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Abstract

A Formal Analysis of the Propagation for the Ellipsoid Global Constraint and an Application to the Selective

Tree Breeding Problem

Stefana Filipova

Master of Applied Science

Graduate Department of Mechanical and Industrial Engineering

University of Toronto

2018

The ELLIPSOID global constraint is one of the few global constraints used for reasoning about convex quadratic

functions. This thesis compares the strengths of the most successful propagation algorithm for the ELLIPSOID

global constraint, namely the BOX propagation, against the standard propagation algorithm based on the expres-

sion tree of the mathematical formulation as implemented, for example, in the well-known solver IBM ILOG CP

Optimizer. We perform a formal analysis of the strengths of both propagation algorithms, showing that there are

conditions under which the BOX propagation algorithm is not as good as the standard propagation algorithm.

We apply the ELLIPSOID global constraint to the selective tree breeding problem, a known problem from the

forest genetics literature. Our computational study shows that the ELLIPSOID global constraint is not a suitable

candidate for this particular problem, which is consistent with the findings from our theoretical analysis.
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Chapter 1

Introduction

The main focus of this thesis is to analyze the strength of the constraint propagation algorithms for the ELLIPSOID

global constraint in order to either design stronger propagations for quadratic constraints or determine new possi-

ble applications for the ELLIPSOID constraint.

The ELLIPSOID global constraint was proposed by Ku & Beck [32] as a new global constraint for strictly

convex quadratic functions. Three propagation algorithms were introduced for the ELLIPSOID constraint from

which we only focus on analyzing its most successful one: the BOX propagation algorithm. We give a detailed

overview of the fundamental concepts in Chapter 2.

Integer quadratically constrained problems (IQCPs) arise in diverse areas such as global positioning systems

[59], communications [1] and cryptography [47]. The IQCP isNP-hard problem [65], that is there does not exist

a known algorithm which is able to solve this problem in a polynomial time.

Considering the practical significance and theoretical challenge of the IQCP, it is important to develop exact

methodologies to efficiently solve this problem. Even though as an NP-hard problem it can be solved with an

exhaustive search, it usually takes prohibitively long time to check all feasible solutions for large-scale problems.

Consequently, we want to solve IQCP by searching the solution space in a more systematic manner.

The ELLIPSOID global constraint has shown success in a number of problems of the IQCP problem class [32],

such as binary quadratic programming problems [68], exact quadratic knapsack problems [35] and ellipsoid-

constrained integer least square problems [19]. Despite its success in these problems, it has not yet been formally

analyzed why the BOX propagation algorithm for the ELLIPSOID global constraint performed best in terms of

running time to prove optimality on particularly these problems. We are interested to know on which problem

structures the BOX propagation algorithm shows dominance over the propagation algorithm incorporated into

IBM ILOG CP Optimizer.

Another motivation to analyze the propagation algorithms for the ELLIPSOID global constraint is that there are

only a few known global constraints in the constraint catalog dedicated for inference with respect to quadratic ex-

pressions [7] and so designing stronger propagations for quadratic constraints is very significant. While constraint

1



CHAPTER 1. INTRODUCTION 2

propagation algorithms have shown success in combinatorial optimization [63], they have not been exhaustively

analyzed for particularly for nonlinear constraints. We aim to contribute to this with our analysis.

1.1 Thesis Outline

In Chapter 2, we give an overview of some important classes of optimization problems focusing especially on the

IQCP class. We survey the literature of solution methodologies for solving ellipsoid constrained problems with

a focus on two techniques, namely mixed-integer programming (MIP) and constraint programming (CP). We

especially consider constraint programming as an approach originating from the artificial intelligence community.

We also describe the fundamental concepts of the ELLIPSOID global constraint and the propagation algorithms

for it that we formally analyze throughout the thesis.

In Chapter 3, we formally analyze the strengths of the two propagation algorithms for the ELLIPSOID global

constraint, namely the BOX propagation and the standard propagation algorithm behind IBM ILOG CP Optimizer.

There has not been any formal analysis of the strength of the BOX propagation algorithm [32]. Therefore we

develop a formal propagation analysis and present detailed proofs for different cases in order to develop a profound

understanding of when one propagation algorithm is dominant.

In Chapter 4, we use the ELLIPSOID global constraint for solving the selective tree breeding problem [44]: a

problem studied in the tree breeding literature in which a fixed-size breeding population needs to be selected from

a list of candidates such that the genetic value of the population is maximized. Our empirical study shows that the

ELLIPSOID is not the best choice for solving this problem.

In Chapter 5, we provide concluding remarks and discuss future research directions.

1.2 Summary of Contributions

The contributions of this thesis are as follows.

� In Chapter 2, we present a concise and clear explanation of the constraint propagation for ellipsoid con-

straints behind one of the most well-known CP solvers - IBM ILOG CP Optimizer.

� In Chapter 3, we introduce a new formal analysis of the strengths of constraint propagation algorithms

for the ELLIPSOID global constraint. Throughout the analysis, we identify some future applications of the

ELLIPSOID constraint as well as some possibilities of designing stronger propagation algorithms.

� In Chapter 4, we investigate a new application of the ELLIPSOID global constraint for the selective tree

breeding problem. We introduce a constraint programming formulation of the problem and show that with

further improvements this technique could be competitive to existing technology, at least on some small

problems.



Chapter 2

Literature Review

In this chapter, we review the literature on solution techniques for solving ellipsoid constrained problems, with a

focus on constraint programming. The purpose of the literature review is to explain the concept of the ELLIPSOID

global constraint that we use throughout this thesis and to place it within its context in the optimization literature.

In Section 2.1, we present a simple classification of some important classes of optimization problems. In

Section 2.2 we describe the integer quadratically constrained problem (IQCP) through motivating examples from

the literature. In Section 2.3 we give a summary of the existing solution techniques used to solve IQCPs. We

focus especially on mixed-integer nonlinear programming (MINLP) as a technique from the operations research

community and constraint programming (CP) as a technique coming from the artificial intelligence community. In

Section 2.4 we explain the ELLIPSOID global constraint and the two propagation algorithms for it that are further

analyzed in this thesis.

2.1 Classification of Optimization Problems

In this section, we present several important classes of optimization problems that differ from each other in terms

of their level of difficulty and model generality. We give formal definitions for each of them and then discuss

the class of problems that are explored in this thesis. We start with the definition of a mathematical optimization

problem and the related notions.

Definition 2.1.1 (Optimization Problem [17]). A mathematical optimization problem is defined as:

min f(x)

subject to qi(x) ≤ 0, i ∈ {1, . . . ,m}
(2.1)

where f : Rn → R is the objective function, qi(x) ≤ 0, i ∈ {1, . . . ,m} are the constraints and x = (x1, . . . , xn)

is the vector of the decision variables. The decision variables represent the entities whose values need to be

determined to yield the optimal value for the objective function while satisfying the limitations that the constraints

3
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define. A vector x which is satisfying all the constraints is called a feasible solution and the set of all feasible

solutions is called the feasible region. An optimal solution to the problem (2.1) is a vector x∗ that attains the

smallest objective value, i.e., optimal value, among the vectors that satisfy the constraints.

In Figure 2.1 we present a graphical overview of some important classes of optimization problems and their

classification in terms of level of solution difficulty and model generality which is consistent with the one pre-

sented by Pruessner [50]. A difficult optimization problem is defined as a problem for which a general-purpose

solver cannot solve large instances reliably and in a reasonable time. Given two optimization problems A and B,

we say that A is more difficult than B if a general-purpose solver can solve B faster (the time taken to solve) than

A and it scales better with the increase in the instance size. On the left side of Figure 2.1 we have the problems

which are less difficult to solve and have less general model such as linear programs and quadratic programs.

On the right side, the problems are more difficult to solve and have a more general model representation such as

second-order cone programs and semidefinite programs. The arrows between problem classes point from a less

general and less difficult class of problems to a superset of the more general class of problems. Next, we present

the fundamental definitions of each of the problem classes based on the book Convex Optimization (2004) [17]

and discuss how one class is a subset of another.

QCQPQPLP SOCP SDP

Less
general

Less
difficult

More
general

More
difficult

Figure 2.1: A simple classification of optimization problems.

Definition 2.1.2 (Linear Programming [17]). Linear programs are convex optimization problems where the ob-

jective and constraints are affine functions. A linear program (LP) is defined as:

min c>x + d

subject to Ax ≤ b

where A ∈ Rm×n, c ∈ Rn, b ∈ Rm and d ∈ R.

Definition 2.1.3 (Quadratic Programming [17]). Quadratic programs are convex optimization problems where
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the objective function is quadratic while the constraints are affine. A quadratic program (QP) is defined as:

min
1

2
x>Hx + c>x + d

subject to Ax ≤ b

(2.2)

where H ∈ Rn×n,A ∈ Rm×n, c ∈ Rn, b ∈ Rm and d ∈ R.

Definition 2.1.4 (Quadratically Constrained Quadratic Programming [17]). Quadratically constrained quadratic

programs are convex optimization problems where either the objective function or the constraints can be quadratic.

A quadratically constrained quadratic program (QCQP) is defined as:

min
1

2
x>H0x + c>0 x + d0

subject to
1

2
x>Hix + c>i x− di ≤ 0, i ∈ {1, . . . , k}

Ax ≤ b

(2.3)

where Hi ∈ Rn×n, ci ∈ Rn, di ∈ R, ∀i ∈ {0, 1, . . . , k},A ∈ Rm×n and b ∈ Rm.

As we see in Figure 2.1, LPs are a subset of the QPs. By having Hi = 0,∀i ∈ {1, . . . , k} in (2.2), a QP

collapses to an LP. Moreover QPs are a subset of QCQPs. If we take Hi = 0,∀i ∈ {1, . . . , k} in (2.3), then a

QCQP collapses to a QP. A class of problems that are more general than QCQPs are second-order cone programs

which are defined as follows.

Definition 2.1.5 (Second-Order Cone Programming [17]). Second-order cone programs are convex optimization

problems where the objective function is a linear function while the feasible region is the intersection of hyper-

planes and the Cartesian product of second-order cones. A second-order cone program (SOCP) is defined as:

min f>x

subject to ‖Aix + bi‖2 ≤ c>i x + di, i ∈ {1, . . . , k}

Fx = h

(2.4)

where Ai ∈ Rmi×n, bi ∈ Rmi , ci ∈ Rn,f ∈ Rn, di ∈ R ∀i ∈ {1, . . . , k} and F ∈ Rp×n,h ∈ Rp. The

constraint ‖Aix + bi‖2 ≤ c>i x + di is called a second-order cone constraint as it geometrically describes a

second-order (Lorentz) cone.

Second-order cone programs are more general than QCQPs as well as LPs. Let 0 be the vector of zeros

of the appropriate dimension. If ci = 0, i ∈ {1, . . . , k} in (2.4) then the SOCP is a QCQP. Moreover, when

Ai = 0, i ∈ {1, . . . , k} then the SOCP (2.4) is an LP.

Semidefinite programs are the broadest class of problems, encompassing SOCPs, QCQPs, QPs and LPs, and

also one of the most difficult to solve among those convex optimization problems. They are a generalization of
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LPs but are richer in expressiveness than the LPs. We define the semidefinite problem as follows.

Definition 2.1.6 (Semidefinite Programming [17]). A semidefinite program (SDP) has the form:

min c>x

subject to x1F 1 + · · ·+ xnF n ≤ G

where c ∈ Rn and G,F 1, . . . ,F n ∈ Rm×m are symmetric positive semidefinite matrices.

In the case that matrices G,F 1, . . . ,F n in (2.1.6) are all diagonal, then the SDP reduces to a general LP.

In this thesis we focus on the QCQPs where all the variables are restricted to take integer values. This set

of problems is called Integer Quadratically Constrained Programs. They are an important class of problems that

includes LPs and QPs and they are also a subset of a more general class of problems such as SOCPs and SDPs.

2.2 Integer Quadratically Constrained Problems (IQCP)

In this section, we first present the formal problem definition of IQCP and then illustrate their vast application

through two motivating examples.

2.2.1 Problem Definition

The integer quadratically constrained program (IQCP) is an important class of optimization problems where either

the objective function or the constraints are modelled with quadratic functions and all of the variables are restricted

to take on integer values. In (2.5) we present the formal IQCP formulation. We consider Hi, ∀i ∈ {0, 1, . . . , k}

to be symmetric positive definite matrices.

Definition 2.2.1. (Integer Quadratically Constrained Problems [65]) An integer quadratically constrained prob-

lem has the form:

min
1

2
x>H0x + c>0 x + d0

subject to
1

2
x>Hix + c>i x ≤ di, i ∈ {1, . . . , k}

Ax ≤ b

x ∈ Zn

(2.5)

where A ∈ Rm×n, b ∈ Rm,Hi ∈ Rn×n, ci ∈ Rn and qi ∈ R,∀i ∈ {0, 1 . . . , k}.

2.2.2 Motivating Examples

Wind Farm Layout Optimization (WFO) [64]. In order to exemplify the application of IQCPs, we present

the problem of wind farm layout optimization [64]. The wind farm optimization (WFO) problem aims to find the
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optimal placement of wind turbines in the wind farm in order to maximize the power generated by the turbines.

The problem is defined with a set of possible locations for the turbines, I , and the number of wind turbines that

need to be placed, C. The decision variable xi takes value of 1 if a wind turbine is placed at position i ∈ I and 0

otherwise.

Then, WFO problem is modelled as an IQCP as follows:

max

n∑
i=1

n∑
j=1

xixjHij (2.6a)

subject to
n∑

i=1

xi = C (2.6b)

xi ∈ {0, 1},∀i ∈ I (2.6c)

The objective of maximizing the power generated is represented with the quadratic function in (2.6a). The

matrix H is called an interaction matrix, where the terms Hij represent the power produced as a result of an

interaction between a wind turbine placed at position i ∈ I and a wind turbine placed at position j ∈ I . Lastly,

constraint (2.6b) ensures that exactly C turbines are placed.

Uncapacitated Task Allocation Problem (UTA) [36]. Information systems tend to look for efficient methods

for making use of the availability of powerful parallel and distributed systems [36]. An important issue for the

efficient operations of these systems is the optimal task allocation to processors. Given a set of tasks and a set of

processors, the uncapacitated task allocation problem (UTA) aims to assign tasks to processors at minimal cost.

The problem is defined with a set of N tasks, a set of M processors and a set C = {(t, k)} where t and

k are tasks that require communication during processing. Furthermore fij denotes the execution cost of task i

on processor j, while ctk is the communication cost between task t and task k if they are assigned to different

processors. The decision variable xij takes a value of 1 if task i is assigned to processor j and 0 otherwise.

Then, an IQCP model for UTA problem is given as follows:

min

N∑
i=1

M∑
j=1

fijxij +
∑

(t,k)∈C

M∑
j=1

ctkxtj(1− xkj) (2.7a)

subject to
M∑
j=1

xij = 1, ∀i ∈ {1, . . . , N} (2.7b)

xij ∈ {0, 1}, ∀i ∈ {1, . . . , N},∀j ∈ {1, . . . ,M} (2.7c)

Constraint (2.7b) ensures that we assign each task to exactly one processor. In the quadratic objective function

(2.7a) we minimize the cost of assigning tasks to processors as well as the communication costs between tasks

that are assigned to different processors.
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2.3 Solution Techniques for IQCPs

In this section we survey exact methods for solving IQCPs. Particularly we focus on two mature technologies,

one from operations research (OR) and another from artificial intelligence (AI), namely mixed-integer nonlinear

programming and constraint programming.

2.3.1 Mixed Integer Nonlinear Programming (MINLP)

Mixed-integer programming (MIP) is a mathematical optimization approach used for solving optimization prob-

lems where the decision variables can take either integer or fractional values. MIP originated from the 1950s [46],

and has been widely used within the operations research community ever since. Many MIP techniques are em-

bedded in modern-day MIP solvers which are also used to solve convex mixed-integer quadratically constrained

problems (MIQCP), an important subset of mixed-integer nonlinear problems (MINLP) [15]. In this section, we

first review the basics of MIP and then describe the fundamental concepts of MINLP methodology.

Definition 2.3.1 (Mixed-Integer Program [46]). A mixed-integer program (MIP) is a mathematical optimization

problem of the form:

min f(x) (2.8a)

subject to hi(x) ≤ 0,∀i ∈ {1, . . . , k} (2.8b)

xj ∈ Z,∀j ∈ J (2.8c)

x ∈ Rn (2.8d)

where f : Rn → R is the objective function, hi : Rn → R are the constraint functions, and J ⊆ {1, . . . , n} is the

index set of the integer variables.

Furthermore, we define the continuous relaxation of a mixed-integer program which is obtained when the

integrality restrictions on the variables in (2.8d) are dropped. The continuous relaxation is critical to solving MIP

as it represents an approximation of the problem that is easier to solve.

Definition 2.3.2 (Continuous Relaxation [46].). The continuous relaxation of a mixed-integer program is defined

as:

min f(x) (2.9a)

subject to hi(x) ≤ 0,∀i ∈ {1, . . . , k} (2.9b)

x ∈ Rn (2.9c)

We also define mixed-integer linear program and mixed-integer quadratically constrained program. A mixed-

integer program is a mixed-integer linear program when the objective function and the constraints are linear
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functions.

Definition 2.3.3 (Mixed-Integer Linear Program [46]). A mixed-integer linear program (MILP) is a mathematical

optimization problem of the form:

min c>x (2.10a)

subject to Ax ≤ b (2.10b)

xj ∈ Z,∀j ∈ J (2.10c)

x ∈ Rn (2.10d)

where c ∈ Rn,A ∈ Rm×n, b ∈ Rm and J ⊆ {1, . . . , n} is the index set of the integer variables.

Note that the continuous relaxation of an MILP is an LP.

A mixed-integer program is a mixed-integer quadratically constrained program when the objective function

or one of the constraint functions is a quadratic function.

Definition 2.3.4 (Mixed-Integer Quadratically Constrained Program [34]). A mixed-integer quadratically con-

strained program (MIQCP) is a mathematical optimization problem of the form:

min
1

2
x>H0x + c>0 x + d0

subject to
1

2
x>Hix + c>i x− di ≤ 0,∀i ∈ {0, 1, . . . , k}

xj ∈ Z,∀j ∈ J

x ∈ Rn

where Hi ∈ Rn×n, ci ∈ Rn, di ∈ R, ∀i ∈ {0, 1, . . . , k} and J ⊆ {1, . . . , n} is the index set of the integer

variables.

