instance is 20. Optimally solving this
instance yields a value of 24.

In addition to this example, we note that the decision diagram lower bound
on arc cost can be zero for an arc if its ect and lct time window is not sufficiently
tight. That is, if for job j: ectj ≤ dj ≤ lctj then the lower bound will be zero.

5.1. DECISION DIAGRAM FORMULATIONS 41

Table 5.2: Decision diagram calculations for two job instance in Table 5.1.

(a) Earliest Completion Times

Arc ect

(r, u1) r1 + p1 = 0 + 1 = 1
(r, u2) 4 + 6 = 10
(r, u3) 3 + 5 = 8
(u1, u4) max{r2, ectr,u1

+ s1,2}+ p2 = max{4, 1 + 1}+ 6 = 10
(u1, u5) max{3, 1 + 4}+ 5 = 10
(u2, u4) max{4, 10 + 6}+ 1 = 17
(u2, u6) max{3, 10 + 7}+ 5 = 22
(u3, u5) max{0, 8 + 3}+ 1 = 12
(u3, u6) max{4, 8 + 5}+ 6 = 19
(u4, t) max{r3,min{ectu1,u4

+ s2,3, ectu2,u4
+ s1,3}}+ p3 = 22

(u5, t) max{4,min{10 + 5, 12 + 1}}+ 6 = 19
(u6, t) max{0,min{22 + 3, 19 + 6}}+ 1 = 26

(b) Latest Completion Times

Arc lct

(r, u1) max{lctu1,u4
− p2 − s1,2, lctu1,u5

− p3 − s1,3} = max{23− 6− 1, 24− 5− 4} = 16
(r, u2) max{26− 1− 6, 31− 5− 7} = 19
(r, u3) max{28− 1− 3, 28− 6− 5} = 24
(u1, u4) lctu4,t − p3 − s2,3 = 35− 5− 7 = 23
(u1, u5) 35− 6− 5 = 24
(u2, u4) 35− 5− 4 = 26
(u2, u6) 35− 1− 3 = 31
(u3, u5) 35− 6− 1 = 28
(u3, u6) 35− 1− 6 = 28
(u4, t) T = 35
(u5, t) 35
(u6, t) 35

(c) Arc Costs

Arc Cost

(r, u1) max{0, d1 − lctr,u1
, ectr,u1

− d1} = max{0, 3− 16, 1− 3} = 0
(r, u2) 3
(r, u3) 6
(u1, u4) 3
(u1, u5) 8
(u2, u4) 14
(u2, u6) 20
(u3, u5) 9
(u3, u6) 12
(u4, t) 20
(u5, t) 12
(u6, t) 23

42 CHAPTER 5. DDS FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

r

u1 u2 u3

u4 u5 u6

t

1

2

3π1:

π2:

π3:

0 3 6

3 8 14 20 9 12

20 12 23

Figure 5.2: A decision diagram formulation for the instance in Table 5.1.

5.1.3 A Relaxed Decision Diagram

In practice, relaxed decision diagrams are often utilized due to computational
resource limits [9]. Relaxed decision diagrams over-approximate the feasible
solutions and objective function bound of the problem. In the case of the
ETSS problem, our lower bound will be weaker when using a relaxed decision
diagram. The relaxation is controlled by the decision diagram’s width param-
eter: the maximum width of all its layers. Recall, that a layer’s width is the
number of nodes in it. Thus, a smaller width parameter results in a weaker
relaxation but uses fewer resources.

To create a relaxed decision diagram for the ETSS problem, we adjust the
creation procedure to prevent the model’s width from exceeding our parameter.
This process is denoted as incremental refinement and consists of two phases:
filtering and refinement. Filtering removes arcs where all paths that cross
them violate a constraint. For the ETSS MDD formulation, we are concerned
with the AllDifferent constraint. Refinement consists of splitting nodes to
strengthen the decision diagram formulation. The filtering and refinement
procedures were developed in Decision Diagrams for Optimization [9].

5.1.4 Filtering

We wish to identify the paths crossing an arc that always assign some job more
than once, that is, paths that violate the AllDifferent constraint. Then, this
arc is infeasible. For each node in the decision diagram, ui, i ∈ V , we define
the node state as the jobs that were previously performed on the machine. For
example, ur = {∅} and ut = {1, . . . , n}. To strengthen checking arc feasibility,
we introduce an additional redundant state that provides a sufficient condition
to remove arcs [9]. This state tracks the jobs that might have been performed
up to a node. We denote All↓u ⊆ J as the set of arc labels that appear in

5.1. DECISION DIAGRAM FORMULATIONS 43

all paths from the root node r to node u and Some↓u ⊆ J as the set of arc
labels that appear in some path from the root node r to node u. Further,
All↓r = Some↓r = ∅. Recall that in (v) is the set of incoming arcs at a node
v. Then, the states All↓v and Some↓v for some node v ̸= r can be recursively
calculated as follows:

• All↓v =
⋂

a=(u,v)∈in(v)

(
All↓u ∪ {va}

)
• Some↓v =

⋃
a=(u,v)∈in(v)

(
Some↓u ∪ {va}

)
Then, an arc a = (u, v) is infeasible, via top down filtering, if either of the

following conditions hold:

va ∈ All↓u (5.1)

|Some↓u| = l (a) and va ∈ Some↓u (5.2)

Where l (a) denotes the layer arc a is in.
Proof ([3]). Let π′ be any partial ordering identified by a path from r to

node u that does not assign any job more than once. In condition 5.1, va ∈ All↓u
indicates that va is already assigned to some position in π′, thus adding the
arc label va to π′ will create a duplicate. For condition 5.2, the paths from
r to u are comprised of l (a) arcs, and as such π′ represents an ordering with
l (a) positions. If |Some↓u| = l (a), then any j ∈ Some↓u is already assigned to
some position in π′: adding va to π′ creates a repetition.

In addition to top down filtering, bottom up filtering can be used to provide
stronger results. The bottom up approach uses two additional states All↑u ⊆ J
and Some↑u ⊆ J for each node. These states are computed with respect to
paths from t to u instead of r to u. Again, they can be computed recursively:

• All↑u =
⋂

a=(u,v)∈out(u)

(
All↑v ∪ {va}

)
• Some↑u =

⋃
a=(u,v)∈out(u)

(
Some↑v ∪ {va}

)
Then, an arc a = (u, v) is infeasible if either of the following conditions

holds:

va ∈ All↑v (5.3)

|Some↑v| = n− l (a) and va ∈ Some↑v (5.4)

|Some↓u ∪ {va} ∪ Some↑v| < n (5.5)

Proof. The proofs for conditions 5.3 and 5.4 follow from [31] and are anal-
ogous to the proof for conditions 5.1 and 5.2. Condition 5.5 implies that any

44 CHAPTER 5. DDS FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

r

u

v

t

π1:

π2:

π3:

(a) Initial relaxed
MDD.

r

u1 uA

v1 vA

t

(b) Job 1 is exact.

r

u1 u2 u3

u4 u5 u6

t

1

2

3

(c) Exact MDD.

ordering identified by a path containing arc a will never assign all of the jobs
in J .

5.1.5 Refinement

The refinement procedure splits nodes to remove paths that have infeasible so-
lutions, thus strengthening the relaxed decision diagram. For the AllDifferent
constraint, the refinement procedure follows a heuristic approach that priori-
tizes job accuracy based on job priority. That is, a more accurately represented
a job is closer to being exactly represented in the decision diagram, i.e. these
jobs are not repeated in any sequence encoded by the decision diagram. For
the ETSS problem, we define job priority as the job’s quantity, as that feature
is job dependent and directly impacts earliness/tardiness costs. We denote job
priority by ranking the jobs in J ∗ = {j∗1 , . . . , j∗n}, where jobs with a smaller
index in J ∗ have a higher priority. Then, the job quantities in J ∗ would follow
qj∗i ≥ qj∗k for i < k, i, k ∈ {1, . . . , n}.

To start the refinement procedure, we require a relaxed decision diagram
as input, which for the first iteration can be a trivial width-one decision di-
agram. For example, Figure 5.3a shows a width-one relaxation for a 3-job
ETSS instance. Notice the violation of the AllDifferent constraint. For a
given layer, Li, the refinement procedure is as follows: for each job j∗ ∈ J ∗,
identify the nodes u such that j∗ ∈ Some↓u \ All↓u. Then, split each such node
into two nodes u1 and u2, where an incoming arc a = (v, u) is redirected to u1

if j∗ ∈
(
All↓v ∪ {va}

)
or u2 otherwise, and replicate all outgoing arcs for both

nodes. This procedure is repeated for each layer in the decision diagram. If
a given layer’s width is at the maximum width of the decision diagram then
no refinement occurs. Further, if a job is represented exactly in a layer, that
is, there is no violation of the AllDifferent constraint, then no refinement
is run for that job. Figure 5.3b shows three phases of refinement for a 3-job
instance. Jobs are prioritized lexicographically, which is why job 1 becomes
exact in the middle diagram. As well, the red arcs in Figure 5.3b are infeasible
and thus can be filtered (removed). Finally, 5.3c is a width-3 decision diagram
and it is exact.

