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Heuristic search algorithms are widely used in both AI planning and the decoding of sequences from

deep neural networks. In recent years, several lines of work have highlighted different factors that impact

the empirical performance of heuristic search algorithms. However, a principled empirical understanding

of the search behavior of these heuristic search algorithms has yet to be developed.

Empirical models, such as the phase transition and the heavy-tailed behavior, have been central to the

development of empirical understanding of combinatorial search problems such as constraint satisfaction

problems (CSP) and satisfiability (SAT). In this dissertation, we investigate the use of empirical models

to explain the behavior of heuristic search algorithms in AI planning and neural sequence decoding and

support the development of more efficient search algorithms.

In AI planning, we develop empirical models for problem difficulty of greedy best first (GBFS), the

most commonly used algorithm for satisficing planning. First, we establish the existence of a phase

transition in the solubility of planning problems and investigate its implications to problem difficulty.

Then, we demonstrate the heavy-tailed behavior of GBFS and provide a deeper understanding of the

connection between constrainedness and local minima. Informed by our analysis, we develop a novel

variant of GBFS that outperforms the baseline.

In neural sequence decoding, we develop empirical models for the performance of beam search, the

ubiquitous algorithm for decoding deep sequence models. First, we investigate the empirical problem of

performance degradation in beam search. We present an explanatory model based on search discrepancies

that generalizes previous observations on the behavior of beam search. Building on our analysis, we

present two heuristic techniques that eliminate the problem. Next, we study goal-oriented sequence

decoding and show that, similar to GBFS, we observe heavy-tailed behavior. We present a novel variant

of goal-oriented beam search that exploits our insights and outperforms the baseline.

Our work shows the importance of empirical models in the study and development of heuristic search

algorithms and demonstrates that empirical models developed for CSPs and SAT can be adapted to AI

planning and neural sequence decoding.
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Chapter 1

Introduction

Heuristic search algorithms are widely used in both AI planning [14] and the decoding of sequences

from deep neural networks [173]. In these tasks, the computational cost of finding an optimal solution

is high and greedy search algorithms are often used to generate high-quality solutions. In AI planning,

the most commonly used search algorithm is greedy best first search [36], a complete algorithm that

relies on a domain-specific or domain-independent heuristic function to guide the search. In neural

sequence decoding, beam search [12] is the ubiquitous search algorithm for decoding sequences from

neural networks, using the network’s predictions (in most cases, conditional probabilities).

In recent years, there has been a growing interest in developing a deeper understanding of the

empirical performance of heuristic search algorithms. In satisficing AI planning, a recent line of work has

attempted to highlight important factors that can impact the empirical performance of greedy best first

search, including the operator cost ratio [31, 32, 195, 197], the correlation between the heuristic values

and the true distance-to-goal [194], and the existence of uninformative heuristic regions [204, 197]. In

neural sequence decoding using beam search, several works have attempted to characterize the empirical

phenomenon of performance degradation for larger beams [105, 138, 183], the impact of (lack of) diversity

of decoded sequences [181, 107], and the mismatch between the decoding objective and the evaluation

metric [200, 147]. However, a principled empirical understanding of the search behavior of these heuristic

search algorithms has yet to be developed.

In combinatorial search problems such as constraint satisfaction problems (CSP) and satisfiability

(SAT), significant work has been done on empirical models for problem difficulty and solubility, including

the phase transition [18, 164, 54], heavy-tailed behavior [64, 62], the existence of backbones [132] and

backdoors [192], and search discrepancies [73, 184]. These models have been extensively used in the study

of search behavior of combinatorial search algorithms and have played an important role in explaining

observed algorithm performance (e.g., the existence of exceptionally hard problems [52, 165]) and in

identifying challenging problems to support algorithm benchmarking [90, 55]. Furthermore, these models

have informed the design of more efficient search algorithms and enhancements such as randomized

restarts [66], algorithm portfolios [63], limited discrepancy search [73], etc.

Despite the popularity of empirical models in combinatorial search, the use of such models in AI

planning and neural sequence decoding is limited. In particular, there is little work that attempts to

adapt the ideas developed in the combinatorial search literature to the fields of AI planning and neural

sequence decoding. The fundamental hypothesis of this dissertation is that empirical models can be

1
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useful in the study of these fields, and that much of the existing work in combinatorial search can be

adapted to the study of AI planning and neural sequence decoding.

After formally defining our thesis statement, we introduce the approach used in this dissertation.

Then, we present the outline of the dissertation and summarize our main contributions.

Thesis Statement

The central thesis of this dissertation is that empirical models of the behavior of heuristic search

algorithms can both explain observed algorithm performance and help design more efficient search

algorithms. Inspired by previous work in combinatorial search, we aim to provide a better understanding

of heuristic search in AI planning and neural sequence decoding and exploit this knowledge to advance

the state-of-the-art in these areas.

1.1 Approach

This dissertation takes an empirical approach to the study of heuristic search algorithms. While theoretical

analysis has characterized the worst-case or average-case complexity of such algorithms, it does not

usually tell us how, or why, an algorithm is actually going to work in practice [92]. In this work we

develop empirical models of the behavior of heuristic search algorithms and use them to explain the

observed performance of these algorithms and to inform the design of new, more efficient algorithms.

Our approach is illustrated in Figure 1.1 and consists of three main phases as follows.

Develop Analytical Framework. An analytical framework contains all the components needed to

conduct the extensive experiments that will support the development of our empirical models. The

analytical framework typically contains several core components:

• The problem instances that will be used in our empirical analysis. These instances can be taken

from an existing set of problems (e.g., a benchmark dataset) or generated from a random problem

generator. The problem instances can potentially be parameterized by some problem parameters

(e.g., parameters that control the size of the problem) to support an empirical analysis of the impact

of the parameters.

• The heuristic search algorithm that will be used to solve the problem. The search algorithm can

also be parameterized by some configuration parameters that control the behavior of the search. In

heuristic search, a typical configuration parameter is the heuristic function, however depending on

the algorithm, additional parameters may be applicable.

• The monitored quantities that will be recorded for each solved instance. These quantities will be the

basis of the statistical analysis in the next phase. In this work, we mainly consider the quantities

that represent the difficulty of solving the problem or the quality of the obtained solution.

Perform Empirical Analysis of Search Behavior. Using the analytical framework, we conduct an

extensive set of experiments. Each experiment typically consists of running an algorithm on a problem

instance and recording the monitored quantities. Results are aggregated and statistically analyzed in

accordance with the research topic and when applicable, connections between monitored quantities are
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identified and established (e.g., correlation between some characteristic of problems and the associated

search effort).

Explain Observed Performance and Inform Algorithm Design. Building on the results of the

empirical analysis, we develop an empirical model that explains the observed performance. When

applicable, we demonstrate how the empirical model can inform the design of new algorithms.
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Figure 1.1: The research approach.

The above approach is used throughout the dissertation. In Chapters 3 and 4, we present an analytical

framework for the analysis of GBFS behavior in domain-specific and domain-independent planning,

respectively, and use it to explain empirical patterns of problem difficulty and, in Chapter 4, to inform

a novel variant of GBFS. In Chapters 6 and 7, we present an analytical frameworks for the study of

empirical beam search behavior in Maximum A Posteriori (MAP) and goal-oriented inference, respectively,

in neural sequence models and propose algorithmic improvements.

1.2 Dissertation Outline

The dissertation is divided to two main parts, each correspond to a key AI task and the heuristic search

algorithm commonly used to solve it, namely satisficing AI planning using greedy best first search and

neural sequence decoding using beam search.

Part I deals with AI planning using greedy best first search (GBFS). In Chapter 2, we present the

necessary background and notation on the task of automated planning and the relevant heuristic search

algorithms. In Chapter 3, we conduct an empirical analysis of the phase transition phenomenon in

domain-specific automated planning problems. Based on our analysis, we develop empirical models for

the problem difficulty of solving such problems using GBFS. In Chapter 4, we study the heavy-tailed

behavior in GBFS and present empirical models for the distribution of search effort in domain-independent

automated planning. Informed by our analysis, we present a novel variant of GBFS that addresses the

heavy-tailed behavior and outperforms the baseline.
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Part II deals with neural sequence decoding using beam search. In Chapter 5, we present the necessary

background and notation on the task of neural sequence decoding and on the beam search algorithm. In

Chapter 6, we study the well-known problem of beam search performance degradation. We present an

empirical exploratory model for the performance degradation and, based on our model, we develop two

heuristics that mitigate the performance degradation. In Chapter 7, we study the problem of goal-oriented

neural sequence decoding using beam search. Inspired by our results in Chapter 4, we present an empirical

analysis of the heavy-tailed behavior in goal-oriented neural sequence decoding and a novel variant of

beam search that outperforms standard beam search.

In Chapter 8, we summarize our contributions and discuss potential directions for future work.

1.3 Summary of Contributions

The main contributions of this dissertations are summarized as follows.

1.3.1 Phase Transition and Problem Difficulty in Domain-Specific Heuristic

Search (Chapter 3)

Phase transitions in the solubility of random problem instances have proved useful in the study of problem

difficulty for other classes of computational problems, notably SAT and CSP, and it has been shown

that the hardest problems typically occur during this rapid transition. In this chapter, we perform the

first empirical investigation of the phase transition phenomena in GBFS. We establish the existence of a

rapid transition in the solubility of an abstract model of heuristic search problems and show that, for

greedy best first search, the hardest instances are associated with the phase transition region. Then,

we demonstrate that the behavior of our abstract model carries over to commonly used benchmark

problems: the Pancake Problem, the Sliding Tiles Puzzle, TopSpin, and Grid Navigation. Furthermore,

we investigate the interaction between the phase transition phenomenon and different factors that impact

problem difficulty, including the quality of the heuristic, the re-expansion of nodes, and the operator cost

ratio, and show that the effect of these factors depends on the constrainedness of problems. Building

on the results of our empirical analysis, we hypothesize a relationship between the phase transition

phenomenon and the existence and structure of local minima.

1.3.2 Heavy-tailed Behavior and Randomization in Satisficing Planning (Chap-

ter 4)

In this chapter, we study the runtime distribution of satisficing planning in ensembles of random planning

problems and in multiple runs of a randomized heuristic search on a single planning instance. Using

common heuristic functions (such as FF) and six benchmark problem domains from the International

Planning Competition (IPC), we find a heavy-tailed behavior, similar to that found in CSP and SAT. We

investigate two notions of constrainedness, often used in the modeling of planning problems, and show

that heavy-tailed behavior tends to appear in relatively relaxed problems, where the required effort is, on

average, low. Drawing similarity from the analysis of inconsistent subtrees in CSPs, we show that there

is a very strong exponential correlation between the depth of local minima and the associated search

effort and that the distribution of local minima depth changes dramatically based on the constrainedness

of problems. Our results support the hypothesis from Chapter 3, and provide a deeper understanding of
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previous observations on the behavior of GBFS. Finally, we show that incorporating randomization in

the search can help reduce the heavy-tailed behavior. Inspired by randomized restarts in CSP and SAT

solving, we propose RR-GBFS, a variant of GBFS that employs randomized restarts, and show that it

outperforms standard GBFS.

1.3.3 Empirical Analysis the Beam Search Performance Degradation in Neu-

ral Sequence Decoding (Chapter 6)

Beam search is the most popular inference algorithm for decoding neural sequence models. Unlike greedy

search, beam search allows for non-greedy local decisions that can potentially lead to a sequence with

a higher overall probability. However, work on a number of applications has found that the quality

of the highest probability hypothesis found by beam search degrades with large beam widths. In this

chapter, we perform an empirical study of the behavior of beam search across three sequence synthesis

tasks. We find that increasing the beam width leads to sequences that are disproportionately based on

early, very low probability tokens that are followed by a sequence of tokens with higher (conditional)

probability. We show that, empirically, such sequences are more likely to have a lower evaluation score

than lower probability sequences without this pattern. Using the notion of search discrepancies from

heuristic search, we hypothesize that large discrepancies are the cause of the performance degradation.

We show that this hypothesis generalizes the previous ones in machine translation and image captioning.

To validate our hypothesis, we show that constraining beam search to avoid large discrepancies eliminates

the performance degradation.

1.3.4 Randomized Restarting Beam Search in Goal-Oriented Neural Sequence

Decoding (Chapter 7)

Recent work has demonstrated that neural sequence models can successfully solve combinatorial search

problems such as program synthesis and routing problems. In these scenarios, beam search is used to

produce a set of promising (high-likelihood) candidate sequences that are evaluated to determine if they

satisfy the goal criteria. If none of the candidates satisfy the criteria, the beam search can be repeatedly

restarted with a larger beam size until a satisfying solution is found. Following our work on GBFS, in this

chapter we investigate whether heavy-tailed behavior can be observed in the search effort distribution of

beam search in goal-oriented neural sequence decoding. We analyze four goal-oriented decoding tasks and

find that the search effort of beam search exhibits fat- and heavy-tailed behavior. Inspired by the use of

randomized restarts in GBFS, we propose a randomized restarting variant of beam search. We conduct

extensive empirical evaluation, comparing different randomization techniques and restart policies, and

show that the randomized restarting variant solves some of the hardest instances faster and outperforms

the baseline.



Part I

Satisficing AI Planning using

Greedy Best First Search

6



Chapter 2

Background: AI Planning and

Greedy Best First Search

In Part I, we study the difficulty of satisficing planning problems solved using the greedy best first search

(GBFS) algorithm. In this chapter we present relevant background and notation for the work presented

in Chapter 3 and Chapter 4. Section 2.1 describes the heuristic search problem and discusses commonly

used heuristic search algorithms. Section 2.2 describes the classical planning problem and how to cast it

as a heuristic search problem. It also describes popular heuristics and search enhancements in classical

planning using heuristic search. Finally, in Section 2.3 we describe previous work and results on problem

difficulty in greedy best first search. The notation in this chapter is based on several sources [14, 81, 120].

2.1 Heuristic Search

Many approaches in artificial intelligence involve searching in large state spaces [170]. Many of the

well-known algorithms for state space search, such as greedy best first search [36], A* [72], Weighted A*

[142], are examples of a general family of uni-directional, expansion-based heuristic search algorithms [81].

These algorithms normally take a generative representation of the state space and a heuristic function

that estimates the cost to reach the goal from a given state. In this section we formally define the different

components in heuristic search problems and discuss popular algorithms for solving them.

Definition 1 (State Space [81]) A state space is a tuple 〈S, sI , SG,Γ, c〉

• S is a a finite set of states,

• Γ : S → 2S is the successor function that maps X to its power set,

• sI ∈ S is the initial state,

• SG ⊆ S is the set of goal states.

In many cases, state spaces are also associated with a cost function c : 2S → R+
0 that defines the cost of

each state transition. If there is no cost function associated with the state space, we assume a unit cost

function, i.e., c(si, sj) = 1 ∀si, sj ∈ S.

State spaces contain state paths.

7
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Definition 2 (State Path [81]) A sequence of states 〈s0, ..., sn〉 is a state path from s0 to sn in S if

si ∈ Γ(si−1) for i = 1, ..., n.

A state path 〈s0, ..., sn〉 is a solution path if s0 = sI and sn ∈ SG. The cost of a path is computed as

follows:

cost(〈s0, ..., sn〉) =
n−1∑
i=1

c(si, si+1).

A solution path is considered optimal if it is a minimal cost path among all solution paths.

Heuristic Function

Heuristic search algorithms use heuristic functions to guide the search in a state space for a path from

the initial state to the goal state. A heuristic is a function h : S → R+
0 ∪ {∞} with the intuition that

h(s) estimates the cost of a plan from s to a goal state [78]. The perfect heuristic, h∗, maps each state to

the cost of an optimal plan from s to a goal state if such plan exists or to ∞ if there is no such plan.

2.1.1 Heuristic Search Algorithms

Best-First Search

Best-first search algorithms are state-space search algorithms that always expand the most promising

state. Starting from the initial state, the successors of each expanded state are inserted into an open list

that is sorted by some evaluation function f(s). Once a state is expanded, it is taken out of the open

list and moved to the closed list, a data structure that keeps track of states that were already expanded.