Mixed-integer nonlinear programs are a broader class of optimization problems than the MILP and MIQCP

where some of the variables can take integer values while the constraint functions and objective function are mod-

eled with nonlinear functions [34]. Such problems arise in diverse engineering problems, where discrete decisions

are made while the systems are described by nonlinear dynamics. Some of their important engineering applica-

tions involve transmission switching [22], optimal control [55], network design with queuing delay constraints

[16], optimizing flow in gas networks [39] and resource allocation for homeland security [13] .

Definition 2.3.5 (Mixed-Integer Nonlinear Program [14]). A mixed-integer nonlinear program (MINLP) is de-
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fined as:

min f(x)

subject to hi(x) ≤ 0,∀i ∈ {1, . . . , k}

xj ∈ Z,∀j ∈ J

x ∈ Rn

(MINLP)

where f : Rn → R is the objective function that can be a nonlinear function, hi : Rn → R, i ∈ {1, . . . , k} are

the constraint functions which can be nonlinear and J ⊆ {1, . . . , n} is the index set of the integer variables.

MINLPs can be solved by performing a linearization of the MINLP objective function since the objective can

be a nonlinear function. This linearization is done by introducing an auxiliary variable, denoted by α, representing

the objective function value and moving the original objective function to the constraints.

Definition 2.3.6 (MINLP Objective Linearization [14]). A MINLP objective linearization (MINLPL) is defined

as follows:

min α

subject to f(x) ≤ α

hi(x) ≤ 0,∀i ∈ {1, . . . , k}

xj ∈ Z,∀j ∈ J

x ∈ Rn

Another important concept to solving MINLPs is the continuous relaxation of a MINLP. Similar to the notion

introduced for MIP, the continuous relaxation of an MINLP is obtained by dropping the integrality restriction on

the variables.

Definition 2.3.7 (Continuous relaxation of MINLP [14]). The continuous relaxation of an MINLP (MINLPR) is

defined as:

min f(x)

subject to hi(x) ≤ 0,∀i ∈ {1, . . . , k}

x ∈ Rn

(MINLPR)

In the past 30 years there has been a growing development and implementation of algorithms for solving

MINLPs [15]. Successful solution frameworks and enhancements such as branch-and-bound, outer approximation

and cutting planes have been efficiently implemented in a number of state-of-the-art MINLP solvers. Next, we

review the branch-and-bound algorithm used within MINLP methodology.
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The MINLP Branch-and-Bound method (MINLP-B&B). Branch-and-bound (B&B) is a well-known solu-

tion technique first developed by Land and Doig [33]. The branch-and-bound framework is a divide-and-conquer

approach.

The step of branching (dividing) is defined as partitioning the current search space of the problem into smaller

subsets. In other words, the problem is broken down to a set of smaller problems, each being called a subproblem.

More specifically, when a fractional optimal solution is found x̃ /∈ Zn, then an index j ∈ {1, . . . , n} with x̃j /∈ Z

is chosen and by adding the constraints xj ≥ dx̃je and xj ≤ bx̃jc two subproblems are created. The step of

bounding is done by solving the continuous relaxation of a subproblem and obtaining a lower bound. We then

compare the lower bound with the upper bound on the optimal value. If the lower bound exceeds or equals to the

upper bound, the subproblem cannot lead to a solution with a better cost than the current best solution thus can

be eliminated from consideration. The algorithm creates a branch-and-bound search tree, where the term node

corresponds to a subproblem. The step of eliminating a subproblem from consideration is called pruning a node

in the search tree.

Next we describe the basic idea of the B&B algorithm. At the beginning, the algorithm finds a solution to the

continuous relaxation (MINLPR) of the original problem (MINLP). The solution from the relaxation corresponds

to a lower bound on the optimal value of the original problem. If the solution from the relaxation is found to be

feasible to the original problem, then it is also optimal. Otherwise, the algorithm continues with partitioning the

problem into subproblems by imposing additional constraints, i.e., performs branching. The algorithm keeps a

list (L) of all subproblems and stops when there are no more subproblems to explore. The other stopping criteria

is reaching an optimality gap within a user-defined threshold value. The pseudocode for the B&B method for

solving MINLP is given in Algorithm 1, where x∗ is the current solution, and ub denotes the upper bound on the

optimal value. In line 1, the list of nodes is initialized with the original problem, while the upper bound on the

optimal solution value is initialized to infinity and the current best solution does not have an initial value. In line

2, we check to see if the list of nodes is empty; if there are no more subproblems in the list to explore, the current

solution is optimal. Next in line 3, we select a problem from the list and solve its continuous relaxation in order

to obtain the lower bound. Four possibilities can occur based on the solution to the relaxation. In option a.), if the

problem (MINLPR) is infeasible, we prune the node and go to line 2. In option b.), if we obtain a better objective

value than the upper bound and the solution is also feasible to the original problem, then we have a new current

best solution and the new current best upper bound. In option c.), if the relaxation solution is not better than the

current solution then the node is pruned and we go to line 2 again. And lastly, for option d.), in case we obtain a
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fractional solution we branch and create two new subproblems which are added to the list and go to line 2.

Algorithm 1: The MINLP-B&B method [34].

1 Initialize L← (MINLP), ub =∞,x∗ ← NONE

2 Check to see if L = ∅. If so, then the solution x∗ is optimal.

3 Select a problem from the list L and solve its (MINLPR) to obtain its lower bound lR and solution xR.

a. If (MINLPR) is infeasible, prune the node. Go to Step 2.

b. If lR < ub and the solution is feasible to the original (MINLP), then set ub = lR, update x∗ to xR and

prune the node (by bound). Go to Step 2.

c. If lR ≥ ub, then prune the node (by bound). Go to Step 2.

d. If the solution xR is fractional then continue with branching by creating two new nodes (subproblems).

Add all the new subproblems to L. Go to Step 2.

2.3.2 Constraint Programming (CP)

Constraint programming (CP) is a discrete optimization technique used to solve combinatorial search problems

[10]. It has been an attractive research area since the 1970s as a result of the expressive language it provides

for formulating a problem. In addition to general mathematical expressions used for problem formulation, with

constraint programming it is possible to describe the problem with symbolic constraints which encapsulate more

details about the given problem. In fact, the main concept of CP is to represent a real-world problem accurately

in terms of constraints and variables and then to find an assignment of values to the decision variables that satisfy

the constraints. For instance, in scheduling, the decision variables can be start times or durations of jobs and

constraints can be the availability of machines (or resources) for a limited time.

Similar to MIP, CP is also a search-tree framework where the original problem is represented with the root

node and every interior node corresponds to a subproblem derived from assigning values to a subset of the vari-

ables. In general, CP is trying to solve NP-complete problems by searching the solution space in a systematic

manner. In order to have an efficient performance and not check every possible assignment, the exponential search

space needs to be reduced. The way this reduction of the search space is done in CP is through inference. At each

node in the tree, constraint propagation (an inference technique) is invoked to infer new bounds and/or constraints

on the variables, and these changes are updated throughout the other constraints in order to reduce the domains of

the variables and cut down the search space further. Even though this technique can find an optimal solution with

systematic search, still for large problems it may take a rather prohibitive time [21].

Due to the core strengths of CP such as rich modelling language and strong constraint propagation, it has been

applied to a wide range of domains such as scheduling [6, 63], planning [62] and vehicle routing [21, 38].

Next, we focus on the details of the main mechanism used to reduce the search space in CP, which is constraint

propagation.
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Propagation Algorithms. Constraint propagation is a fundamental component of any constraint programming

solver. It appears under many different names in the literature such as filtering algorithms [52], constraint infer-

ence [48] and local consistency enforcing [29]. The propagation algorithm filters variable domains and removes

inconsistent values that do not participate in a solution. For example, consider a simple problem that is enforcing

the constraint x1 > x2, where the domains of the variables are defined as x1 ∈ {2, 4, 6} and x2 ∈ {3, 5, 7}.

By propagating this constraint, we can infer that the value 2 from the domain of x1 and the value 7 from the

domain of x2 do not participate in any solution. Therefore after the propagation step the domains of the variables

are changed to x1 ∈ {4, 6} and x2 ∈ {3, 5}, meaning that the solution space to be explored has been reduced.

This example illustrates that values can be removed from variable domains by showing that they do not satisfy

a constraint, meaning that they are not feasible to the problem as all the constraints must be satisfied. Hence,

constraint propagation is local to a constraint. In general, filtering algorithms are based on an established local

consistency and an associated polynomial enforcing algorithm developed to transform a constrained problem into

a network which satisfies all the constraints [10].

In order to characterize different propagation algorithms, we next describe the classical local consistencies

and present fundamental notions for CP, based on the book Handbook of Constraint Programming (2006) [10].

Definition 2.3.8 (Constraint network [10]). A constraint network is a triple < X, C,D > described with a finite

set of variables X = {x1, . . . , xn}, a set of constraints C = {C1, . . . , Cm} enforced on the variables and a set of

variable domains D = {D(x1)× · · · ×D(xn)} where D(xi) is the set of values that can be assigned to xi.

Definition 2.3.9 (Constraint [10]). A constraint Cm ∈ C is a relation that maps tuples of values of the variables

to the set {true, false}.

Definition 2.3.10 ([10]). Given a constraint network < X, C,D >:

� An assignment is a function which maps variables to values, i.e. a : {x1, . . . , xn} → R.

� An assignment a is valid if a(xi) ∈ D(xi), ∀i ∈ {1, . . . , n}.

� A solution to a constraint Cm ∈ C is an assignment that Cm returns true.

The basic propagation mechanism used in most constraint programming solvers is one of the many algorithms

for enforcing arc consistency [10]. (Generalized) Arc Consistency is a simple concept that guarantees every value

in the domain to be consistent with every constraint individually, and it is defined as follows.

Definition 2.3.11 (Generalized Arc Consistency (GAC) [10]). Given a constraint network < X, C,D > :

� A constraint Cm ∈ C is (generalized) arc consistent with respect to the variable domains if for every

variable xi ∈ X and each value vi ∈ D(xi), there exist values vj ∈ D(xj), j ∈ {1, . . . , n}\{i} such that

the constraint Cm(v1, . . . , vn) holds true.

� We say that the constraint network is GAC iff every constraint is GAC with respect to the variable domains.
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Let Am be the set of assignments that Cm ∈ C maps to true, p(D) be the obtained variable domains after

running the propagation algorithm p on the variable domain D and D is the set of all possible variable domains.

Given this notation, we formally define constraint propagation as follows.

Definition 2.3.12 (Constraint Propagation [56]). Constraint propagation is a function which maps variable

domains to variable domains, i.e., p : D → D such that p(D) ⊆ D if D ⊆ D and p(D̂) ⊆ D̃ if D̂ ⊆ D̃ ⊆ D.

Finally we define an important property of constraint propagation which is relevant for our analysis in Chapter

3: the soundness of a constraint propagation. Our definition of sound constraint propagation is close to the one

defined in [58]. One direct and important consequence from soundness is that a constraint propagation can never

remove values for the variables that participate in a solution.

Definition 2.3.13 (Sound Propagation [58]). A constraint propagation p is sound for a constraintCm iff p(Am) ⊂

p(D).

Global Constraints. The inference algorithms used in CP are often captured in global constraints [66]. Global

constraints are a powerful CP tool as they provide excellent problem insights and strong filtering of variable

domains based on problem structure. In order to explain the concept of global constraints, we describe one of

the best-known global constraints, namely ALLDIFFERENT where each of the variables need to take on different

values. The ALLDIFFERENT constraint is defined as follows:

Definition 2.3.14. Let {x1, x2 . . . , xn} be a finite set of variables. Then

ALLDIFFERENT(x1, . . . , xn) = {(v1, . . . , vn) | vi ∈ D(xi) ∀i ∈ {1, . . . , n}, vi 6= vj ∀i, j ∈ {1, . . . , n}, i 6= j}

In order to show the concept of a global constraint, in Figure 2.2 we present an instance of the graph coloring

problem.

x1

x2

x36=

6=

6=

D(xi) = {GREEN,BLUE}
∀i ∈ {1, 2, 3}

Figure 2.2: A graph coloring example.

In this instance we have three variables (nodes) that are allowed to take one of the two possible values of blue

and green color. The edges between the nodes represent the constraints that each pair of adjacent nodes must take

on different values, i.e., xi 6= xj for all edges (i, j) in the graph. The set of constraints can be captured with the

ALLDIFFERENT(·) constraint in the following manner:
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xi ∈ {GREEN,BLUE}, i ∈ {1, 2, 3}
CONSTRAINTS : xi 6= xj ∀ (i, j)

}
xi ∈ {GREEN,BLUE}, i ∈ {1, 2, 3}

ALLDIFFERENT(x1, x2, x3)

The ALLDIFFERENT(·) is associated with its own filtering algorithm that enforces GAC on the global con-

straint. In contrast to arc consistency propagation on the group of non-equals constraints which does not derive

anything, the GAC on the ALLDIFFERENT(·) representation provides stronger inference by inferring an empty

domain for one of the variables, hence showing that there is no solution.

Therefore, we define a global constraint as follows.

Definition 2.3.15 (Global Constraint [53]). A global constraint is defined as the conjunction of the set of con-

straints that describe a part of a given problem: G = ∧
i∈{1,...,m}

Ci. It is associated with its own filtering algorithm

which often tries to enforce GAC on G.

Global constraints demonstrate many advantages. First, they describe the problem in a more convenient man-

ner with one constraint encapsulating a set of constraints rather than defining each of the independent constraints

[53]. Secondly, it is much easier and convenient to guide the search and inference from the simultaneous pres-

ence of a set of constraints [11]. Lastly, specific filtering algorithms for global constraints make it possible to

incorporate powerful operations research techniques considering a set of constraints as a whole [32].

2.4 The Ellipsoid Global Constraint

The ELLIPSOID global constraint was introduced by Ku & Beck [32] as a novel global constraint that reasons

about convex quadratic functions used in ellipsoid constrained problems. First, we describe the constraint for

axis-aligned ellipsoids and the BOX propagation algorithm behind it, and then present the same notions for a

rotated ellipsoid.

Definition 2.4.1 (ELLIPSOID Constraint for Axis-Aligned Ellipsoid [32]). The ELLIPSOID constraint is used

for inference in strictly convex quadratic functions. It comprises of a set of variables {x1, . . . , xn}, a full column

rank matrix A ∈ Rn×n, a vector y ∈ Rn and a constant β ∈ R [32]. For an axis-aligned ellipsoid the A matrix is

a diagonal matrix i.e., aij = 0 ,∀i 6= j. The constraint ensures the following expression:

n∑
i=1

(yi − aiixi)2 ≤ β (2.11)

Note that the constraint (2.11) geometrically describes a hyper-ellipsoid with a center at A−1y as presented in

Figure 2.3. The global constraint is denoted as ELLIPSOID({x1, . . . , xn},A,y, β).

Remark 1. The matrix A is positive definite for strictly convex quadratic constraints i.e., aii > 0,∀i ∈ {1, . . . , n}.
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x1

x2

1 2 3 4 5 6

1

2

3

4

lB1 uB1

lB2

uB2

∑n
i=1(yi − aiixi)2 ≤ β

{
y1

a11
, . . . , yn

ann

}

Figure 2.3: An example of axis-aligned ellipsoid.

x1

x2

1 2 3 4 5 6

1

2

3

4

uB1lB1

lB2

uB2

∑n
i=1

(
yi −

∑n
j=1 aijxj

)2
≤ β

{
y1∑n

j=1 a1j
, . . . , yn∑n

j=1 anj

}

Figure 2.4: An example of rotated ellipsoid.

BOX Propagation Algorithm for Axis-Aligned Ellipsoid Constrained Problems. Suppose that variable xj

has variable domains [lj , uj ],∀j ∈ {1, . . . , n}. The BOX propagation [32] reduces and updates the domains of

the variables by computing the tangent box of the axis-aligned hyper-ellipsoid (2.11), where the edges of the

computed box are parallel to the axes of the coordinate system and intersect with the hyperellipsoid at exactly one

point. The lower bound lB and the upper bound uB vectors that define the tangent box are computed by solving

the following two problems

lBj := min
x∈Rn

xj subject to
n∑

i=1

(yi − aiixi)2 ≤ β

uBj := max
x∈Rn

xj subject to
n∑

i=1

(yi − aiixi)2 ≤ β

∀j ∈ {1, . . . , n}.

These problems are solved in an efficient way with the algorithm that Chang & Golub [19] present. The

compact solutions to the problems are given with the following equations:

lBj := −
√
β‖A−>ej‖2 + e>j A

−1y (2.12)

uBj :=
√
β‖A−>ej‖2 + e>j A

−1y (2.13)

where ej ∈ Rn is the unit vector in the j-th direction, i.e., the j-th column of an n× n identity matrix.

The BOX propagation computes the new (updated) domain of variable xj denoted with [lBOX
j , uBOX

j ] as the

intersection of the original bounds [lj , uj ] and the bounds of the tangent box [lBj , u
B
j ], i.e.,

[lBOX
j , uBOX

j ] = [lj , uj ]
⋂

[lBj , u
B
j ].
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Next, we give the definition of the ELLIPSOID global constraint and describe how the BOX propagation works

for rotated ellipsoids.

Definition 2.4.2 (ELLIPSOID Constraint for Rotated Ellipsoid [32]). For a rotated ellipsoid the off-diagonal

entries of A are not necessarily all zero. The ELLIPSOID constraint then ensures the following expression:

n∑
i=1

yi − n∑
j=1

aijxj

2

≤ β (2.14)

The constraint (2.14) geometrically describes a hyper-ellipsoid with a center at A−1y as presented in Figure

2.4. The global constraint is denoted as ELLIPSOID({x1, . . . , xn},A,y, β)

BOX Propagation for Rotated Ellipsoid Constrained Problems. The BOX propagation reduces and updates

the domains of the variables by computing the tangent box of the rotated ellipsoid. The lower bound lB and upper

bound uB vectors that define the tangent box can be computed by solving the following optimization problems

for each dimension p ∈ {1, . . . , n}, which are constrained with a rotated ellipsoid (2.14) :

lBp := min
x∈Rn

xp subject to
n∑

i=1

yi − n∑
j=1

aijxj

2

≤ β

uBp := max
x∈Rn

xp subject to
n∑

i=1

yi − n∑
j=1

aijxj

2

≤ β

Then, the updated domain of variable xp denoted with [lBOX
p , uBOX

p ] is therefore the intersection of the original

domain [lp, up] and the bounds of the tangent box [lBp , u
B
j ], i.e,

[lBOX
p , uBOX

p ] = [lp, up]
⋂

[lBp , u
B
p ].