5.2. BOUND STRENGTHENING VIA TIMING ALGORITHM 45

5.2 Bound Strengthening Via Timing Algorithm

As previously mentioned, the decision diagram formulation only provides the
earliest and latest completion times of jobs, resulting in an objective value
bound. However, given a sequence of jobs from the decision diagram, we can
efficiently calculate their optimal completion times using a timing algorithm
following the work of Hendel and Sourd [30]. We run a O(m log n) timing
algorithm, where m denotes the sum of the number of piecewise linear costs
segments and n is the number of jobs. In the case of weighted earliness and
tardiness costs, m = 2n. Thus, Hendel and Sourd’s timing algorithm is more
computationally efficient than generating and solving a linear program for the
timing problem.

Given a sequence of n jobs, (J1, . . . , Jn), we wish to schedule them following
their index order. Each job has a convex piecewise linear cost function, denoted
as fi (ci), which uses the completion time, ci, of job Ji. For the ETSS problem,
this cost function is earliness/tardiness. Hendel and Sourd’s algorithm uses the
variable xi, which denotes the amount of cumulative idle time before starting
job Ji, leading to an order among variables: x1 ≤ x2 ≤ . . . xn. In the paper,
setup times are not considered, yielding a convex piecewise linear cost function:

gi (xi) = fi

(
xi +

∑i
j=1 pj

)
. To account for setup times, we modify the cost

function to be: gi (xi) = fi

(
xi +

∑i
j=1 pj +

∑i
j=1,i>1 sj,j+1

)
.

For each cost function gi, we store a list, bi, of their breakpoints and corre-
sponding slopes, which is dependent on the job’s location in the sequence. To
calculate bi, we use Algorithm 7. This algorithm takes the parameters s and
T, where s =

∑n
i=1maxj{slopeij} where slopeij is the slope of the jth segment

of fi, and T is the time horizon for the given instance. Within the algorithm,
a job will have either two or three breakpoints. The first breakpoint occurs at
the job’s earliest start time, the second only occurs if a job can be early, and
the third breakpoint is at the time horizon. Additionally, we scale the data
and round it to become integer.

Informally, at the ith iteration of the algorithm the job in position i is
scheduled at time infinity. The job is then left-shifted until it is either at
a time with minimum cost or it encounters a block of jobs with no idle time
between them and is merged with them. The process continues with this block
until it is timed with a minimum cost or it meets a preceding block. Thus,
after the ith iteration, the schedule is optimal for the first i jobs.

More formally, the algorithm uses a reversed list per cost function, bi; the
list contains the breakpoints sorted from the last one to the first one. As
well, we denote g′i(∞) as the slope of the last segment in the i cost function.
For the ETSS problem, g′i(∞) = s,∀i ∈ {1, . . . , n}. Sourd and Hendel use a
unique heap to store all events, where an event is a job that can be adjusted
in the current schedule in the current iteration. This heap is sorted so that
the event with the maximal time, t = tej is at the top of the heap. An event

46 CHAPTER 5. DDS FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

Algorithm 7 Initialize cost function breakpoints and slopes

1: procedure GenerateBreakpointAndSlope(s, T)
2: Initialize b,minidle = 0
3: for i = 1; i ≤ n do
4: Calculate sum processing and setup times before Ji → y
5: if y < ri then
6: minidle = max{minidle, ri − y}
7: bi.push back(minidle,∞)
8: slopet = βqi
9: if minidle + y + pi < di then

10: slopee = −αqi
11: bi.push back(di − pi − y, slopet − slopee)

12: bi.push back(T, s− slopet)

13: return b

is a 4-tuple (t, j, k,m), where t = tej is typically the maximal of a breakpoint
for cost function j, k is the index of the first job of the block, and m is the
modifier for the associated breakpoint. Algorithm 8 shows how to insert Ji
into the schedule and it is run n times for J1, . . . , Jn. After all of the jobs are
inserted into the schedule, Algorithm 9 computes the idle time before each job
by emptying the heap. Finally, with the amount of idle time between each
job, xi determined, we can compute the completion time of each job.

Algorithm 8 Insert Ji into the schedule

1: Initialize the current block: σ ← g′i(∞) and f ← i
2: Let (te,me) be the last breakpoint of bi
3: bi.pop back()
4: j ← i
5: while σ ≥ 0 do
6: Insert the event (te, j, f,me) in the heap
7: Let (t, j, k,m) be the event removed from the top of the heap
8: σ ← σ −m
9: f ← min{f, k}

10: Let (te,me) be the next event in the reverse list of bj
11: bj .pop back()

12: Insert the event (t, j, f,−σ) in the heap

Hendel and Sourd’s timing algorithm was used instead of the simple timing
rule used in the client heuristic, Section 2.3, as it does not assume that a job’s
tardiness costs will be strictly larger than its earliness costs.

5.2.1 An Example With Strengthened Bounds

We return to our example in Section 5.1.2, instead utilizing a decision diagram
formulation that includes using the timing algorithm on complete paths in
the decision diagram. Previously, our lower bound was 20 and the optimal

5.3. IMPLEMENTATION 47

Algorithm 9 Post Processing

1: i← n
2: while i > 0 do
3: Let (t, j, f,m) be the event removed from the top of the heap
4: while i ≥ f do
5: xi = t
6: Decrease i

objective was 24. If we consider the paths in our decision diagram, we can run
the timing algorithm on them to optimally determine each job’s completion
time. For 1→ 3→ 2, job 1 finishes at time 1, job 3 at 10, and job 2 at 21, with
a cost of 24 (optimal). Now the shortest path in our decision diagram provides
a lower bound that is the optimal objective value. In this example, we ran
the timing algorithm on all paths in the decision diagram. However, running
the algorithm on all paths in the implementation is not necessarily required.
As the timing algorithm requires a full sequence of jobs, we only run it in
the CP search tree if the sequence of interval variables is fixed, which occurs
at the leaf nodes. In the worse-case scenario, assuming no node pruning, the
timing algorithm would run once for every leaf node. For an instance with n
jobs, it would run n! times. However, with pruning we can expect the timing
algorithm to run less often. Further, running the timing algorithm strengthens
our overall objective lower bound as it provides the earliness/tardiness costs
for a given path, which is used for additional pruning.

5.3 Implementation

The decision diagram formulation was integrated with the base CP model
in C++ as a global constraint. Consequently, the constraint programming
optimization engine is able to utilize the bounds from the decision diagram
and propagate variable domain information between its domain store and the
decision diagram. We use a relaxed decision diagram with a fixed width of
1000, referring to this method as MDD. Further, the decision diagram with
timing algorithm was developed and is denoted as MDD timing. For both
models we set the constraint programming engine to use depth first search to
reduce memory usage over other search strategies.

5.4 Numerical Results

We compare the proposed MDD and MDD timing methods using quantitative
experiments, following the experimental setup defined in Section 4.3. Addi-
tionally, we compare with the previous best performing methods: the client
heuristic, Simplified MIP, and CP. Graphs with error bars are located in Ap-
pendix B.

48 CHAPTER 5. DDS FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

20

40

60

80

100

120

140

M
RE

 %
Mean Relative Error

Heuristic
Simplified MIP
CP
MDD
MDD_timing

Figure 5.3: Mean Relative Error for MDD models and previous techniques.

5.4.1 Mean Relative Error

Unfortunately, neither MDD method was competitive in finding good quality
solutions compared to the heuristic, MIP, and CP models as shown in Figure
5.3. Further, MDD was not able to find any feasible solutions in the given
time limit for instances with more than 100 jobs and MDD timing for more
than 50 jobs. However, for 10 and 20 job instances both MDD methods find
better solutions than CP and are competitive with the heuristic and MIP.

5.4.2 Instances Solved

The base MDD model was unable to solve any of the instances with more
than 100 jobs. For instances with 150 jobs it was unable to find a feasible
solution in the given time limit, whereas for 200+ job instances it ran out
of memory. A similar situation occurred with MDD timing, except at the 50
job threshold. Unfortunately, it appears that adding the timing algorithm
does not lead to any significant benefit with regards to solution quality or the
number of instances solved.

5.4.3 Average Run Time

As displayed in Figure 5.4, both MDD methods used the maximum amount
of time for instances with 50 jobs. However, they are faster than the heuristic
and CP for 10 and 20 job instances.

5.4. NUMERICAL RESULTS 49

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

250

500

750

1000

1250

1500

1750
Ti

m
e

(s
)

Average Run Time
Heuristic
Simplified MIP
CP
MDD
MDD_timing

Figure 5.4: Average run time for MDD models and previous techniques.

5.4.4 MRE Over Time

AsMDDwas unable to solve instances with more than 100 jobs and MDD timing
unable to solve instances with more than 50 jobs, we only compare MRE over
time using instances with 10, 20, and 50 jobs. Similar to the other meth-
ods, both MDD methods has difficulty improving solution quality over time,
as shown in Figure 5.5. As well, MDD and MDD timing plateau at a worse
solution quality at the time limit than the previous methods.

5.4.5 MDD Warm Start

We test both MDD methods with an initial warm start solution provided
by running the client heuristic for 5 seconds. We denote these methods as
MDD warm and MDD timing warm. Figure 5.6 shows that both MDD warm
start versions greatly outperform their respective non-warm start versions and
the heuristic for smaller instances. However, MDD warm and MDD timing warm
fail at finding solutions within the time limit for problem sizes with greater
than 20 jobs. Thus, the heuristic warm start was unable to assist the MDD
methods with finding solutions to larger instances.