If a goal state is expanded, the path from the initial state to the expanded goal state is computed and

returned as solution. If the open list is empty before a goal state is expanded, we can determine that the

state space was exhausted and there is no feasible solution. Different heuristic search algorithms can

be defined that differ in their evaluation function f(s). Typically, best first-search algorithms sort their

open list based on evaluation function f(s) = wg · g(s) + wh · h(s) that is a linear combination of g(s),

the lowest known cost of a path from the initial state to some state s, and h(s), the estimated cost to

reach a goal from state s. Specifically, greedy best first search, A*, and Weighted A* described below are

all examples for such best first search algorithms. Algorithm 2.1 shows pseudo-code of a general best first

search algorithm.
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Algorithm 2.1 Best First Search

function BestFirstSearch(State space S, initial state sI , goal states SG, evaluation function f(.))

CLOSED ← {} . Initialize the closed list

OPEN ← {sI} . Initialize the open list with the initial state

parent(sI)← NONE

g(sI)← 0

while OPEN 6= {} do

s← RemoveMin(OPEN, f(.)) . Select state to expand from the open list based on f(.)

if s ∈ SG then . If s is a goal state, return path to s

return ReconstructPath(s)

CLOSED ← CLOSED ∪ {s}
for s′ ∈ succ(s) do . Iterate over the successors of the chosen state

if s′ ∈ OPEN then . Update open state if cheaper path found

if g(s′) > g(s) + cost(s, s′) then

parent(s′)← s

g(s′)← g(s) + cost(s, s′)

else if s′ ∈ CLOSED then . Re-open closed state if cheaper path found

if g(s′) > g(s) + cost(s, s′) then

parent(s′)← s

g(s′)← g(s) + cost(s, s′)

CLOSED ← CLOSED \ s′

OPEN ← OPEN ∪ {s′}

else . Add successor s′ to the open list

parent(s′)← s

g(s′)← g(s) + cost(s, s′)

OPEN ← OPEN ∪ {s′}

return ∅ . Exhausted space; Return no solution

function RemoveMin(open list OPEN , evaluation function f(.))

return arg mins∈OPEN f(s)

function ReconstructPath(state s)

return ReconstructPathRecursive(s, [])

function ReconstructPathRecursive(state s, path [s0, s1, ..., sk])

if s = NONE then

return [s0, s1, ..., sk]

return ReconstructPathRecursive(parent(s), [s, s0, s1, ..., sk])

Greedy Best-First Search

Greedy best first search (GBFS) [36] is a variant of best first search algorithm where wg = 0 and wh = 1,

i.e., the evaluation function f(s) = h(s) is based solely on the heuristic function and the search algorithm
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always expands the state with the lowest heuristic value in the open list. The algorithm is greedy since it

only takes into account the (estimated) cost to reach the goal while ignoring the cost of the path from the

initial state to the current state. It is common to choose not to re-open closed states or update states in

the open list even if a shorter path to a state is found since state re-opening in GBFS does not guarantee

any bound on solution quality. GBFS is the most commonly used algorithm for satisficing planning since

it tends to find a solution faster than other best first search variants and is used by planners such as Fast

Downwards [76] and LAMA [151]. In Chapter 3 and Chapter 4 we study different aspects of problem

difficulty in GBFS.

A*

A* [72] is a best first search variant where wg = 1 and wh = 1, i.e., the evaluation function f(s) = g(s)+h(s)

is the sum of the cost to a state s and the estimated cost from s to a goal state. If multiple states on

the open list have equal f values, states with lower h value will be expanded first. If A* is used with

admissible heuristic, i.e., a heuristic the never overestimates the cost to the nearest goal, A* is guaranteed

to return an optimal solution. Formally, admissibility is defined as follows.

Definition 3 (Admissible Heuristic) A heuristic function h(.) is considered admissible if for any state s

h(s) ≤ h∗(s)

where h∗ is the perfect heuristic.

Another important property of heuristics is consistency.

Definition 4 (Consistent Heuristic) A heuristic function h(.) is considered consistent if for any state s

and any successor s′ ∈ Γ(s)

h(s) ≤ cost(s, s′) + h(s′).

If A* is used with a consistent and admissible heuristic, it is guaranteed not to re-open nodes [34].

Weighted A*

Weighted A* [142] is a best first search variant where wg = 1 and wh > 1, i.e., the evaluation function

f(s) = g(s) +wh · h(s) puts a higher weight on the estimated cost from s to a goal state than on the cost

from the initial state to s. When used with an admissible heuristic the solution found by weighted A* is

guaranteed to be no worse than wh · C∗ where C∗ is the cost of the optimal solution.

Enforced Hill-Climbing

Enforced Hill-Climbing (EHC) [88] is a local search algorithm that is used in the FF planner. Similar to

standard hill-climbing [155], the algorithm starts from an initial state and at each step the algorithm

chooses a successor that has a strictly lower h value. However, unlike standard hill-climbing, if no

successor has a lower h value, a breadth first search starting from the current state is invoked. The search

returns the first state found with strictly lower h value or fails. If the breadth first search fails, the whole

algorithm fails. Alternatively, when a goal state is reached, the algorithms stops.
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2.2 Classical Planning

Classical planning consists of finding a sequence of actions from a given initial state to a goal state,

assuming deterministic actions and complete information. A classical planning state space is formally

defined as follows (note the similariy to Definition 1).

Definition 5 (Classical Planning State Space [14]) A planning state space 〈S, sI , SG, A, f, c〉 consists of:

• S is a finite and non-empty set of states,

• sI ∈ S is the initial state,

• SG ⊆ S is the set of goal states,

• A(s) ⊆ A is the set of actions applicable in each state s ∈ S,

• f(a, s) is a state transition function for all s ∈ S and a ∈ A(s), and

• c(a, s) is the cost of doing action a in state s.

A solution of a planning state space is a sequence of actions a0, a1, ..., an that generates a state

trajectory s0, s1 = f(a0, s0), ..., sn+1 = f(an, sn) such that action ai is applicable in si and sn+1 is a goal

state, i.e., ai ∈ A(si) and sn+1 ∈ SG. The cost of the solution is
∑n
i=0 c(ai, si). A solution is considered

optimal if it has a minimum cost among all plans from the initial state to a goal state.

In large problems, it is impractical to explicitly enumerate the state space. Instead, we can use

factored representations in which each state is a complete assignment of values to a set of variables.

STRIPS [44], the most common factored representation for planning problems, is based on boolean

variables called atoms (also known as fluents or facts) that state whether a proposition about the world

is true in a given state.

Definition 6 (STRIPS Planning Problem [14]) A STRIPS planning problem P = 〈A,O, I,G〉 consists

of:

• A is a set of atoms,

• O is a set of operators such that each o ∈ O is a tuple 〈Prec(o), Add(o), Del(o)〉 with

Prec(o), Add(o), Del(o) ⊆ A,

• I ⊆ A encodes the initial state,

• G ⊆ A encodes the goal state.

A STRIPS problem P = 〈A,O, I,G〉 implicitly defines a classical planning state space 〈S, sI , SG, A, f, c〉
as follows:

• The states in S are collections of atoms from, i.e., s ⊆ A,

• The initial state sI ∈ S is I,

• The goal states s ∈ SG are states such that G ⊆ s,

• The actions of state s, a ∈ A(s), are the operators o ∈ O such that Prec(o) ⊆ s,
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• The transition function f maps a state s to the states s′ = (s ∪Add(a)) \Del(a) for a ∈ A(s),

• All action costs are one, i.e., c(a, s) = 1 ∀s ∈ S, a ∈ A(s).

A more recent factored representation, the planning domain definition language (PDDL) [127, 45],

has become the standard that is used in the international planning competition (IPC) [128]. The core

of PDDL is the STRIPS formalism, however the languages extends beyond STRIPS to represent type

structure, parameterization of actions, quantification, etc. [45].

2.2.1 Classical Planning as Heuristic Search

A planning problem (Definition 5) can be mapped to a state space (Definition 1) by defining a successor

function based on the set of applicable actions Γ(s) = {s′ | s′ = f(a, s) ∀a ∈ A(s)}. Then, any heuristic

search algorithm can be used to find a solution plan, i.e., a state path from the initial state to the goal

state, given a heuristic function. Section 2.2.2 and Section 2.2.3 describe popular heuristics for classical

planning and search enhancements that are commonly used in heuristic search-based classical planning,

respectively.

2.2.2 Heuristics for Classical Planning

The Delete Relaxation Heuristic

Heuristics are often derived from solving a relaxation of the problem. The most commonly used relaxation

in classical planning is the delete relaxation [14] where the delete effects of actions are ignored and actions

can only add new facts to the set of true facts in a given state.

Definition 7 (Delete Relaxation) Given a STRIPS planning problem P = 〈A,O, I,G〉, the corresponding

delete-relaxed STRIP planning problem is defined as P+ = 〈A,O+, I,G〉 where the delete-relaxed set of

operators O+ is defined as:

O+ = {〈Prec(o), Add(o),∅〉 | o ∈ O}.

The cost of an optimal delete-relaxed plan from a state s to a goal is an admissible heuristic denoted

as h+(s). Since the computation of this heuristic is NP-hard [15], it is common to use a polynomial-time

approximation of h+. Next, we describe several commonly used approximations of h+.

The Additive Heuristic

The additive heuristic, hadd, is an inadmissible approximation of h+ that is based on the costs of achieving

each goal atom independently. The cost of achieving atom p from state s is denoted gs(p) and can be

defined recursively as follows:

gs(p) =

0, if p ∈ s

mino∈O(p)[1 + gs(Prec(o))], otherwise,

where O(p) is the set of actions that add p, i.e., p ∈ Add(o), and gs(Prec(o)) is the estimated cost of

the set of atoms in Prec(o). The estimated cost for a set of atoms C in the additive heuristic is defined
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based on the sum of the costs of the individual atoms,

gs(C) =
∑
r∈C

gs(r).

The additive heuristic for a state s is then defined based on the estimated cost of achieving the set of

atoms in G from state s:

hadd(s) = gs(G).

The additive heuristic assumes that subgoals (i.e., atoms in the goal) are independent, however this is

not necessarily true as the achievement of some sub-goals can impact the difficulty of achieving other

subgoals. As a result, the additive heuristic can overestimate the cost of getting to the goal and is

therefore inadmissible.

The Max Heuristic

The max heuristic, hmax, is an admissible approximation of h+ that is based on the maximum cost of an

atom. It is defined in a similar manner to the additive heuristic, however the estimated cost for a set of

atoms C is defined based on the maximal cost among the costs of achieving the individual atoms,

gs(C) = max
r∈C

gs(r).

Unlike the additive heuristic, the max heuristic is admissible since the true cost of achieving a set of

atoms cannot be lower than the individual cost associated with each of the individual atoms.

The FF Heuristic

The FF heuristic [88], hFF , is an inadmissible approximation of h+ based on the cost of a suboptimal

relaxed plan. To compute the heuristic for a state s, we first need to construct the relaxed planning

graph, a directed layered graph that contains two types of nodes: fact nodes and action nodes. The

layers alternate and each pair of fact and action layers make up a time step. In the first time step, the

fact layer corresponds to the facts in state s and the action layer corresponds to the applicable actions in

that state. In each subsequent time step i, the fact layer consists of all the facts that were added by the

actions of the previous time step along with the facts that were already true in the previous time step,

ignoring any delete effects.

Once the relaxed planning graph is constructed, a relaxed plan Π+ is extracted from the relaxed

planning graph. Starting from the goal facts, actions that add each of these facts are added to the plan,

then actions are added until all preconditions of actions in the relaxed plan are supported by some action

or are part of the state s. The FF heuristic then estimates the distance to the goal based on the cost of

the plan Π+. Note that unlike hadd and hmax, the FF heuristic computes a feasible, however not optimal,

plan for the delete-relaxed planning problem.

Landmark-based Heuristics

Landmarks are plan features that must appear in any valid solution plan [89, 150]. Fluent landmarks

are formulas over the set of fluents that must be satisfied by some state in any solution plan. Similarly,

action landmarks are formulas over the set of operators that must be satisfied by any solution plan.
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The problem of determining if a formula is a landmark is PSPACE-complete [89]. Therefore, practical

methods for finding landmarks are either incomplete (i.e., they may fail to find some landmarks) or

unsound (i.e., they may falsely declare a formula to be a landmark) [150].

The first landmark-based heuristic was the landmark count heuristic [150], an inadmissible heuristic

that estimates the number of landmarks that still need to be satisfied. Given a state, s, and a plan

from the initial state to s, Π, the estimate of the number of landmarks that still need to be satisfied is

computed as follows.

hLM (s, π) = (L \Reached(s,Π)) ∪ReqAgain(s,Π)

where L is the set of all discovered landmarks, Reached(s,Π) is the set of reached landmarks, and

ReqAgain(s,Π) ⊆ Reached(s,Π)) is the set of reached landmarks that are required again.

Following the landmark count heuristic, several works have demonstrated that landmarks can also be

used to compute admissible estimates for optimal planning, including the admissible landmark heuristic

[100] and the landmark cut heuristic [78].

Abstraction Heuristics

Abstraction heuristics map each state s to an abstract state α(s) using a homomorphism function α [78].

The heuristic value hα(s) is then the distance from α(s) to the nearest abstract goal state. Examples of

abstraction heuristics include pattern databases [30, 38] and merge-and-shrink abstractions [80].

2.2.3 Notable Search Enhancements

Helpful Actions

Helpful actions [88] is a heuristic pruning techniques that allows the search to focus only on actions

that are likely to lead to a solution and to reduce the number of generated successors for each state.

Some heuristics, in addition to computing an estimate of the cost to the goal, also compute a subset

of actions that are likely to be in the solution. For example, the FF heuristic returns, in addition to a

cost estimate based on the relaxed solution, the subset of actions from that solution that are applicable

to the current state. The helpful actions can be used to prune successors that are not generated from

helpful actions or, alternatively, to prioritize states that were generated by helpful actions. In the Fast

Downward planning system [76], Helmert proposed a technique called preferred operators that consists of

alternating between two open lists, one containing all successors of expanded states and one containing

only successors generated by helpful actions.

Deferred Heuristic Evaluation

In standard GBFS, when the search expands a state s, it needs to compute the heuristic evaluation

for all of the successor states of s before adding them to the open list. If the heuristic evaluation is

computationally expensive and there are many successors, this computation can make up significant

part of the total search effort. For example, Bonet and Geffner [13] showed that the computation of the

heuristic can take up to 85% of the computational effort of the HSP planner.

In the Fast Downward planning system [76], Helmert proposed to use deferred heuristic evaluation,

a technique that delays the heuristic evaluation of a state until it is expanded. Each time a state s is

expanded, we compute its heuristic evaluation and the successors of s are added to the open list with the
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heuristic evaluation of state s. Deferred heuristic evaluation can lead to a significant speed-up when many

more nodes are generated than expanded, e.g., in problems with a large branching factor [76]. Deferred

heuristic evaluation was empirically shown to trade time for quality: it tends to find plans faster, however

these plans tend to have a lower quality compared to plans found using standard heuristic evaluation

[149].

Multi-Heuristic Best-First Search

Another enhancement that was introduced in the Fast Downward planning system [76] is the use of

multi-heuristic best-first search. While there are different ways of combining more than one heuristic, e.g.,

by taking the maximum of the individual heuristic values, multi-heuristic bests-first search instead keeps

a separate open list for each heuristic in which nodes are sorted according to the respective heuristic

evaluations. The search alternates among the open lists. When expanding a state from one open list,

the successors are added into each of the open lists with a heuristic evaluation based on the respective

heuristic.

Non-Greedy Exploration

In satisficing planning, several works have suggested incorporating non-greedy exploration, in which the

search allocates limited time to expand nodes with non-minimal h-values. We briefly describe notable

recent approaches for non-greedy exploration.

Diverse Best First Search (DBFS). Imai and Kishimoto [95] proposed DBFS, a best first search

variant that incorporates random exploration in two steps: first, a state is randomly selected from the

open list according to a distribution that favors states with lower g value and lower h value; then, an

expansion-limited GBFS is invoked from the selected state.

ε-GBFS. Valenzano et al. [176] proposed ε-GBFS, a simple variant of GBFS that expands a node

selected uniformly at random from the open list with probability ε and the minimal h-value node with

probability 1−ε. Empirical analysis showed that for ε values between 0.05 to 0.5, the number of domains

for which the coverage increased was significantly higher than the number of domains for which the

coverage decreased.