2.5 Constraint Propagation Behind IBM ILOG CP Optimizer (CPDEFAULT)

Modern-day CP Solvers such as IBM ILOG CP Optimizer use a specific propagation algorithm for specific types

and forms of constraints. In order to illustrate how this specific propagation algorithm (referred to as CPDEFAULT)

for the axis-aligned ELLIPSOID constraint (2.11) behind the IBM ILOG CP Optimizer works, we present a small

example. For a clear comparison we consider the following ellipsoid constraint that matches the form of the

general ellipsoid constraint for axis-aligned ellipsoids (2.11), and its box constraints:

(2− x1)2 + (5− 2x2)2 ≤ 8, x1 ∈ [0, 5], x2 ∈ [0, 4] (2.15)

First, we represent the quadratic expression for the ellipsoid constraint using an expression tree [26] where
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the internal nodes represent operators or functions and the leaf nodes denote the variables. The reduction on the

variable bounds is done through the expression tree propagation, i.e., CPDEFAULT propagation algorithm, by using

the bounds on the variables to improve the bounds on the expressions and vice versa. The constraint propagation

algorithm enforces arc consistency throughout the expression tree on a triple of variables, a node with two children,

and the constraint connecting them. We discuss the reasoning for this particular constraint through two concepts,

namely forward and backward propagation as shown in Figure 2.5 and Figure 2.6, respectively.

Forward Propagation. In Figure 2.5, the forward propagation starts at the leaf nodes of the expression tree and

continues until the root node, reasoning the same way about each triple of variables, a node with two children,

and the connecting expression. Using the bounds of the children nodes, it finds the min and max values of the

expression as the bounds of the parent node. In our example, the expressions connecting the leaf nodes are x1 and

2x2. The lower and upper bounds for the expression x1 are updated such that lower bound = min{x1 | x1 ∈ [0, 5]}

and upper bound = max{x1 | x1 ∈ [0, 5]}. In a similar manner, the bounds on the expression 2x2 are updated

with lower bound = min{2x2 | x2 ∈ [0, 4]} and upper bound = max{2x2 | x2 ∈ [0, 4]}.

+

[0, 34]

*

[0, 9]

-[−3, 2]

2 *[0, 5]

1 x1

[0, 5]

-[−3, 2]

2 *[0, 5]

1 x1

[0, 5]

*

[0, 25]

- [−3, 5]

5 *[0, 8]

2 x2

[0, 4]

- [−3, 5]

5 *[0, 8]

2 x2

[0, 4]

Figure 2.5: First Expression Tree Forward Propagation for (2− x1)2 + (5− 2x2)2 ≤ 8.

Backward Propagation. In contrast to the forward propagation, the backward propagation starts from the root

node and works its way down. The propagation reasons about each triple of variables, a node with two children

and the connecting expression. Looking at the triple at the root node, in order to update the bounds of the left

child, i.e., on the expression (2− x1)2, while bounding it by 8, i.e., the right hand side of the ellipsoid constraint,

the propagation algorithm also considers the minimum of the expression (5 − 2x2)2 from its domain. Note that

we can consider the minimum of the expression as we are dealing with interval domains for the variables. In

other words, in backward propagation we consider the bounds of the parent node in order to find the min and max

values of the expression as the bounds of the two children nodes, while enforcing (generalized) arc consistency

on the triple. Whenever the domains are changed, the propagation algorithm updates these changes through the

connected constraints to prune the domains of the variables. The entire backward propagation reasoning and all

the updated bounds are shown on Figure 2.6. Note that there might be multiple passes of the backward propagation
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in order to establish (generalized) arc consistency.

+

[0, 8]

*

[0, 8]

-[−2.82, 2]

2 *[0, 4.82]

1 x1

[0, 4.82]

-[−2.82, 2]

2 *[0, 4.82]

1 x1

[0, 4.82]

*

[0, 8]

- [−2.82, 2.82]

5 *[2.18, 7.82]

2 x2

[1.09, 3.91]

- [−2.82, 2.82]

5 *[2.18, 7.82]

2 x2

[1.09, 3.91]

Figure 2.6: Final Expression Tree Backward Propagation for (2− x1)2 + (5− 2x2)2 ≤ 8.

The obtained reduced bounds are x1 ∈ [0, 4.82] and x2 ∈ [1.09, 3.91]. This example helps us to define the

optimization problems that obtain the pruned minimum and maximum values for the variables which satisfy the

given quadratic constraint and describe the constraint propagation algorithm.

Next, we generalize the approach and discuss the reasoning throughout the general expression tree for the

ELLIPSOID constraint of the form
∑n

i=1(yii − aiixi)2 ≤ β as shown on Figure 2.7. In Figure 2.7 we try to prune

+

≤ β

*

(yj − ajjxj)2

-

yj *

ajj xj

[lj , uj ]

-

yj *

ajj xj

[lj , uj ]

+

∑
i∈{1,...,n}\{j}(yi − aiixi)2

*

-

yi *

aii xi

[li, ui]

-

yi *

aii xi

[li, ui]

* . . .

...

*

...

Figure 2.7: General Expression Tree for the ELLIPSOID constraint
∑n

i=1(yi − aiixi)2 ≤ β.

the domains of the variable xj where N = {1, . . . , n} represents the set of all variable indices. We partition the

tree at the root node into two main branch sets, one containing the quadratic expression where xj appears and the

other for sum of the rest of the quadratic expressions. In order to prune the domain of xj and find the tightest

values for its bounds, we subtract the minimum of the expressions where xj does not appear from the root node.

Afterwards we enforce the generalized arc consistency on each triple of variables in the remaining subtree where

xj appears.

By understanding how the reasoning is done in the general expression tree, we define the optimization prob-
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lems that CPDEFAULT solves for the axis-aligned ellipsoid in order to obtain the pruned bounds for the variable xj

in the following manner:

lCP
j := min xj (2.16a)

s.t. (yj − ajjxj)2 ≤ β −
∑

i∈{1,...n}\{j}

min
li≤xi≤ui

(yi − aiixi)2 (2.16b)

lj ≤ xj ≤ uj (2.16c)

uCP
j := max xj (2.17a)

s.t. (yj − ajjxj)2 ≤ β −
∑

i∈{1,...n}\{j}

min
li≤xi≤ui

(yi − aiixi)2 (2.17b)

lj ≤ xj ≤ uj (2.17c)

These two optimization problems are doing the exact same reasoning as the propagation algorithm. For example

consider the problems for our example (2.15), for j = 1:

lCP
1 = min x1 (2.18a)

s.t. (2− x1)2 ≤ 8− min
0≤x2≤4

(5− 2x2)2 (2.18b)

0 ≤ x1 ≤ 5 (2.18c)

uCP
1 = max x1 (2.19a)

s.t. (2− x1)2 ≤ 8− min
0≤x2≤4

(5− 2x2)2 (2.19b)

0 ≤ x1 ≤ 5 (2.19c)

The minimum value that we can obtain for (5−2x2)2 with respect to x2 bounds (2.18b, 2.19b) is zero. Following

that statement, the constraints (2.18b) and (2.19b) are now reduced to (2 − x1)2 ≤ 8. The solutions for this

quadratic constraint when equality holds are [2 − 2
√

2, 2 + 2
√

2] ⇒ [−0.82, 4.82]. However we also consider

the bounds for x1 in (2.18c) and (2.19c). Once we intersect [−0.82, 4.82] with x1 bounds, we obtain the pruned

domain for x1 which is [0, 4.82] (see Figure 2.6). We can obtain the pruned bounds for x2 in a similar way.

CPDEFAULT for Rotated Ellipsoid. The CPDEFAULT propagation for rotated ellipsoids (2.14) reasons about the

variable domains again by using expression tree propagation. We present in Figure 2.8 the general expression tree

for the ELLIPSOID constraint for rotated ellipsoids. We denote with xk the variable whose domain we want to
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update, whileN = {1, . . . , n} is the set of all variables indices. We also define Sk = {i ∈ {1, . . . , n} : aik 6= 0},

which represents the index set of quadratic expressions where the variable xk appears. In the expression tree in

Figure 2.8, we distinguish two main branch sets at the root node, one where xk appears and the other one where

xk is not present. In order to obtain the best domain for xk we subtract the sum of the minimum of the expressions

where xk does not appear from the root node and reduce the tree. Afterwards we propagate in the remaining

subtree, enforcing generalized arc consistency on each triple of variables, as described in the previous paragraphs.

+

≤ β

+

∑
s∈Sk

(
ys −

∑
j∈{1,...,n} asjxj

)2

*

...

. . . *

-

ys +

∑
∀j asjxj

* . . .

asj xj

[lj , uj ]

*

asj xj

[lj , uj ]

-

ys +

∑
∀j asjxj

* . . .

asj xj

[lj , uj ]

*

asj xj

[lj , uj ]

+

∑
i∈N\Sk

(
yi −

∑
j∈{1,...,n} aijxj

)2

*

-

yi +

∑
∀j aijxj

* . . .

aij xj

[lj , uj ]

*

aij xj

[lj , uj ]

-

yi +
∑
∀j aijxj

* . . .

aij xj

[lj , uj ]

*

aij xj

[lj , uj ]

*

...

. . .

Figure 2.8: General Expression Tree for the ELLIPSOID constraint
∑n

i=1(yi −
∑n

j=1 aijxj)
2 ≤ β.

By understanding how CPDEFAULT conducts the reasoning in the expression tree, we can define the optimization

problems that CPDEFAULT solves for reduced ellipsoids in order to obtain the pruned bounds for the variable xk in

the following manner:

lCP
k := min

x∈Rn
xk (2.20a)

s.t.

ys −∑
j∈N

asjxj

2

≤ β −
∑

i∈N\Sk

min
lj≤xj≤uj

j∈N

yi −∑
j∈J

aijxj

2

,∀s ∈ Sk (2.20b)

li ≤ xi ≤ ui,∀i ∈ N (2.20c)
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uCP
k := max

x∈Rn
xk (2.21a)

s.t.

ys −∑
j∈N

asjxj

2

≤ β −
∑

i∈N\Sk

min
lj≤xj≤uj

j∈N

yi −∑
j∈N

aijxj

2

,∀s ∈ Sk (2.21b)

li ≤ xi ≤ ui,∀i ∈ N (2.21c)

2.6 Summary

In this chapter, we first presented an overview of the most well-known classes of optimization problems, namely

LPs, QPs, QCQPs, SOCPs and SDPs. Then, we defined in more details the IQCPs. We also surveyed the

literature of solution techniques for IQCPs, focusing on constraint programming as a fundamental technique used

throughout this thesis. We explained the concept of a global constraint and then elaborated on the details of

the ELLIPSOID global constraint. Lastly, we presented two propagation algorithms used for solving ellipsoid

constrained problems, namely the BOX propagation algorithm and CPDEFAULT propagation algorithm.

In the rest of the thesis, we formally analyze these constraint propagation algorithms and gain valuable insights

on when a propagation algorithm is dominant. In the following chapter we present the details of our analysis.



Chapter 3

An Analysis of Constraint Propagation

Algorithms for the Ellipsoid Constraint

In the previous chapter we reviewed the ELLIPSOID global constraint and the BOX propagation algorithm, as well

as the CPDefault propagation algorithm behind IBM ILOG CP Optimizer. In this chapter we focus on analyzing the

strength of both propagation algorithms for the ELLIPSOID constraint. We are particularly interested in this anal-

ysis because since the ELLIPSOID global constraint was first introduced there has not been any formal analysis of

the strength of the BOX propagation mechanism [32]. Therefore in this chapter we develop a formal propagation

analysis and present detailed mathematical proofs for each of the cases that we investigate in order to develop a

deeper understanding of when one propagation algorithm is dominant. With the analysis, we address the fact that

by knowing the problem structure and the form of the ELLIPSOID constraint we can decide if the constraint is a

good choice for solving a particular problem.

Contributions. We present a theoretical analysis of the strength of constraint propagation for the ELLIPSOID

constraint. With this analysis, we identify some future applications of the ELLIPSOID constraint as well as future

prospects of designing stronger propagation algorithms.

The chapter is organized as follows. In Section 3.1 we present an overview of the entire propagation analysis

that is conducted in this chapter. In Section 3.2 we start with the analysis for axis-aligned hyper-ellipsoids, where

we also focus on one special subcase (Section 3.2.1). In Section 3.3 we continue with the analysis of rotated

hyper-ellipsoids where we also discuss some special subcases (Section 3.3.1). In Section 4.4 we discuss the main

findings of the analysis. We end the chapter with some concluding remarks in Section 3.5.

23
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3.1 Structure of the Analysis

In this section, we introduce the scope of the formal analysis that we present in this chapter. Figure 3.1 shows a

graphical overview of the analysis. We begin by partitioning the ellipsoids into axis-aligned and rotated hyper-

ellipsoids. In Figure 3.1 everything that is related to axis-aligned hyper-ellipsoids is represented in blue, while

orange represents everything from the analysis related to rotated hyper-ellipsoids. When we have an axis-aligned

hyper-ellipsoid, we identified only one interesting case where we can show equivalence between the propagation

algorithms. For a rotated hyper-ellipsoid we first look at the bounds of the ellipsoid. In Section 3.3.1 we define

the notions of redundant (Definition 3.3.1) and narrow bounds (Definitions 3.3.2, 3.3.3) that we use in this part

of the analysis. We derive dominance for the case when we have redundant bounds. Afterwards we focus on the

case where we have narrow bounds and investigate what happens if we assign at least one value to a variable in

the hyper-ellipsoid and if we do not. We focus on the case of when we assign at least one value to a variable as

we see that the main characterization in this case comes again from the type of variable bounds. Therefore we

conclude the analysis by showing dominance for when we have different types of bounds, redundant and narrow,

once we assign at least one value to a variable.

HYPER-ELLIPSOID

Axis-Aligned Rotated

Center inside bounds Center not inside All bounds are redundantAt least one bound is narrow

Do not assign a valueAssign at least one value

All bounds are redundant
in the reduced ellipsoid

At least one bound is narrow
in the reduced ellipsoid

Figure 3.1: Overview of the Entire Formal Propagation Analysis for the ELLIPSOID constraint.

3.1.1 Preliminaries

For completeness, we repeat the basic notions and definitions regarding the propagation algorithms that were

introduced in Chapter 2 as we frequently use them throughout this chapter. We also define the notation used for

the comparison of two propagation algorithms performed throughout the analysis as well as the definition of a

continuous as well as integer support of variables.
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In Chapter 2 (Section 2.5) we defined the following optimization problems for CPDEFAULT propagation algo-

rithm, both for axis-aligned and rotated ellipsoid as follows:

Axis-Aligned Ellipsoid

lCP
j = min xj

s.t. (yj − ajjxj)2 ≤ β −
∑

i∈{1,...n}\{j}

min
li≤xi≤ui

(yi − aiixi)2

lj ≤ xj ≤ uj

(3.1)

uCP
j = max xj (3.2a)

s.t. (yj − ajjxj)2 ≤ β −
∑

i∈{1,...n}\{j}

min
li≤xi≤ui

(yi − aiixi)2 (3.2b)

lj ≤ xj ≤ uj (3.2c)

Rotated Ellipsoid

lCP
k = min

x∈Rn
xk

s.t.

ys −∑
j∈N

asjxj

2

≤ β −
∑

i∈N\Sk

min
lj≤xj≤uj

j∈N

yi −∑
j∈N

aijxj

2

,∀s ∈ Sk

li ≤ xi ≤ ui,∀i ∈ N

(3.3)

uCP
k = max

x∈Rn
xk (3.4a)

s.t.

ys −∑
j∈N

asjxj

2

≤ β −
∑

i∈N\Sk

min
lj≤xj≤uj

j∈N

yi −∑
j∈N

aijxj

2

,∀s ∈ Sk (3.4b)

li ≤ xi ≤ ui,∀i ∈ N (3.4c)

We also presented the following optimization problems that the BOX propagation algorithm solves in order to

obtain the reduced bounds, both for axis-aligned and rotated ellipsoid:

Axis-Aligned Ellipsoid

lBj = min
x∈Rn

xj

s.t.
n∑

i=1

(yi − aiixi)2 ≤ β
(3.5)
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uBj = max
x∈Rn

xj

s.t.
n∑

i=1

(yi − aiixi)2 ≤ β
(3.6)

Rotated Ellipsoid

lBp = min
x∈Rn

xp

s.t.
n∑

i=1

yi − n∑
j=1

aijxj

2

≤ β
(3.7)

uBp = max
x∈Rn

xp

s.t.
n∑

i=1

yi − n∑
j=1

aijxj

2

≤ β
(3.8)

In terms of the structure of the analysis, we present fundamental definitions that we use for comparing two

propagation algorithms. Given two propagation algorithms p1 and p2 we denote withD the vector of the domains,

i.e., D = [D0, D1, . . . , Dn] where Di, i ∈ {1, . . . , n} is the domain of variable xi. We denote by p(D) the vector

of domains we obtain after running the propagation algorithm p on D and we denote by p(Di) the obtained

domain of variable xi after running propagation p. We denote the relation Di ⊆ Ei,∀i ∈ {1, . . . , n} by D � E,

and (D � E)∧ (Di ⊂ Ei),∃i ∈ {1, . . . , n} as D ≺ E. We also denote the relation Di = Ei,∀i ∈ {1, . . . , n} as

D = E.

Definition 3.1.1. A propagation algorithm p1 is at least as good as (or not worse than) the propagation algorithm

p2 iff:

p1(D) � p2(D)

We denote this relationship with p1 � p2.

Definition 3.1.2. A propagation algorithm p1 is strictly better than the propagation algorithm p2 iff

p1(D) ≺ p2(D)

We denote this relationship with p1 � p2.
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Definition 3.1.3. Two propagation algorithms p1 and p2 are incomparable iff ∃ i, j ∈ {1, . . . , n} such that:

p1(Di) 6� p2(Di) ∧ p2(Dj) 6� p1(Dj)

Definition 3.1.4. Two propagation algorithms p1 and p2 are equivalent iff p1(D) = p2(D). We denote this

relationship with p1 ≡ p2.

Throughout our analysis, we first provide all the proofs for when we have a continuous support of variables,

and then discuss the same cases for when we have integer support of variables in Section 3.2.2 and Section 3.3.2,

respectively. We define continuous support of variables in the following way.

Let xj be a domain variable and DR(xj) = [lj , uj ] be the continuous interval domain of values that can be

assigned to xj .

Definition 3.1.5 (Continuous support). For each variable xj ∈ R, j ∈ {1, . . . n} and every value vj ∈ DR(xj)

there exist values vi ∈ DR(xi),∀i ∈ {1, . . . n}, i 6= j such that the ELLIPSOID({x1 = v1, . . . xn = vn},A,y, β)

is satisfied.