In Figure 5.7, we compare the warm start MDD methods with the previous
Simplified MIP warm and CP warm. MDD warm and MDD timing warm
achieve the best results for instances with 10 and 20 jobs, in fact they are
equivalent in performance. However, they are not competitive with the other
warm start methods given that they are unable to find feasible solutions.

Figure 5.8 compares the MDD warm start methods’ MRE over time with
previous warm start methods, using instances with 10 and 20 jobs. For these

50 CHAPTER 5. DDS FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

Time (s)

0

10

20

30

40

50

60

70

M
RE

 %
Mean Relative Error Over Time

Heuristic
Simplified MIP
CP
MDD
MDD_timing

0 1000
0

100

Figure 5.5: Mean Relative Error over time for MDD models and previous techniques, using
10, 20, and 50 job instances.

smaller instances, the Simplified MIP warm and MDD warm have the best
solution quality at the time limit. Unfortunately the new MDD timing warm
approach fares the worst, with CP warm beating it.

5.4.6 Root Node Lower Bound Analysis

Although the MDD methods have difficulties finding competitive solutions,
both find better root node lower bounds than CP for smaller instances as seen
in Figure 5.9. Interestingly, for 10 job instances, both MDD approaches find
better root node bounds than MIP. Although MDD and MDD timing could
not find feasible solutions in the given time limit for larger instances, both
were able to find root node lower bounds for up to 300 job instances. Further,
we observe that adding the timing algorithm to the MDD model does not
improve the root node lower bound, as the timing algorithm does not run at
the root node since it requires a candidate sequence.

We compared the best-known lower bounds that MDD and MDD timing
found for the instances they both did not solve optimally. Upon reaching the
time limit, both methods had equivalent best-known lower bounds, suggesting
that MDD timing was unable to improve its lower bound over MDD.

However, there is a trade off between quality lower bounds and computation
time: Figure 5.10 shows the rapid increase that the MDD approaches require to
find root bounds. Thus, for 10 job instances an MDD lower bound is preferred
and for larger instances CP is preferred.

5.4. NUMERICAL RESULTS 51

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

20

40

60

80

100

120
M

RE
 %

Mean Relative Error
Heuristic
MDD
MDD_warm
MDD_timing
MDD_timing_warm

Figure 5.6: Mean Relative Error for MDD models with heuristic warm start and non-warm
start. MDD warm and MDD timing warm both have a MRE of 0% for 10 and 20 problem
sizes and are represented by the line segment from x = 10 to x = 20 on the x-axis. Neither
were able to solve instances larger than 20 jobs.

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

1

2

3

4

M
RE

 %

Mean Relative Error
Simplified MIP_warm
CP_warm
MDD_warm
MDD_timing_warm

Figure 5.7: Mean Relative Error for MDD models with heuristic warm start and previous
warm start techniques. MDD warm and MDD timing warm both have a MRE of 0% for 10
and 20 problem sizes and are represented by the line segment from x = 10 to x = 20 on the
x-axis. Neither were able to solve instances larger than 20 jobs.

52 CHAPTER 5. DDS FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
RE

 %

Mean Relative Error Over Time
Heuristic
Simplified MIP_warm
CP_warm
MDD_warm
MDD_timing_warm

0 1000
0

50

Figure 5.8: Mean Relative Error over time for MDD models with heuristic warm start and
previous warm start techniques, using instances with 10 and 20 jobs.

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

20

40

60

80

M
RE

 %

Mean Relative Error
MIP_root
CP_root
MDD_root
MDD_timing_root

Figure 5.9: Root node lower bound deviation from best known solution for MDD models
and previous techniques. Note, the two MDD methods have the same values.

5.5. DISCUSSION 53

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

250

500

750

1000

1250

1500

1750

Ti
m

e
(s

)

Average Run Time
MIP_root
CP_root
MDD_root
MDD_timing_root

Figure 5.10: Average computation time for root node lower bounds.

5.5 Discussion

This chapter explored two decision diagram formulations to solve the ETSS
problem. Decision diagrams were used in conjunction with CP to address CP’s
short comings regarding decision variable propagation with our complex objec-
tive function and to strengthen CP’s lower bounds. We developed two decision
diagram methods, both implemented as a global constraints with constraint
programming, only MDD timing differing by including a timing algorithm to
provide better lower bounds on the decision diagram. Unfortunately, neither
decision diagram method was competitive with the heuristic, Simplified MIP,
and CP models. Their poor performance was due to the decision diagrams not
finding good quality solutions in the given time limit for smaller instances and
subsequently not finding feasible solutions in the time limit for larger instances.
However, for smaller instances, both MDD and MDD timing find better solu-
tions over CP and run significantly faster. Further, both MDD methods find
better root node lower bounds over CP for smaller instances. Thus, for smaller
instances decision diagrams are effective over regular constraint programming;
however, they fail to scale competitively.

Adding the timing algorithm to the decision diagram proved ineffective, as
MDD timing was equivalent to MDD, except that it took slightly longer to
run on average and that it could not solve 100 job instances.

Chapter 6

Large Neighbourhood Search
for Earliness Tardiness
Scheduling with Setups

In this chapter we present Mixed Integer Programming (MIP) and Constraint
Programming (CP) based Large Neighbourhood Search (LNS) methods for
solving the Earliness Tardiness Scheduling with Setups (ETSS) problem. Each
method relies on several LNS parameters, including the neighbourhood, neigh-
bourhood solving criteria, and diversification procedure. We develop and in-
vestigate several options for each parameter, including a randomized approach,
and select the best configurations: a CP-based LNS method with an improve-
ment neighbourhood, optimal solving criteria, and random restart diversifica-
tion procedure; and a MIP-based LNS method with a composite neighbour-
hood, time limit solving criteria, and composite diversification method. We
compare the effectiveness of MIP LNS and CP LNS configurations and find
that the CP-based LNS approaches tend to outperform MIP-based LNS. LNS
targets the shortcomings of previous methods as they struggled to significantly
improve solution quality over time. LNS experimental results demonstrate a
large reduction in solution stagnation over time. Further, the LNS meth-
ods aim at rapidly finding solutions, similar to the client heuristic. Finally, we
compare and discuss the numerical results for the developed LNS methods and
compare against the previous competitive methods in this thesis: the client
heuristic, Simplified MIP, CP, and Multivalued Decision Diagram (MDD).
Overall, both LNS methods significantly outperformed the previous developed
solution techniques and are competitive with the client heuristic.

6.1 Large Neighbourhood Search Formulations

For a review of LNS see Section 3.6. Both the MIP and CP LNS approaches
follow the same framework:

54

6.1. LARGE NEIGHBOURHOOD SEARCH FORMULATIONS 55

• An initial solution is generated by running either the Simplified MIP or
CP model until the first feasible solution is found.

• A selected neighbourhood function is applied to the solution which re-
laxes part of the solution thus generating candidate neighbour solutions.
For example, one neighbourhood function is to relax a subsequence of
jobs within in the current solution. Then, these jobs are free to change
sequence and completion times.

• The neighbourhood is solved to find a new neighbour. The new neighbour
is selected, and always accepted, by solving the neighbourhood problem
using either MIP or CP, whilst following the selected solving criteria. The
solving criteria dictates how MIP or CP solves the given neighbourhood
problem, such as using a time limit or stopping when an optimal solution
is found.

• If the LNS algorithm stalls, that is, repeatedly finds neighbours with the
same objective cost, for a selected number of iterations, a diversification
method is applied to move to a new part of the search space.

Neighbourhood generation, solving, and diversification, if required, is then
repeated until the time limit is reached and the best solution found is returned.
Algorithm 10 highlights the overall LNS structure. Line 5 tracks the number
of stalls with nStalls and we set the stall threshold for running diversification,
stallThreshold, as 100.

We provide a detailed overview of the neighbourhoods used in Section 6.1.1
and neighbourhood solving criteria in Section 6.1.2. Diversification methods
are explained in Section 6.1.3.

Algorithm 10 Large Neighbourhood Search Framework

1: Generate initial solution
2: while Time Remaining > 0 do
3: Apply neighbourhood function
4: Solve neighbourhood using solving criteria → new solution
5: if nStalls > stallThreshold then
6: Run diversification → new solution
7: return best solution

6.1.1 Neighbourhoods

A total of six neighbourhood functions were used: random time window, sliding
time window, greedy time window, rank based, improvement, and composite.
All of the neighbourhoods produce feasible solutions.

56 CHAPTER 6. LNS FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

Random Time Window

The random time window neighbourhood selects two random numbers from a
uniform distribution between zero and the instance time horizon. The comple-
tion time and sequence of jobs scheduled to end between these two time points
are then relaxed, allowing a search through all possible subsequences for the
jobs in that time window. The jobs outside of the random time window are
constrained in both completion time and sequence. For the jobs after the time
window, this constraint means that their completion times do not shift even
if there is space to shift earlier.

Sliding Time Window

The sliding time window divides the problem time horizon into k non-overlapping
intervals. This neighbourhood relaxes the jobs in the current time interval,
meaning these jobs can change sequence and completion times. Jobs outside
this interval are not permitted to change sequence and completion times. Each
time this neighbourhood is used, it advances to the next interval. For exam-
ple, if the first time window is [0, 3), then the next time this neighbourhood is
selected, the time window will start from t = 3, and so on. Once the last time
interval has been used the neighbourhood will begin again at its first interval.
k was set to 10 for the numerical experiments.