Type-GBFS. A type system in heuristic search is a partitioning of all the states in a state space to n

disjoint sets [113]. Xie et al. [205] proposed Type-GBFS, a variant of GBFS that utilizes type systems of

heuristic search to perform exploration. In addition to the standard open list that orders the states based

on their heuristic value, Type-GBFS maintains an additional queue that performs type-based exploration

using a two level type bucket structure: first it picks a bucket b uniformly from all the buckets, then

it picks a state n uniformly from all the states in b [205]. The search alternates between expanding

states from the standard open list and the type-based exploration queue. Empirical analysis showed that

Type-GBFS significantly outperforms standard GBFS, solving almost 200 more problems out of 2112.

GBFS with Local Exploration. Xie et al. [203] proposed GBFS with local exploration (GBFS-LE)

where a random walk or a local GBFS is invoked when the global GBFS has failed to improve its minimum

heuristic value (i.e., the lowest heuristic value encountered so far) for a fixed number of expansions. In a
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later work, Lipovetzky and Geffner [122] considered GBFS-W, a variant of GBFS-LE where the local

GBFS is replaced with a width-based search [121] that explores the state space based on the novelty of

states. In particular, the width-based algorithm IW(k) is a breadth-first search where a newly generated

state s is pruned if its novelty is greater than k, where the novelty of s is the size of the smallest tuple of

atoms such that s is the first state in the search that makes all these atoms true [122].

2.3 Problem Difficulty in GBFS

In the recent decade, several works have addressed the problem of developing a deeper theoretical and

empirical understanding of GBFS. In this section, we review notable works on the search behavior of

GBFS and different factors that impact problem difficulty for GBFS.

2.3.1 Uninformative Heuristic Regions

One of the main factors that has negative impact on the problem difficulty for GBFS is the existence of

uninformative heuristic regions (UHR), which include plateaus and local minima [204].

Wilt and Ruml [197] defined local minimum as a set of states, SLM , such that for each state s ∈ SLM
all paths from s to a goal state include at least one state s′ such that h(s′) > h(s) and SLM is maximally

connected.1 A heuristic plateau is a maximal connected region of nodes such that all nodes in the region

have the same heuristic value [197].

Wilt and Ruml [197] calculated the size of of every local minimum in an entire search space by

searching backwards from the goal states, expanding nodes in increasing h order. Nodes with h value

that is less than the highest h value encountered seen so far are part of a local minimum.

2.3.2 Operator Cost Ratio

Recent work has highlighted the negative impact of large operator cost ratio in cost-based search and

proposed size-based search as an alternative to cost-based search [31, 32, 195, 197]. We start by defining

cost-based search and operator cost ratio and then describe the main results.

Definition 8 (Cost-based search; Cushing et al. [32]) A best first search in which g(x) = gc(x), the cost

to reach state x, and h(x) = hc(x), an estimation of the cost of the cheapest path from state x to a goal

state.

Definition 9 (Operator cost ratio; Wilt and Ruml [195]) The ratio of the largest action cost to the

smallest action cost in the state space,

maxs∈S,a∈A(s) c(a, s)

mins∈S,a∈A(s) c(a, s)
.

Wilt and Ruml [195] showed, empirically and theoretically, that a larger operator ratio can have a

negative effect on the search effort of various best-first search algorithms, including GBFS. Their analysis

showed that cost-based versions of sliding puzzle and the pancake problem become intractable as the

operator cost ratio is increased. The cost-based grid navigation problem, however, does not suffer from a

1Wilt and Ruml [197] note that in directed state spaces, these definitions become more complicated.
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significant increase in search effort and the authors attribute it to size-bounded local minima and the

large number of duplicated states.2

To mitigate the negative effect of a large operator cost ratio, a number of authors suggest using

size-based search [32, 195, 197].

Definition 10 (Size-based search; Cushing et al. [32]) A best first search in which g(x) = gd(x), the

distance (i.e., the number of actions) to reach state x, and h(x) = hd(x), an estimation of distance of the

shortest path from state x to a goal state. Also called distance-based search.

Wilt and Ruml [197] showed that size-based search tends to have smaller local minima compared to

cost-based search.

2.3.3 Goal Distance Rank Correlation

Wilt and Ruml [196, 198, 194] performed an extensive investigation of the behavior of suboptimal heuristic

search algorithms, namely GBFS and Weighted A*. They empirically show that although suboptimal

search algorithms are expected to be faster than algorithms with stronger guarantees, they can often

underperform. Specifically, they demonstrated how GBFS can perform worse than Weighted A* and

sometimes even worse than A*. Furthermore, they show that the well-established guidelines for designing

heuristic for A* can lead to poor performance in GBFS.

Based on an empirical analysis of the behavior of GBFS, Wilt and Ruml [194] make the following

observations on the characteristics of effective heuristics for GBFS.

Observation 1 All else being equal, greedy best-first search tends to work well when it is possible to

reach the goal from every node via a path where h monotonically decreases along the path.3

Observation 2 All else being equal, nodes with h=0 should be connected to goal nodes via paths that

only contain h=0 nodes.4

Observation 3 All else being equal, greedy best-first search tends to work well when the difference

between the minimum h value of the nodes in a local minimum and the minimum h that will allow the

search to escape from the local minimum and reach a goal is low.

Based on their analysis, Wilt and Ruml [194] propose to measure and compare the effectiveness

of heuristics using the global distance rank correlation (GDRC) defined by the Kendall’s τ correlation

between the heuristic values h(s) and the real distance to nearest goal d∗(s). Inspired by Haslum et al.

[75], they present an automatic procedure to construct effective abstraction-based heuristic by searching

in the space of abstractions, using GDRC as a metric for assessing the quality of a heuristic. Note that

a similar notion to GDRC, called fitness-distance correlation, has been studied in the metaheuristics

literature [9].

2Fan et al. [43] showed that in some cases diverse operator costs can lead to better performance, however their analysis
is only concerned with the Dijkstra’s algorithm and does not deal with GBFS or, more generally, search with heuristics.

3More precisely, the authors actually refer to the case where h is monotonically non-increasing.
4Wilt and Ruml [194] state that Observation 2 is an important specific case of Observation 1.
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2.3.4 Theoretical Results on Problem Difficulty in GBFS

A recent line of work [81, 83, 82] has addressed the development of a theoretical foundation for the

analysis of greedy best first search. In particular, these works characterize the set of states that are

guaranteed to be expanded by GBFS, the set of states that are guaranteed not to be expanded by GBFS,

and the set of states that can potentially be expanded by GBFS.

In order to characterize the behavior of GBFS, Heusner et al. [81] use the notion of high-water mark

[197],

hwm(s) =

minp∈P (s)(maxs′∈ph(s′)) if P(s) 6= ∅

∞ otherwise,

where P (s) is the set of all paths from s to the goal. The high-water mark of a set of states S′ ∈ S is

defined as

hwm(S′) = mins∈S′hwm(s).

Intuitively, the high-water mark of a state s measures how high the heuristic values of expanded states

must climb before a solution can be found starting from state s [83]. For a set of states S′, the high-water

mark, hwm(S′), is based on the minimum high-water mark of the states in S′.

Using high-water mark, Heusner et al. [83] define progress states as states s ∈ S such that hwm(s) >

hwm(Γ(s)). Then, they show that every GBFS run can be understood as a sequence of search episodes

(called high-water mark benches), where each episode begins when a progress state is expanded and ends

when the next progress state is expanded. Using the notion of high-water mark benches, Heusner et

al. [81] shows how the state space can be partitioned into a set of states that are guaranteed not to

be expanded by any GBFS run (regardless of the tie-breaking strategy) and a set of states that are

expanded by at least one tie-breaking strategy [81]. Furthermore, they present criteria for states that are

guaranteed to be expanded. In a later work, Heusner et al. [82] show that it is NP-complete to compute

lower and upper bounds on the number of states expanded by GBFS, given an explicit representation of

the state space. However they also show that for undirected spaces, best-case and worst-case tie-breaking

of GBFS can be analyzed in polynomial time.

In Chapter 3 and Chapter 4 we study problem difficulty in AI planning building on the work described

in Section 2.3 and two existing notions from combinatorial problem difficulty, the phase transition and

heavy-tailed behavior, which will be reviewed in the respective chapters.



Chapter 3

Phase Transition and Problem

Difficulty in Domain-Specific

Heuristic Search

3.1 Introduction

A recent line of research in heuristic search aims to develop of an understanding of empirical problem

difficulty. Several factors affecting search effort have been identified including the ratio of operator costs

[195, 197, 31, 32], and the existence of uninformative heuristic regions [204].

The phase transition in problem solubility has been a central tool in the study of problem difficulty for

computational problems. In seminal work, Cheeseman, Kanefsky and Taylor [18] empirically showed that

several NP-complete problems exhibit an abrupt phase transition from underconstrained to overconstrained

problems as a problem-generation control parameter is varied, changing the probability of a solution from

nearly zero to nearly one. They discovered that the hardest problem instances occur during this abrupt

change.

Subsequently, the phase transition was extensively studied in problems including SAT [131, 29],

CSP [164, 145], quantified boolean formula [56], and classical planning [16, 152]. Interestingly, despite

Cheeseman et al.’s conjecture that the phase transition was relevant to a number of AI problems, it does

not appear to have been studied for heuristic search problems.

In this work, we introduce the tool of phase transition to heuristic search using an abstract model

of a heuristic search problem that is based on a random graph representation of the state space. We

demonstrate an abrupt transition in solubility as a parameter controlling the density of the transitions

in the state space is varied and observe the accompanying easy-hard-easy pattern of problem difficulty

across the transition region. Building on these results, we make the following further contributions:

• Exploiting our random graph model, we provide analytical bounds on the “mushy region” between

the fully soluble and fully insoluble problems.

• We demonstrate how to transfer the abstract graph model to existing heuristic search benchmark

problems, allowing the generation of versions of each problem across the phase transition and

19
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demonstrating both the phase transition and the easy-hard-easy pattern on the five standard

heuristic search benchmarks.

• We study the behavior of systematically stronger heuristics across the phase transition region and

show that the reduction in search effort for strong heuristics is orders of magnitude smaller for the

hard soluble instances at the phase transition than in the underconstrained regions.

• We show that the number of node re-expansions peaks in the phase transition and declines outside.

• We demonstrate that the effect of large operator cost ratio on the search effort is most significant

in the phase transition region and diminishes outside.

• We show that exceptionally hard problems [52, 165] appear in the relaxed region of the phase

transition where the median effort is relatively low.

The work in this chapter is based on the publications [26, 25].

3.1.1 Organization

In Section 3.2 we present the background on phase transitions and discuss related work. In Section

3.3 we describe the analytical framework we use to study the phase transition in heuristic search. In

Section 3.4 we present an analysis of the phase transition using an abstract model and in Section 3.5 we

demonstrate that the behavior observed for the abstract model carries over to real benchmark problems.

In Section 3.6 and Section 3.7 we analyze the interaction of the phase transition with node re-expansions

and operator cost ratio, two factors that were shown to have negative impact on the search effort. Finally,

in Section 3.8 we discuss the implications of the analysis, as well as potential future work. In Section 3.9

we summarize the chapter.

3.2 The Phase Transition

For many NP-complete problems, we can define a control parameter for which a critical interval of

values separates two regions: one that is underconstrained with high density of solutions and one that

is overconstrained with low likelihood that a solution exists [18]. Empirically, the hardest problems

occur over this critical interval. Mitchell, Selman and Levesque [131] identified a phase transition for

critical values of the clause-to-variable ratio of 3-SAT problems, with search effort peaking at a ratio of

approximately 4.27. Smith and Dyer [164] investigated phase transitions in CSPs and showed a phase

transition in problem solubility for critical values of constraint tightness. The hardest problems occurred

during this rapid transition with the median search effort peaking at the point in which 50% of the

problems are soluble. Many other works through the late 1990s confirmed these results and extended

them to other classes of problems [90, 55, 207, 129].

For PSPACE-complete problems, Gent and Walsh [56] investigated the phase transition phenomenon

on quantified boolean formulae. They witnessed a clear phase transition in solubility and an easy-hard-

easy pattern associated with a critical value of constrainedness. They therefore conjectured that similar

phase transition behavior will occur in other PSPACE problems. In planning, Rintanen [152] found a

transition in solubility as the operators-to-variables ratio is varied. However, the effort peak was located
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earlier than expected and the analytical derivation of tight upper and lower bounds for this transition

remained an open problem.

The phase transition in heuristic search does not appear to have been investigated. While a reference

to heuristic search occurs in an early work [94], the work actually concerns tree search and is therefore

more relevant to SAT and CSP rather than a best-first search.

3.3 Analytical Framework

To investigate the phase transition phenomenon in heuristic search, we develop an analytical framework

that allows us to generate random heuristic search problems with specific levels of constrainedness. Then,

we study the the impact of constrainedness on problem solubility and difficulty.

3.3.1 Abstract Model

In search problems, the problem space is often represented as a graph [142] with states as vertices and

the transitions as edges. Given a finite state space S of cardinality n: S = {s1, s2, ..., sn}, |S| = n,

and a successor function Γ : S → 2S (see Definition 1 in Section 2.1), we can use the following graph

representation: G〈V,E〉, V = {vi : si ∈ S}, E : {(vi, vj) : si, sj ∈ S, sj ∈ Γ(si)}.

Random Problem Space.

With such a representation, generating a random problem requires generating a random graph with

characteristics similar to the search space of heuristic search problems [42, 99, 6, 187].

Common heuristic search problems often exhibit symmetric transitions (or have a similar distribution

of in- and out-degrees) along with other properties that can be well-modeled by random graphs. For

example, in the Sliding Puzzle, the Pancake Problem, and the Rubik’s Cube, the transition function is

symmetric (∀i, j : si ∈ Γ(sj) ⇐⇒ sj ∈ Γ(si)), and most of the states have the same degree, mapping to

an undirected model with nearly constant degree distribution. Grid Navigation and Vacuum World, in

which a cell is blocked with probability p, as well as other similar problems, have a degree distribution

centered around an expected degree that varies based on p. Map navigation problems, e.g. the Arad-

Bucharest example [155], are often symmetric and have a different degree distribution for every map,

with no specific structure.

As our focus is not on a specific class of problem, we use the random digraph model [99] as a general

model. While not committing to symmetry, it maintains an even distribution of in- and out-degrees and

a Poisson degree distribution centered around a certain degree. We expect this to be a good general

model for random heuristic search problems and, in Section 3.5, we examine its applicability to real

heuristic search problems. When investigating a specific class of problems, using a random graph model

that better matches the nature of the class may yield more precise results.

Random Problem Instances.

Our model for generating random problem instances is based on a random directed transition graph, a

randomly chosen initial state, and a randomly chosen goal state. An important technical consideration in

problem generation is the avoidance of so-called “flawed” models which include many trivially insoluble

instances [61]. A naive instance generator can easily generate instances for which either the initial state or
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goal state has no out- or in-transitions, respectively. While such instances do not form an asymptotically

dominant proportion of the instance space [1], they can nonetheless be easily filtered. Therefore, we

propose the following problem generation model.

Model 1 Let n ∈ Z+ be the number of states in the problem space S = {s1, s2, ..., sn} and p ∈ [0, 1] be

the connectivity density of the problem space. The class Qn,p consists of all problem instances 〈T, Si, Sg〉
such that:

1. T is a random transition graph drawn from Dn,p, the probability space of all random digraphs [99].

2. Si ∈ S is a randomly chosen initial state such that ∃k 6= i : (Si, Sk) ∈ T .

3. Sg ∈ S is a randomly chosen goal state such that Sg 6= Si and ∃k 6= g : (Sk, Sg) ∈ T .

As this model requires a minimal number of edges to provide sufficient variation, we arbitrarily

consider instances that have more than 1000 edges.

The Control Parameter.

In our investigation, we use the following control parameter:1

γ :=
Expected number of edges in the transition graph

Number of states

As the numerator is in the range of [0, n(n− 1)] (no self-loops), then γ ∈ [0, n− 1]. When no edges exists

(γ = 0), no path between the initial and the goal states exists. When all edges exist (γ = n− 1), every

potential path between the initial and goal states is a feasible solution. As the expected number of edges

(and γ) increases, problems become less constrained and the expected number of solutions increases.

The Region of the Phase Transition.

While the phase transition is asymptotically instantaneous, in finite problems the region in which the

probability that a problem is soluble changes from nearly zero to nearly one is referred to as the mushy

region [164]. The point in which this probability is 0.5 is referred to as the crossover point [29]. Here, we

define the mushy region and the crossover point based on the observed proportion of soluble problems as

follows.

Definition 11 (Mushy region) The range of γ in which the observed portion of soluble problems is

between 0.1% and 99.9%.