Next, we define integer support of variables in the following way. LetDZ(xj) = [lj , uj ] be the integer interval

domain of values that can be assigned to xj , i.e, {lj , lj + 1, . . . , uj} where lj , uj ∈ Z.

Definition 3.1.6 (Integer support). For each variable xj ∈ Z, j ∈ {1, . . . n} and every value vj ∈ DZ(xj) there

exist values vi ∈ DZ(xi),∀i 6= j such that the ELLIPSOID({x1 = v1, . . . xn = vn},A,y, β) is satisfied.

3.2 Axis-Aligned Hyper-Ellipsoid

In this section we focus on axis-aligned hyper-ellipsoids (Figure 3.2). We show that the CPDEFAULT propagation

algorithm is at least as good as the BOX propagation algorithm and can be strictly better (Theorem 3.2.3).

HYPER-ELLIPSOID

Axis-Aligned
Theorem 3.2.3

Rotated

Figure 3.2: The outlined blue rectangle with bold text shows the next case to be explored.

Lemma 3.2.1. For axis-aligned hyper-ellipsoids, CPDEFAULT � BOX propagation.

Proof. Let xj be an arbitrary variable with domain [lj , uj ]. Consider the domains [lCP
j , uCP

j ] and [lBOX
j , uBOX

j ]

obtained after applying CPDEFAULT and BOX propagation algorithms, respectively. We first show that uCP
j ≤

uBOX
j .

Consider the optimization problems for CPDEFAULT and BOX propagation algorithm defined with (3.2) and

(3.6), respectively. We will show that (3.6) is a relaxation of (3.2). Let x̃j be a feasible solution to (3.2). Also, let
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x̃i be an optimal solution to the minimization problem in the right-hand-side of (3.2b). Then, x̃ is feasible to (3.6)

as we have:

(yj − ajj x̃j)2 ≤ β −
∑

i∈{1,...n}\{j}

(yi − aiix̃i)2 ⇒
n∑

i=1

(yi − aiix̃i)2 ≤ β (3.9)

Note that the objective functions of (3.2) and (3.6) are the same.

Therefore, we obtain uCP
j ≤ uBj . We also know that uCP

j ≤ uj due to (3.2c), so we get uCP
j ≤ min{uj , uBj } =

uBOX
j .

Using similar arguments, it is easy to show that (3.5) is a relaxation of (3.1), thus lCP
j ≥ lBOX

j , which

concludes the proof.

Lemma 3.2.2. There exist axis-aligned hyper-ellipsoids and their respective variable domains where CPDEFAULT �

BOX propagation.

Proof. We consider the following ellipsoid constraint, that matches the form of the general ellipsoid constraint

for axis-aligned hyper-ellipsoids (2.11), and its respective variable domains:

(12− 3x1)2 + (18− 6x2)2 ≤ 144, x1 ∈ [−1, 9], x2 ∈ [0, 2]. (3.10)

From the ellipsoid constraint we have

y =

 12

18

 , A−1 =

 1
3 0

0 1
6


For x1 we can calculate lB1 and uB1 , using (2.12) and (2.13) respectively as :

lB1 =

√
144

3
− 12

3
=

12

3
− 12

3
= 4− 4 = 0

uB1 =

√
144

3
+

12

3
=

12

3
+

12

3
= 4 + 4 = 8

thus lBOX
1 = max{−1, 0} = 0 and uBOX

1 = min{9, 8} = 8.

Similarly for x2 we have the tangent points calculated by BOX using (2.12) and (2.13):

lB2 = 1

uB2 = 5

thus lBOX
2 = max{0, 1} = 1 and uBOX

2 = min{2, 5} = 2. Then the resulting reduced bounds from BOX

algorithm are x1 ∈ [0, 8] and x2 ∈ [1, 2].

However, CPDEFAULT reduces the bounds to x1 ∈ [0.53, 7.46] and x2 ∈ [1, 2]. The expression trees for forward

and backward propagation are given in Figure 3.3 and Figure 3.4, respectively.
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+

[36, 549]

*

[0, 225]

-[−15, 15]

12 *[−3, 27]

3 x1

[−1, 9]

-[−15, 15]

12 *[−3, 27]

3 x1

[−1, 9]

*

[36, 324]

- [6, 18]

18 *[0, 12]

6 x2

[0, 2]

- [6, 18]

18 *[0, 12]

6 x2

[0, 2]

Figure 3.3: First Expression Tree (Forward) Propagation for (12−3x1)2+(18−6x2)2 ≤ 144, x1 ∈ [−1, 9], x2 ∈
[0, 2].

+

[36, 144]

*

[0, 108]

-[−10.39, 10.39]

12 *[1.61, 22.39]

3 x1

[0.53, 7.46]

-[−10.39, 10.39]

12 *[1.61, 22.39]

3 x1

[0.53, 7.46]

*

[36, 144]

- [6, 12]

18 *[6, 12]

6 x2

[1, 2]

- [6, 12]

18 *[6, 12]

6 x2

[1, 2]

Figure 3.4: Final Expression Tree (Backward) Propagation for (12 − 3x1)2 + (18 − 6x2)2 ≤ 144, x1 ∈
[−1, 9], x2 ∈ [0, 2]. The final reduced bounds are highlighted.

Theorem 3.2.3. For axis-aligned hyper-ellipsoids CPDEFAULT � BOX propagation.

Proof. Follows directly from Lemma 3.2.1 and Lemma 3.2.2.

3.2.1 Special Subcase

In this section we delve into more details of when one propagation algorithm is dominant. We identify one

special case where we prove that the CPDEFAULT propagation and the BOX propagation are equivalent, and note an

implication that follows from it.

We first define a specific hypercube to be used in some of the proofs.

Definition 3.2.1. A domain hypercube is defined as the Cartesian product of the interval domains of the variables

×n
j=1 [lj , uj ].

We formally prove our claim that when the hypercube defined by the variable bounds includes the center of

the ellipsoid, the CPDEFAULT propagation algorithm and the BOX propagation algorithm are equivalent.
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Axis-Aligned

Center inside bounds
Proposition 3.2.4 Center not inside

Figure 3.5: The outlined blue rectangle with bold text shows the next case to be explored.

Proposition 3.2.4. If the domain hypercube includes the center of the ellipsoid then CPDEFAULT ≡ BOX propagation

algorithm for axis-aligned hyper-ellipsoids.

Proof. Let xj be an arbitrary variable with domain [lj , uj ]. Consider the domains [lCP
j , uCP

j ] and [lBOX
j , uBOX

j ]

obtained after applying CPDEFAULT and BOX propagation algorithms, respectively. Also suppose that the center of

the ellipsoid belongs to the domain hypercube. We first show that uCP
j = uBOX

j .

Consider the optimization problems defined by (3.2) and (3.6). We analyze the optimal solutions for both of

the problems. Since we aim at maximizing xj we need to maximize the right-hand-side of both (3.2) and (3.6). As

(3.6) is defined over Rn, the minimum value that we can obtain for the sum of the quadratic expressions subtracted

from β, attained at xi = yi

aii
,∀i ∈ {1, . . . , n}\{j}, is 0. So for (3.6) we get the following form:

uBj = max
xj∈R

xj s.t. (yj − ajjxj)2 ≤ β

Thus for the optimal solution of (3.6) we get:

uBj =
yj
ajj

+

∣∣∣∣√βajj
∣∣∣∣

Next, let δj :=
∑

i∈{1,...,n}\{j}minli≤xi≤ui
(yi − aiixi)2. According to our assumption that the center of the

ellipsoid belongs to the domain hypercube, i.e., yi

aii
∈ [li, ui] it follows that δj = 0. That is, (3.2) is equivalent to :

uCP
j = max

lj≤xj≤uj

xj

s.t. (yj − ajjxj)2 ≤ β

Then for the optimal solution we get:

uCP
j = min

{
uj ,

yj
ajj

+

∣∣∣∣√βajj
∣∣∣∣}

= min{uj , uBj } = uBOX
j

Using similar arguments, it is easy to show that lCP
j = lBOX

j , which concludes the proof.

Note than Proposition 3.2.4 implies that if CPDEFAULT propagation algorithm can do more inference than the

BOX propagation algorithm, then the center does not belong to the domain hypercube.
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3.2.2 Integer Support

In the previous section, we proved Theorem 3.2.3 and Proposition 3.2.4 only considering a continuous support

for variables. However in constraint programming the most often used support is integer support for variables.

In this section, we present a general discussion on the changes in the analysis if we have an integer support

of variables for the investigated cases of axis-aligned hyper-ellipsoid. The rest of the details, such as expression

trees and detailed proofs are provided in Appendix A and Appendix B, respectively. As the set of integers is a

subset of the set of real numbers most of our analysis holds true when we have integer support.

Starting with Lemma 3.2.1, the main argument that we are using to show that CPDEFAULT � BOX propagation

is that (3.6) is a relaxation of (3.2). With integer support, each variable domain is an integer interval set. By

having integer bounds, problem (3.2) is even more constrained and the integer bounds are a subset of Zn - where

(3.6) is now defined. Thus, CPDEFAULT � BOX propagation for when we have integer support and the proof holds

true.

In Table 3.1 we give the details for the example in Lemma 3.2.2, but with integer support for the variables

where the best bounds are highlighted. We see that we get the same result as in Lemma 3.2.2, which is that

CPDEFAULT � BOX propagation algorithm.

Table 3.1: Bound comparison for (12− 3x1)2 + (18− 6x2)2 ≤ 144 with integer support for variables. The best
bounds are highlighted.

x1 x2

Lower
bound

Upper
bound

Lower
bound

Upper
bound

CPDEFAULT 1 7 1 2
BOX 0 8 1 2

By knowing that Lemma 3.2.1 and Lemma 3.2.2 can be proved in the same manner for integer support and

have the same conclusions, we can also conclude that Theorem 3.2.3 holds true for integer support as well.

Furthermore, coming to the proof of Proposition 3.2.4, note that the integer support is reflected in the integer

bounds, while the parameters that describe the center of the ellipsoid do not have an integer restriction. In the

proof of Proposition 3.2.4 we analyze the optimal solutions for the problems that CPDEFAULT and BOX propagation

algorithms solve, hence we do not use integer support as an argument explicitly. Therefore we have the same

conclusions for Proposition 3.2.4 for when we have integer support.

3.3 Rotated Hyper-Ellipsoid

In this section we compare the BOX propagation (3.7, 3.8) with the CPDEFAULT propagation algorithm (3.3,3.4)

when we have a rotated hyper-ellipsoid. We first show that the two propagation algorithms are incomparable

through two counterexamples.
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HYPER-ELLIPSOID

Axis-Aligned
Rotated

Proposition 3.3.1

Figure 3.6: The outlined orange rectangle with bold text shows the next case to be explored.

Proposition 3.3.1. The CPDEFAULT propagation and the BOX propagation are incomparable for rotated hyper-

ellipsoids.

To formally prove Proposition 3.3.1, we present two counterexamples which show that there does not exist a

dominance between the BOX propagation and the CPDEFAULT propagation for rotated hyper-ellipsoids.

Counterexample 3.3.1 (BOX � CPDEFAULT). First, we present an example where the BOX propagation does

more inference than the CPDEFAULT propagation algorithm for rotated hyper-ellipsoids. We consider the following

ellipsoid constraint, that matches the form of the general ellipsoid constraint for rotated hyper-ellipsoids (2.14):

(2− 6x1)2 + (3− (8x1 + 4x2))2 + (14− (2x1 + 8x2 + 6x3))2 ≤ 196, x1 ∈ [−3, 2], x2 ∈ [−2, 3], x3 ∈ [2, 2]

The CPDEFAULT propagation reduces the bounds for x1 to [-2, 2] and the x2 bounds to [-2, 2.5]. The forward

and backward propagation are shown on Figure 3.7 and Figure 3.8, respectively.

+

[0, 2301]

*

[0, 400]

-[−10, 20]

2

*[−18, 12]

6
x1

[−3, 2]

-[−10, 20]

2

*[−18, 12]

6
x1

[−3, 2]

* [0, 1225]

-
[−25, 35]

3 +[−32, 28]

*[−24, 16]

8 x1

[−3, 2]

*[−8, 12]

4 x2

[−2, 3]

-[−25, 35]

3

+[−32, 28]

*[−24, 16]

8 x1

[−3, 2]

*[−8, 12]

4 x2

[−2, 3]

*

[0, 676]

-[−26, 24]

14 +

[−10, 40]

*

[−6, 4]

2 x1

[−3, 2]

*[−16, 24]

8 x2

[−2, 3]

*

[12, 12]

6 x3

[2, 2]

- [−26, 24]

14 + [−10, 40]

*

[−6, 4]

2
x1

[−3, 2]

*[−16, 24]

8 x2

[−2, 3]

* [12, 12]

6 x3

[2, 2]

Figure 3.7: First Expression Tree (Forward) Propagation for the ELLIPSOID:(2− 6x1)2 + (3− (8x1 + 4x2))2 +
(14− (2x1 + 8x2 + 6x3))2 ≤ 196, x1 ∈ [−3, 2], x2 ∈ [−2, 3], x3 ∈ [2, 2].

In order to show the detailed BOX propagation for this example, we first need to find and calculate the one-

dimension-smaller (reduced) ellipsoid [32] as x3 ∈ [2, 2]. Let Ã = [Aj ] for all non-fixed variables, where Aj is
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+

[0, 196]

*

[0, 196]

-[−10, 14]

2

*[−12, 12]

6
x1

[−2, 2]

-[−10, 14]

2

*[−12, 12]

6
x1

[−2, 2]

* [0, 196]

-
[−14, 14]

3 +[−11, 17]

*[−16, 16]

8 x1

[−2, 2]

*[−8, 10]

4
x2

[−2, 2.5]

-[−14, 14]

3

+[−11, 17]

*[−16, 16]

8 x1

[−2, 2]

*[−8, 10]

4 x2

[−2, 2.5]

*

[0, 196]

-[−14, 14]

14 +

[0, 28]

*

[−4, 4]

2 x1

[−2, 2]

*[−16, 16]

8 x2

[−2, 2]

*

[12, 12]

6 x3

[2, 2]

- [−14, 14]

14 + [0, 28]

*

[−4, 4]

2
x1

[−2, 2]

*[−16, 16]

8 x2

[−2, 2]

* [12, 12]

6 x3

[2, 2]

Figure 3.8: Final Expression Tree (Backward) Propagation for the ELLIPSOID:(2−6x1)2 +(3− (8x1 +4x2))2 +
(14 − (2x1 + 8x2 + 6x3))2 ≤ 196, x1 ∈ [−3, 2], x2 ∈ [−2, 3], x3 ∈ [2, 2]. The final reduced bounds are
highlighted.

the jth column of A, so we have:

Ã =


6 0

8 4

2 8


We then calculate the QR factorization of Ã.

QR(Ã) =
[
Q̃1|Q̃2

] R̃

0

 =


-0.5883 0.3641 0.7220

-0.7845 -0.0405 -0.6189

-0.1961 -0.9305 0.3094




-10.1980 -4.7068

0 -7.6057

0 0


We also calculate ȳ = y −A3 × v3, where v3 is the value assigned to x3 as:

ȳ =


2

3

14

−


0

0

12

 =


2

3

2


and ỹ = Q̃1

>
ȳ :

ỹ =


-0.5883 0.3641

-0.7845 -0.0405

-0.1961 -0.9305


> 

2

3

2

 =

 -3.9223

-1.2543


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The reduced intersecting ellipsoid can be computed as εF = ‖ỹ − R̃x̃‖22 ≤ β̃, where for β̃ we have:

β̃ = β − ‖ȳ‖22 + ‖ỹ‖22 = 196− 17 + 16.95 = 195.95

Finally the complete form of the reduced ellipsoid (Figure 3.9) is:

εF =

∥∥∥∥∥∥
 -3.9223

-1.2543

−
 -10.1980 -4.7068

0 -7.6057

 x̃
∥∥∥∥∥∥
2

2

≤ 195.95

⇒ (−3.9223 + (10.1980x1 + 4.7068x2))2 + (−1.2543 + 7.6057x2)2 ≤ 195.95 (3.11)

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x
2

Figure 3.9: The Geometry of the Ellipsoid (−3.9223 + (10.1980x1 + 4.7068x2))2 + (−1.2543 + 7.6057x2)2 ≤
196, x1 ∈ [−3, 2], x2 ∈ [−2, 3], x3 ∈ [2, 2].

Now, knowing the reduced ellipsoid we can calculate the tangent box. Since (3.11) is written in the form of

the general ellipsoid constraint for rotated hyper-ellipsoids we can identify:

y =

 -3.9223

-1.2543

 , A =

 -10.1980 -4.7068

0 -7.6057

 and A−1 =

 -0.0981 0.0607

0 -0.1315


We then calculate lBj and uBj ,∀j = {1, 2} using (2.12) and (2.13)

lB1 = 0.3085− 1.6151 = −1.3066

uB1 = 0.3085 + 1.6151 = 1.9236
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lB2 = 0.1649− 1.8410 = −1.6761

uB2 = 0.1649 + 1.8410 = 2.0059

The resulting reduced bounds from the BOX algorithm are x1 ∈ [−1.3066, 1.9236] and x2 ∈ [−1.6761, 2.0059]

Thus, the BOX propagation reduces the bounds more than the CPDEFAULT propagation, so it does more inference

in this example.

Counterexample 3.3.2 (CPDEFAULT � BOX). Next, we present an example which shows that the CPDEFAULT prop-

agation can do more propagation than the BOX propagation for rotated hyper-ellipsoids. We consider the fol-

lowing ellipsoid constraint (Figure 3.10), that matches the form of the general ellipsoid constraint for rotated

hyper-ellipsoids (2.14):

(2− x1)2 + (5− (x1 + x2))2 ≤ 8, x1 ∈ [−1, 5], x2 ∈ [5, 7]

-3 -2 -1 0 1 2 3 4 5 6 7 8

x
1

-2

-1

0

1

2

3

4

5

6

7

8

9

10

x
2

Figure 3.10: Geometry of the Ellipsoid (2− x1)2 + (5− (x1 + x2))2 ≤ 8, x1 ∈ [−1, 5], x2 ∈ [5, 7].

From the constraint we know:

y =

 2

5

 , A =

 1 1

0 1

 and A−1 =

 1 -1

0 1


We can calculate the lower and upper bounds as solutions to (2.12) and (2.13):

lB1 = −0.827 lB2 = −1

uB1 = 4.823 uB2 = 7

Upon intersection with the starting bounds, the resulting reduced bounds from the BOX propagation are
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x1 ∈ [−0.82, 4.82], x2 ∈ [5, 7]. However CPDEFAULT reduces more the bounds to x1 ∈ [−0.82, 2.82] and keeps

x2 ∈ [5, 7]. The forward and backward propagation that lead to these bounds are shown on Figure 3.11 and Figure

3.12, respectively.