Greedy Time Window

The greedy time window neighbourhood again divides up the problem time
horizon into k non-overlapping intervals, similar to the sliding time window. It
calculates each interval’s cost using the earliness/tardiness and setup costs for
the jobs scheduled in it. For each interval, say we have m jobs, then the inter-
val cost is calculated as

∑m
i=1 qj max{α (dj − cj) , β (cj − dj)} +

∑m−1
j=1 Sj,j+1.

The interval with the highest cost has all of its jobs relaxed, allowing their
completion times and sequence to change, while locking in the jobs outside of
this interval. The next time this neighbourhood is called, it will repeat and
select a new interval with the highest cost. It is possible to select the same
time interval again, depending on the cost structure of the new neighbour,
which could yield the same solution. Again, k was set to 10 for the numerical
experiments.

Rank Based

The rank-based neighbourhood is a basic variation where instead of relaxing
some jobs and fixing others, we relax all jobs, but constrain them to be within
r positions from their original position. That is, a job at rank (position)
j in the solution is allowed to be in rank j − r up to j + r. r was set to

6.1. LARGE NEIGHBOURHOOD SEARCH FORMULATIONS 57

round
(

1
log10 n

)
+ 2, where n is the number of jobs in an instance, such that

the neighbourhood size is inversely proportional to the number of jobs.

Improvement

The improvement neighbourhood is a two-part local search technique inspired
by the client heuristic (see Section 2.3.2 for details). The first improvement
procedure iterates through each job in the current sequence and inserts that
job into the position that provides the largest cost reduction. It terminates
when no improvement can be found for any job. Thus, the neighbourhood is
all the neighbour sequences where only one job is moved to a different position.

The second procedure considers all possible pairs of jobs and looks for the
pair that, when swapped, provides the maximal cost reduction. The procedure
finishes when no job pair swap will decrease overall cost. This neighbourhood
is all sequences where only one pair of jobs exchange their position in the
current sequence.

Recall, that within the two-part improvement procedure, job completion
times must be recalculated when the job sequence is changed to determine se-
quence cost. The only change from the improvement procedure in the heuristic
is that we recalculate job completion times using an efficient timing algorithm
following the work of Hendel and Sourd [30], which is explained in detail in
Section 5.2. Recall that, the client heuristic assumes earliness penalties are
strictly less than tardiness penalties. Consequently, it assigns job completion
times by scheduling jobs as early as possible in a given sequence. Our aim
is to provide a more general approach through using the timing algorithm.
After the improvement neighbourhood is run, we use the final sequence as a
starting point in Line 4 of Algorithm 10. That is, when using the improvement
neighbourhood, the new neighbour is generated by solving, following the given
solving criteria, the ETSS problem using the improvement neighbourhood so-
lution as a starting point in the solver.

Composite

Finally, the composite neighbourhood randomly selects one of the previous
neighbourhoods with uniform probability each iteration in LNS.

6.1.2 Neighbourhood Solving Criteria

After applying the selected neighbourhood function, except for the improve-
ment neighbourhood, the best neighbour is selected by solving the Simplified
MIP or CP model. Anything that is relaxed is permitted to change during
solving, for example the position and completion times of the jobs in a subse-
quence such as in the greedy time window neighbourhood. The optimization
models have three options for solving criteria: optimality, first solution, and

58 CHAPTER 6. LNS FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

time limit. The optimality solving criteria ends the CP or MIP optimization
engine after it finds and proves the optimal solution. The first solution criteria
terminates the search after the engine finds its first feasible solution. Finally,
the time limit criteria forces the search to quit after the maximum time is
reached, 5 seconds, returning the best-found solution. If no solution is found,
the previous iteration’s solution will be used as the next neighbour. Other-
wise, once the optimization model has stopped, we have the next neighbour
solution. All of the solving criteria will terminate if the overall LNS time limit
is reached.

For the case with the improvement neighbourhood, we run the Simplified
MIP or CP model using its solution as a starting point.

6.1.3 Diversification

The final component of our LNS is the diversification procedure. These meth-
ods focus on generating solutions that are far away from the current solution
to escape local optima and thus are likely to generate a solution with a higher
cost than the current solution. If the LNS algorithm stalls repeatedly, that
is, finding solutions with the same objective cost, more than a set number of
times, when applying neighbourhood functions and solving them, then we run
the diversification procedure. This procedure yields a new solution which is
used by the neighbourhood function in the next iteration, as shown in Line 6
of Algorithm 10. A total of five diversification methods were developed.

Random Restart

The random restart method randomly chooses a sequence of jobs such that
each possible permutation of the jobs has uniform probability. Then it uses
the timing algorithm to compute the completion times of each job following
the new sequence.

Random Job Window

The random job window selects two jobs, without replacement, with uniform
random probability. A random permutation of all jobs between and including
these two jobs is chosen with uniform probability. The timing algorithm is
used to re-time all of the jobs.

Ignore Setup Cost

The ignore setup cost method randomly selects p = 25% of jobs with uniform
probability and ignores their setup costs with all other jobs. The selected jobs
can be in any position in the sequence, as opposed to the subsequences used
in the random job window method. Then the ETSS problem with adjusted

6.2. NUMERICAL RESULTS 59

setup costs is solved from scratch using MIP or CP, depending on the current
LNS method, for the first feasible solution.

Hybrid Swap Coefficient

The hybrid swap coefficient method selects one of two different procedures
randomly with equal probability. This method was created to investigate
the impact of having a two-part diversification method. The first procedure
performs round

(
n
2

)
iterations of selecting two jobs with uniform probability

and swapping their positions. The resultant sequence is timed using the timing
algorithm.

The second approach randomly modifies the earliness/tardiness weights for
each job and the setup costs between all jobs. Each job’s earliness/tardiness
cost becomes δ × qj ×max{α (dj − cj) , β (cj − dj)}, where δ is uniformly dis-
tributed between 0 and 1. Similarly, all setup costs, Sij, become δ × Sij. δ is
independently generated for each job and for each setup cost job pair. Then,
the ETSS problem with adjusted coefficients is solved from scratch using MIP
or CP for a feasible solution.

Composite

Finally, the composite diversification method randomly selects one of the pre-
vious diversification methods with uniform probability each time the diversi-
fication procedure is run.

6.2 Numerical Results

There are a total of 90 unique LNS parameter configurations as we have
6 neighbourhoods, 3 solving criteria, and 5 diversification techniques. Fur-
ther, we either use the Simplified MIP model or CP model to generate new
neighbours, resulting in 180 LNS methods. We denote each LNS method us-
ing the following naming convention: ⟨MIP or CP⟩ LNS ⟨Neighbourhood⟩ −
⟨Solving Criteria⟩− ⟨Diversification⟩. Each method runs for an entirety of the
30-minute time limit, following the experimental setup defined in Section 4.3.
All LNS methods generated an initial solution using their respective solver,
MIP or CP, by finding the first feasible solution. We evaluate all 180 LNS
methods and compare them, selecting the best performing MIP-based and
CP-based LNS approach using Mean Relative Error (MRE), see Section 6.2.1.
We then compare these LNS methods against the previously developed tech-
niques: the client heuristic, Simplified MIP, CP, and MDD. Graphs with error
bars are located in Appendix C.

60 CHAPTER 6. LNS FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

Table 6.1: Top 5 CP and MIP LNS methods by MRE.

Method MRE

CP LNS Improvement-Optimal-RandomRestart 3.56
CP LNS Improvement-Optimal-Composite 3.62
CP LNS Improvement-Optimal-HybridSwapCoeff 3.86
CP LNS Improvement-Optimal-RandomTimeWindow 3.86
CP LNS Improvement-Optimal-IgnoreSetupCost 3.95
MIP LNS Composite-TimeLimit-Composite 4.44
MIP LNS Composite-TimeLimit-HybridSwapCoeff 4.64
MIP LNS Improvement-TimeLimit-RandomTimeWindow 4.68
MIP LNS Improvement-TimeLimit-HybridSwapCoeff 4.80
MIP LNS Composite-TimeLimit-IgnoreSetupCost 4.83

6.2.1 LNS Selection

We evaluated the 180 LNS methods using all of the ETSS instances by com-
paring MRE values. That is, we calculate the error for each instance and
average it for each method. Formally, we define MRE as:

MRE =
1

N

N∑
i=1

|
(
Zi − Zbest

i

)
|

Zbest
i

Where MRE is the Mean Relative Error for the selected method, N is the
total number of instances, Zi is the selected method’s solution for instance i,
and Zbest

i is the best-known solution for instance i across the all of the methods
in this thesis.

Table 6.1 displays the top five MIP-based and top five CP-based LNS ap-
proaches. We observe that CP-based LNS methods perform better than MIP-
based. Additionally, all of the top five CP methods use the improvement neigh-
bourhood and optimal solving criteria. However, the diversification methods
are not consistent, suggesting that the diversification method used is less im-
pactful for MRE performance.

Regarding the top five MIP-based models, while there is less consistency
with the neighbourhoods and diversification methods, the time limit solving
criteria is used by all top approaches.

Two LNS methods were selected to represent the best LNS approaches
and to use for comparisons against previous solution techniques. One MIP-
based and one CP-based LNS method were determined using the lowest MRE
score. The chosen methods are CP LNS with the improvement neighbourhood,
optimal solving criteria, and random restart diversification; and MIP LNS
with the composite neighbourhood, time limit solving criteria, and composite
diversification.