Definition 12 (Crossover point) The γ value in which the observed portion of soluble problems is 50%.

The Heuristic Function.

To investigate the effect of γ on search effort and whether an easy-hard-easy pattern emerges in the phase

transition region, we need to use a heuristic that is general enough to apply to our abstract problems

1For digraphs, γ is equivalent to c, often used in the research on phase transitions in random graphs (e.g., Karp [99]).
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but that also embodies useful search guidance. We therefore consider the following set of heuristics

H = {h0, h1, h2, ...}, based on c(x), the real cost from x to goal:

hi(x) =

c(x), if c(x) < i

i, otherwise

H is a set of admissible, increasingly informed heuristics. h0 is the completely uninformed zero heuristic,

h1 only incorporates information on the goal state, while hi incorporates information on states up to

i − 1 steps away from the goal. We note that ∀i < j : hj dominates hi, and since all actions have the

same cost, hj will have a higher rank correlation with the true distance-to-go [198].

These heuristic functions are admissible and consistent and we expect they will demonstrate an

easy-hard-easy pattern as γ varies: in underconstrained problems, the goal state or one of its close

neighbors will be added to the open list quickly, and expanded shortly thereafter; in overconstrained

problems, regardless of the heuristic, it should be easy to exhaust the relatively small part of the problem

space that is accessible from the initial state; in the mushy region neither of these easy cases will apply,

requiring more effort to find a path to the goal or to prove that none exists.

Analytical Bounds on the Mushy Region

In the previous work on the phase transition [164], the mushy region has been defined, as above, using

arbitrary thresholds for the observed percentage of soluble instances. An immediate benefit of our random

graph model is that we can derive bounds on the mushy region using the theory of random graphs.

Two well-studied phenomena in random graphs are the emergence of a giant component and the

connectivity threshold [46]. Let n be the number of vertices in the digraph, p = γ
n be the connectivity

density and ω be a non-decreasing function such that ω(n)→∞ as n→∞. For γ < 1, all components

of Dn,p are either single vertices or components smaller than ω for any ω, and so we expect the solubility

in this region to be asymptotically zero. For γ > lnn+ω
n , the graph is fully-connected, and we expect the

solubility in this region to be asymptotically one. Therefore, we can use γ ≈ 1 and γ ≈ lnn
n as principled

bounds on the mushy region.

3.3.2 Analytical Model for Benchmark Problems

To perform an analysis of the phase transition on existing heuristic search benchmark problems, we

adapt the framework in Section 3.3.1 to structured state spaces. We start by describing the benchmarks

problems we consider in our analysis. Then, we describe our approaches for generating random problem

instances for existing heuristic search problems.

Benchmarks

The Pancake Problem. The pancake problem [37, 48, 84] consists of sorting a sequence of objects

(pancakes) through a minimal number of prefix reversals (flips). Assuming a set of n pancakes of different

sizes stacked on a plate in an arbitrary order, the goal is to sort the pancakes such that that largest

pancake is at the bottom and the smallest one is on top. The available actions are k-flips, k ∈ {2, ..., n},
that correspond to flipping k pancakes at the top of the stack. When solving the problem, we use the
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gap heuristic [77], a landmark heuristic [78] based on the number of gaps in the stack:

hgap(s) := |{i | i ∈ {1, ..., n}, |si − si+1| > 1}|, (3.1)

where si represent the size rank of pancake i.

Sliding Puzzle. The n × n sliding puzzle has n2 − 1 sliding tiles and one blank. The goal is to

get from some configuration of tiles to a target configuration with the actions correspond to sliding

horizontally or vertically adjacent tiles into the blank position. The heuristic function is based on the

sum of Manhattan Distances between each tile and its target position.

Top Spin. The top spin puzzle includes a ring of n disks that can be shifted cyclically and a

turnstile that can reverse the order of r disks. The goal is to get from an initial permutation of the

n disks to a target permutation by iteratively reversing a contiguous subsequence of size r. We use a

heuristic based on a pattern database (PDB) [30, 38] that stores a lower bound on the cost to goal for

each abstract state (pattern) normally defined by only considering a part of the state while ignoring the

rest.

Grid Navigation. Consider an n×m grid of passable cells and blocked cells (obstacles). There are

four potential moves in each state (up, down, left, right), subject to obstacles and boundary constraints.

The goal is to move from the initial position to the target position, traversing only passable cells. When

solving the problem, we use the Manhattan Distance heuristic:

h(s) = |sx − gx|+ |sy − gy| (3.2)

where sx (sy) corresponds to the row (column) of the user in state s and gx (gy) corresponds to the row

(column) of the target position.

Random Instance Generator

We propose a model for generating restricted or relaxed instances of an existing heuristic search problem

at varying constrainedness level. We start by considering the transition graph induced by the problem’s

state space and create increasingly restricted or increasingly relaxed variants of this graph by removing

or adding edges. These variants are proper subgraphs or supergraphs of the original transition graph

and the instances near the original constrainedness level should have an almost identical connectivity

structure.

Definition 13 (Observed connectivity density) Let G〈V,E〉 be an arbitrary transition graph. We define

the observed connectivity density of this graph P(G) = |E|
|V |·(|V |−1) .

Definition 14 (Restricted instance) Let G〈V,E〉 be an arbitrary transition graph. Ĝ〈V, Ê〉 is considered

a restricted instance of G if P(Ĝ) < P(G) and Ê ⊆ E.

Definition 15 (Relaxed instance) Let G〈V,E〉 be an arbitrary transition graph. Ĝ〈V, Ê〉 is considered a

relaxed version of G if P(Ĝ) > P(G) and Ê ⊇ E.

Our random model generates restricted or relaxed instances of the original problem with the required

connectivity density. Consistent with the abstract model, we eliminate trivially insoluble instances.

Model 2 Given an existing problem’s transition graph G〈V,E〉 and the required connectivity density p,

the class RG,p consists of all problem instances 〈T, Si, Sg〉 such that:
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1. T , the transition graph, is a restricted instance of G if p < P(G), or a relaxed instance otherwise.

P(T ) = p.

2. Si ∈ S, a randomly chosen initial state, ∃k :(Si, Sk) ∈ T

3. Sg ∈ S, a randomly chosen goal state such that Sg 6= Si and ∃k : (Sk, Sg) ∈ T

A Domain-Specific Model

While Model 2 provides a domain-independent way to generate relaxed and restricted problems, for

some domains one can find a domain-specific parameter that controls the constrainedness of the problem.

For example, in the Grid Navigation domain, the probability of a blocked cell q clearly controls the

constrainedness of the generated instances: a high q will produce more constrained state spaces with

lower solution density while a low q produces the opposite.2

We therefore define a domain-specific model for Grid Navigation and use it in our analysis.

Model 3 (q-Constrained Grid Navigation Problems) Given grid dimensions n × m, we denote by

Gnm〈V,E〉 the transition graph of an n×m grid navigation problem and by q the probability of a blocked

cell. We define the class Rn,m,q that consists of all problem instances 〈T, Si, Sg〉 such that:

1. T , the transition graph, is an instance of Gmn in which each cell is blocked with probability q.

2. Si∈S, a randomly chosen initial state, ∃k :(Si, Sk) ∈ T .

3. Sg ∈ S, a randomly chosen goal state such that Sg 6= Si and ∃k : (Sk, Sg) ∈ T .

Heuristic Functions

In our analysis, we use domain-specific heuristic functions to solve the benchmark problems. It should be

noted that these heuristics remain admissible for the restricted instances but not for the relaxed instances.

However, admissibility is not required for our analysis.

3.3.3 Search Algorithm

Our study is focused on greedy best-first search (GBFS) [36]. Consistent with all previous phase transition

work of which we are aware, this algorithm aims to find a feasible solution. In Section 3.4 and Section

3.5, we use unicost actions and configure the search algorithm not to re-open closed nodes. Then, in

Section 3.6 and Section 3.7, we study the impact of node-reopening and cost-based search, respectively.

3.4 The Phase Transition in the Abstract Model

In this section, we present an empirical analysis of the phase transition phenomenon in our abstract

model. Using Model 1, we generate random problems in Qn,p. We carried out a series of experiments

for n = {10000, 100000, 1000000}, and for 35 γ values in [0, n−1], non-uniformly distributed, with

higher density within the mushy region boundaries. For each value of n and p, we generated 1000

random instances. For each instance, we record whether or not a solution was found and the number of

2With q = 0 the state space is still highly constrained, as there are only four actions per state. It is possible to relax the
domain further by allowing more actions (e.g., diagonal moves, jumps, etc.).
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nodes expanded in order to find a solution or prove that no solution exists. We present results only for

n = 100000 as the other plots show the same behavior.

3.4.1 The Phase Transition in Solubility

Figure 3.1 shows the probability that a solution is found plotted against γ for 100K-state random

problems. As we increase γ, there is a clear phase transition in solubility. The observed mushy region is

approximately bounded by the analytical bounds.
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Figure 3.1: Solubility plotted against γ (log scale).

3.4.2 The Difficulty of Problems

Figure 3.2 shows the median (50%-percentile) search effort required to find a first solution using h4

plotted against γ, for 100K-state random problems. There is a clear easy-hard-easy pattern in search

effort and the hard problems are associated with the phase transition in solubility. The peak in search

effort is located in close proximity to the crossover point (γ ≈ 1.65). These results are consistent with

the behavior observed for CSPs [164].
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Figure 3.2: The 50%-, 99.9%-percentile effort in number of nodes expanded (log-log scale).

The hardest instances, however, do not occur near the peak of the median search effort. Figure 3.2

also shows the 99.9%-percentile search effort which peaks close to the end of the phase transition at the

99% solubility point. This can be explained, based on our model. The insoluble instances are the rare

cases in which a very large giant component is formed with an initial state inside the giant component

and a goal state outside. For a forward search, these are the hardest instances to solve. We expect

to find similarly hard instances in the same region of high solubility for other types of search. For a

backward search, the hardest instances will be the exact opposite, in which the goal state is inside a large

component and the initial state outside. For bidirectional search, we expect the hardest instances to be

those in which two similarly large components are formed, with the goal state in one and the initial state

in another.3 The hardest soluble instances are the rare cases of a very large giant component that is still

very sparsely connected, which requires the search to exhaust most of it in order to find the solution.

While we might be able to significantly reduce the required search effort for the hardest soluble instances

using a better heuristic function, the hardest insoluble instances require exhausting the accessible portion

of the state space to prove infeasibility and cannot be eliminated or improved using a different heuristic

function.

Similar behavior of the median and higher percentiles have been observed by Gent and Walsh [52, 53]

for different classes of SAT problems, including k-SAT, and by Hogg and Williams [90] for graph coloring.

3.4.3 The Impact of the Heuristic

While it is standard to use instances across the phase transition to compare heuristic quality (e.g., Gent

et al. [50], McCreesh et al. [126]), to our knowledge, previous work has not studied the behavior of a set

of heuristics with a known, analytical quality ranking (such as our, hi, heuristic family) across the phase

transition.

3A different generator is required to generate such instances.
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Figure 3.3 shows the effort curve for h0, h1, ..., h4 for the soluble random instances with 100K states.

While for h0 there is no reduction at all as we move towards less constrained regions, h4 expands at the

crossover approximately 68 times more nodes than at the end of the phase transition (γ ≈ 4.75), and

approximately 2,500 times more nodes than at γ ≈ 20. Also, while h1 expands only twice the number of

nodes expanded by h4 at the crossover, it expands approximately 90 times more nodes at γ ≈ 4.75, and

more than 800 times more nodes at γ ≈ 20.
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Figure 3.3: Median effort (log-log scale).

3.5 The Phase Transition in the Benchmarks

In this section, we empirically evaluate the applicability of the results of the abstract model to the analysis

of existing heuristic search benchmark problems, based on the framework in Section 3.3.2. In order

to perform experiments with thousands of random instances, we use relatively small versions of these

problems. We do not expect to see the exact phenomena observed on the abstract model because a set of

random variants of an existing problem will have a much smaller variation than our abstract problem

generator. However, we expect to observe similar phenomena in close proximity to their occurrence in

the abstract model.

As with our study of heuristics of systematically differing strength, we are unaware of phase transition

work on other problems that has attempted to directly apply the abstract models of phase transition

behavior to existing benchmarks.

3.5.1 Solubility and Problem Difficulty

The Pancake Problem

We consider the 8-Pancake Problem, for which the observed connectivity density is P = 8!·7
8!·(8!−1) = 7

8!−1

(γ ≈ 7). For p < P , we generate restricted instances of the problem, in which some of the flip operators

are not allowed. For p > P , we generate relaxed instances, in which there exist additional operators that
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do not correspond to valid flip. We use hgap [77], a landmark heuristic based on the number of gaps in

the pancake stack.

Figure 3.4 shows the probability of a solution and the required search effort. There is a clear phase

transition in solubility and the mushy region is approximately bounded by the analytical bounds (we

find one soluble instance at γ = 0.9). The median effort peaks near the crossover point with the hardest

problems near the end of the mushy region. Since P is relatively high, we can see that restricting the

problem, does not immediately reduce the solubility. These results are in agreement with our abstract

model.
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(a) Solubility plotted against γ (log scale on the
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(b) Search effort (50% and 99.9% percentile) plotted
against γ (log-log scale).

Figure 3.4: Results for the 8-Pancake Problem.

Sliding Puzzle

For the Sliding Tile 8-Puzzle, we observe a different behavior (Figure 3.5). In its original form, the

8-Puzzle is not always soluble if the initial and goal states are randomly chosen because the state

space consists of two equal-sized connected components. Consequently, the solubility at the original

constrainedness P is approximately 50%. Furthermore, the behavior in the near-P region is different. As

the problem is relaxed, it immediately becomes 100% soluble, since every edge that connects the two

large components results in a fully connected state space. Alternatively, as we restrict the problem, the

solubility does not immediately decline, and remains approximately 50% for a short range of γ, and the

median effort therefore belongs to either a soluble or insoluble instance. Due to the unique structure of

two large components, almost all the insoluble instances in the near-P region require near-maximal effort,

as we have to exhaust one of the components. The result is a very noisy median as shown in Figure 3.5.

As we further restrict the problem, the two large components break into smaller components and the

effort decreases.
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(a) Solubility plotted against γ (log scale on the
x-axis).

100 101

γ

101

102

103

104

105

# 
of

 E
xp

an
de

d 
No

de
s

50%
99.9%
Original Problem
Bounds
Mushy Reg.

(b) Search effort (50% and 99.9% percentile) plotted
against γ (log-log scale).

Figure 3.5: Results for the 8-Puzzle Problem.

We also considered a variant of the problem where we generate problems in which the initial state

and the goal state are in the same component, and the added (resp., removed) edges of the relaxed (resp.,

restricted) instances are within this component. This allows us to observe the full phase transition on

one component and to avoid the sudden connection of two large components. Figure 3.6 shows results

that are more consistent with the abstract model and the previous benchmarks.
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(a) Solubility plotted against γ (log scale on the
x-axis).
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(b) Search effort (50% and 99.9% percentile) plotted
against γ (log-log scale).

Figure 3.6: Results for the 8-Puzzle Problem (one component).

TopSpin

We consider a 10-disk TopSpin with a 4-disk turnstile. The observed connectivity density is P =
9!·10

9!·(9!−1) =
10

9!−1 (γ ≈ 10). To solve the problem we use a heuristic based on a pattern database (PDB)

that abstracts the 6 disks with the highest face value. Figure 3.7 shows the probability of solution and

the 50% and 99.9% percentile search effort. The results show similar patterns to other domains.
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(b) Search effort (50% and 99.9% percentile) plotted
against γ (log-log scale).

Figure 3.7: Results for the TopSpin Problem.

Grid Navigation

We consider a 1000× 1000 Grid Navigation Problem based on Model 3 where we vary the probability

of a blocked cell q. Figure 3.8 shows the probability of solution and the required search effort plotted

against the probability that a cell is not blocked (1− q). The result for the domain-specific model also

match the results on the abstract model. We observe a rapid transition in the problem solubility, and the

median effort peaks at the crossover point.
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Figure 3.8: Results for the Grid Navigation Problem (Model 3).

3.5.2 The Impact of the Heuristic Function

In order to evaluate the impact of the heuristic’s quality on the search effort for existing heuristic search

problems, we carried out a series of experiments on the Pancake Problem.