+

[0, 58]

*

[0, 9]

-[−3, 3]

2 x1

[−1, 5]

-[−3, 3]

2 x1

[−1, 5]

*

[0, 49]

- [−7, 1]

5 +[4, 12]

x1

[−1, 5]

x2

[5, 7]

- [−7, 1]

5 +[4, 12]

x1

[−1, 5]

x2

[5, 7]

Figure 3.11: First Expression Tree (Forward) Propagation for (2−x1)2+(5−(x1+x2))2 ≤ 8, x1 ∈ [−1, 5], x2 ∈
[5, 7].
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-[−0.82, 2.82]
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[−0.82, 2.82]
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x1
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x2

[5, 7]

- [−2.82, 0.82]

5 +[4.17, 7.82]

x1

[−0.82, 2.82]

x2

[5, 7]

Figure 3.12: Final Expression Tree (Backward) Propagation for (2 − x1)2 + (5 − (x1 + x2))2 ≤ 8, x1 ∈
[−1, 5], x2 ∈ [5, 7]. The final reduced bounds are highlighted.

3.3.1 Special Subcases

In this section we further investigate when one propagation algorithm is dominant in the case of a rotated hyper-

ellipsoid. In order to present the first characterization, we need to define some preliminary notions. Recall that

lBj , u
B
j denote the bounds of the tangent box of the rotated hyper-ellipsoid, as previously defined in Section 2.4.

Definition 3.3.1 (Redundant bounds). Given lBj and uBj as the bounds of the tangent box of the hyper-ellipsoid

for a particular variable xj , its variable bounds lj and uj are said to be redundant if lBj ≥ lj and uBj ≤ uj ,

respectively. An example of such redundant bounds is shown in Figure 3.13.
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Definition 3.3.2 (Narrow lower bound). Given lBj as the lower bound of the tangent box of the hyper-ellipsoid for

a particular variable xj , its variable lower bound lj is said to be narrow if lBj < lj . An example of such narrow

lower bound is shown in Figure 3.14.

Definition 3.3.3 (Narrow upper bound). Given uBj as the upper bound of the tangent box of the hyper-ellipsoid

for a particular variable xj , its variable upper bound uj is said to be narrow if uBj > uj . An example of such

narrow upper bound is shown in Figure 3.14.

xj
1 2 3 4 5 6

1

2

3

4

uBj ujlBjlj

Figure 3.13: An example of redundant bounds.
The dashed lines represent the tangent bound of
the BOX, while the blue lines are the redundant
bounds.

xj
1 2 3 4 5 6

1

2

3

4

uBjujlBj lj

Figure 3.14: An example of narrow bounds. The
dashed lines represent the tangent bound of the
BOX, while the blue lines represent the narrow
bounds.

Based on the presented definitions we identify two special cases where we compare the propagation algo-

rithms. First, we formally prove that when all the variable bounds are redundant (Figure 3.15), then the BOX

propagation is not worse than the CPDEFAULT propagation algorithm (Lemma 3.3.2) and can be strictly better

(Lemma 3.3.3). In the first lemma, we prove by contradiction that the BOX propagation is not worse than the

CPDEFAULT propagation, while in the second lemma we provide an example where the BOX propagation can do

strictly better than the CPDEFAULT propagation.

Rotated

All bounds are redundant
Proposition 3.3.2 At least one bound is narrow

Figure 3.15: The outlined orange rectangle with bold text shows the next case to be explored.

Proposition 3.3.2. If all variable bounds in the rotated hyper ellipsoid are redundant then BOX propagation �

CPDEFAULT.

Proof. (By Contradiction.) Let uCP
j denote the updated upper bound that CPDEFAULT obtains and uBOX

j be the

updated upper bound that BOX obtains. For a contradiction, without loss of generality, suppose that CPDEFAULT
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does more reduction on the upper bound of some variable xj , j ∈ {1, . . . , n} than the BOX propagation and

obtains uCP
j where uCP

j < uBOX
j . Assuming that all variable bounds are redundant we know that uCP

j < uBj ≤

uj where uj is the original upper bound of the variable xj . Based on our assumption that the CPDEFAULT obtains

a valid uCP
j we know the problem (3.4) is feasible. This also implies that the problem (3.8) is feasible. Next,

we consider the point xB obtained as an optimal solution to the feasible BOX problem (3.8), where xBj = uBj .

The point xB satisfies all variable bounds as they are all redundant and xB lies inside the ellipsoid. This point

is also feasible to the CPDEFAULT problem (3.4) as it lies inside the ellipsoid, meaning it satisfies the ELLIPSOID

constraint. Our initial assumption was that CPDEFAULT propagation does strictly better than the BOX, which means

it cuts off this point. However the CPDEFAULT propagation is a sound propagation algorithm, meaning it cannot

remove any feasible solution such as this point thus we have a contradiction.

Proposition 3.3.3. There exist rotated hyper-ellipsoids with redundant bounds where BOX propagation � CPDEFAULT.

Proof. The proof follows directly from Counterexample 3.3.1 from Proposition 3.3.1 as the bounds of all the

variables are redundant. The details regarding the example are shown in Table 3.5, where the best bounds found

by BOX propagation algorithm are highlighted.

Table 3.2: Bound comparison for (2 − 6x1)2 + (3 − (8x1 + 4x2))2 + (14 − (2x1 + 8x2 + 6x3))2 ≤ 196. The
best bounds are highlighted.

x1 x2 x3

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Original -3 2 -2 3 2 2
Tangent box -1.33 1.92 -1.67 2 2 2
CPDEFAULT -2 2 -2 2.50 2 2

BOX -1.33 1.92 -1.67 2 2 2

Next, we prove that when at least one of the variable bounds is narrow in the rotated hyper-ellipsoid (Fig-

ure 3.16) then the CPDEFAULT propagation and the BOX propagation are incomparable. To do so, we present

two counter-examples which show that there does not exist a dominance between the BOX propagation and the

CPDEFAULT propagation for this case.

Rotated

All bounds are redundant
At least one bound is narrow

Proposition 3.3.4

Figure 3.16: The outlined orange rectangle with bold text shows the next case to be explored.
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Proposition 3.3.4. The BOX propagation and the CPDEFAULT propagation are incomparable when at least one of

the variable bounds is narrow.

Counterexample 3.3.3 (CPDEFAULT � BOX). We use the counterexample 3.3.2 presented in Proposition 3.3.1 as

the lower bound on the variable x2 is narrow. This example shows that the CPDEFAULT propagation does more

reduction on the x1 variable upper bound than the BOX propagation algorithm. The details regarding the example

are shown in Table 3.3, where the best bound found by CPDEFAULT is highlighted.

Table 3.3: Bound comparison for (2− x1)2 + (5− (x1 + x2))2 ≤ 8. The best bounds are highlighted.

x1 x2

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Original -1 5 5 7
Tangent box -0.83 4.82 -1 7
CPDEFAULT -0.83 2.82 5 7

BOX -0.83 4.82 5 7

Counterexample 3.3.4 (BOX � CPDEFAULT). We use the ellipsoid constraint from Counterexample 3.3.1 pre-

sented in Proposition 3.3.1, but with a different set of initial variable bounds given in Table 3.4. The best bounds

found are highlighted. The BOX propagation calculates the reduced bounds x1 ∈ [−1.3066, 1.9236], x2 ∈

[−1.6761, 2.0059]. Upon intersection with the original bounds, the final bounds are x1 ∈ [−1, 1.9236], x2 ∈

[−1.6761, 2.0059].

As for CPDEFAULT, it reduces the bounds for x1 to [−1, 2] and for x2 to [−2, 2.25], showing a weaker reduction

in the variable bounds. The forward and backward propagation trees are shown on Figure 3.17 and Figure 3.18,

respectively.

Table 3.4: Bound comparison for (2 − 6x1)2 + (3 − (8x1 + 4x2))2 + (14 − (2x1 + 8x2 + 6x3))2 ≤ 196. The
best bounds are highlighted.

x1 x2 x3

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Original -1 2 -4 4 2 2
Tangent BOX -1.33 1.92 -1.67 2 2 2

CPDEFAULT -1 2 -2 2.25 2 2
BOX -1 1.92 -1.67 2 2 2

3.3.1.1 Value Assignment to Variables

In this section we focus on rotated hyper-ellipsoid constraints where there is at least one variable bound that is

narrow. We further investigate what happens in the case when we assign a value to one of the variables. When a

variable is fixed to a certain value during the search, e.g., xi = vi then the dimension of the ellipsoid is reduced
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Figure 3.17: First Expression Tree (Forward) Propagation for the ELLIPSOID:(2− 6x1)2 + (3− (8x1 + 4x2))2 +
(14− (2x1 + 8x2 + 6x3))2 ≤ 196, x1 ∈ [−1, 2], x2 ∈ [−4, 4], x3 ∈ [2, 2].
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Figure 3.18: Final Expression Tree (Backward) Propagation for the ELLIPSOID:(2−6x1)2+(3−(8x1+4x2))2+
(14 − (2x1 + 8x2 + 6x3))2 ≤ 196, x1 ∈ [−1, 2], x2 ∈ [−4, 4], x3 ∈ [2, 2]. The final reduced bounds are
highlighted.

by one [32]. After assigning a value to a variable there are two possible subcases: the resulting bounds after the

assignment in the lower dimensional (reduced) ellipsoid either are all redundant or at least one of them is narrow.

First we formally prove that when we assign a value to one of the variables and we have redundant bounds

in the lower dimensional ellipsoid (Figure 3.19) the BOX propagation is not worse than the CPDefault propagation

(Proposition 3.3.5).

Proposition 3.3.5. If there is at least one fixed variable and all the bounds in the resulting reduced rotated

hyper-ellipsoid are redundant, then BOX propagation � CPDEFAULT.
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At least one bound is narrow

Assign at least one value

All bounds are redundant
in the reduced ellipsoid

Proposition 3.3.5

At least one bound is narrow
in the reduced ellipsoid

Figure 3.19: The outlined orange rectangle with bold text shows the next case to be explored.

Proof. (By Contradiction.) Let I be the set of all fixed variables and let vi be the value assigned to the variable

xi during search, for i ∈ I . Also let uCP
j denote the updated upper bound that CPDEFAULT obtains and uBOX

j be

the updated upper bound that BOX obtains. For a contradiction, without loss of generality, assume that CPDEFAULT

does more reduction on the upper bound of some variable xj , j /∈ I than the BOX propagation and obtains

uCP
j where uCP

j < uBOX
j . Assuming that all variable bounds in this reduced rotated ellipsoid (when we fix

xi = vi, i ∈ I) are redundant we know that uCP
j < uBj ≤ uj where uj is the original upper bound of the variable

xj . Based on our assumption that the CPDEFAULT obtains a valid uCP
j we know that the problem (3.4) is feasible.

This implies that vi ∈ [li, ui],∀i ∈ I .

Next, we consider the point xB obtained as an optimal solution to the following problem:

max
x∈Rn

xBj (3.12)

s.t.
n∑

i=1

ỹi −∑
j /∈I

aijxj

2

≤ β (3.13)

where ỹi := yi −
∑

j∈I aijvj .

Notice that the obtained optimal point xB lies in the full dimension ellipsoid and xBj = uBOX
j . It follows

that for any k /∈ I , xBk satisfies the variable bounds as they are assumed to be redundant in the reduced ellipsoid

(B.11) and xB lies inside the ellipsoid. Moreover, as mentioned before vi ∈ [li, ui],∀i ∈ I , thus xB satisfies all

variable bounds. Then xB is also feasible for the CPDEFAULT problem (3.4). Our assumption was that CPDEFAULT

propagation does strictly better than the BOX, which means it cut off this point. However CPDEFAULT propagation

is a sound propagation algorithm, meaning it cannot remove any feasible solution such as this point thus we have

a contradiction.

Proposition 3.3.6. There exist one-dimension smaller rotated hyper-ellipsoids with redundant bounds where

BOX propagation � CPDEFAULT.

Proof. The proof follows directly from Counterexample 3.3.1 from Proposition 3.3.1 as the bounds of all the

variables are redundant and the value of 2 has been assigned to x3. The details regarding the example are shown

in Table 3.5, where the best bounds found by BOX propagation algorithm are highlighted.
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Table 3.5: Bound comparison for (2 − 6x1)2 + (3 − (8x1 + 4x2))2 + (14 − (2x1 + 8x2 + 6x3))2 ≤ 196. The
best bounds are highlighted.

x1 x2 x3

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Original -3 2 -2 3 2 2
Tangent box -1.33 1.92 -1.67 2 2 2
CPDEFAULT -2 2 -2 2.50 2 2

BOX -1.33 1.92 -1.67 2 2 2

Next we show that when we assign a value to one of the variables and we have at least one narrow bound in

the reduced ellipsoid (Figure 3.20), then BOX and CPDefault propagation algorithm are incomparable (Proposition

3.3.7).

At least one bound is narrow

Assign at least one value

All bounds are redundant
in the reduced ellipsoid

At least one bound is narrow
in the reduced ellipsoid

Proposition 3.3.7

Figure 3.20: The outlined orange rectangle with bold text shows the next case to be explored.

Proposition 3.3.7. The BOX propagation and the CPDefault propagation are incomparable when we assign a value

to one of the variables and at least one of the bounds in the resulting reduced rotated hyper-ellipsoid is narrow.

Counterexample 3.3.5 (BOX� CPDEFAULT). We use the same ellipsoid from Counterexample 3.3.1 in Proposition

3.3.1 but with a different set of starting variable bounds. Suppose we start with x1 ∈ [−1, 2], x2 ∈ [−4, 4] and

x3 ∈ [2, 3], where x1 has a narrow lower bound. Next we decide to assign the value 2 to x3. The reduced ellipsoid

has the form (2−6x1)2 + (3− (8x1 + 4x2))2 + (2− (2x1 + 8x2))2 ≤ 196 where the lower bound of the variable

x1 is still narrow. The details regarding this example are shown in Table 3.6, where the bounds found by BOX are

highlighted and the narrow bound is bold.

Counterexample 3.3.6 (CPDEFAULT � BOX). Next we present an example which shows that the CPDEFAULT prop-

agation can do more inference than the BOX propagation. We consider the following ellipsoid constraint where

x2 has narrow bounds:

(2− x1)2 + (5− (x1 + x2 + x3))2 ≤ 8 x1 ∈ [−1, 5], x2 ∈ [3, 5], x3 ∈ [1, 2]
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Table 3.6: Bound comparison for (2−6x1)2 + (3− (8x1 + 4x2))2 + (2− (2x1 + 8x2))2 ≤ 196. The best bounds
are highlighted.

x1 x2

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Original -1 2 -4 4
Tangent box -1.33 1.92 -1.67 2
CPDEFAULT -1 2 -2 2.25

BOX -1 1.92 -1.67 2

Suppose now we assigned value 1 to x3. The one-dimension-smaller ellipsoid has the form (2 − x1)2 + (4 −

(x1 + x2))2 ≤ 8, where the bounds on x2 are still narrow. In this reduced ellipsoid, the CPDEFAULT propagation

does more inference on the upper bound of x1. The details regarding this example are shown in Table 3.7, where

the bounds found by CPDEFAULT are highlighted. The bounds calculated by BOX are calculated according to the

problems (2.12) and (2.13). We then take the intersection of those bounds with the original bounds. The forward

and backward propagation for CPDEFAULT are shown on Figure 3.21 and Figure 3.22, respectively.

Table 3.7: Bound Comparison for (2− x1)2 + (4− (x1 + x2))2 ≤ 8. The best bounds are highlighted.

x1 x2

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Original -1 5 3 5
Tangent box -0.83 4.82 -2 6
CPDEFAULT -0.83 3.82 3 5

BOX -0.83 4.82 3 5
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Figure 3.21: First Expression Tree (Forward) Propagation for (2−x1)2+(4−(x1+x2))2 ≤ 8, x1 ∈ [−1, 5], x2 ∈
[3, 5].

Lastly we consider the case when we have at least one narrow bound in the rotated hyper-ellipsoid, for example

a narrow upper bound, and decide not to assign any value. We know by definition (Definition 3.3.3) that we have a
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Figure 3.22: Final Expression Tree (Backward) Propagation for (2 − x1)2 + (4 − (x1 + x2))2 ≤ 8, x1 ∈
[−1, 5], x2 ∈ [3, 5]. The final reduced bounds are highlighted.

narrow upper bound if uj < uBj . We also know that the BOX propagation finds uBOX
j as uBOX

j = min{uj , uBj }

which in this case equals to uj . Since uj is the best bound it can be obtained with the BOX propagation we see that

the propagation algorithm does not do any pruning of the variable’s upper bound and cannot do more propagation

than the CPDEFAULT propagation algorithm to reduce the upper bound.

3.3.2 Integer Support

In this section we further discuss the findings of the analysis for when we have an integer support for variables for

the different cases that we explored for rotated hyper-ellipsoid. We refer the reader to Appendix A and Appendix

B for the expression trees and the detailed proofs, as we only present a general discussion in this section. Before

going into greater details, recall the definition of integer support of variables (Definition (3.1.6)).

In Proposition 3.3.1, 3.3.4 and 3.3.7 we showed through a set of counterexamples that the BOX propagation

and CPDEFAULT are incomparable for when we have rotated hyper-ellipsoid, when at least one bound is narrow

in the rotated hyper-ellipsoid and when we have at least one narrow bound after we assign value to a variable,

respectively. The details of the examples for when we have integer support are given in Table 3.8 and Table 3.9,

where the best bounds are highlighted. The examples conclude the same as Proposition 3.3.1.

Table 3.8: Bound comparison for (2 − 6x1)2 + (3 − (8x1 + 4x2))2 + (14 − (2x1 + 8x2 + 6x3))2 ≤ 196 with
integer support for variables. The best bounds are highlighted.

x1 x2 x3

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Original -3 2 -2 3 2 2
Tangent box -1.33 1.92 -1.67 2 2 2
CPDEFAULT -2 2 -2 2 2 2

BOX -1 1 -1 2 2 2
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Table 3.9: Bound comparison for (2− x1)2 + (5− (x1 + x2))2 ≤ 8 with integer support for variables. The best
bounds are highlighted.

x1 x2

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Original -1 5 5 7
Tangent box -0.83 4.82 -1 7
CPDEFAULT 0 2 5 7

BOX 0 4 5 7

Moreover, the two counterexamples with integer support presented in Table 3.9 and Table 3.10 make the same

conclusions as Proposition 3.3.4 but for when we have integer support. The best bounds are highlighted. Likewise

we can make the same conclusions as in Proposition 3.3.7, for when we have integer support for the variables,

with the examples shown in Table 3.10 and Table 3.11.