6.2. NUMERICAL RESULTS 61

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

20

40

60

80

100

120

140

M
RE

 %

Mean Relative Error
Heuristic
Simplified MIP
CP
MDD
MIP LNS Composite-TimeLimit-Composite
CP LNS Improvement-Optimal-RandomRestart

Figure 6.1: Mean Relative Error for LNS models and previous techniques.

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
RE

 %

Mean Relative Error
Heuristic
MIP LNS Composite-TimeLimit-Composite
CP LNS Improvement-Optimal-RandomRestart

Figure 6.2: Mean Relative Error for LNS and client heuristic.

6.2.2 Mean Relative Error

We compare the mean relative error of the two LNS methods against the
best-known solution for each instance. We include the previous methods in-
vestigated in this thesis for comparison in Figure 6.1. Both LNS methods
outperform the Simplified MIP, CP, and MDD models. Figure 6.2 demon-
strates the LNS competitiveness with the client heuristic in more detail. We
observe that the MIP and CP LNS methods are comparable in performance,
except for MIP LNS’s poor performance with 400 job instances. However, the
client heuristic still performs the best overall.

6.2.3 Instances Solved

All of the LNS models were able to find feasible solutions for all instances
within the time limit.

62 CHAPTER 6. LNS FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

Time (s)

0

20

40

60

80

100

120

140

M
RE

 %
Mean Relative Error Over Time

Heuristic
Simplified MIP
CP
MIP LNS Composite-TimeLimit-Composite
CP LNS Improvement-Optimal-RandomRestart

Figure 6.3: Mean Relative Error over time for best LNS methods and previous methods.

6.2.4 MRE Over Time

We also test the MRE over time for the LNS methods. Figure 6.3 demonstrates
that both MIP and CP based LNS methods greatly reduce the stagnation
in solution quality during the experiment compared to Simplified MIP and
CP. Although the LNS methods are competitive with the client heuristic, we
observe that the client heuristic finds very good solutions almost instantly
whereas the LNS methods need the entire time limit for comparable quality.
This performance pattern is likely due to the heuristic’s strong initial solution,
contrary to LNS starting with its first found feasible solution via MIP or CP.

We do not include the MDDmethod in this figure as its solution quality over
time is misleading: it performed quite well on smaller instances but is missing
data for the instances it did not find feasible solutions for, as explained in
Section 5.4.4.

6.2.5 LNS Warm Start

We tested both LNS methods starting with an initial solution from the client
heuristic after it was run for five seconds. Both the MIP and CP based LNS
methods improved with the warm start as shown in Figure 6.4. The CP
LNS with warm start outperformed MIP LNS warm, but neither were able to
beat the heuristic when run for the entire time limit. In Figure 6.5 we include
comparisons against the previous warm start methods, demonstrating that the
MIP and CP LNS methods outperform the previous warm start techniques.

Further, we include a comparison of the warm start methods’ MRE over
time in Figure 6.6.

6.2. NUMERICAL RESULTS 63

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
RE

 %

Mean Relative Error
Heuristic
MIP LNS Composite-TimeLimit-Composite
MIP LNS Composite-TimeLimit-Composite_warm
CP LNS Improvement-Optimal-RandomRestart
CP LNS Improvement-Optimal-RandomRestart_warm

Figure 6.4: Mean Relative Error for best LNS methods with heuristic warm start.

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

2

4

6

8

10

12

M
RE

 %

Mean Relative Error
Heuristic
Simplified MIP_warm
CP_warm
MDD_warm
MIP LNS Composite-TimeLimit-Composite_warm
CP LNS Improvement-Optimal-RandomRestart_warm

Figure 6.5: Mean Relative Error for best LNS methods with heuristic warm start and
previous warm start methods.

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

Time (s)

0

1

2

3

4

5

M
RE

 %

Mean Relative Error Over Time
Heuristic
Simplified MIP_warm
CP_warm
MIP LNS Composite-TimeLimit-Composite_warm
CP LNS Improvement-Optimal-RandomRestart_warm

0 1000
0

50

Figure 6.6: Mean Relative Error over time for best LNS methods with heuristic warm start
and previous warm start methods and heuristic.

64 CHAPTER 6. LNS FOR EARLINESS TARDINESS SCHEDULING WITH SETUPS

6.3 Discussion

This chapter formulated and tested 90 LNS models, using either MIP or CP
as the underlying optimization engine, resulting in 180 total models. The
best performing CP LNS method used the improvement neighbourhood, op-
timal solving criteria, and random restart diversification procedure. The best
performing MIP LNS method used the composite neighbourhood, time limit
solving criteria, and composite diversification method. Overall, the CP LNS
approach performed slightly better than MIP LNS. Both LNS methods out-
performed the previously developed solution techniques by a large margin.
CP LNS and MIP LNS remained competitive with the client heuristic, with
approximately a 2% worse overall MRE. As shown in the MRE over time exper-
iments, the LNS methods continue to improve their solution quality overtime
in comparison to CP and Simplified MIP. Thus, the application of large neigh-
bourhood search was effective at targeting CP and Simplified MIP’s short-
coming of finding improved solutions over time. The CP-based LNS performs
the best across all methods in this thesis except for the client heuristic. The
MIP-based LNS remains close in second place.

Chapter 7

Conclusion

This chapter concludes this thesis by presenting a summary of the previous
chapters and providing the contributions of this work. We conclude by pro-
viding some insight on future research directions.

7.1 Summary and Contributions

In this thesis, we formally defined the Earliness Tardiness Scheduling with Se-
tups (ETSS) problem. The ETSS problem is derived from real-world industrial
scheduling applications and is comprised of two well-known optimization sub-
problems: Earliness tardiness scheduling and the Travelling Salesman Problem
(TSP). Using the instances provided by our industry client, we generated ad-
ditional instances for our experimental testing.

We presented four Mixed Integer Programming (MIP) and one Constraint
Programming (CP) models for solving the ETSS problem, finding that none
of the methods are competitive with the client heuristic. We demonstrated
that the CP model has poor objective function propagation with our complex
objective function. As well, both MIP and CP struggle with finding good
root node lower bounds. Finally, we showed that the current state-of-the-art
MIP models for minimizing makespan on a single machine with setups are not
competitive for the ETSS problem.

Another approach using Multivalued Decision Diagrams (MDD) integrated
with CP was created to improve root node bounds and objective function
propagation. Further, we novelly overlaid the MDD method with a timing
algorithm, considering job sequence and completion times, in pursuit of im-
proved lower bounds over MDD. For small instances, both MDD methods
outperformed CP in solution quality, time, and root node bound strength;
however, neither MDD method was competitive against the other methods for
larger instances, indicating a scalability issue. Adding the timing algorithm
to the MDD proved ineffective as it performed similar to MDD whilst taking
longer to run.

65

66 CHAPTER 7. CONCLUSION

MIP and CP based Large Neighbourhood Search (LNS) techniques were in-
vestigated to target previous solution quality stagnation shortcomings. Ninety
MIP LNS and ninety CP LNS variations were tested and demonstrated a large
reduction in solution stagnation over time. The best MIP LNS and CP LNS
methods significantly outperformed the previously developed solution tech-
niques and are competitive with the client heuristic. The best CP LNS method
outperforms all of the methods in this thesis except for the client heuristic.
The best MIP LNS remains close in second place.

The various model performances against the client heuristic would likely
be improved with altered problem characteristics. For example, changing the
earliness α and tardiness β coefficients such that α > β would penalize the
heuristic’s shifting of jobs to their earliest competition times, whereas the
methods developed in this thesis generalize better. As well, the thesis methods
could outperform the heuristic in certain instances where the optimal schedules
rely on large idle time periods, which the client heuristic does not consider.

7.2 Future Work

Improving the lower bounds for the CP model in Chapter 4 is a promising fu-
ture research area. One could investigate the application of Sourd’s [60] partial
sequence lower bound and dominance criteria for the ETSS problem within a
constraint programming context. These techniques proved quite competitive
within a branch and bound implementation. Another direction is to address
CP’s poor objective function propagation by developing a global constraint
to aid it. For example, Monette, Deville, and Van Hentenryck developed
a novel global constraint for earliness/tardiness within job shop scheduling
problems, including filtering and dedicated heuristics [49]. A first step is to
integrate this constraint into the ETSS CP model, thus providing additional
earliness/tardiness propagation. Then, the constraint could be modified to
also consider setup costs between jobs.