We consider the original hgap heuristic [77], and propose H ′gap = {h′gap
0 , h′gap

1 , h′gap
2 , ...}, a set of

partial and increasingly stronger versions of hgap:

h′gap
i (x) = hgap(bottom i pancakes in x)
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For an n-Pancake problems, h′gap
0 is the uninformed zero heuristic, while h′gap

n is the original hgap

heuristic.

Figure 3.9 and Table 3.1 show the median effort for soluble instances. Similar to the abstract model,

the impact of a better heuristic is much stronger outside of the phase transition. h′gap
8 is approximately

1.7 times better than h′gap
2 at the crossover point (γ ≈ 1.55), approximately 10.9 times better at the

end of the mushy region (γ ≈ 3.5), and approximately 71 times better at γ ≈ 60. Note the very small

difference in effort among {h′gap
i |i > 0} at the crossover point.
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Figure 3.9: 8-Pancake Problem: Search effort for soluble instances using h′gap
0 , h′gap

2 , h′gap
4 , h′gap

8 (log-log
scale).

γ value h′gap
0 h′gap

2 h′gap
4 h′gap

6 h′gap
8

γ ≈ 1.55 11,670 2,004 1,854 1,423 1,174

γ ≈ 3.5 18,728 381 72 47 35

γ ≈ 20 20,524 368 25 9 6

γ ≈ 60 20,293 355 22 7 5

Table 3.1: 8-Pancake Problem: Median effort.

3.5.3 Discussion

The successful prediction of the behavior of the benchmark problems indicates some structural properties

of these problems are properly modeled by our abstract model. As all these benchmark problems are

essentially puzzles, their state space is symmetric, they have roughly the same number of operators for

every state, and they have one goal state. The fact that the 8-Puzzle results do not match our abstract

model is due to a mismatch with the connectivity assumptions in our model. The 8-Puzzle demonstrates

interestingly different behavior and the use of the phase transition framework leads us to useful insights



Chapter 3. Phase Transition and Problem Difficulty in Domain-Specific Heuristic Search33

into the structure of the problem.

While the analytical bounds on the mushy region seem to approximately hold, even on the benchmarks,

predicting the location of the crossover remains an open question. For our model, the number of solutions

corresponds to the number of s-t paths in a directed graph, a well-studied problem [177]. According

to the theory of constrainedness [51], the crossover can be predicted at the point where the expected

number of solutions is exactly one. Unfortunately, calculation of the expected number of s-t paths in

random digraph remains an open problem with some potentially useful estimation results [153].

Our investigation also showed that the effort improvement due to a more informed heuristic is much

smaller for more constrained problems, especially for problems inside the phase transition – exactly

the hardest problems. If we can hope to generalize empirical comparisons of heuristics and develop

an understanding of problem difficulty for heuristic search, we should, therefore, take into account the

location of the problem sets on the phase transition as is done, for example, in CSPs [50].

In the next sections, we empirically analyze how the phase transition phenomenon interacts with two

algorithm design decisions: the use of cost-based heuristics on problems with differing operator cost ratio

[195, 197, 31, 32] and whether or not to allow re-opening of closed nodes [175, 159, 160]. As these two

decisions have been shown to impact the problem difficulty, it will be interesting to study their impact

across the phase transition region.

3.6 Node Re-Expansions

In A*, f(n) = g(n) + h(n) and re-expansions of previously visited nodes only occur when using an

inconsistent heuristic. In suboptimal search algorithms such as GBFS and Weighted A*, as g(n) is not

considered or is weighted less than h(n), we are not guaranteed to avoid re-expansions even when using a

consistent heuristic.

Although no theoretical or empirical analysis of which we are aware has specifically addressed re-

expansions in GBFS, the authors of several recent works chose to configure GBFS to not re-open closed

nodes, even if a shorter path is found [176, 203].

For Weighted A*, re-expansions can have significant negative effect on the search effort. Valenzano,

Sturtevant and Schaeffer [175] presented empirical analysis of re-expansions for Weighted A* on pathfinding

problems. As they increased the weight on h(n), the proportional search effort spent on re-expansions

of visited nodes increased. For w = 10, they observe that 91% of the total node expansions were

re-expansions. Sepetnitsky, Felner and Stern [160] performed an empirical analysis for Weighted A* and

showed that in nearly 90% of the cases, a policy of node re-opening leads to a search effort that is at

least as high as no-reopening.

In this section we present an empirical analysis of the effect of node re-expansions across the

constrainedness range. We focus on GBFS and configure the search to re-open closed nodes if a cheaper

path is found. As before, we randomly break h-value ties. Similar to Section 3.4 and Section 3.5, we

focus on unit-cost problems and generate 1000 random problem instances for each sampled γ values in

[0, |nodes| − 1]. In Section 3.6.1, we present results on our abstract model and in Section 3.6.2 we present

results on the benchmark problems. In each experiment, we analyze both the absolute number of node

re-expansions as well as the fraction of node re-expansions out of the total number of expanded nodes

[175].
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3.6.1 Results on the Abstract Model

In this section, we present an analysis of node re-expansions on our abstract model (Model 1). We present

results for 100K-state random problems solved with the abstract heuristic h4.

Node Re-Expansion Across the Constrainedness Range

Figure 3.10 shows the 50% and 99.9% percentile of the absolute number of node re-expansions and the

fraction of node re-expansions out of the total number of expanded nodes for 100K-state random problems.

As with problem difficulty, node re-expansions has a low-high-low pattern, with the median peaking at

the crossover point. For the hardest problems (99.9% percentile), we also observe a low-high-low where

the peak is more widely spread across the mushy region.
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γ (log scale on the x-axis).

Figure 3.10: Node Re-expansions on the abstract model.

The Impact of the Heuristic

In our analysis of the impact of the heuristic in Section 3.4.3, the search effort for insoluble problems is

not impacted by the heuristic (all accessible nodes will be visited once). When we allow re-opening of

nodes, the heuristic can impact the number of re-expansions in both soluble and insoluble problems. We

therefore include insoluble instances in our analysis.

Figure 3.11 shows the absolute and relative 50% percentile of node re-expansions for h0, ..., h4 for

100K-state random problems (both soluble and insoluble). Similar to problem difficulty, the reduction in

node re-expansion is lower for less informed heuristics and for h0 we observe no reduction. We cannot

directly compute the ratio between heuristics since the number (and fraction) of re-expansions for the

more informed heuristics is zero starting from some γ value.
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Figure 3.11: Node Re-expansions in the abstract model with h0, ..., h4.

3.6.2 Results on the Benchmarks

Pancake Problem

Figure 3.12 shows the absolute and relative 50% and 99.9% percentiles of node re-expansions for the

8-Pancake problem. The median is very low, which can be attributed to the quality of the gap heuristic.

Still, we see that the median number of node re-expansions peaks inside the phase transition region and

reaches zero as we move away from the phase transition. For the higher percentiles of node re-expansions,

we observe a low-high-low pattern and a wider peak. Similar trends are observed for the relative number

of re-expansions.
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(a) Number of re-expanded nodes against γ (log-log
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(b) Fraction of re-expanded nodes plotted against
γ (log scale on the x-axis).

Figure 3.12: Node Re-expansions in the 8-Pancake Problem.

Sliding Tiles

Figure 3.13 shows the results for the one-component variant of the 3 × 3 Sliding Tiles Problem. The

number of re-expansions peaks inside the phase transition and the median reaches zero shortly after

leaving the phase transition region. The higher percentiles do not reach zero in the sampled γ range,

however we can see the decline as we move away from the phase transition. As expected, the peak of the

higher percentiles is wider for higher percentiles.
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(a) Number of re-expanded nodes against γ (log-log
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γ (log scale on the x-axis).

Figure 3.13: Node Re-expansions in the Sliding Tiles Problem.

Top Spin

Figure 3.14 shows the absolute and relative 50% and 99.9% percentiles of node re-expansions across the

constrainedness range. While the results are a bit noisy, the re-expansions peak inside the mushy region

in close proximity to the crossover point.
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(a) Number of re-expanded nodes against γ (log-log
scale).
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(b) Fraction of re-expanded nodes plotted against
γ (log scale on the x-axis).

Figure 3.14: Node Re-expansions in the TopSpin Problem.

Grid Navigation

Figure 3.15 shows the results for the Grid Navigation Problem. On average, re-expansions occur within

the mushy region and the median number of re-expansions outside of the phase transition region is zero.

For the hardest problems, we see a wide peak inside the mushy region, similar to previous domains.
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Figure 3.15: Node Re-expansions in the Grid Navigation Problem.

The Impact of the Heuristic

In this section, we analyze the impact of the heuristic on node re-expansions in a benchmark problem.

Similar to Section 3.5.2, we analyze the 8-Pancake problem with the set of increasingly strong heuristics

H ′gap = {h′gap
0 , h′gap

1 , h′gap
2 , ...}. Figure 3.16 shows the absolute and relative 50% percentile of node

re-expansions. We can see similar patterns to the abstract experiment, where the more informed heuristics

exhibit a low-high-low pattern, while for the less informed heuristics, re-expansions remain high in the

relaxed region. Specifically, for {h′gap
i |4 ≤ i ≤ 8} we see a clear low-high-low, while for h′gap

2 and the

completely uninformed h′gap
0 the re-expansions remain high even in the relaxed region.
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(a) Number of re-expanded nodes against γ (log-log
scale).
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(b) Fraction of re-expanded nodes plotted against
γ (log scale on the x-axis).

Figure 3.16: Node Re-expansions in the 8-Pancake Problem.

The empirical analysis in this section shows that the effect of node re-expansions depends on the

constrainedness of problems. This result suggests that, in addition to the implications to the number of

expanded nodes in GBFS with no re-opening of closed nodes (discussed in Sections 3.4 and 3.5), the

phase transition phenomenon also interacts with other factors that impact the problem difficulty such as

the re-expansion of nodes. In the next section, we study the interaction between the phase transition

phenomenon and the operator cost ratio, an additional factor that was shown to be connected to problem

difficulty [195, 31, 32].
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3.7 Cost-based Heuristics

Previous work has highlighted the negative impact of large operator cost ratio in cost-based search and

proposed size-based search as an alternative to cost-based search (see Section 2.3.2). In this section,

we study the impact of cost-based heuristics on problems with differing operator cost ratio across the

constrainedness range. Unlike previous sections, we are not able to demonstrate results on the abstract

models due to the incompatibility of the look-ahead abstract heuristic to cost-based search. However,

we perform an empirical analysis of cost-based search on the benchmark problems using the analytical

model for benchmarks (Section 3.3.2). For each of the benchmark domains, we propose a cost function

that is flexible enough to allow us to control the operator cost ratio and examine the change in search

effort as we manipulate it.

All the experiments in this section use GBFS configured to not re-open closed nodes and to randomly

break ties in h-values. We generated random problem instances for 25 γ values in [0, |nodes| − 1], with

higher density inside the phase transition. For each γ value we generated 1000 random instances. For

each instance, we record its solubility and the number of nodes expanded in order to find a solution or

prove that none exists.

3.7.1 Median-Case Analysis

Pancake Problem

We consider the 8-Pancake Problem, based on Model 2. To control the operator cost ratio, we define a

cost function that is based on the bottom pancake in the sub-pile that is about to be flipped. Although

somewhat artificial, this cost function is easily incorporated into the gap heuristic [77] and allows us

to investigate the effect of the operator cost ratio on the search effort. Given z, the size of the lowest

pancake in the flipped sub-pile, we define the cost of the flip to be zm. Again, we use the parameter m

to control the operator cost ratio, which is 8m for the 8-Pancake Problem.

To directly compare the effect of the different cost functions across the phase transition, we analyze

the relative number of expanded nodes. Since the operator cost ratio has no effect on the search effort

required to solve insoluble instances (i.e., every node that is accessible from the initial state will be

expanded exactly once to prove insolubility), we focus only on the soluble instances. To avoid bias due

to small sample size, we only consider the points in the phase transition in which at least 10% of the

problems are soluble.

Figure 3.17 shows the median ratio of the number of expanded nodes when using a cost function

with higher operator cost ratio (i.e., m ∈ {2, 3, 4}) to the search effort when using a low operator cost

ratio heuristic (m = 1). As Figure 3.17 clearly shows, the increase in search effort, associated with the

large operator ratio, is centered in the region of phase transition. Outside that region, the effort ratio

gradually diminishes towards a ratio of one.
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Figure 3.17: 8-Pancake Problem: Median effort ratio of soluble instance vs. γ.

Figure 3.18 shows the median search effort ratio for the 8-Pancake Problem with a large operator ratio

(m=4) between the cost heuristic and the distance heuristic d. The improvement due to the distance

heuristic is also concentrated in the phase transition region. In fact, the distance heuristic seems to

behave similarly to a cost-based heuristic with a lower operator cost ratio (which, of course, it is).
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Figure 3.18: 8-Pancake Problem: Median effort ratio of soluble instance vs. γ.
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Sliding Tiles

We consider the 3× 3 Sliding Tiles Problem based on Model 2. As shown earlier, the state space consists

of two large disconnected components [193] and we therefore generate problems in which the initial state

and the goal state are in the same component.

Wilt and Ruml [195] incorporated costs for the Sliding Tiles problem by assigning different costs for

moving each tile. In a later work, they showed that using an inverse cost structure, in which the cost of

moving a tile is in inverse correlation to the face value of the tile, has a larger expected local minimum

[197]. We therefore use a parameterized version of Wilt and Ruml’s cost function in which the cost of

moving a tile with a face-value of z is 1
zm . The parameter m controls the operator cost ratio, which is

8m, for this domain. The heuristic function is based on the standard Manhattan Distance, weighted by

the cost associated with each tile.

Figure 3.19 shows the median search effort ratio between a cost-based search for m ∈ {1, 1.5, 2} and a

search based on the distance heuristic d. In this case we see that the impact on search effort ratio that

is associated with a larger operator cost ratio peaks just after the end of the observed mushy region.

This can be due to the unique structural properties of this state space (the peak is located near the

constrainedness of the original problem and the relaxed instances are all soluble). While the negative

impact of operator cost ratio extends slightly beyond the phase transition region, it is still directly

connected to the constrainedness of problems and diminishes as we move away from the phase transition.
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Figure 3.19: 3× 3 Sliding Tiles: Median effort ratio of soluble instance vs. γ.

TopSpin

Wilt and Ruml [197] found that in some cases, using a cost-based heuristic requires less search effort

than using the distance heuristic, due to smaller local minima in the cost-based heuristic. We observe

such behavior for the TopSpin domain.

We consider a 10-disk TopSpin domain with a 4-disk turnstile. Our cost function is based on the sum
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of faces of the disks in the turnstile:

Cm(s, a) = (
∑
z∈Ta

z)m

where Ta is the set of faces of the disks in the turnstile, and m is a parameter controlling the operator

cost ratio.

Figure 3.20 shows the median search effort for the TopSpin problem with a PDB heuristic for

m∈{1, 1.5, 2.0}, compared to a distance-based heuristic. As expected, we observe an increased effort

as we increase the operator cost ratio that is centered inside the phase transition. In this case the

distance heuristic is not strictly better than the cost-based heuristics. For the more relaxed instances,

the cost-based heuristics actually expand fewer nodes. Furthermore for m = 1, we see that the distance

heuristic sometimes expands more nodes even inside the phase transition region. This is consistent with

Wilt and Ruml’s observation.
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Figure 3.20: 10-disk TopSpin: Median effort ratio of soluble instance vs. γ.

Grid Navigation

We consider a 1000× 1000 Grid Navigation Problem based on Model 3. We define Cm(s, a), the cost of

applying action a on state s, using a parameter m:

Cm(s, a) =




1m, if a = up

2m, if a = down

3m, if a = left

4m, if a = right

The parameter m controls the operator cost ratio. As the smallest operator cost is fixed to 1,

the operator cost ratio is then 4m. The heuristic function is based on Manhattan Distance, weighted

accordingly.
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Figure 3.21 shows the median search effort ratio between a cost-based search for m ∈ {2, 4, 10} and

a search based on the distance heuristic d. The increase in search effort due to large operator ratio is

centered in the region of phase transition. Outside that region, the effort ratio gradually diminishes

towards a ratio of one.
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Figure 3.21: Grid Navigation: Median effort ratio of soluble instance vs. γ.

3.7.2 The Hardest Instances

In the previous section we investigated the effect of operator cost ratio on the median search effort. Here

we examine the hardest instances across the constrainedness range.