Table 3.10: Bound comparison for (2 − 6x1)2 + (3 − (8x1 + 4x2))2 + (2 − (2x1 + 8x2))2 ≤ 196 with integer
support for variables. The best bounds are highlighted.

x1 x2

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Original -1 2 -4 4
Tangent box -1.33 1.92 -1.67 2
CPDEFAULT -1 2 -2 2

BOX -1 1 -1 2

Table 3.11: Bound comparison for (2− x1)2 + (4− (x1 + x2))2 ≤ 8 with integer support for variables. The best
bounds are highlighted.

x1 x2

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Original -1 5 3 5
Tangent box -0.83 4.82 -2 6
CPDEFAULT 0 3 3 5

BOX 0 4 3 5

Coming to the proof of Proposition 3.3.2, we never explicitly use anywhere the continuous support for the

variables, but rather analyze the solutions of the optimization problems for CPDEFAULT and BOX propagation algo-

rithms for rotated hyper-ellipsoids. In order to have integer support, we need to further restrict the optimization

problems (3.4) and (3.8), meaning the domain of the variables to be the integer interval rather than continuous.

The main argument that we are using to show that Proposition 3.3.2 is true, is that there exist a point xB that can-
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not be removed by CPDEFAULT, since the CPDEFAULT propagation algorithm is a sound algorithm. Accordingly we

can show for the case of when we have integer support, that there exist a point xB which is the optimal solution of

the problem (3.8) where the domains of the variables are integer and all variables have integer support. The same

proof approach and technique is used in Proposition 3.3.5 to show that the BOX propagation � CPDEFAULT once

we assign a value to a variable and the bounds in the resulting one-dimension smaller ellipsoid are redundant. In

case the point does not have integer support, then CPDEFAULT can successfully remove it thus doing more reduction

than the BOX propagation algorithm as initially claimed.

In Table 3.8 we present the details for the example in Proposition 3.3.3, but with integer support for the

variables where the best bounds are highlighted. We can see that we conclude the same result as in Proposition

3.3.3, which is that the BOX does more propagation than the CPDEFAULT.

3.4 Discussion

The conducted analysis shows that there exist some cases where the BOX propagation is dominant over CPDEFAULT

propagation. In other words, the BOX propagation is not completely dominant over the CPDEFAULT propagation

when we have ellipsoid constrained problems and there exists a room for improvement. There has been constant

work in the literature on speeding up [51, 56] as well as refining [12] constraint propagation algorithms. We

believe our analysis is a good stepping stone to further develop more refined and efficient propagation algorithms

for the ELLIPSOID global constraint.

Moreover, the analysis carried out in this chapter is relevant for understanding the strengths and weaknesses

of different constraint propagation algorithms for the ELLIPSOID global constraint. By understanding the essence

[4] of the BOX propagation algorithm for the ELLIPSOID global constraint, our formal analysis can serve as a

guide for which problems the ELLIPSOID constraint is a suitable candidate if we know in advance on which types

of problems the BOX propagation algorithm shows dominance.

Our analysis is consistent with most of the findings from Ku & Beck [32]. The BOX propagation algorithm

performed better than CPDEFAULT propagation algorithm in terms of running time to prove optimality, on the

binary quadratic programs, box-constrained integer least square programs and the ellipsoid-constrained integer

least square programs. All of the problems include a rotated ellipsoid structure with redundant bounds for which,

according to our theoretical analysis, the BOX propagation algorithm dominates over the CPDEFAULT propagation

algorithm. On the quadratic lateness scheduling problems (QLSP) the CPDEFAULT propagation performed better

than the BOX propagation algorithm. Due to the pure axis-aligned ellipsoid structure of the QLSP, according to

our analysis the CPDEFAULT propagation algorithm dominates over the BOX propagation algorithm. The CPDEFAULT

propagation algorithm also performed better than the BOX propagation algorithm on the exact quadratic knapsack

problems, however the ellipsoid structure of these problems could not be determined from the problem data as it

was done with the other problem sets.

The scope of our analysis focused on the cases in Figure 3.1. However, as a possible future research direction,
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it might be useful to look into the cases where the two propagation algorithms are incomparable and identify new

subcases where a dominance can be proven.

3.5 Conclusion

In this chapter, we analyzed the strength of propagation algorithms for the ELLIPSOID constraint. Figure 3.23

shows a graphical summary of the results from the conducted analysis.

HYPER-ELLIPSOID

Axis-Aligned
Result: CPDEFAULT � BOX

Theorem 3.2.3

Rotated
Result: Incomparable

Proposition 3.3.1

Center inside bounds
Result: CPDEFAULT ≡ BOX

Proposition 3.2.4

Center not inside
Result: CPDEFAULT � BOX

All bounds are redundant
Result: BOX � CPDEFAULT

Proposition 3.3.2

At least one bound is narrow
Result: Incomparable

Proposition 3.3.4

Do not assign a value
Result: CPDEFAULT � BOX

Assign at least one value

All bounds are redundant
in reduced ellipsoid

Result: BOX � CPDEFAULT

Proposition 3.3.5

At least one bound is narrow
in reduced ellipsoid

Result: Incomparable
Proposition 3.3.7

Figure 3.23: A Summary of the Formal Propagation Analysis for the ELLIPSOID constraint.

We discussed that the CPDEFAULT propagation algorithm is dominant when we have a rotated hyper-ellipsoid

where at least one of the variable bounds is narrow and no value has been assigned as well as for axis-aligned

ellipsoids. We also discussed that if CPDEFAULT is at least as good as the BOX propagation algorithm for axis-

aligned ellipsoids, then the center does not belong to the domain hypercube. On the other hand, we proved that

the BOX propagation is dominant when we have a rotated hyper-ellipsoid and all the bounds are redundant, and

we keep assigning values, for when we have continuous and integer support.

In the next chapter, we apply the ELLIPSOID global constraint to a known problem from the literature and

further investigate the performance and see if can gain more insights with empirical experiments.



Chapter 4

A Constraint Programming Approach for

the Selective Tree Breeding Problem

In the previous chapter we analyzed the strength of constraint propagation for the ELLIPSOID constraint. In this

chapter we explore the use of constraint programming as an approach for solving the selective tree breeding

problem [44]: a problem studied in forest genetics and tree breeding literature in which a fixed-size tree breeding

population needs to be determined from an available list of candidates such that the genetic value is maximized.

We are particularly interested in this problem as there are no constraint programming approaches developed for

solving it and the central constraint for maintaining genetic diversity is an ellipsoid constraint. We develop and

compare three constraint programming (CP) approaches with a mixed-integer programming (MIP) formulation of

the problem as a reference. The empirical analysis is conducted on instances extracted from the real-life data set

of the Scots Pine case study in northern Sweden [45]. We show that our empirical evaluation is consistent with

the theoretical results from Chapter 3. Specifically, the ELLIPSOID global constraint struggles on this problem

likely due to the specific form of the constraint. We also discuss several possible approaches to improving the CP

models.

Contributions. We develop an application of the ELLIPSOID global constraint, present a constraint programming

(CP) approach for the selective tree breeding problem, and show that if further improved this approach could be

competitive with existing MIP technology at least on small instances.

The chapter is organized as follows. In Section 4.1 we formally define the selective tree breeding problem and

provide an overview of the relevant literature. In Section 4.2 we present the four approaches that we use to solve

this problem. Section 4.3 describes our computational study of the performance of our proposed approaches. In

Section 4.3.4 we present the empirical results, whereas in Section 4.4 we discuss the performance of the solution

approaches. We end the chapter with some concluding remarks in Section 4.5.

48



CHAPTER 4. A CP APPROACH FOR THE SELECTIVE TREE BREEDING PROBLEM 49

4.1 Background

In this section, we present the formal definition of the selective tree breeding problem and review the techniques

in the literature for solving it.

4.1.1 Problem Definition

A problem that arises in forest tree breeding is the optimal selection of candidates from a pedigree list in order

to generate the best performance in seed orchards and at the same time maintain genetic diversity [28]. The

trees which maximize the genetic value should be prioritized in the selection. However, they cannot be selected

without considering the genetic relationship among them [37]. In general, tree breeders tend to avoid inbreeding

by limiting the relatedness of individuals chosen for breeding.

Relatedness as a concept among populations can be defined in numerous ways, mainly using the notion of

identity by descent (IBD), a principal concept used in population genetics that determines genetically mediated

similarities between individuals that are relatives [60]. Formally, for two individuals in a pedigree, IBD is defined

as the event when both individuals inherited a proportion of their genes from the same ancestor [31]. Likewise,

coancestry in a populations is defined as the proportion of genes of individuals which are identical by descent,

meaning they are derived from the same ancestor [44]. To limit the relatedness of the breeding population, tree

breeders want to control the coancestry under a certain threshold value.

A reduced genetic diversity among candidates might result in negative effects on the population such as re-

duced biodiversity as well as lower ability for the population to respond to changes in the environment [30]. For

example, if the variation in genes is reduced, the population might have reduced ability to respond to new pests

or future climate changes. Moreover the response will critically decrease as a result of accumulated coancestry.

Organisms can also carry a certain number of lethal alleles1 [69]. Strong inbreeding or self-fertilization among

such individuals can lead to low adult fertility and a significant loss of offspring.

Figure 4.1 shows a simple example of the selective tree breeding problem. We have three individual trees,

Tree #1, Tree #2 and Tree #3, that have different but beneficial genetic values. The first one, Tree #1, has a

good vigour which is expressed in its estimated breeding value (EBV #1), while Tree #2 also has a good vigour

in addition to the good form expressed as EBV #2. Lastly, Tree #3 has a great climate tolerance expressed as

EBV #3. If we select Tree #2 and Tree #3 as candidates for breeding, then the resulting Tree #5 is likely to

have good vigour and form and also great climate tolerance as its resulting EBV. Moreover it will maintain the

genetic diversity unlike the resulting Tree #4 which most likely will only accumulate the genes for good vigour

among the trees. Therefore we want to select the best candidates for breeding from a population that will give the

highest genetic value while maintaining genetic diversity.

In (4.1), we provide the simplest optimization model for the selective tree breeding problem, where the con-

1An allele is one or more alternative forms of a gene that arise by a mutation.
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EBV #2, Good Vigour and Form EBV #3, Great Climate ToleranceEBV #1, Good Vigour

Tree #2Tree #1 Tree #3

Tree #5Tree #4

EBV #5, Good Vigour, Form and
Great Climate Tolerance

Figure 4.1: A small example of the selective tree breeding problem, where we have two candidates selected for
breeding (Tree #2 and Tree #3) to maximize the genetic value (EBV) and maintain genetic diversity.

tribution of all candidates is one, that was constructed by Meuwissen [41, 71].

max
x

g>x (4.1a)

subject to x>Ax ≤ 2θ (4.1b)

1>x = 1 (4.1c)

xj ∈ [lbj , ubj ], ∀j ∈ {1, . . . ,m} (4.1d)

In this model, m denotes the total number of candidates in the pedigree list. Note that 1 ∈ Rm is the vector of

ones, while g ∈ Rm is a vector whose elements are the EBVs of all candidates. The variable vector x denotes

the contribution of genes as a proportion from selected candidates. The objective function (4.1a) maximizes

the EBVs of individuals in order to achieve the best genetic value. Constraint (4.1c) ensures that the overall

contribution of candidates is one. In constraint (4.1d), lbj , ubj ∈ R correspond to the lower and upper bound

of the variable xj , respectively. In order to control the relatedness in the breeding population constraint (4.1b)

is imposed on the group coancestry. Group coancestry in a population is the average coancestry between all

individuals, including the coancestry of individuals with themselves [18]. The matrix A ∈ Rm×m is called the

numerator relationship matrix [70] of the pedigree. It represents the relatedness of individuals and its elements

can be calculated efficiently with the formula introduced by Wright [70] as follows:

Aij =Aji =
Aj,p(i) + Aj,q(i)

2
∀i ∈ {2, . . . ,m}, ∀j ∈ {1, . . . , i− 1}

Aii = 1 +
Ap(i),q(i)

2
∀i ∈ {1, . . . ,m}

(4.2)

We use the notation Apq = 0 if p = 0 or q = 0.

We denote with p(i) and q(i) the two parents of individual i. Therefore, constraint (4.1b) restricts the group

coancestry x>Ax
2 to be less than a given threshold value θ ∈ R.
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Example. We present a simple example adapted from Yamashita et al. [71], where there is a pedigree list with

five available candidates. We take a value of 0.625 as the threshold value for coancestry. We first show how the

relationship matrix can be calculated. Figure 4.2 shows the relationship diagram between individuals while Table

4.1 presents the given data. We denote unknown parents with p(i) = 0 and q(i) = 0, respectively.

1 2

3 4 5

Figure 4.2: Relationship diagram for the data in
Table 4.1, where the arrows point from parent to
child.

Individual ID Parent p(i) Parent q(i) EBV

1 0 0 80.4
2 0 0 0.0
3 1 2 90.4
4 1 2 -120.5
5 2 0 65.5

Table 4.1: An example of a given pedigree list.

By applying the formula from (4.2) to the example, we can compute the following values for A:

A =



1 0 0.5 0.5 0

0 1 0.5 0.5 0.5

0.5 0.5 1 0.5 0.25

0.5 0.5 0.5 1 0.25

0 0.5 0.25 0.25 1


The solution would be to pick the entire contribution from individual with ID = 3 for the breeding population:

x = (x1, x2, x3, x4, x5) = (0, 0, 1, 0, 0)

It satisfies the principal constraint for genetic diversity (4.1b), the terms where the selected individual appears are

underlined :

x1 + x2 + x3 + x4 + x5 + 0.5x1x3 + 0.5x1x4 + 0.5x2x3 + 0.5x2x4 + 0.5x2x5 + 0.5x3x1 + 0.5x3x2 + 0.5x3x4

0.25x3x5 + 0.5x4x1 + 0.5x4x2 + 0.5x4x3 + 0.25x4x5 + 0.5x5x2 + 0.5x5x3 + 0.25x5x4 ≤ 2× 0.625

This solution has the maximum EBV among the candidates: 90.4.

4.1.2 Literature Review

The use of optimization algorithms for solving the selective tree breeding problem has been increasing in the

literature [2, 49]. Meuwissen [41], in addition to defining the model in (4.1) developed an optimal contribution

algorithm (OC) used to solve the model efficiently. The algorithm itself is an iterative method based on Lagrange
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multipliers and has been widely used for multiple breeding applications, such as tree breeding management [27].

However, Pong-Wong and Woolliams [49] showed that the OC algorithm does not always attain optimal so-

lution. Moreover, as an alternative, they formulated the problem as a semi-definite programming (SDP) problem.

Since there are many efficient software packages developed for solving SDPs such as SeDuMi [57] and SDPT3

[61], Pong-Wong and Woolliams obtained the optimal solution.

Ahlinder et al. [2] employed a more robust SDP approach to optimize unequal contributions of genotypes.

They defined additional operational constraints, as well as varying degrees of relatedness among candidates. They

implemented this approach in a selection program called OPSEL [43] and solved large scale problems generated

from real data. Even though their approach is guaranteed to find optimal solution, they reported a rather long

computation time and required the candidate list to be shortened prior to computation.

Mullin and Belotti [44] tried to reduce computation time by developing a branch-and-bound algorithm. They

combined their algorithm with an outer approximation method. Nevertheless, this method is still not very practical

in computing solutions for large instances.

Recently, Yamashita et al. [71] developed a second-order cone programming approach for this problem. They

reduced the computation time of the SDP approach successfully and attained optimal solutions.

Attempts to solve this problem with a constraint programming approach has not appeared in the literature.

Our interest in the tree breeding problem was particularly sparked by the development of the ELLIPSOID global

constraint [32], which is directly applicable to this problem.

4.2 Mathematical Models

In this section we present four approaches (one MIP and three CP models) to solve the selective tree breeding

problem.

MIP Model. In (4.3) we present a MIP formulation which is consistent with the formulation of Belotti and

Mullin (2016) [44].

(MIP)/(CPDEFAULT) : max

Z∑
i=1

gixi (4.3a)

subject to
Z∑

i=1

Z∑
j=1

xixjAij ≤ α (4.3b)

Z∑
i=1

xi = N (4.3c)

xi ∈ {0, 1}, ∀i ∈ {1, . . . , Z} (4.3d)

In this model, Z denotes the number of eligible candidates from the pedigee list, while N denotes the number

of individuals to be selected for breeding. Objective (4.3a) maximizes the expected genetic advantages of contri-
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butions from the selected group of candidates. As described in Section 4.1.1, g ∈ RZ is a vector whose elements

are the EBVs for all members. The contribution of genes as a proportion from the selected group is denoted

by c ∈ RZ . If selected, an individual contributes exactly 1
N of its genes, and if not selected contributes 0 thus

ci ∈ {0, 1
N }. In order to express the problem with binary variables, let x = Nc. This way, an optimal solution

of x gives also a solution for the vector c. To control genetic diversity in the breeding population we impose

constraint (4.3b) on the group coancestry θ, where α = 2θN2. Lastly, constraint (4.3c) ensures that we require a

group of exactly N individual genotypes from the pedigree list with Z members that will contribute their genes

in equal proportions.

CP Models. We use the formulation in (4.3) as our first CP formulation. If there is a MIP formulation of a

problem, it is also a CP formulation of the same problem.

Since the relationship matrix, A, in the relatedness constraint is always positive definite [49], we define a

second formulation where we use the ELLIPSOID global constraint instead of the quadratic constraint on genetic

diversity while we keep all of the other constraints:

(CPELLIPSOID) : max

Z∑
i=1

gixi (4.4a)

subject to ELLIPSOID({x1, . . . ,xi},A, α) (4.4b)

Constraints (4.3c)− (4.3d) (4.4c)

In the ELLIPSOID constraint, the size of the ellipsoid is determined by α.