Alternatively, a decomposition approach with the Simplified MIP is inter-
esting to study, as the ETSS problem is comprised of two well-studied sub-
problems: earliness/tardiness scheduling and the TSP. The master problem
could sequence the jobs to minimize setup costs, while the subproblem pro-
vides bounding information regarding earliness/tardiness costs for a given se-
quence. Sequencing is done with the binary decision variable xij, which is 1
if job i immediately precedes job j. The continuous decision variable η tracks
the lower bound on earliness/tardiness costs. To solve the master problem,
we add a dummy job to J , which will represent the start and end job, with 0
setup time and cost to all other jobs. The master problem is a binary integer
program, and as such can be solved using branch and cut by lazily adding sub-
tour elimination constraints (7.4) and Benders optimality cuts (7.5). As well,
the master problem does not require feasibility cuts as the subproblems are

7.2. FUTURE WORK 67

always feasible for a given job sequence. The Benders reformulation’s master
problem would be:

min
∑
i∈J

∑
j∈J

Sijxij + η (7.1)

s.t.
∑

i∈J :i ̸=j

xij = 1 ∀j ∈ J (7.2)∑
j∈J :j ̸=i

xij = 1 ∀i ∈ J (7.3)∑
i∈S

∑
j ̸∈S

xij ≥ 1 ∀S ⊆ J , 2 ≤ |S| ≤ |J | − 2 (7.4)

η ≥
∑

i,j∈J :i ̸=j

(sij + pj)xijπ̂ij

+
∑
j∈J

(rj + pj) µ̂j + αqjdj θ̂j − βqjdj τ̂j ∀π, µ, θ, τ ∈ V (Π) (7.5)

xit ∈ {0, 1} ∀i, j ∈ J (7.6)

η ≥ 0 (7.7)

Objective (7.1) minimizes total setup costs, while considering a lower bound on
its associated earliness/tardiness costs. Constraint (7.2) forces each job to have
a predecessor. Constraint (7.3) forces each job to have a successor. Constraint
(7.4) eliminates subtours. Constraint (7.5) represents the Benders optimality
cuts, using the dual objective of the subproblem. Note that π, µ, θ, and τ
are the dual variables associated with the nonempty set of extreme points,
V (Π), from the subproblem dual polyhedron, Π. Finally, constraint (7.6)
and constraint (7.7) set the variable bounds. Perhaps this subproblem can be
solved using the timing algorithm discussed in Section 5.2; however, it is not
immediately clear if it is possible to obtain cuts for the master problem.

The supbroblem takes a fixed sequence of jobs from the master problem,
using x̂ij, and schedules them to minimize the total earliness/tardiness costs:

min
∑
j∈J

fj (7.8)

s.t. cj ≥ (ci + sij + pj) x̂ij ∀i, j ∈ J , i ̸= j (7.9)

cj ≥ rj + pj ∀j ∈ J (7.10)

fj ≥ αqj (dj − cj) ∀j ∈ J (7.11)

fj ≥ βqj (cj − dj) ∀j ∈ J (7.12)

cj ≥ 0 ∀j ∈ J (7.13)

fj ≥ 0 ∀j ∈ J (7.14)

68 CHAPTER 7. CONCLUSION

Objective (7.8) minimizes the total earliness and tardiness of all jobs. Con-
straint (7.9) ensures jobs are scheduled following the master problem sequence
and prevents overlap. Constraint (7.10) enforces job release dates. Constraint
(7.11) tracks job earliness, while constraint (7.12) tracks job tardiness. Con-
straint (7.13) and constraint (7.14) set the variable bounds.

Regarding decision diagrams, in Chapter 5 we showed scalability issues
which is an important research topic to further investigate. As the MDD for-
mulation uses job sequence, again, a partial sequence earliness/tardiness lower
bound could be utilized at each node in the diagram. Researching methods to
better integrate temporal bounding could increase scalability via assisting with
arc filtering using objective bounds and start time propagation. Alternatively,
another direction is to investigate a network representation of the MDD, which
has performed quite well as a subproblem to a Lagrangian relaxation technique
for the Multicommodity Pickup-and-Delivery TSP [19]. Considering an MDD
formulation that integrates time and job sequence would provide an exact
formulation for the ETSS problem. Then, a relaxation of this MDD would
yield stronger bounds than our formulation. As well, specific node merging
strategies may increase MDD performance; more experimentation is required.

In Chapter 6, we showed the effectiveness of LNS for the ETSS problem,
although there are a couple research possibilities to increase its competitive-
ness against the client heuristic. Firstly, exploring an adaptive LNS, where the
neighbourhood size is chosen in each iteration. Perhaps earlier in the search
or if stalling is occurring, the neighbourhood size is increased to promote more
diverse solutions. It would also be interesting to test a Self-Adapting LNS
algorithm that uses machine learning to converge on efficient neighbourhoods
and neighbourhood solving strategies, following the work of Laborie and Go-
dard [44]. However, one could use neighbourhoods targeted towards the ETSS
problem and neighbourhoods that have proven successful in this thesis.

7.3 Concluding Remarks

The goal of this thesis is to formally analyze and better solve the ETSS prob-
lem. This problem is quite complex due to its unique assortment of objective
function criteria. It does not have a large presence in the literature, and we be-
lieve that the ETSS problem has very interesting problem characteristics that
can be further studied. We presented 187 solution approaches to the ETSS
problem, including a novel MDD method that uses a timing algorithm, draw-
ing techniques from MIP, CP, MDD, and LNS. Empirical results demonstrated
that CP-based LNS is a good approach for solving the ETSS problem.

Appendix A

Mixed Integer Programming
and Constraint Programming
Graphs With Error Bars

69

70APPENDIX A. MIXED INTEGER PROGRAMMINGAND CONSTRAINT PROGRAMMINGGRAPHSWITH ERROR BARS

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

25

50

75

100

125

150

M
RE

 %

Mean Relative Error
Heuristic
Base MIP
AAA
MTZ_AM
Simplified MIP
CP

Figure A.1: Mean Relative Error for MIP and CP models with standard deviation error
bars.

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

25

50

75

100

125

150

M
RE

 %

Mean Relative Error
Heuristic
Simplified MIP
Simplified MIP_warm
CP
CP_warm

Figure A.2: Mean Relative Error for Simplified MIP and CP with heuristic warm start and
non-warm start with standard deviation error bars.

71

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

5

10

15

20

M
RE

 %
Mean Relative Error

Heuristic
Simplified MIP_warm
CP_warm

Figure A.3: Mean Relative Error for Simplified MIP and CP with heuristic warm start with
standard deviation error bars.

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

20

40

60

80

M
RE

 %

Mean Relative Error
MIP_root
CP_root

Figure A.4: Root node lower bound deviation from best-known solution with standard
deviation error bars.

Appendix B

Decision Diagram Graphs With
Error Bars

72

73

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

25

50

75

100

125

150
M

RE
 %

Mean Relative Error
Heuristic
Simplified MIP
CP
MDD
MDD_timing

Figure B.1: Mean Relative Error for MDD models and previous techniques with standard
deviation error bars.

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

20

40

60

80

100

120

140

M
RE

 %

Mean Relative Error
Heuristic
MDD
MDD_warm
MDD_timing
MDD_timing_warm

Figure B.2: Mean Relative Error for MDD models with heuristic warm start and non-warm
start with standard deviation error bars. MDD warm and MDD timing warm both have
a MRE of 0% for 10 and 20 problem sizes and are represented by the line segment from
x = 10 to x = 20 on the x-axis. Neither were able to solve instances larger than 20 jobs.

74 APPENDIX B. DECISION DIAGRAM GRAPHS WITH ERROR BARS

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

1

2

3

4

5

6

M
RE

 %

Mean Relative Error
Simplified MIP_warm
CP_warm
MDD_warm
MDD_timing_warm

Figure B.3: Mean Relative Error for MDD models with heuristic warm start and
previous warm start techniques with standard deviation error bars. MDD warm and
MDD timing warm both have a MRE of 0% for 10 and 20 problem sizes and are repre-
sented by the line segment from x = 10 to x = 20 on the x-axis. Neither were able to solve
instances larger than 20 jobs.

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

20

40

60

80

M
RE

 %

Mean Relative Error
MIP_root
CP_root
MDD_root
MDD_timing_root

Figure B.4: Root node lower bound deviation from best known solution for MDD models
and previous techniques with standard deviation error bars. Note, the two MDD methods
have the same values.

Appendix C

Large Neighbourhood Search
Graphs With Error Bars

75

76 APPENDIX C. LARGE NEIGHBOURHOOD SEARCH GRAPHS WITH ERROR BARS

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

25

0

25

50

75

100

125

150

M
RE

 %
Mean Relative Error

Heuristic
Simplified MIP
CP
MDD
MIP LNS Composite-TimeLimit-Composite
CP LNS Improvement-Optimal-RandomRestart

Figure C.1: Mean Relative Error for LNS models and previous techniques standard deviation
error bars.

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

20

0

20

40

60

M
RE

 %

Mean Relative Error
Heuristic
MIP LNS Composite-TimeLimit-Composite
CP LNS Improvement-Optimal-RandomRestart

Figure C.2: Mean Relative Error for LNS and client heuristic standard deviation error bars.

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

20

0

20

40

60

M
RE

 %

Mean Relative Error
Heuristic
MIP LNS Composite-TimeLimit-Composite
MIP LNS Composite-TimeLimit-Composite_warm
CP LNS Improvement-Optimal-RandomRestart
CP LNS Improvement-Optimal-RandomRestart_warm

Figure C.3: Mean Relative Error for best LNS methods with heuristic warm start standard
deviation error bars.

77

10 20 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

Problem Size

0

5

10

15

20

M
RE

 %

Mean Relative Error
Heuristic
Simplified MIP_warm
CP_warm
MDD_warm
MIP LNS Composite-TimeLimit-Composite_warm
CP LNS Improvement-Optimal-RandomRestart_warm

Figure C.4: Mean Relative Error for best LNS methods with heuristic warm start and
previous warm start methods standard deviation error bars.

Bibliography

[1] JM Van den Akker, Cor AJ Hurkens, and Martin WP Savelsbergh. “Time-indexed
formulations for machine scheduling problems: Column generation”. In: INFORMS
Journal on Computing 12.2 (2000), pp. 111–124.

[2] Ali Allahverdi, Jatinder ND Gupta, and Tariq Aldowaisan. “A review of scheduling
research involving setup considerations”. In: Omega 27.2 (1999), pp. 219–239.