Figure 3.22 shows the 99.9%-percentile effort ratio for soluble instances for the four benchmarks.

The differences are significantly larger inside the phase transition region, compared to the median case.

However, high-percentile ratios too, gradually diminish as we move away from the phase transition.

Interestingly, the peak of the ratio curve slightly shifts to the more relaxed areas, compared to the median

case.
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(a) 8-Pancake Problem.
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(d) Grid Navigation.

Figure 3.22: 99.9%-percentile effort ratio vs. γ.

The shift in peak suggests that the largest ratio for the hardest problems is found in a more relaxed

region of the phase transition. Figure 3.23a and Figure 3.23b show the relative effort (compared to the

distance heuristic) and absolute effort in the higher percentiles of the Pancake problem with m = 4. We

can see that the peak of the highest percentiles of the absolute effort and the peak of the effort ratio

both shift to the more relaxed regions in the phase transition. However, the results suggest that this

phenomenon appears in the highest percentiles (≥ 99%). Similar results have been observed for the other

domains. Figure 3.24 shows similar analysis to Figure 3.23b for the other benchmarks.
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Figure 3.23: 8-Pancake Problem.
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(c) Grid Navigation.

Figure 3.24: Higher percentiles of absolute effort.

Exceptionally Hard Problems

The anomaly of finding the hardest instances in the “easy” regions of the phase transition has been

observed for other types of computational problems [52, 53, 90]. Such problem instances have been

termed exceptionally hard problems (ehps). The ehps are not simply outliers but rather outliers in an

unexpected region of the phase transition and hence have been the subject of a number of investigations

[52, 165].

We previously showed that, for unit-cost problems, the 99.9%-percentile peaks in the “easy” region

[26]. However, that curve is dominated by insoluble instances. This result is not surprising, since heuristic

search with a heuristic function that returns a finite value has to exhaust the accessible state space to

prove infeasibility. However, the existence of soluble ehps in heuristic search is a new result.

3.8 Discussion

Our results show that the phase transition phenomenon is strongly connected to problem difficulty.

First, we show that the median effort exhibits an easy-hard-easy pattern that peaks inside the phase

transition region. Then, we show that two other factors that impact of two factors that were shown to

be associated with higher search effort, the operator cost ratio and the re-expansion of nodes, depends

on the constrainedness of problems and peaks in the phase transition region. Consistent with these

observations, we also show that the distance heuristic, that can mitigate the effect of a large operator

cost ratio, provides significant improvement only inside the phase transition.

It is important to clarify that while the phase transition is useful in predicting the location of the

hardest problems (both the median hardest and single hardest instances), it does not predict the required

search effort. Such a prediction requires taking into account other factors such as the size of the state

space and the strength of the heuristic. However, our results show that the phase transition is a key

factor in search effort.

3.8.1 Limitation of the Abstract Model

Our analysis of node re-expansions and operator cost ratio highlights an important limitation of our

abstract model: the use of look-ahead heuristics. Our abstract heuristic function hi(x) heuristic provides

an accurate distance-to-goal for nodes that are within a distance of i nodes, otherwise it returns i. The

resulting search surface consists of a (potentially large) plateau of states with an h-value of i. Once a
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state that is i− 1 steps from the goal is generated, we can directly follow a path of decreasing h-values to

the goal.

Real heuristic search problems tend to have a combination of local minima and plateaus (see Section

2.3.1), however our abstract model is not capable of modelling local minima. While our abstract model

could support the analysis of less informed heuristics represented by a larger plateau (i.e., a larger set

states we cannot distinguish w.r.t their proximity to the goal), it cannot support an analysis of misleading

heuristics represented by local minima (i.e., states that will seem like they are closer to the goal while, in

fact, they are not). Such model is needed, for example, to study the operator cost ratio that induces

larger local minima [197]. While our analysis of the benchmark problems does consider local minima that

appear due the heuristic functions we use, developing an abstract model that can model local minima is

an interessting direction for future work.

3.8.2 The Phase Transition and Local Minima.

Previous work has shown that the negative effect of increasing the operator cost ratio is due to the

deepening of the local minima, while the distance heuristic tends to have smaller local minima [195, 197,

31, 32]. Our results show that the effect of increasing the operator ratio, and the benefit often gained by

using the distance heuristic, is significant in the phase transition region, and decreases as we move away.

These results suggest a connection between the constrainedness of a problem and the existence of

local minima. A reasonable hypothesis is that the likelihood and/or extent of local minima is much larger

in the phase transition and insignificant outside. This hypothesis is supported by the discovery of soluble

ehps in heuristic search. Such instances in other types of computational problems are associated with

large insoluble subproblems that the search has to exhaust if it enters [166, 165, 52]. Wilt and Ruml

[197] defined local minima in heuristic search as a region that does not contain the goal but that the

search will have to exhaust if it enters. The similarity between these definitions, as well as their similar

location in the phase transition, suggests that they are analogous phenomena. As the large insoluble

subproblems are directly associated with the constrainedness of the problem, we conjecture a similar

relationship exists for the local minima in satisficing heuristic search.

Several methods have been suggested to mitigate the effect of local minima, including the use of

randomization [176] and local exploration [203, 204]. Investigating these methods using the framework of

phase transition may yield interesting new insights.

Following these research directions, in Chapter 4, we study the connection between local minima and

constrainedness in GBFS. In particular, we show that the distribution of local minima depth depends on

the constrainedness of problems and results in a heavy-tailed behavior that accounts for the ehps. We

also investigate the impact of different randomization techniques on the distribution of local minima.

3.9 Conclusion

We performed the first empirical analysis of the phase transition in heuristic search, focusing on greedy

best first search. Our results establish the existence of a rapid transition in the solubility of heuristic

search problems and the occurrence of the hardest problems during this transition. We also showed that

the effect on search effort associated with node re-expansions and a larger operator ratio is concentrated

in the phase transition.
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The phase transition phenomenon has been a central tool in the study of problem difficulty for

computational problems, and our results connect heuristic search to a variety of problems and body of

literature for which similar results have been obtained.

Our results suggest that many of the phenomena that are associated with larger search effort

are effected by the phase transition and, therefore, that they should be studied at different levels of

constrainedness. Specifically, we hypothesize that the existence of local minima in heuristic search

problems is closely related to the phase transition phenomenon. In the next chapter we focus on local

minima in GBFS and present evidence that supports this hypothesis.



Chapter 4

Heavy-tailed Behavior and

Randomization in Satisficing

Planning

In this chapter, we continue our study of empirical models of problem difficulty in GBFS. In Chapter

3, we discovered the existence of exceptionally hard problems (ehps) that appear in ensembles of easy

problems where the median effort is relatively low. In this chapter, we focus on domain-independent

satisficing planning and present an empirical model that accounts for such ehps and show how this model

can inform the design of more efficient algorithms that can solve ehps faster. Our empirical model is

inspired by work on CSPs and SAT and demonstrates how empirical models that were developed for

these problems can be adapted to heuristic search problems.

4.1 Introduction

The study of runtime distributions of several computational problems (most notably CSP and SAT)

found heavy-tailed behavior for both ensembles of random problems and multiple runs of a randomized

backtracking search on a single problem [60]. This behavior accounted for the phenomenon of exceptionally

hard problems (ehps) and was shown to be related to the distribution of depth of subtrees with no solution

(inconsistent subtrees) [62]. In critically constrained problems, the probability of a deep inconsistent

subtree is very high, while in relaxed problems there is a low, but non-negligible probability of a deep

inconsistent subtree. These results led to the development of techniques such as randomized restarts and

tailored portfolios [60] that improve search performance by jumping out of deep inconsistent subtrees.

In Chapter 3, we focused on domain-dependent satisficing heuristic search and showed a connection

between problem difficulty and problem constrainedness on ensembles of random problems. Furthermore,

we discovered the existence of exceptionally hard instances that suggests that a heavy-tailed behavior,

similar to the one observed for CSPs and SAT, might exist for satisficing planning.

In this chapter, we demonstrate for the first time the existence of heavy-tailed behavior in satisficing

planning using GBFS. Then, we show that the analysis of the distribution of inconsistent subtree depths

can be applied to GBFS as an explanatory framework for the observed heavy-tailed behavior. Building on

47
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these results, we discuss methods to reduce the heavy-tailed behavior and the phenomenon of exceptionally

hard problems. Specifically, we make the following contributions:

1. We show that fat- and heavy-tailed behavior can be observed on ensembles of random planning

problems across different domains and heuristic functions.

2. We present a variant of greedy best-first search that introduces a limited amount of randomization

in the search procedure and show that heavy-tailed behavior can be observed in multiple runs of

the randomized search procedure on a single problem instance.

3. We demonstrate how different notions of constrainedness that are commonly used in the modeling

of planning problems can lead to a fat- or heavy-tailed distribution of search effort.

4. We introduce the notion of local minimum h-depth and find an exponential correlation between the

h-depth of the single deepest local minimum encountered and the total search effort (i.e., number

of expanded nodes).

5. We show that the distribution of local minima h-depth in planning problems depends on the

constrainedness of problems, and that heavy-tailed behavior appears when there is a low, but

non-negligible, probability of encountering a deep local minimum during search.

6. We show that recent methods of non-greedy random exploration can help reduce the heavy-tailed

behavior in a similar manner to randomized restarts in CSPs.

7. Inspired by combinatorial search, we propose RR-GBFS, a randomized restarting GBFS that

outperforms GBFS by escaping deep local minima.

The work in this chapter is based on the publications [27, 28].

4.1.1 Organization

In Section 4.2, we present the background on heavy tails and their implications to the analysis of the

runtime distribution of computational problems. In Section 4.3 we describe the analytical framework

we use to study the heavy-tailed behavior in satisficing planning. Sections 4.4 and 4.5 present an

empirical analysis of the heavy-tailed behavior in satisficing planning using GBFS and its connection to

the distribution of local minima encountered in the search. Finally, in Section 4.6 we study the use of

randomization in GBFS in order to reduce the heavy-tailed behavior and improve GBFS performance.

In Section 4.7, we summarize the chapter.

4.2 Background

The study of full runtime distributions of algorithms over a problem set, rather than just the median

or the mean, often provides useful information that can contribute to the design of better algorithms.

Previous work found exceptionally hard instances in many kinds of computational problems (e.g., Gent

and Walsh [52]), that were attributed to a fat- or heavy-tailed behavior on ensembles of random problems

in the easy region of the phase transition [64]. This behavior does not appear in ensembles of highly

constrained instances, for which the median search effort is very high and all instances are uniformly hard.

However, as we relax the problems, we move to a statistical regime in which the median effort is low, and
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the hardest instances are exceptionally hard. The runtime distribution in this regime is characterized by

a fat- or heavy-tailed behavior, i.e., a slow decay of the tail of the survival function.

Later, Gomes et al. [62] showed that heavy-tailed behavior can also be found in the runtime distribution

of a randomized search procedure on a single instance, suggesting that the ehps can be easily solved by

minor changes in the search procedure such as randomization. This result has motivated much work on

eliminating the heavy-tailed behavior using randomized restarts, portfolios, etc. [60].

4.2.1 Fat- and Heavy-Tailed Distributions

The tail of a distribution is the very large (small) values of the distribution that determine the shape of

its right (left) side [179]. Fat- and heavy-tailed distributions have a long tail containing a considerable

concentration of mass.

Fat-tailedness can be determined based on the kurtosis of the distribution defined as κ = µ4

µ2
2
, where

µ2 and µ4 are the second and fourth moments, respectively. Since moments are very sensitive to the most

extreme points in the sample’s tails and many heavy-tailed distributions do not even have asymptotically

finite moments, we use the L-kurtosis measure. L-kurtosis, denoted as τ4, is based on the L-moments

[93] and can be thought of as a measure similar to kurtosis that gives less weight to the extreme tails of

the distribution, and is less sensitive to small sampling biases (for a detailed discussion of L-moments

and specifically L-kurtosis see Hosking [93]). τ4 is in the range (− 1
4 , 1) and the Normal distribution has

τ4 = 0.1226. Distributions with higher value are called leptokurtic and are considered to be fat-tailed.

Heavy-tailed distributions are considered “heavier” than fat-tailed distributions, and all the moments

of a heavy-tailed distribution are infinite above some order [65]. A random variable X with distribution

function F (x) is considered heavy-tailed if it has a Pareto-like decay of its tail above some threshold xl

[148], i.e., there exists some xl>0, c>0, α>0 such that

1− F (x) = P [X > x] = cx−α, x > xl.

An approximately linear behavior over several orders of magnitude in the log-log plot of 1 − F (x)

(i.e., the survival function) is a clear sign of heavy-tailed behavior with the slope providing an estimate of

the stability index α [65]. In addition to the visual check, we can estimate α using the Hill estimator [85]

or by fitting a generalized Pareto distribution (GPD) model to the peaks over threshold (POT) using

maximum likelihood [167]. If 1 < α < 2, X has infinite variance and if 0 < α ≤ 1, X has both infinite

mean and variance [62]. Due to the limitations of the Hill estimator (see Embrechts et al. [41]), we use

the POT method.

To demonstrate the difference between a heavy and a non-heavy tailed behavior, we use the example

from Gomes et al. [65]. Figure 4.1 shows the log-log plot of 1− F (x) vs. x for a normally distributed

random variable with a mean of 2 and two possible values for the standard deviation. It also shows a

random variable that represents the number of steps it takes for a symmetric random walk on a line to

return to its starting point. The Normal distributions exhibit a fast-decay behavior, while the random

walk exhibits a clear heavy-tailed behavior indicated by the approximately linear behavior on the log-log

plot. The L-Kurtosis of both Normal random variables is τ4 ≈ 0.12, while the random walk has τ4 ≈ 0.98

and α ≈ 0.5.
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Figure 4.1: Heavy and non-heavy tailed behavior from Gomes et al. [65].

4.2.2 Randomized Search Algorithms

When analyzing the runtime distribution over an ensemble of problems, large variability (such as observed

for ehps) can be either due to the variability among the instances in the ensemble or of the search

algorithm itself. In order to isolate the latter, Gomes et al. [65] studied the runtime distribution of

multiple runs of a randomized algorithm over the same instance. A fat- or heavy-tailed behavior in the

runtime distribution means that there is a low (but non-negligible) probability of very long runs and

suggests that using randomized restarts can dramatically reduce the variability and potentially eliminate

the heavy tail.

Gomes et al. [65] proposed a method for adding randomization to complete, systematic, backtrack

search algorithms such as DPLL. Traditionally, these algorithms construct a solution incrementally, and

at each step a heuristic is used to decide how the partial solution will be extended (e.g., by assigning

a value to a variable). Eventually, either a solution is found, or the algorithm backtracks to an earlier

partial solution. If several decisions are deemed equally good, the algorithm typically applies some

predefined rule to decide which decision to make. An easy way of introducing some randomization is to

randomize the tie-breaking between decisions that are equally good, however, randomized tie-breaking

might not be sufficient in many cases. Therefore, Gomes et al. [65] introduced H , a “heuristic equivalence”

parameter, that expands the set of decisions deemed equally good. Given this modification, each run of

the algorithm on a specific instance will differ in the order of decisions, and potentially in the runtime.

4.2.3 Constrainedness of Problems

Different works on combinatorial and heuristic search have used different notions of constrainedness.

In our analysis of random heuristic search problems in Chapter 3, we used the density of edges in

transition graph. In the analysis of random 3-SAT problems, Mitchell, Selman and Levesque [131] used

clause-to-variable ratio. For random CSPs, Smith and Dyer used the tightness of the constraint graph
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[164].

For structured benchmark domains, domain-specific parameters can be used. Examples of such

parameters are the percent of pre-assigned colors in the quasigroup completion problem [65] or the

probability of a blocked cell in Grid Navigation in Chapter 3.

Gent et al. [51] suggested a unified definition of constrainedness that is based on the expected number

of feasible solutions, however it is not easy to calculate this number for a planning problem [25].

4.3 Analytical Framework

In this section we describe the analytical framework we use to investigate heavy-tailed behavior in planning.

We first describe two notions of constrainedness of planning problems that we can manipulate in order

to observe the different statistical regimes. Then, we propose a method to randomize a deterministic

planning algorithm in order to analyze the runtime distribution on a single problem instance. Finally, we

describe the benchmark problems we use.

4.3.1 Constrainedness of Planning Problems

A systematic study of fat- and heavy-tailed behaviors in satisficing planning involves analyzing the

runtime distribution of instances of different constrainedness. In planning problems, there are various

parameters that can effect the constrainedness of the problem (i.e., the expected number of feasible

solutions). We describe two types of parameters that are often used to model planning problems.