In our third CP model we add both the ELLIPSOID global constraint and the quadratic expression for the

relatedness constraint:

(CPBOTH) : max

Z∑
i=1

gixi (4.5a)

subject to Constraints (4.3b), (4.3c), (4.3d), (4.4b) (4.5b)

4.3 Computational Study

In this section we present the results of our computational experiments to investigate the performance of the four

solution approaches, namely MIP, CPDEFAULT, CPELLIPSOID and CPBOTH. First we give our prediction of the results

based on the analysis in Chapter 3. The next subsection presents the data set details and describes the problem

instances. We then compare the performance of the proposed solution approaches.
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4.3.1 Prediction of Performance

In our study in Chapter 3 (Section 3.3) we showed that the CPDEFAULT and the BOX propagation algorithms are

incomparable for rotated hyper-ellipsoids. Since the quadratic expression used in our models defines a rotated

hyper-ellipsoid, we can expect that the CPDEFAULT model and the CPELLIPSOID will be incomparable as well. More-

over, we know that the bounds on the variables are binary, meaning they are very narrow and lie inside the ellip-

soid. Again, in our analysis in Chapter 3 (Section 3.3.1), we showed that when we have a rotated hyper-ellipsoid

with narrow bounds, then the CPDEFAULT and the BOX propagation algorithms are incomparable. Therefore we

can expect the models CPDEFAULT and CPELLIPSOID to be incomparable. Regarding our last model CPBoth, where

we use both propagations, we expect there will be an additional propagation effort which might lead to longer

computation time.

4.3.2 Scots Pine Case Study Data Set

We demonstrate the application of the selective tree breeding problem by using real-data from a proposed Scots

Pine breeding program in Northern Sweden [2, 45]. The data is available at the Dryad Digital Repository https:

//doi.org/10.5061/dryad.4r1f0.

In order to manage the accommodation to future climates from north to south of Sweden, a multiple-breeding

population system called TREEPLAN has been developed with 24 closed breeding populations across Sweden

[54]. The TREEPLAN system [40] gives ranked lists of candidates and their EBVs for a particular target region.

Inside, there are over 90,000 records of genotypes from available field-test data, of which more than 43,000

candidates are alive and currently available as candidate genotypes.

Several selection tools and programs were developed to calculate the optimal genetic contribution for can-

didates so that the genetic gain is maximized while controlling inbreeding. One such example is GENCONT, a

publicly available selection program using the OC algorithm [42]. However, many of these programs, including

GENCONT [42], have memory limitations for the full list of 43,000 candidates when trying to solve the selective

tree breeding problem [44]. Therefore in previous work [44], the candidate list was shortened to include only the

best six individuals from each crossing (or interbreed). Finally, from the 43,000 candidates 5250 were chosen for

the final list of candidates and are currently available at the Dryad Digital Repository as part of the final data set.

We follow the same methodology in our computational study.

The data set is given as a candidate file for which an example is shown in Table 4.2. Each row in the table

describes an individual with its ID, those of its Female and Male parents, its EBV, and finally the maximum

number of times that the individual can occur in the selected population.

4.3.3 Experimental Setup

Instance Generation. From the provided Scots Pine case study data set we extracted 60 instances. The details

regarding their sizes are given in Table 4.3 where the maximum size of a pedigree is 175 members. The instances

https://doi.org/10.5061/dryad.4r1f0
https://doi.org/10.5061/dryad.4r1f0
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Table 4.2: A small example of a candidate file for the selective tree breeding problem. The Max column can
contain either the value 1, showing that the individual is an eligible candidate, or 0, showing that the individual is
not eligible, but is included as an ancestor to another individual (e.g., individual 2). The value 0 in the Female or
Male column indicates that the particular parent is unknown.

Individual Female Male EBV Max

1 0 0 91.3 1

2 0 0 0.0 0

3 0 0 76.5 1

4 1 2 100.8 1

5 1 3 120.6 1

Table 4.3: Instances Sizes.

Number of instances Z N

10 50 10
10 75 20
10 100 50
10 120 50
10 150 50
10 175 50

Total: 60

are generated in the following manner.

We first pick a random individual from the data set. Next, we check the set of selected individuals generated

before, and add the new individual to the list if it has not been added. In order to find the next individual to pick,

we check to see if the female parent of the selected individual has been added to the list. If the female parent is

known and it has not been added to the list, then we take it as the next individual to explore. If it has been already

added to the list, then we take the male parent, if known. In case both parents are unknown, then we take a new

random individual from the data set. We stop when we reach the maximum generation2 difference for ancestry

we want to consider. In our experiments we consider a maximum generation difference of 10, meaning for any

given individual in the set we take up to a maximum of 10 generations back.

We define I to be the entire (data) set of individual IDs available, L to be the set of generations, Z to be the

minimum number of individuals to pick, l(i) ∈ L to be the generation of ancestors for individual i ∈ I and P to

be the maximum generation difference for ancestry we want to consider. Moreover we define f(i) ∈ I ∪ {0} as

the female parent of individual i ∈ I while m(i) ∈ I ∪ {0} denotes the male parent of individual i ∈ I .

Algorithm 2 generates the list of Z individual IDs, which is O, using the function FINDNEXTINDIVIDUAL()

that is described further in Algorithm 3. Algorithm 2 starts by picking a random individual ID from I as shown

in line 4. Then in line 6, the selected individual ID is added to O if it is not already there. The algorithm

calls the function FINDNEXTINDIVIDUAL() in line 8 to get the next individual ID to explore. In line 9, if the

2A generation is a single stage or degree in the succession of natural descent. For example, father and son are two generations.
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Algorithm 2: Generating a list of Z individuals

1 Input: I , f,m,Z, P, l
2 Let O = {}
3 while (|O| < Z) do
4 Pick a random integer i from I
5 if (i /∈ O) then
6 O = O ∪ {i}
7 while true do
8 j = FINDNEXTINDIVIDUAL (i)
9 if (j = 0 || l(i)− l(j) > P ) then

10 STOP
11 else
12 i = j
13 end
14 end
15 end
16 Output: O

Figure 4.3: Algorithm for generating a list of selected Z
individuals.

Algorithm 3: FINDNEXTINDIVIDUAL()

1 Input: i
2 Let j = 0
3 if (f(i) 6= 0 & f(i) /∈ O) then
4 Let j = f(i) → j is the next index to

explore
5 O = O ∪ {f(i)}
6 if (m(i) 6= 0 & m(i) /∈ O) then
7 O = O ∪ {m(i)}
8 else if (m(i) 6= 0 & m(i) /∈ O) then
9 Let j = m(i) → j is the next index to

explore
10 O = O ∪ {m(i)}
11 Output: j

Figure 4.4: Pseudocode for the function FIND-
NEXTINDIVIDUAL that takes an individual ID i
and then returns the next individual ID j to explore.

next individual ID is 0 (unknown) or we are beyond the threshold value for maximum generation difference for

ancestry then we stop, otherwise we assign the output individual ID from the function as the current individual ID.

The algorithm then repeats the procedure until we reach at least Z individuals in O, i.e., until the condition in the

loop in line 3 is no longer true. Algorithm 3 accepts individual ID i and initializes the next individual to explore

to its female parent in line 4 and it adds it to the list together with the male parent in lines 5 and 7, respectively,

if they are not already there. If the female parent of individual i is already added to the list or it is unknown, then

we initialize the next individual to explore to the male parent of individual i in line 9 and we add it to the list if it

is not already there in line 10.

We estimate the threshold value for coancestry θ by heuristically generating T feasible solutions. Whenever

we generate a new feasible solution, we calculate the corresponding threshold value θ for that solution according

to the constraint for maintaining the group coancestry under a certain threshold value (4.3b), assuming we have

obtained all the other values for the remaining variables before. Then we store the value in a vector. In the end we

calculate θ as the average of all threshold values for the generated feasible solutions. We define T as the number

of feasible solutions that we take, N is the number of individuals picked for the breeding population from Z while

y ∈ {0, 1}Z is a random binary vector. This value vector is assigned to have exactly N ones and (Z −N) zeros

which are randomly ordered. Algorithm 4 provides the detailed steps.

First in lines 2 and 3, we calculate A assuming we already have the data from Algorithm 2, and then we set

a null vector R for keeping the threshold values for each of the feasible solutions. In lines 4-7, we generate T

feasible solutions i.e., binary vectors and calculate the threshold value for each. Lastly in line 8 we calculate θ as

the average of all threshold values of the generated feasible solutions.
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Algorithm 4: Generating A, θ

1 Input: O, T,N, Z
2 Calculate A according to (4.2)
3 Let R = {0}>
4 for k = {1, . . . , T} do
5 Generate a random binary vector y ∈ {0, 1}Z such that 1>y=N

6 R [k] = y>Ay
2N2

7 end
8 θ = 1

T 1>R
9 Output: A, θ

Figure 4.5: Algorithm for generating the threshold value θ for the group coancestry.

Software. We used the commercial solver CPLEX v12.6.3 to solve the MIP model and IBM ILOG CP Optimizer

v12.6.3 to solve all the CP models. All experiments were run on a Red Hat Linux workstation with 8GB RAM

and a 3.40 GHz Intel Core i7. We used a single thread and imposed a CPU time limit of 2000 seconds.

4.3.4 Experimental Results

Table 4.4 summarizes the results of all models on the generated instances. The MIP model solved all 60 instances

with various sizes to optimality. Its fastest average running time is on the smallest set of instances with Z = 50

and N = 10. The CPDEFAULT model solves all 10 instances to optimality from the smallest instance set, and

then struggles to compute solutions where the size of the pedigree list is greater than 120. Its average time

increases as the size of the instances increases. The CPELLIPSOID model solves only 7 instances to optimality for

the smallest instance set. After Z = 75, it cannot prove optimality for any of the instances. The same is true for

Table 4.4: Number of instances solved to optimality and average runtime for the generated 60 instances from
Table 4.3. The running times are reported in seconds. Bold numbers indicate the best approach for that instance
set. The symbol ’-’ indicates that no problem instances were solved to optimality within 2000 seconds. Note that
the average time is calculated over all the instances.

MIP CPDEFAULT CPELLIPSOID CPBOTH

Average
Runtime

(sec.)

# Instances
Solved to

Optimality

Average
Runtime

(sec.)

# Instances
Solved to

Optimality

Average
Runtime

(sec.)

# Instances
Solved to

Optimality

Average
Runtime

(sec.)

# Instances
Solved to

OptimalityInstance Set
Z N

50 10 0.009 10 188.087 10 904.054 7 925.741 7
75 20 0.026 10 1815.226 1 - - - -
100 50 0.258 10 1574.350 3 - - - -
120 50 0.053 10 1801.344 1 - - - -
150 50 0.488 10 - - - - - -
175 50 0.266 10 - - - - - -

the CPBOTH model. However, in this case we can observe that the average time is larger. This might be happening

because we add the ELLIPSOID constraint as well as the quadratic expression in this model, as we are using the
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BOX propagation algorithm on top of the CPDEFAULT propagation and this additional propagation effort adds more

computation time.

We also calculate the mean relative error (MRE) of the three CP models across all instances using the formula(
z∗−zobs

z∗

)
× 100. In this formula zobs is the observed value for the objective, while z∗ is the best objective

value found by CPLEX. Figure 4.6 compares the MRE (%) of the three CP models over time. We observe that

CPDEFAULT reduces the MRE below 10% within the first 0.15 seconds, while CPELLIPSOID and CPBOTH reduce the

MRE around 10% within the first 2.25 seconds.

0 500 1000 1500 2000

Time (milliseconds)

0

20

40

60

80

100

M
R

E
 (

%
)

CP
Both

MIP

CP
Default

CP
Ellipsoid

Legend

Figure 4.6: MRE (%) over time for the three CP models.

In Table 4.5 we show the results for the MRE over the instances for the three CP models. We observe that

the average error shows that the objective is within 0.00013% of optimality for the first CP model throughout all

the instances. For the second CP model it is within 0.51% and for the last (third) model it is within 0.0121% of

optimality.

Table 4.5: Average MRE for the generated 60 instances from Table 4.3. Bold numbers indicate the smallest MRE
for that instance set.

Instance Set CPDEFAULT CPELLIPSOID CPBOTH

Z N
Average

MRE (%)
Average

MRE (%)
Average

MRE (%)

50 10 0 0.5808 0
75 20 0 0.2485 0

100 50 0 0.8137 0
120 50 0.0008 0.3062 0.0008
150 50 0 0.5661 0
175 50 0 0.6201 0.0682

Total Average: 0.00013 0.5100 0.0121
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Variable and Value Ordering. We also experimented with variable and value ordering strategies on the middle

sized instance set with Z = 75 and N = 20 to investigate the performance of the ELLIPSOID global constraint.

We used all combinations of nondecreasing order, i.e., smallest to largest variable index/value and nonincreasing

order, i.e., largest to smallest variable index/value. We compared all strategies to the discrete ellipsoid-based

search (DEBS) [32], where we pick the value closest to the center of the ellipsoid. Although the optimality still

could not be proven, we observed a different reduction in choice points. We see in Table 4.6 that the default order-

ing heuristic reduces the choice points the most, where among the other strategies, DEBS is the most competitive

to the default ordering heuristic.

Table 4.6: Average number of choice points (chpts) for the proposed variable and value orderings, as well as the
DEBS heuristic. The orderings were applied on the instance set with Z = 75 and N = 20, and on the CPELLIPSOID

model.

Strategy 1 Strategy 2 Strategy 3 Strategy 4 DEBS DEFAULT

Variable Ordering Nondecreasing Nondecreasing Nonincreasing Nonincreasing - -
Value Ordering Nondecreasing Nonincreasing Nonincreasing Nondecreasing - -

Average chpts: 2,314,929 2,796,324 2,469,452 2,850,865 1,925,145 1,912,351

4.4 Discussion

In this section, we discuss what we believe to be the main drawback for CP on the instances, particularly the large

ones. Then we provide a discussion of future work for this research.

4.4.1 CPELLIPSOID vs. CPDEFAULT

In Section 4.3.1, we made a prediction about the performance of the models based on our study in Chapter 3 of

the strength of the constraint propagation algorithms for the ELLIPSOID global constraint. We noticed that since

the relationship matrix A describes a rotated ellipsoid, the CPDEFAULT and the BOX propagation algorithms are

incomparable. However, we can have more insights from the variable bounds. As a subcase, we showed that

when we have a rotated ellipsoid with narrow bounds, such as the binary variable bounds in this problem, if we

assign a value to one of the variables, then the default CP propagation and the BOX propagation algorithms are

still incomparable. It means that either the model with the ELLIPSOID constraint or the one without can make

more inference. The experimental results in Table 4.4 show that for this particular problem the CPDEFAULT model

without the ELLIPSOID constraint makes more inference and can find optimal solutions whereas the CPELLIPSOID

cannot, which is still consistent with our theoretical analysis. Overall, the results imply that for this particular

problem, it is better to use the default propagation without adding the ELLIPSOID constraint.
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4.4.2 The Impact of the Dual Bound

The empirical results indicate that the MIP technology is superior at proving optimality. One possible reason of

the poor performance of CP, especially given the empirical results in Table 4.4 that shows that CP is able to find

but not prove optimal solutions, is that it computes a weak dual bound. In order to gain more insights on this, we

calculated the dual gap for the CP model according to the formula
(

ub(z)−lb(z)
z∗

)
× 100. In the formula, z is the

objective we are maximizing, while z∗ is the optimal value found by CPLEX. The lower and upper bound of z are

denoted with lb,ub respectively. A bigger gap indicates the dual bound is very large, which also indicates a large

search space of solutions for CP. We calculated and observed the dual gap after propagation at the root node. We

report the average dual gap and the median for each of the instance sets in Figure 4.7.
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Figure 4.7: Dual gap (%) over the instances for CP.

One interesting observation that is evident from this figure is that the gap is very high for the instance sets

with Z = 50 and Z = 75. Then it has lower values for when Z = 100 and after it goes slowly back up to higher

values as we increase the size of the pedigree list. One possibility of why the gap is the lowest for the instances

with Z = 100 is that for the particular instance set we have the smallest ratio of N to Z, which is 1 : 2. The

highest ratio on the other hand is for the first instance set where we have 1 : 5 forN = 10 and Z = 50. To address

our observations regarding the ratio, we generated additional instances for Z = 50 with N = 20, 30, 40, and for

Z = 100 with N = 20, 40, 60, 80. The results are shown in Table 4.7.

Table 4.7: Average dual gap over the additional instances for Z = 50 with N = 20, 30, 40 and for Z = 100 with
N = 20, 40, 60, 80. Bold numbers indicate the lowest value for the dual gap for that particular Z.

Z = 50 Z = 100

N = 10 N = 20 N = 30 N = 40 N = 20 N = 40 N = 60 N = 80

Ratio: N to Z 1:5 2:5 3:5 4:5 1:5 2:5 3:5 4:5
Average

Dual Gap (%) 71.09 16.66 3.23 4.28 80.89 16.03 2.48 7.23



CHAPTER 4. A CP APPROACH FOR THE SELECTIVE TREE BREEDING PROBLEM 61

We observe that for Z = 50 the dual gap declines to N = 30 and then increases. A similar pattern is seen for

Z = 100. For both Z = 50 and Z = 100 the dual gap is the smallest for the ratio 3 : 5 but not 4 : 5. The particular

pattern that we are seeing in the dual gap as we change the ratio is high-low-high. It resembles a hard-easy-hard

pattern in search effort as the easy instances are associated with some sort of a phase transition and hard instances.

Similar phase transitions of type easy-hard-easy [20] and easy-hard [5] have been described in the literature. In

our case, we suspect that the constraindness on how many members from the candidate list will contribute their

genes might account for the phase transition.

4.4.3 Future Work

Given the results from Section 4.3.4 we wish to develop a deeper understanding of why the CP approach is not

performing well in order to improve its performance. Therefore, we identify two fronts that can be explored for

future work.

� Exploit Dominance

We could analyze the candidate trees and determine if one tree can be said to dominate another. As Belotti

et al. [44] discussed, multiple individual trees can have the same parents. If that is the case then we would

want to pick the tree that has a higher estimated breeding value before the other tree to attain larger objective

function coefficients.

Belotti et al. [44] define this constraint in the following manner. Suppose we have the entire set of candidates

I = {1, . . . , Z} partitioned into K subsets such that S1 ∪ S2 · · · ∪ SK = I and Sj ∩ Sk = ∅, for ∀j 6= k.

Each subset is a set of trees with the same parents. Suppose also that all individuals in a subset are sorted

in a nonincreasing order of their genetic values. Let Sk = {ik1 , . . . , ik|Sk|} for k ∈ {1, . . . ,K}. Then, we

can add the following constraints in order to focus only on the best solutions in the set:

xikj ≥ xikj+1
∀j ∈ {1, . . . , |Sk| − 1},∀k ∈ {1, . . . ,K} (4.6)

In this way it may be possible to reduce the search effort.