[3] Henrik Reif Andersen, Tarik Hadzic, John N Hooker, and Peter Tiedemann. “A con-
straint store based on multivalued decision diagrams”. In: Principles and Practice of
Constraint Programming (CP 2007). Vol. 4714. Springer, 2007, pp. 118–132.

[4] D.L Applegate, R.E Bixby, V Chvátal, andW.J Cook. The traveling salesman problem:
a computational study. Princeton: Princeton University Press, 2006.

[5] Oliver Avalos-Rosales, Francisco Angel-Bello, and Ada Alvarez. “Efficient metaheuris-
tic algorithm and re-formulations for the unrelated parallel machine scheduling prob-
lem with sequence and machine-dependent setup times”. In: The International Journal
of Advanced Manufacturing Technology 76.9 (2015), pp. 1705–1718. issn: 1433-3015.
doi: 10.1007/s00170-014-6390-6. url: https://doi.org/10.1007/s00170-014-
6390-6.

[6] Meral Azizoglu and Scott Webster. “Scheduling job families about an unrestricted
common due date on a single machine”. In: International Journal of Production Re-
search 35.5 (1997), pp. 1321–1330.

[7] Kenneth R Baker and Gary D Scudder. “Sequencing with earliness and tardiness
penalties: a review”. In: Operations research 38.1 (1990), pp. 22–36.

[8] Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-based scheduling:
applying constraint programming to scheduling problems. Vol. 39. Springer Science &
Business Media, 2001.

[9] David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and John Hooker. Decision
diagrams for optimization. Vol. 1. Springer, 2016.

[10] Lucio Bianco, Salvatore Ricciardelli, Giovanni Rinaldi, and Antonio Sassano. “Schedul-
ing tasks with sequence-dependent processing times”. In: Naval Research Logistics
(NRL) 35.2 (1988), pp. 177–184.

[11] E Robert Bixby, Mary Fenelon, Zonghao Gu, Ed Rothberg, and Roland Wunderling.
“MIP: Theory and practice — closing the gap”. In: System Modelling and Optimiza-
tion. Springer, 2000, pp. 19–49.

[12] Alexander Bockmayr and John N Hooker. “Constraint programming”. In: Handbooks
in Operations Research and Management Science 12 (2005), pp. 559–600.

[13] Fayez Fouad Boctor. The Cold Rolling Mill Scheduling Problem: A New Formulation
and a Perturbation Solution Approach. Vol. 1. CIRRELT, 2016.

78

https://doi.org/10.1007/s00170-014-6390-6
https://doi.org/10.1007/s00170-014-6390-6
https://doi.org/10.1007/s00170-014-6390-6

BIBLIOGRAPHY 79

[14] Rodney Matineau Burstall. “A heuristic method for a job-scheduling problem”. In:
Journal of the Operational Research Society 17.3 (1966), pp. 291–304.

[15] John A Buzacott and Sujit K Dutta. “Sequencing many jobs on a multi-purpose
facility”. In: Naval Research Logistics Quarterly 18.1 (1971), pp. 75–82.

[16] Jeffrey D Camm, Amitabh S Raturi, and Shigeru Tsubakitani. “Cutting big M down
to size”. In: Interfaces 20.5 (1990), pp. 61–66.

[17] Tom Carchrae and J Christopher Beck. “Cost-based large neighborhood search”. In:
Workshop on the combination of metaheuristic and local search with constraint pro-
gramming techniques. 2005.

[18] Caroline Banton. Just-in-Time (JIT) Definition. https://www.investopedia.com/
terms/j/jit.asp. 2021.

[19] Margarita P Castro, Andre A Cire, and J Christopher Beck. “An MDD-based La-
grangian approach to the multicommodity pickup-and-delivery TSP”. In: INFORMS
Journal on Computing 32.2 (2020), pp. 263–278.

[20] B Jay Coleman. “A simple model for optimizing the single machine early/tardy prob-
lem with sequence-dependent setups”. In: Production and Operations Management 1.2
(1992), pp. 225–228.

[21] Emilie Danna and Laurent Perron. “Structured vs. unstructured large neighborhood
search: A case study on job-shop scheduling problems with earliness and tardiness
costs”. In: International Conference on Principles and Practice of Constraint Pro-
gramming. Springer. 2003, pp. 817–821.

[22] Dennis Adsit. Cutting-Edge Methods Help Target Real Call Center Waste. https:
//www.isixsigma.com/implementation/case-studies/cutting-edge-methods-

help-target-real-call-center-waste/. 2007.

[23] Luis Fanjul-Peyro, Rubén Ruiz, and Federico Perea. “Reformulations and an ex-
act algorithm for unrelated parallel machine scheduling problems with setup times”.
In: Computers & Operations Research 101 (2019), pp. 173 –182. issn: 0305-0548.
doi: https : / / doi . org / 10 . 1016 / j . cor . 2018 . 07 . 007. url: http : / / www .

sciencedirect.com/science/article/pii/S0305054818301916.

[24] Thomas A Feo, Kishore Sarathy, and John McGahan. “A GRASP for single machine
scheduling with sequence dependent setup costs and linear delay penalties”. In: Com-
puters & Operations Research 23.9 (1996), pp. 881–895.

[25] Michael R Garey and David S Johnson. Computers and intractability. Vol. 174. free-
man San Francisco, 1979.

[26] Michel Gendreau, Jean-Yves Potvin, David Pisinger, and Stefan Ropke. “Large Neigh-
borhood Search”. In: Handbook of metaheuristics. Vol. 2. Springer, 2010.

[27] Paul C Gilmore and Ralph E Gomory. “Sequencing a one state-variable machine: A
solvable case of the traveling salesman problem”. In: Operations research 12.5 (1964),
pp. 655–679.

[28] Daniel Godard, Philippe Laborie, and Wim Nuijten. “Randomized Large Neighbor-
hood Search for Cumulative Scheduling.” In: ICAPS. Vol. 5. 2005, pp. 81–89.

[29] Gregory Gutin and Abraham P Punnen. The traveling salesman problem and its vari-
ations. Vol. 12. Springer Science & Business Media, 2006.

[30] Yann Hendel and Francis Sourd. “An improved earliness–tardiness timing algorithm”.
In: Computers & operations research 34.10 (2007), pp. 2931–2938.

https://www.investopedia.com/terms/j/jit.asp
https://www.investopedia.com/terms/j/jit.asp
https://www.isixsigma.com/implementation/case-studies/cutting-edge-methods-help-target-real-call-center-waste/
https://www.isixsigma.com/implementation/case-studies/cutting-edge-methods-help-target-real-call-center-waste/
https://www.isixsigma.com/implementation/case-studies/cutting-edge-methods-help-target-real-call-center-waste/
https://doi.org/https://doi.org/10.1016/j.cor.2018.07.007
http://www.sciencedirect.com/science/article/pii/S0305054818301916
http://www.sciencedirect.com/science/article/pii/S0305054818301916

80 BIBLIOGRAPHY

[31] Samid Hoda, Willem-Jan Van Hoeve, and John N Hooker. “A systematic approach
to MDD-based constraint programming”. In: Principles and Practice of Constraint
Programming (CP 2010). Vol. 6308. Springer, 2010, pp. 266–280.

[32] John N Hooker. “Logic, optimization, and constraint programming”. In: INFORMS
Journal on Computing 14.4 (2002), pp. 295–321.

[33] IBM ILOG. Interval variable sequencing in CP Optimizer. https://www.ibm.com/
docs/en/icos/20.1.0?topic=c- interval- variable- sequencing- in- cp-

optimizer. 2021.

[34] IBM ILOG. Interval variables in CP Optimizer. https://www.ibm.com/docs/en/
icos/20.1.0?topic=concepts-interval-variables-in-cp-optimizer. 2021.

[35] Julia Hanna. Bringing ‘Lean’ Principles to Service Industries. https://hbswk.hbs.
edu/item/5741.html. 2007.

[36] Michael Jünger, Thomas M Liebling, Denis Naddef, George L Nemhauser, William R
Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A Wolsey. 50 Years of
integer programming 1958-2008: From the early years to the state-of-the-art. Springer,
2010.

[37] John J Kanet. “Minimizing the average deviation of job completion times about a
common due date”. In: Naval Research Logistics Quarterly 28.4 (1981), pp. 643–651.

[38] H.A.T Kate, J. Wijngaard, and W.H.M. Zijm. Minimizing weighted total earliness,
total tardiness and setup costs. Research Report 95A37. University of Groningen, Re-
search Institute SOM (Systems, Organisations and Management), 1995.

[39] Safia Kedad-Sidhoum and Francis Sourd. “Fast neighborhood search for the single ma-
chine earliness–tardiness scheduling problem”. In: Computers & Operations Research
37.8 (2010), pp. 1464–1471.

[40] Taha Keshavarz, Martin Savelsbergh, and Nasser Salmasi. “A branch-and-bound al-
gorithm for the single machine sequence-dependent group scheduling problem with
earliness and tardiness penalties”. In: Applied Mathematical Modelling 39.20 (2015),
pp. 6410–6424.

[41] Leonid G Khachiyan. “Polynomial algorithms in linear programming”. In: USSR Com-
putational Mathematics and Mathematical Physics 20.1 (1980), pp. 53–72.