Resource Constrainedness

When planning with consumable resource, i.e., resources that cannot be replenished, resource constrained-

ness is the amount by which the initial resource supply exceeds the minimum needed [87, 57]. The

resource constrainedness can be measured by a parameter C ≥ 1, namely the maximum number by which

we can divide the resource supply without rendering the task unsolvable [134]. Nakhost et al. [134]

studied the performance of state-of-the-art domain-independent planners as a function of C. To do so,

they introduced an extended benchmark suite with three benchmark domains: NoMystery, TPP, Rovers.

Goal Constrainedness

The definition of a goal condition in a planning problem can also be used to control the constrainedness

of a problem. For a goal condition gi, we use Gi to denote the induced set of goal states (i.e., states that

satisfy the goal condition). We consider gj to be a relaxation of gi if Gi ⊆ Gj , meaning that every state

that satisfies gi will satisfy gj . For example, if gi is the conjuction of a set of propositions P and gj is the

conjuction of a set of propositions P ′ such that P ′ ⊆ P , we consider gj to be a relaxation of gi. There

are, however, more nuanced relaxations that are not based on dropping goal propositions and we provide

an example in our benchmarks.

4.3.2 Benchmark Problems

To study the effect of resource constrainedness we use the benchmark domains used in Nakhost et al.

[134]: NoMystery, Rovers, and TPP. To study the effect of goal constrainedness we use the domains

Maintenance, Parking, and Freecell. Following is a brief description of each domain.
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NoMystery

NoMystery is based on the domain used in IPC’11. The goal is to transport packages between locations,

using a set of trucks with a limited amount of fuel.

Rovers

Rovers is based on the domain from IPC’02, without the “recharge” operator (to make the resource

consumable). The goal in this domain is to take a number of rock samples and images and transfer them

to a lander.

TPP

TPP was used in IPC’06. An agent is required to buy a set of items that are being sold at different

prices in different markets. The limited resource is money, which is required for buying the items and for

driving between markets.

Maintenance

Maintenance was used in IPC’14. Mechanics work each day at one airport. Each plane visits some

airports on given days. The goal is to schedule the mechanics’ visits to the airports such that each plane

will be maintained once.

Parking

Parking (IPC’11, IPC’14) involves parking cars at N curbs where cars can be doubled-parked but not

tripled-parked. The problem is to find a plan that moves from one configuration of cars to another by

moving cars between curbs.

Freecell

Freecell (IPC’00, IPC’02) involves moving cards from initial configuration to a suit-sorted collection of

stacks using the available free cells.

4.3.3 Randomized Heuristic Search

In order to analyze the runtime distribution on a single instance, we need to introduce a limited amount

of randomization into the search. In greedy best-first search (GBFS), the heuristic function determines

the order of expansions. However, most commonly used heuristics are deterministic and so re-running

the same instance will yield the same h-values for all states (notable exceptions are heuristics that are

based on a random sample of the state space, e.g., Haslum et al. [75]). Although random tie-breaking

can provide some randomness, in many domains it may not be sufficient.

We therefore present a general, parameterized method to randomize a heuristic function, and use

it in our empirical analysis. Given a heuristic function h(x) and a parameter p ≥ 0, that represents

the extent of randomization, we consider h∆p(x) to be an p-randomized version of h if for all states s:

h∆p(s) = h(s) + ∆h
p where ∆h

p is a random number in the range [−p·h(s), p·h(s)]. The heuristic values

are rounded to maintain integer values. When used with deferred heuristic evaluation [76], we randomize

the order in which the successors of a node are generated.
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This method is similar to the one proposed by Gomes et al. [65] for backtracking search, as it randomly

orders nodes that are within 100·p percent of their h-values, and does not effect the completeness of the

search algorithm.

4.4 Empirical Analysis of Heavy-tailed Behavior in Satisficing

Planning

In this section we present an empirical analysis of the runtime distribution of the benchmark problems

for different levels of constrainedness. We use GBFS and configure the planner not to re-open nodes.

We run experiments for several commonly-used heuristic functions: the FF heuristic [88] (denoted as

hFF ), the landmark count heuristic [150], the landmark cut heuristic [78], and the context-enhanced

additive (CEA) heuristic [79]. In our experiments, we use deferred heuristic evaluation [149], however we

demonstrate similar results for standard heuristic evaluation in Appendix A.

4.4.1 Resource Constrainedness

NoMystery

We consider NoMystery problem instances with six locations and six packages. The resource constrained-

ness parameter (C) controls the amount of available fuel. Figure 4.2 shows the search effort distribution

for 1000 random instances for different values of C, using hFF . For C=1, the tail decays much faster

than the more relaxed problems. For C=2 we see a clear heavy-tailed behavior (a near-linear behavior

over a several orders of magnitude). Although the problems in C=2 are, on average, much easier, the

hardest instances are significantly harder than the median, compared to C=1.
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Figure 4.2: NoMystery: 1000 random instances with hFF .

More interesting is the search effort distribution of a randomized search algorithm on one instance.

We used the median instance from the ensemble C=1, and created relaxed instances by increasing C.

Figure 4.3 shows the search effort distribution of 1000 runs of a randomized search with hFF
∆0.1 on the

same instance for different values of C. The results clearly show a transition from a statistical regime

in which the problem is very constrained and the tail decays quickly (C=1) to a regime in which the



Chapter 4. Heavy-tailed Behavior and Randomization in Satisficing Planning 54

problem is more relaxed and the tail decays much more slowly. For C=3.0, we see a clear heavy-tailed

behavior with extremely long runs that are even longer than the longest run for C=1. The τ4 values

support these observations as C=1 has a lower τ4 than the Normal distribution indicating a very thin

tail. As we increase C the τ4 value increases, reaching 0.9 for C=3.5. As we relax the problem further

we start see a decline in the heavy-tailed behavior and the corresponding smaller τ4 value.
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Figure 4.3: NoMystery: 1000 randomized runs on a single instance with hFF .

To estimate the stability index α of the tail, we fit a GPD model to the peaks over threshold using

the maximum likelihood method [17]. For C=3.0 we used a tail that corresponds to the largest 10%

samples (chosen based on a visual inspection, see Figure 4.3). We estimated α ≈ 0.69, and the quality of

the fit is presented in Figure 4.4. The estimated value suggests that the underlying distribution has an

infinite mean and variance (0 ≤ α ≤ 1).
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Figure 4.4: NoMystery: Fitting a GPD models with α = 0.69 to the tail of C = 3.0.

Figure 4.5 shows the mean effort (normalized to a 0-1 scale) over an increasing number of runs for
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different values of C. When C=1, the mean stabilizes after a small number of samples (similar to the

normal distribution). As we increase C, the mean takes longer to stabilize and still exhibits a large

variance. When we move to the heavy-tailed regime, the mean does not stabilize with increasing sample

size. This pattern is consistent with the erratic behavior of the mean, observed by Gomes et al. [65] in

CSPs. As we increase C further, problems gradually become universally easy and the mean starts to

stabilize again (not presented).
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(a) Non-heavy-tailed regime (C = 1).
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(b) Heavy-tailed regime (C = 3).

Figure 4.5: NoMystery: Sample Mean.

To demonstrate that this phenomenon is not unique to hFF , Figure 4.6 shows the runtime distribution

for 1000 runs of a randomized search using the landmark count heuristic [150], the landmark cut

heuristic [78], and the context-enhanced additive (CEA) heuristic [79], all with p=0.05. While the exact

performance differs between the heuristics, they all exhibit fat- or heavy-tailed behavior as the problem

constrainedness is relaxed.
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(a) Landmark cut heuristic.
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(b) Landmark count heuristic.
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(c) CEA heuristic.

Figure 4.6: NoMystery: Results for other heuristics.

Rovers

We consider Rover problem instances with a single rover, six waypoints, and six objectives. The

constrainedness parameter C controls the energy level of the rover. Figure 4.7a and Figure 4.7b show

the runtime distribution for 1000 random problems and 1000 randomized runs on a single problem,

respectively. We observe a fat- and heavy-tailed behavior for relaxed problems associated with a higher

τ4. For Figure 4.7b, we estimated α ≈ 0.78 for for C = 4.0 (Figure 4.8a) and observe the associated

erratic behavior of the mean (Figure 4.8b).
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(a) 1000 random instances with hFF .
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Figure 4.7: Results for Rovers.
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(a) Fitting a GPD models with α = 0.78 to a tail
that corresponds to the largest 10% samples.
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(b) Erratic behavior of sample mean.

Figure 4.8: Rovers: Results for C = 4.0.

Figure 4.9a, Figure 4.9b, and Figure 4.9c show analyses similar to Figure 4.7b using the landmark

cut heuristic, the landmark count heuristic, and the CEA heuristic, respectively. For the landmark cut

and landmark count heuristics we used p = 0.05, similar to FF. For the CEA heuristic, we used p = 0.15

since we empirically found it required higher p to exhibit heavy tailed behavior.
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(a) Landmark cut heuristic.

102 103 104 105 106

Expanded Nodes

10−3

10−2

10−1

100

1-
CD

F 
(S

ur
vi

va
l)

C= 1.0
C= 2.0
C= 3.0
C= 4.0

(b) Landmark count heuristic.
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(c) CEA heuristic.

Figure 4.9: Rovers: Results for other heuristics.

TPP

We consider TPP problems with seven markets and five goods, each sold in two markets, where the

constrainedness parameter (C) controls the available money. Figure 4.10a and Figure 4.10b show the

runtime distribution for 1000 random problems and 1000 randomized runs on a single problem, respectively.
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In Figure 4.10a, we observe a fat-tailed behavior for relaxed problems associated with a higher τ4. In

Figure 4.10b, we observe a heavy-tailed behavior for C = 1.75 with an estimated α ≈ 0.78 (Figure 4.11a)

and the associated erratic behavior of the mean (Figure 4.11b).
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Figure 4.10: Results for TPP.
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(a) Fitting a GPD models with α = 0.78 to a tail
that corresponds to the largest 10% samples.
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(b) Erratic behavior of sample mean.

Figure 4.11: TPP: Results for C = 1.75.

Figure 4.12a, Figure 4.12b, and Figure 4.12c show analyses similar to Figure 4.10b using the landmark

cut heuristic, the landmark count heuristic, and the CEA heuristic, respectively.
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(a) Landmark cut heuristic.
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(b) Landmark count heuristic.
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Figure 4.12: TPP: Results for other heuristics.



Chapter 4. Heavy-tailed Behavior and Randomization in Satisficing Planning 58

4.4.2 Goal Constrainedness

Maintenance

We analyze the effect of the goal constrainedness by relaxing the goal of having all n airplanes checked

by a mechanic. We start by using a simple, however a bit artificial, relaxation of the goal by requiring

that only a chosen subset of λ airplanes be checked (|λ|≤n). We consider a problem with 12 days and

36 planes, and analyze the runtime distribution for different λ sets. Figure 4.13a shows the runtime

distribution of 1000 random instances and exhibits fat-tailed behavior with significantly increasing τ4.

Figure 4.13b shows the distribution for a randomized search with hFF
∆0.05 on one instance. Again,

we used the median instance of the more constrained ensemble (|λ|=36), however this time we had to

manually create relaxed variants by choosing a random subset of planes (we repeated the process several

times and observed similar patterns). As we relax the problem we observe a fat tailed behavior with τ4

increasing from approximately 0.07 to 0.84.
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Figure 4.13: Results for Maintenance.

We also analyze an alternative relaxation, of a more combinatorial nature: at least λ airplanes will be

checked, but we do not decide which ones. Figure 4.14 shows the results for problems with 8 days and

24 planes. Again, we see a fat- and heavy-tail behavior, with Figure 4.14a showing clear heavy-tailed

behavior for relaxed instances. For C = 15, we estimate α ≈ 0.83 (Figure 4.15a) and observe erratic

behavior of the mean (Figure 4.15b).
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Figure 4.14: Results for Alternative Relaxation of Maintenance.
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(a) Fitting a GPD models with α = 0.83 to the tail
of C = 15.
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(b) Erratic behavior of sample mean for C = 15.

Figure 4.15: Results for Alternative Relaxation of Maintenance.

Figure 4.16 shows similar results to Figure 4.14b using the landmark count heuristic and the CEA

heuristic. Landmark cut could not be computed due to the use of axioms in the Maintenance domain.
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(a) Landmark count heuristic.
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(b) CEA heuristic.

Figure 4.16: Maintenance (alternative): 1000 randomized runs on a single instance.

Parking

We consider Parking problem instances with 8 cars and 5 curbs and analyze the effect of the goal

constrainedness by allowing each car to park in more than one location. The goal constrainedness

parameter λ controls the additional goal locations for each car. When λ = 0 cars are only allowed to

park in the original goal configuration and when λ > 0, we randomly add λ goal locations for each car.

Figure 4.17a and Figure 4.17b show the distribution for 1000 random problems and 1000 randomized

runs on a single instance (p = 0.1), respectively. We observe an interesting pattern: as we relax problems,

we first observe a significant increase in the problem difficulty of the majority of problems followed by

the more familiar reduction in difficulty. This pattern can potentially be due to less efficient pruning by

the FF heuristic in the presence of more than one goal location. Still, as we relaxed the problem further

we see the transition to a clear fat-tailed behavior (indicated by the τ4 values) and the majority of the

problems are solved faster, even compared to λ = 0.
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Figure 4.17: Results for Parking.

Figure 4.18 shows similar results to Figure 4.17b using the landmark cut heuristic and the CEA

heuristic. We found the landmark count heuristic to be not sufficiently informative to solve this problem

efficiently.
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(a) Landmark cut heuristic.
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(b) CEA heuristic.

Figure 4.18: Parking: 1000 randomized runs on a single instance.

Freecell

In Freecell, each card with face value i has to placed on top of a card with face value i− 1 in each stack.

We define a parameter λ that controls the number of cards that each card can be placed on top of, in

each stack and analyze instances with four suits of cards, each containing 10 cards. Figure 4.19a and

Figure 4.19b show the distribution for 1000 random problems and 1000 randomized runs on a single

instance, respectively. Note that in Figure 4.19a, we see a clear heavy-tailed behavior for all levels of

constrainedness, including for λ = 1. Heavy-tailed behavior even in λ = 1 could suggest that either these

instances are relaxed enough to exhibit heavy-tailed behavior or that there is a large variance in the

problem set.
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(a) 1000 random instances with hFF .
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Figure 4.19: Results for Freecell.

We found the landmark cut and landmark count heuristic not sufficiently informative, even in highly

relaxed instances. However, for the CEA heuristic, Figure 4.20 shows a similar heavy-tailed behavior to

the one observed for the FF heuristic. Note that for λ = 1, there was additional instance that could not

be solved in a time limit of 60 minutes.
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Figure 4.20: 1000 randomized runs on a single instance with the CEA heuristic.

4.4.3 Discussion

The empirical results suggest that a heavy-tailed behavior can be observed for different planning problems,

using different heuristic functions. These results provide a deeper understanding of the empirical difficulty

of planning problems and account for the existence of exceptionally hard problems (ehps) found in

Chapter 3.

In our analysis, we choose to randomize GBFS by introducing uniform random noise to the heuristic

function. Our empirical results show that this randomization leads GBFS to exhibit a heavy-tailed

behavior on a single instance. Investigating the impact of alternative sources of random noise (e.g.,

non-uniform distributions) or alternative techniques for randomizing GBFS in addition to randomizing

the heuristic function are directions for future work.

Heavy-tailed behavior has been shown not to be inherent to backtracking search in general, but

rather to depend on the efficiency of the search procedure as well as on the level of constrainedness of

the problem [62]. In the context of planning, uninformative heuristics will not exhibit a heavy-tailed

behavior, even as we relax the problems, as the median effort for such problem is likely to remain high

(see, for example, our analysis of uninformed heuristics in Chapter 3). We observed this behavior in some

of our experiments above, e.g., for the landmark-based heuristics in the Freecell domain.
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However, similar to combinatorial search, we find that heavy-tailed behavior can be observed for many

problems using common heuristics. Specifically, resource constrained problems exhibit such behavior

when solved with a heuristic that is based on ignoring the delete effects. For highly constrained problems,

most paths do not lead to a solution due to lack of resources. As we relax the problems, we can usually

find a solution easily, however one mistake can still lead to the need to exhaust a region of the state space

that has no solution, resulting in an extremely long run. We also show that heavy-tailed behavior can

be observed as we relax highly constrained problems by introducing more goal states. In the relatively

goal-relaxed problems, while most paths will lead to a goal state, one heuristic mistake can lead the

search into a region with no solution, e.g., when achieving one goal proposition has a delete effect (that

the heuristic does not account for) that prevents us from achieving another.