� Create a Custom Cost Constraint

One common approach to improving a dual bound in a CP model is to create a custom global constraint

which operates on the decision variables as well as the cost variable. Inside that constraint, the propagation

algorithm calculates a bound on the cost variable and prunes its domain. For example, we can look at the

traveling salesman problem. If we use a sequence constraint [67] we can prune the total cost of a route

based on the solution to an assignment problem inside the constraint since that will give a lower bound on

the tour length. As is already discussed in the literature [23, 24, 25] that same lower bound can be used to

prune the domains and the cost variable, and also to do reduced cost fixing.
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4.5 Conclusion

In this chapter, we investigated constraint programming approaches for solving the selective tree breeding problem

[44] and compared their performance. Using test instances extracted from the Scots Pine Case Study dataset [45],

we find that using the ELLIPSOID global constraint is not the best choice for this problem. Our computational

results indicate that all of our constraint programming models perform worse than the MIP model. However we

identify that this might be happening due to the fact that CP computes a weak dual bound. Therefore we also

propose future directions for this research to improve the dual bound, such as exploiting dominance or creating a

custom cost constraint.

In the next chapter, we summarize the contributions of this thesis and conclude.



Chapter 5

Conclusion

In this chapter we give the concluding remarks for the thesis. First we provide a summary of the work presented

in the chapters and then conclude with possible future directions for research work.

5.1 Summary

An Analysis of Constraint Propagation Algorithms for the Ellipsoid Constraint. In Chapter 3 we performed

a formal analysis of the strength of two constraint propagation algorithms, namely the BOX propagation and

CPDEFAULT propagation algorithm, for the ELLIPSOID global constraint. The main findings we obtained from the

analysis are the following. The BOX propagation algorithm is dominant for rotated hyper-ellipsoid when all the

variable bounds are redundant. Secondly, that the CPDEFAULT propagation algorithm is at least as good as the

BOX propagation algorithm for axis-aligned hyper-ellipsoids when the center of the ellipsoid is not inside the

hypercube defined by the variable bounds and it is dominant for rotated hyper-ellipsoids where at least one of the

variable bounds is narrow and no value has been assigned. The claims are valid both for continuous and integer

support of variables.

A Constraint Programming Approach for the Selective Tree Breeding Problem. In Chapter 4 we used

constraint programming approaches to solve the selective tree breeding problem. We explored the use of the

ELLIPSOID global constraint for solving the problem. We extracted 60 instances from the Scots Pine Case Study

dataset [45] to analyze the performance of the solution approaches. Our experimental findings indicated that the

ELLIPSOID global constraint is not the best choice for this particular problem. The results showed that all of the

constraint programming models performed worse than the MIP technology. With further analysis, we determined

that this might be happening because of the weak dual bound that CP computes.

63
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5.2 Future Work

Based on the research work from previous chapters, a number of directions can be explored for future work.

1. Stronger Propagation Algorithms for the ELLIPSOID Global Constraint

The findings of the analysis demonstrate that there are cases where the BOX propagation dominates CPDEFAULT

propagation algorithm but also there are some cases where CPDEFAULT is dominant over the BOX propaga-

tion algorithm, which indicates it is possible to further strengthen the BOX propagation algorithm. As

mentioned in Section 4.4 there has been a steady work in the literature on speeding up [56] and also refin-

ing [12] constraint propagation algorithms. Our analysis offers key insights on how to further develop more

refined and efficient propagation algorithms for the ELLIPSOID global constraint. For example, it shows

that as the BOX propagation algorithm does not consider the variable bounds, it performs better when the

problem is defined with redundant bounds. In fact, the main strength of the BOX propagation algorithm is

that it calculates the reduced ellipsoid once a value is assigned to a variable, while CPDEFAULT propagation al-

gorithm does not have information for the reduced ellipsoid. However, as CPDEFAULT propagation algorithm

considers the variable bounds, it shows strength when the problem has narrow bounds. This implies that the

information for the variable bounds is important in propagation algorithms for the ELLIPSOID constraint.

Ku & Beck [32] investigated two other propagation algorithms for the ELLIPSOID global constraint: ap-

proximate bound consistency (ABC) and direct quadratically constrant programming (QCP). Even though

the BOX propagation algorithm outperformed the other two filtering algorithms on the problem types in-

vestigated by Ku & Beck [32], it might be possible that ABC and QCP can perform better on other problem

structures.

Future research should also further investigate the cases when the propagation algorithms are incomparable,

such as the case when we have a rotated ellipsoid with the initial bounds inside the tangent box that the BOX

propagation calculates, and after we assign a value to one of the variables the resulting bounds in the reduced

ellipsoid are again inside the tangent box. By exploring this particular case more, new subcases might arise

where a dominance can be shown. For example it would be interesting to explore the dimension of the

ellipsoid to see if any dominance can be proven in those subcases.

2. Exploiting Dominance for the Selective Tree Breeding Problem

Considering the empirical results in Chapter 4 which showed that all CP models performed worse than

the MIP models, we found that MIP outperforms CP because the latter computes a weak dual bound. To

improve the performance of CP, one direction is to further analyze the dominance among candidate trees.

In the case when multiple individual trees can have the same parents [44], the tree with a higher estimated

breeding value should be prioritized before the other tree. Belotti et al. [44] discussed adding a constraint

to the model in order to ensure the dominance is considered. It would be interesting to add this constraint

to strengthen the CP model and possibly reduce the search effort. The details were given in Section 4.4.3.
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3. Custom Global Constraints and Multi-Valued Decision Diagrams

Another approach to improving the dual bound in a CP model is to create a custom global constraint. A

cost-based global constraint operates on the decision variables as well as the cost variable. The propagation

algorithm associated with the global constraint calculates a bound on the cost variable and therefore prunes

its domain. One approach that is often used in custom global constraints as a dual bounding mechanism,

like for example for the SEQUENCE() constraint, is multi-valued decision diagrams (MDDs) [8]. MDDs are

an expressive data structure represent solutions of the constraints in a compact manner [3]. Taking MDDs

into consideration as a technique that can refine the propagation and provide dual bounds in CP [9] is a

promising direction for future research work

5.3 Concluding Remarks

The goal of this thesis is to formally analyze the strengths of two constraint propagation algorithms for the

ELLIPSOID global constraint, namely the BOX propagation and CPDEFAULT propagation algorithm, so that more

refined propagation algorithms for quadratic constraints can be designed. We presented an analysis of the strength

of the propagation algorithms that points out there are still improvements to be made for the BOX propagation

algorithm. We applied the ELLIPSOID global constraint to a known problem from the literature - the selective tree

breeding problem - and saw that for this problem our empirical findings are consistent with the theoretical analy-

sis. Specifically, as the ELLIPSOID constraint in the selective tree breeding problem describes a rotated ellipsoid

with bounds inside the tangent BOX, our findings that CPDEFAULT performs better on the selective tree breeding

problem are consistent with the conclusion from Proposition (3.3.7) (Section 3.3.1.1).

We believe that the research work presented in this thesis is a good stepping stone towards understanding

propagation algorithms for quadratic constraints and designing stronger propagation algorithms for nonlinear

constraints.
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Appendix A

Additional Expression Trees for Integer

Support of Variables

A.1 Axis-Aligned Hyper-Ellipsoid

Below we present the expression trees for the example presented in Table 3.1.

A.2 Rotated Hyper-Ellipsoid

Below we present the expression trees for the examples:

1. Example presented in Table 3.8

2. Example presented in Table 3.9

3. Example presented in Table 3.10

4. Example presented in Table 3.11
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Figure A.1: First Expression Tree (Forward) Propagation for (12−3x1)2+(18−6x2)2 ≤ 144, x1 ∈ [−1, 9], x2 ∈
[0, 2].
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Figure A.2: Final Expression Tree (Backward) Propagation for (12 − 3x1)2 + (18 − 6x2)2 ≤ 144, x1 ∈
[−1, 9], x2 ∈ [0, 2].
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Figure A.3: First Expression Tree (Forward) Propagation for the ELLIPSOID:(2− 6x1)2 + (3− (8x1 + 4x2))2 +
(14− (2x1 + 8x2 + 6x3))2 ≤ 196, x1 ∈ [−3, 2], x2 ∈ [−2, 3], x3 ∈ [2, 2].
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Figure A.4: Final Expression Tree (Backward) Propagation for the ELLIPSOID:(2−6x1)2+(3−(8x1+4x2))2+
(14− (2x1 + 8x2 + 6x3))2 ≤ 196, x1 ∈ [−3, 2], x2 ∈ [−2, 3], x3 ∈ [2, 2].
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Figure A.5: First Expression Tree (Forward) Propagation for (2−x1)2+(5−(x1+x2))2 ≤ 8, x1 ∈ [−1, 5], x2 ∈
[5, 7].
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Figure A.6: Final Expression Tree (Backward) Propagation for (2 − x1)2 + (5 − (x1 + x2))2 ≤ 8, x1 ∈
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Figure A.7: First Expression Tree (Forward) Propagation for the ELLIPSOID:(2− 6x1)2 + (3− (8x1 + 4x2))2 +
(14− (2x1 + 8x2 + 6x3))2 ≤ 196, x1 ∈ [−1, 2], x2 ∈ [−4, 4], x3 ∈ [2, 2].
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Figure A.8: Final Expression Tree (Backward) Propagation for the ELLIPSOID:(2−6x1)2+(3−(8x1+4x2))2+
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Figure A.10: Final Expression Tree (Backward) Propagation for (2 − x1)2 + (4 − (x1 + x2))2 ≤ 8, x1 ∈
[−1, 5], x2 ∈ [3, 5].



Appendix B

Additional Proofs for Integer Support of

Variables

B.1 Axis-Alligned Hyper-Ellipsoid

lCP
j = min xj

s.t. (yj − ajjxj)2 ≤ β −
∑

i∈{1,...n}\{j}

min
li≤xi≤ui

(yi − aiixi)2

lj ≤ xj ≤ uj

(B.1)

uCP
j = max xj (B.2a)

s.t. (yj − ajjxj)2 ≤ β −
∑

i∈{1,...n}\{j}

min
li≤xi≤ui

(yi − aiixi)2 (B.2b)

lj ≤ xj ≤ uj (B.2c)

lBj = min
x∈Zn

xj

s.t.
n∑

i=1

(yi − aiixi)2 ≤ β
(B.3)

uBj = max
x∈Zn

xj

s.t.
n∑

i=1

(yi − aiixi)2 ≤ β
(B.4)

Lemma B.1.1. (Corresponding to Lemma 3.2.1) For axis-aligned hyper-ellipsoids with integer support of vari-

ables, CPDEFAULT � BOX propagation.

Proof. Let xj be an arbitrary variable with integer domain [lj , uj ]. Consider the domains [lCP
j , uCP

j ] and [lBOX
j , uBOX

j ]

obtained after applying CPDEFAULT and BOX propagation algorithms, respectively. We first show that uCP
j ≤

uBOX
j .

72
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Consider the optimization problems defined with (B.2) and (B.4). We will show that (B.4) is a relaxation of

(B.2). Let x̃j be a feasible solution to (B.2). Also, let x̃i be an optimal solution to the minimization problem in

the right-hand-side of (B.2b). Then, x̃ is feasible to (B.4) as we have:

(yj − ajj x̃j)2 ≤ β −
∑

i∈{1,...n}\{j}

(yi − aiix̃i)2 ⇒
n∑

i=1

(yi − aiix̃i)2 ≤ β (B.5)

Note that the objective functions of (B.2) and (B.4) are the same.

Therefore, we obtain uCP
j ≤ uBj . We also know that uCP

j ≤ uj due to (3.2c), so we get uCP
j ≤ min{uj , uBj } =

uBOX
j .

Using similar arguments, it is easy to show that (3.5) is a relaxation of (3.1), thus lCP
j ≥ lBOX

j , which

concludes the proof.

Lemma B.1.2. (Corresponding to Lemma 3.2.2) There exists axis-aligned hyper-ellipsoids with integer support

of variables where CPDEFAULT � BOX propagation.

Proof. Example is given in Table 3.1.

Theorem B.1.3. (Corresponding to Theorem 3.2.3) For axis-aligned hyper-ellipsoids with integer support of

variables CPDEFAULT � BOX propagation.

Proof. Follows directly from Lemma B.1.1 and Lemma B.1.2.

Proposition B.1.4. (Corresponding to Proposition 3.2.4) If the integer domain hypercube includes the centre of

the ellipsoid then CPDEFAULT ≡ BOX propagation algorithm for axis-aligned hyper-ellipsoids.

Proof. Let xj be an arbitrary variable with integer domain [lj , uj ]. Consider the domains [lCP
j , uCP

j ] and [lBOX
j , uBOX

j ]

obtained after applying CPDEFAULT and BOX propagation algorithms, respectively. Also suppose that the center of

the ellipsoid belongs to the integer domain hypercube. We first show that uCP
j = uBOX

j .

Consider the optimization problems defined with (B.2) and (B.4). Since we aim at maximizing xj we need to

maximize the right-hand-side of both (3.2) and (3.6). As (3.6) is defined over Zn, the minimum value that we can

obtain for the sum of the quadratic expressions subtracted from β, attained at xi = yi

aii
,∀i ∈ {1, . . . , n}\{j}, is

0. So for (3.6) we get the following form:

uBj = max
xj∈R

xj s.t. (yj − ajjxj)2 ≤ β

Thus for the optimal solution of (3.6) we get:

uBj =
yj
ajj

+

∣∣∣∣√βajj
∣∣∣∣

Next, let δj :=
∑

i∈{1,...,n}\{j}minli≤xi≤ui
(yi− aiixi)2. According to our initial assumption that the center

of the ellipsoid belongs to the domain hypercube, i.e., yi

aii
∈ [li, ui] it follows that δj = 0. That is, (B.2) is
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equivalent to :

uCP
j = max

lj≤xj≤uj

xj

s.t. (yj − ajjxj)2 ≤ β

Then for the optimal solution we get:

uCP
j = min

{
uj ,

yj
ajj

+

∣∣∣∣√βajj
∣∣∣∣}

= min{uj , uBj } = uBOX
j

Using similar arguments, it is easy to show that lCP
j = lBOX

j , which concludes the proof.

B.2 Rotated Hyper-Ellipsoid

lCP
k = min

x∈Zn
xk

s.t.

ys −∑
j∈N

asjxj

2

≤ β −
∑

i∈N\Sk

min
lj≤xj≤uj

j∈N

yi −∑
j∈J

aijxj

2

,∀s ∈ Sk

li ≤ xi ≤ ui,∀i ∈ N

(B.6)

uCP
k = max

x∈Zn
xk (B.7a)

s.t.

ys −∑
j∈N

asjxj

2

≤ β −
∑

i∈N\Sk

min
lj≤xj≤uj

j∈N

yi −∑
j∈J

aijxj

2

,∀s ∈ Sk (B.7b)

li ≤ xi ≤ ui,∀i ∈ N (B.7c)

lBp = min
x∈Zn

xp

s.t.
n∑

i=1

(yi −
n∑

j=1

aijxj)
2 ≤ β

(B.8)

uBp = max
x∈Zn

xp

s.t.
n∑

i=1

(yi −
n∑

j=1

aijxj)
2 ≤ β

(B.9)

Proposition B.2.1. (Corresponding to Proposition 3.3.2) If all variable bounds in the rotated hyper ellipsoid are

redundant and all variables have integer support then BOX propagation � CPDEFAULT.

Proof. (By Contradiction.) Let uCP
j denote the updated upper bound that CPDEFAULT obtains and uBOX

j be the

updated upper bound that BOX obtains. For a contradiction, without loss of generality, suppose that CPDEFAULT

does more reduction on the upper bound of some variable xj , j ∈ {1, . . . n} than the BOX propagation and obtains
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uCP
j where uCP

j < uBOX
j . Assuming that all variable bounds are redundant we know that uCP

j < uBj ≤ uj where

uj is the original upper bound of the variable xj . Based on our assumption that the CPDEFAULT obtains a valid uCP
j

we know the problem (3.4) is feasible. This also implies that the problem (3.8) is feasible. Next, we consider

the point xB obtained as an optimal solution to the feasible BOX problem (3.8), where xBj = uBj . The point xB

satisfies all variable bounds as they are all redundant and xB lies inside the ellipsoid. This point is also feasible

to the CPDEFAULT problem (3.4) as it lies inside the ellipsoid, meaning it satisfies the ELLIPSOID constraint. Our

initial assumption was that CPDEFAULT propagation does strictly better than the BOX, which means it cuts off

this point. However the CPDEFAULT propagation is a sound propagation algorithm, meaning it cannot remove any

feasible solution such as this point thus we have a contradiction.

Proposition B.2.2. (Corresponding to Proposition 3.3.3) There exist rotated hyper-ellipsoids with redundant

bounds and integer support of variables where BOX propagation � CPDEFAULT.

Proof. Example is given in Table 3.8.

Proposition B.2.3. (Corresponding to Proposition 3.3.5) If there is at least one fixed variable and all the bounds

in the resulting reduced rotated hyper-ellipsoid are redundant and all have integer support, then BOX propagation �

CPDEFAULT.

Proof. (By Contradiction.) Let I be the set of all fixed variables and let vi be the value assigned to the variable

xi during search, for i ∈ I . Also let uCP
j denote the updated upper bound that CPDEFAULT obtains and uBOX

j be

the updated upper bound that BOX obtains. For a contradiction, without loss of generality, assume that CPDEFAULT

does more reduction on the upper bound of some variable xj , j /∈ I than the BOX propagation and obtains

uCP
j where uCP

j < uBOX
j . Assuming that all variable bounds in this reduced rotated ellipsoid (when we fix

xi = vi, i ∈ I) are redundant we know that uCP
j < uBj ≤ uj where uj is the original upper bound of the variable

xj . Based on our assumption that the CPDEFAULT obtains a valid uCP
j we know that the problem (3.4) is feasible.

This implies that vi ∈ [li, ui],∀i ∈ I .

Next, we consider the point xB obtained as an optimal solution to the following problem:

max
x∈Zn

xBj (B.10)

s.t.
n∑

i=1

ỹi −∑
j /∈I

aijxj

2

≤ β (B.11)

where ỹi := yi −
∑

j∈I aijvj .

Notice that the obtained optimal point xB lies in the full dimension ellipsoid and xBj = uBOX
j . It follows

that for any k /∈ I , xBk satisfies the variable bounds as they are assumed to be redundant in the reduced ellipsoid

(B.11) and xB lies inside the ellipsoid. Moreover, as mentioned before vi ∈ [li, ui],∀i ∈ I , thus xB satisfies all

variable bounds. Then xB is also feasible for the CPDEFAULT problem (3.4). Our assumption was that CPDEFAULT

propagation does strictly better than the BOX, which means it cut off this point. However CPDEFAULT propagation
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is a sound propagation algorithm, meaning it cannot remove any feasible solution such as this point thus we have

a contradiction.
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