[42] Changseong Ko, Sooyong Kim, Byungnam Kim, and Shiegheun Koh. “Single Machine
Scheduling for Minimizing Earliness/Tardiness Penalties with Sequence-Dependent
Setup Times”. In: Toward Sustainable Operations of Supply Chain and Logistics Sys-
tems. Springer, 2015, pp. 265–278.

[43] Wen-Yang Ku and J Christopher Beck. “Mixed integer programming models for job
shop scheduling: A computational analysis”. In: Computers & Operations Research 73
(2016), pp. 165–173.

[44] Philippe Laborie and Daniel Godard. “Self-adapting large neighborhood search: Ap-
plication to single-mode scheduling problems”. In: Proceedings MISTA-07, Paris 8
(2007).

[45] Manuel Laguna, J Wesley Barnes, and Fred W Glover. “Tabu search methods for
a single machine scheduling problem”. In: Journal of Intelligent Manufacturing 2.2
(1991), pp. 63–73.

[46] Manuel Laguna and Fred Glover. “Integrating target analysis and tabu search for im-
proved scheduling systems”. In: Expert Systems with Applications 6.3 (1993), pp. 287–
297.

https://www.ibm.com/docs/en/icos/20.1.0?topic=c-interval-variable-sequencing-in-cp-optimizer
https://www.ibm.com/docs/en/icos/20.1.0?topic=c-interval-variable-sequencing-in-cp-optimizer
https://www.ibm.com/docs/en/icos/20.1.0?topic=c-interval-variable-sequencing-in-cp-optimizer
https://www.ibm.com/docs/en/icos/20.1.0?topic=concepts-interval-variables-in-cp-optimizer
https://www.ibm.com/docs/en/icos/20.1.0?topic=concepts-interval-variables-in-cp-optimizer
https://hbswk.hbs.edu/item/5741.html
https://hbswk.hbs.edu/item/5741.html

BIBLIOGRAPHY 81

[47] Xiying Li. Scheduling Jobs with Sequence-Dependent Setup Times and Setup Costs to
Minimize Total Production Cost. BASc Thesis, University of Toronto. Toronto ON,
2019.

[48] C. E. Miller, A. W. Tucker, and R. A. Zemlin. “Integer Programming Formulation
of Traveling Salesman Problems”. In: J. ACM 7.4 (Oct. 1960), pp. 326–329. issn:
0004-5411. doi: 10.1145/321043.321046.

[49] Jean-Noël Monette, Yves Deville, and Pascal Van Hentenryck. “Just-in-time schedul-
ing with constraint programming”. In: Nineteenth International Conference on Auto-
mated Planning and Scheduling. 2009.

[50] Laurent Péridy, Eric Pinson, and David Rivreau. “Using short-term memory to min-
imize the weighted number of late jobs on a single machine”. In: European Journal of
Operational Research 148 (2003), pp. 591–603.

[51] Petr Viĺım. How to minimize the gap in CP solver. https://community.ibm.com/
community/user/datascience/communities/community- home/digestviewer/

viewthread?GroupId=5557&MessageKey=ae89ea4e-71b0-42be-8ebb-c3ee3094846d.
2020.

[52] Philippe Laborie.How is the lower bound that is displayed created? https://stackoverflow.

com/questions/56150730/how- is- the- lower- bound- that- is- displayed-

created. 2019.

[53] JT Presby and ML Wolfson. “An algorithm for solving job sequencing problems”. In:
Management Science 13.8 (1967), B–454.

[54] Ghaith Rabadi, Mansooreh Mollaghasemi, and Georgios C Anagnostopoulos. “A branch-
and-bound algorithm for the early/tardy machine scheduling problem with a common
due-date and sequence-dependent setup time”. In: Computers & Operations Research
31.10 (2004), pp. 1727–1751.

[55] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint program-
ming. Elsevier, 2006.

[56] Jeffrey Schaller. “A comparison of lower bounds for the single-machine early/tardy
problem”. In: Computers & operations research 34.8 (2007), pp. 2279–2292.

[57] Jeffrey E Schaller and Jatinder ND Gupta. “Single machine scheduling with family
setups to minimize total earliness and tardiness”. In: European Journal of Operational
Research 187.3 (2008), pp. 1050–1068.

[58] Paul Shaw. “Using constraint programming and local search methods to solve vehicle
routing problems”. In: International conference on principles and practice of constraint
programming. Springer. 1998, pp. 417–431.

[59] Francis Sourd. “Dynasearch for the earliness–tardiness scheduling problem with release
dates and setup constraints”. In: Operations Research Letters 34.5 (2006), pp. 591–
598.

[60] Francis Sourd. “Earliness–tardiness scheduling with setup considerations”. In: Com-
puters & operations research 32.7 (2005), pp. 1849–1865.

[61] Francis Sourd. “New exact algorithms for one-machine earliness-tardiness scheduling”.
In: INFORMS Journal on Computing 21.1 (2009), pp. 167–175.

[62] Francis Sourd and Safia Kedad-Sidhoum. “The one-machine problem with earliness
and tardiness penalties”. In: Journal of scheduling 6.6 (2003), pp. 533–549.

[63] Vincent T’kindt and Jean-Charles Billaut. “Just-in-Time scheduling problems”. In:
Multicriteria Scheduling: Theory, Models and Algorithms. Springer, 2006, pp. 135–
191.

https://doi.org/10.1145/321043.321046
https://community.ibm.com/community/user/datascience/communities/community-home/digestviewer/viewthread?GroupId=5557&MessageKey=ae89ea4e-71b0-42be-8ebb-c3ee3094846d
https://community.ibm.com/community/user/datascience/communities/community-home/digestviewer/viewthread?GroupId=5557&MessageKey=ae89ea4e-71b0-42be-8ebb-c3ee3094846d
https://community.ibm.com/community/user/datascience/communities/community-home/digestviewer/viewthread?GroupId=5557&MessageKey=ae89ea4e-71b0-42be-8ebb-c3ee3094846d
https://stackoverflow.com/questions/56150730/how-is-the-lower-bound-that-is-displayed-created
https://stackoverflow.com/questions/56150730/how-is-the-lower-bound-that-is-displayed-created
https://stackoverflow.com/questions/56150730/how-is-the-lower-bound-that-is-displayed-created

82 BIBLIOGRAPHY

[64] Daniel Walker. The better hospital: Excellence through leadership and innovation.
MWV Medizinisch Wissenschaftliche Verlagsgesellschaft, 2015.

[65] Li Wang and Mengguang Wang. “A hybrid algorithm for earliness-tardiness schedul-
ing problem with sequence dependent setup time”. In: Proceedings of the 36th IEEE
Conference on Decision and Control. Vol. 2. IEEE. 1997, pp. 1219–1222.

[66] S Webster, D Jog, and A Gupta. “A genetic algorithm for scheduling job families
on a single machine with arbitrary earliness/tardiness penalties and an unrestricted
common due date”. In: International Journal of Production Research 36.9 (1998),
pp. 2543–2551.

[67] Charles H White and Richard C Wilson. “Sequence dependent set-up times and job se-
quencing”. In: The International Journal of Production Research 15.2 (1977), pp. 191–
202.

[68] William Cook. TSP Applications. https://www.math.uwaterloo.ca/tsp/apps/.
2007.

https://www.math.uwaterloo.ca/tsp/apps/

	Introduction
	Dissertation Outline
	Summary of Contributions

	Problem Preliminaries
	Problem Definition
	Data Overview
	Instance Generation

	Client Heuristic
	Initial Solution
	Improvement Procedures
	Perturbation Procedure

	Summary

	Literature Review
	Earliness Tardiness Scheduling with Setups
	Related Problems
	Earliness Tardiness Scheduling
	Scheduling with Sequence Dependent Setups

	Mixed Integer Programming
	Constraint Programming
	Decision Diagrams
	Decision Diagrams and Single Machine Scheduling

	Large Neighbourhood Search
	Summary

	MIP and CP for Earliness Tardiness Scheduling with Setups
	Mixed Integer Programming Formulations
	Base Model
	AAA Model
	MTZ_AM Model
	Simplified Model

	A Constraint Programming Formulation
	Experimental Setup
	Numerical Results
	Mean Relative Error
	Average Run Time
	Instances Solved
	MRE Over Time
	MIP and CP Warm Start
	CP Objective Function Propagation
	Root Node Lower Bound Analysis

	Discussion

	DDs for Earliness Tardiness Scheduling with Setups
	Decision Diagram Formulations
	An Exact Decision Diagram For Job Sequence
	An Example
	A Relaxed Decision Diagram
	Filtering
	Refinement

	Bound Strengthening Via Timing Algorithm
	An Example With Strengthened Bounds

	Implementation
	Numerical Results
	Mean Relative Error
	Instances Solved
	Average Run Time
	MRE Over Time
	MDD Warm Start
	Root Node Lower Bound Analysis

	Discussion

	LNS for Earliness Tardiness Scheduling with Setups
	Large Neighbourhood Search Formulations
	Neighbourhoods
	Neighbourhood Solving Criteria
	Diversification

	Numerical Results
	LNS Selection
	Mean Relative Error
	Instances Solved
	MRE Over Time
	LNS Warm Start

	Discussion

	Conclusion
	Summary and Contributions
	Future Work
	Concluding Remarks

	Mixed Integer Programming and Constraint Programming Graphs With Error Bars
	Decision Diagram Graphs With Error Bars
	Large Neighbourhood Search Graphs With Error Bars
	Bibliography