In combinatorial search, heavy-tailed behavior has been shown to be correlated with an exponential

distribution of depths of the subtrees with no solutions [62]. In satisficing planning, local minima (i.e.,

regions of the state space that have no solution [197]) have been shown to have a negative effect on the

search effort (e.g., in Xie et al. [204]). In the next section, we investigate the connection between the

observed heavy-tailed behavior and the distribution of the sizes of local minima.

4.5 Empirical Analysis of Local Minima in Satisficing Planning

In CSPs, the runtime distribution was shown to be highly correlated with the distribution of the depth of

inconsistent subtrees (i.e., subtrees with no solution) discovered during the search [62]. Specifically, the

observed heavy-tailed behavior was shown to be the result of an exponential distribution of the depth of

inconsistent subtrees.

In this section, we adapt this analysis to GBFS, inspired by the similarity between inconsistent

subtrees and local minima. In Section 4.5.1, we define local minima in GBFS and a notion of depth of a

local minimum that is based on the heuristic values that guide the search. Then, in Section 4.5.2, we

empirically show that the depth of a local minimum is exponentially correlated to search effort, similar

to inconsistent subtrees in CSPs. Finally, in Section 4.5.3, we establish the connection between the

distribution of depths of local minima and the heavy-tailed behavior we observe in Section 4.4.

4.5.1 Local Minima in Satisficing Planning

In Section 2.2, we noted that a STRIPS planning problem P=〈A,O, I,G〉 defines a planning state space

〈S, sI , SG, A, f, c〉. We use the state space to formally define a set of terms used in our analysis of local

minima in satisficing planning. Informally, we consider a local minimum to be a set of states that were

expanded between two consecutive expanded states on the solution path found by a search algorithm (we

assume nodes are not re-opened).

Definition 16 (Solution vector) Let P = 〈s1, ..., sP 〉 be a vector of states in S. We consider P to be

a (feasible) solution vector if s1 = SI , sP ∈ SG and for each consecutive pair of states si, sj in P there

exists action a such that f(si, a) = sj.

Definition 17 (Expansion vector) Let E = 〈s̄1, ..., s̄E〉 be a vector of states in S. We consider E to be

a (feasible) expansion vector if s̄1 = SI , s̄E ∈ SG and for every state s̄x ∈ E , x ≥ 2 there exists state

s̄y ∈ E , y < x and action a ∈ A such that f(s̄y, a) = s̄x.
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Definition 18 (Local Minimum) Let E be an expansion vector and P be a solution vector, such that P
is a potentially non-contiguous subsequence of E. For every consecutive pair si, sj in P we define the

local minimum Lsi,sj to be the sub-vector of all states between si and sj in the vector E (including si, sj).

Definition 19 (h-depth) Let si, sj be two consecutive states in a solution vector and let Lsi,sj =

〈si, ..., sj〉, a vector of states, be the local minimum between si and sj . We define the h-depth of the local

minimum dhsi,sj = h(sj)−minh(Lsi,sj ).

Definition 20 (h-backtrack) Let si, si+1 be two consecutive states in an expansion vector. We define

the expansion of si+1 to be an h-backtrack if h(si+1) > h(si).

Our definition of a local minimum differs from Wilt and Ruml’s [197] (see Section 2.3.1) as it is

based on a the result of a specific GBFS run and not on the whole state space. As we are studying

the distribution of search efforts across multiple runs, we are interested in modelling the local minima

that were actually encountered in each run, rather then the whole state space. Analyzing only the local

minima that were encountered during the search is consistent with the methodology applied to CSPs

[62]. Our definition of local minima in GBFS is therefore a natural counterpart of Gomes et al.’s [62]

inconsistent subtrees in CSPs.

Note that our definition of local minimum h-depth closely matches the h difference in Wilt and

Ruml’s [194] Observation 1 and the definition of h-backtrack is closely related to the non-monotonicity of

h-values in Observation 3.

4.5.2 Problem Difficulty and Local Minima

In this section we establish the connection between the local minima encountered in the search and the

problem difficulty. We use the same problem sets used in the analysis of the heavy-tailed behavior in

Section 4.4. Each time we solve a problem, we record the expansion vector and the solution vector. We

use these vectors to extract the local minima encountered in the search and, for each local minimum, we

compute its size (i.e., the number of nodes), its h-depth, and the number of h-backtracks that occurred

in that local minimum.

We start by analyzing the connection between the h-depth and the size (i.e., the number of expanded

nodes) of a local minimum in the NoMystery domain. Figure 4.21 shows the distribution of local minima

size vs. h-depth in an ensemble of 1000 random problems, solved using hFF , in both the non-heavy-tailed

regime (C = 1) and the heavy-tailed regime (C = 2). We can clearly see an exponential correlation in

both cases between the h-depth of a local minimum and the associated search effort, measured by the

number of expanded nodes. This result is consistent with inconsistent subtrees in CSPs [62], and suggests

that, similar to inconsistent subtrees, the depth of local minima plays an important role in the difficulty

of problems.
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Figure 4.21: NoMystery: local minima size vs. h-depth in 1000 random instances with hFF .

Figure 4.22 shows similar results for 1000 randomized runs with a randomized search procedure

on one instance, solved using hFF
∆0.1. While the absolute numbers change between different levels of

constrainedness, the qualitative trends remains similar for different C values.
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Figure 4.22: NoMystery: local minima size vs. h-depth in 1000 randomized searches on a single instance
with hFF .

Figure 4.23a and Figure 4.23b show the distribution of the number of h-backtracks vs. h-depth in an

ensemble of 1000 random problems and in 1000 randomized searches on a single problem, respectively,

in both the non-heavy-tailed and the heavy-tailed regimes. Again, we find an exponential correlation

suggesting that the observed effort is due to a backtracking behavior based on h-values. The fact that we

would observe such a correlation for GBFS is not a priori obvious since it is not defined as a backtracking

search and is not guaranteed to exhibit such behavior. However, our results suggest that in many cases

GBFS tends to exhibit a backtracking behavior, based on h-values, similar to tree search algorithms in

CSPs/SAT.
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(a) 1000 random instances with hFF .
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(b) 1000 randomized searches on a single instance with
hFF .

Figure 4.23: NoMystery: number of h-backtracks vs. h-depth.

Figure 4.24, Figure 4.25, and Figure 4.26 show the local minima size and number of h-backtracks vs.

h-depth for the landmark cut heuristic, the landmark count heuristic and the CEA heuristic, respectively.

We observe similar trends to those observed for the FF heuristic.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
h-depth

100

101

102

103

104

105

# 
of

 E
xp

an
de

d 
No

de
s

C = 1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13
h-depth

C = 3.0

(a) Local minima size vs. h-depth.
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(b) Number of h-backtracks vs. h-depth.

Figure 4.24: NoMystery: results for 1000 randomized runs on a single instance with the landmark cut
heuristic.
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(a) Local minima size vs. h-depth.
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(b) Number of h-backtracks vs. h-depth.

Figure 4.25: NoMystery: results for 1000 randomized runs on a single instance with the landmark count
heuristic.
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(a) Local minima size vs. h-depth.
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(b) Number of h-backtracks vs. h-depth.

Figure 4.26: NoMystery: results for 1000 randomized runs on a single instance with the CEA heuristic.

Figure 4.27 shows the distribution of local minima sizes and the number of h-backtracks vs. h-depth

for the rest of the domains.
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(a) Rovers: local minima size vs. h-depth.
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(b) Rovers: number of h-backtracks vs. h-depth.
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(c) TPP: local minima size vs. h-depth.
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(d) TPP: number of h-backtracks vs. h-depth.
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(e) Maintenance (alternative): local minima size vs. h-
depth.
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(f) Maintenance (alternative): number of h-backtracks
vs. h-depth.
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(g) Parking: local minima size vs. h-depth.
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(h) Parking: number of h-backtracks vs. h-depth.
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(i) Freecell: local minima size vs. h-depth.
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(j) Freecell: number of h-backtracks vs. h-depth.

Figure 4.27: Results for 1000 randomized runs on a single instance with hFF .
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Surprisingly, we also find a strong correlation between the h-depth of the single deepest local minimum

encountered in an instance and the total search effort for that instance. Table 4.1 reports this correlation

for all the six benchmark domains, in both the heavy-tailed and the non-heavy-tailed regimes and over

all problem instances (of mixed constrainedness values). The reported values are the Pearson correlation

coefficient between the h-depth of the deepest local minimum and the log(search effort), with search

effort measured by the number of expanded nodes. We use log since Pearson measures linear correlation,

and linear correlation between x and log(y) indicates an exponential correlation between x and y. Since

the number of backtracks can be zero (when h-depth is zero), we augment the number of backtracks

by adding one before computing the logarithm. To make sure we are not biased by a population that

is centered on a small range of h-values we also calculated the weighted Pearson correlation (all the

instances of a given h-depth sum up to the same weight). Table 4.2 shows that such results have an even

higher correlation than the non-weighted data. These results indicate a strong exponential correlation and

suggest that the deepest local minimum encountered in a search is an important factor in determining the

total search effort. Given the complexity of heuristic search and the existence of multiple local minima,

this type of strong correlation is not a priori obvious and its discovery is, to our knowledge, novel.

log(search effort) log(h-backtracks)

Domain N-HT HT N-HT HT

NoMystery (1000) 0.91 0.91 0.93 0.95

NoMystery (one) 0.87 0.93 0.90 0.95

Rovers (1000) 0.96 0.77 0.98 0.94

Rovers (one) 0.70 0.93 0.69 0.96

TPP (1000) 0.85 0.88 0.87 0.96

TPP (one) 0.79 0.81 0.82 0.93

Maintenance (1000) 0.90 0.98 0.95 1.0

Maintenance (one) 0.94 0.90 0.94 0.95

Parking (1000) 0.96 0.91 0.97 0.97

Parking (one) 0.98 0.95 0.98 0.96

Freecell (1000) 0.54 0.73 0.61 0.79

Freecell (one) 0.53 0.80 0.63 0.85

Table 4.1: Pearson correlation coefficient between maximum h-depth and log(search effort)
(log(h-backtracks)) in the non-heavy-tailed (N-HT) and heavy-tailed (HT) regimes for ensembles of
random problems and for multiple runs on one problem.
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log(search effort) log(h-backtracks)

Domain N-HT HT N-HT HT

NoMystery (1000) 0.95 0.94 0.98 0.98

NoMystery (one) 0.95 0.95 0.99 0.98

Rovers (1000) 0.97 0.92 0.99 0.98

Rovers (one) 0.98 0.92 0.98 0.98

TPP (1000) 0.95 0.93 0.98 0.98

TPP (one) 0.97 0.91 0.99 0.97

Maintenance (1000) 0.92 1.0 0.96 1.0

Maintenance (one) 0.98 0.95 0.98 0.96

Parking (1000) 0.94 0.95 0.97 0.98

Parking (one) 0.95 0.95 0.98 0.98

Freecell (1000) 0.82 0.84 0.86 0.90

Freecell (one) 0.85 0.89 0.89 0.93

Table 4.2: Weighted Pearson correlation coefficient between maximum h-depth and log(search effort)
(log(h-backtracks)) in the non-heavy-tailed (N-HT) and heavy-tailed (HT) regimes for ensembles of
random problems and for multiple runs on one problem.

Given this strong correlation, a natural hypothesis, that is consistent with the results for CSP and

SAT, is that the heavy-tailed behavior in planning problems is due to the distribution of h-depth of local

minima in such problems. That is, there is a low probability of getting into a deep local minimum that

leads to few, very hard, instances. In the next section, we will analyze this distribution and test this

hypothesis.

4.5.3 The Distribution of Local Minima h-Depth

Based on our results on the connection between problem difficulty and local minima and inspired by the

analysis of inconsistent subtrees in CSPs [62], our hypothesis is that the heavy-tailed behavior will be

strongly correlated with the distribution of h-depth of the deepest local minimum encountered in search.

In the heavy-tailed region, we expect to see a small, but non-negligible probability of encountering a

deep local minimum, which accounts for the existence of exceptionally hard instances.

To investigate this hypothesis, we analyze the distribution of the h-depth of the deepest local

minimum encountered in each problem instance for ensembles of 1000 random problem instances of

different constrainedness levels. Figure 4.28 shows the distribution in the non-heavy-tailed regime (C = 1)

and in the heavy-tailed regime (C = 2). In the non-heavy-tailed regime, we find that GBFS on the

majority of the problem instances encounters a deep local minimum (the peak of the histogram is at 10).

In the heavy-tailed regime, where most problems are easy but there are few exceptionally hard problems,

we find that the distribution changes dramatically. The majority of the searches do not encounter a deep

local minimum at all (the peak of the histogram is at 1), however a few instances do encounter local

minima that are almost as deep as the deepest local minima in the non-heavy-tailed regime.
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Figure 4.28: NoMystery: Distribution of deepest local minima h-depth in 1000 random instances solved
with hFF .

More interesting is the corresponding distribution for multiple runs of a randomized search procedure

on one problem instance. Figure 4.29 shows the results when using a randomized search procedure with

hFF
∆0.1 on the same instance for different values of C. We find similar trends: in the non-heavy-tailed

regime (C=1) we find that the majority of runs encounter a deep local minimum. As we relax the

problem and move to the heavy-tailed regime and easier problems on average, the majority of runs do

not encounter a deep local minimum, however a few encounter a very deep local minimum.

0.0 2.5 5.0 7.5 10.0 12.5
h-depth

100

101

102

Co
un

t

C = 1.0

0.0 2.5 5.0 7.5 10.0 12.5
h-depth

Co
un

t

C = 3.0

Figure 4.29: NoMystery: Distribution of deepest local minima h-depth in 1000 randomized runs on a
single instance solved with hFF .

Figure 4.30a, Figure 4.30b, and Figure 4.30c show similar analysis for the landmark cut heuristic, the

landmark count heuristic, and the CEA heuristic, respectively.
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(a) Landmark cut heuristic.
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(b) Landmark count heuristic.
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(c) CEA heuristic.

Figure 4.30: NoMystery: Results for other heuristics.

Figure 4.31 shows the distribution of deepest local minima h-depth results for the other domains

in ensembles of 1000 random problems and 1000 randomized runs on a single instance. Recall that for

Freecell, we observed a heavy-tailed behavior even for the most constrained instances (Section 4.4) and

this is reflected in the results in Figure 4.31.
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(a) Rovers: 1000 random instances.
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(b) Rovers: 1000 randomized runs on a single instance.
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(c) TPP: 1000 random instances.
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(d) TPP: 1000 randomized runs on a single instance.
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(e) Maintenance (alternative): 1000 random instances.
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(f) Maintenance (alternative): 1000 randomized runs on
a single instance.
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(g) Parking: 1000 random instances.
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(h) Parking: 1000 randomized runs on a single instance.
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(i) Freecell: 1000 random instances.
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(j) Freecell: 1000 randomized runs on a single instance.

Figure 4.31: Results for 1000 randomized runs on a single instance with hFF .
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4.5.4 Discussion

Our analysis suggests that the h-depth of the local minima encountered in the search is a key factor

in problem difficulty for different kinds of planning problems (we analyzed six domains with different

characteristics and constrainedness type). Furthermore, we find an exponential correlation between the

depth of a local minimum and its size, as often observed in tree search. These results are consistent

with combinatorial search problems (e.g., in [62]) and further establish the connection between satisficing

planning and a large body of literature on combinatorial search.

These results provide explanation and deeper understanding of several previously observed phenomena

in GBFS:

1. Our results explain the heavy-tailed behavior observed in satisficing planning using GBFS. In

relaxed problems, there is a low, but non-negligible, probability of encountering a deep local

minimum (consistent with combinatorial search).

2. The exponential correlation between h-depth and search effort explains Wilt and Ruml’s Observation

1 on the effect of large h difference in a local minimum [194].

3. The exponential correlation between h-depth and h-backtracks suggests Wilt and Ruml’s Observation

3 is connected to Observation 1 [194]. Extensive backtracking behavior is the result of a deep local

minimum.

4. The h-depth distribution suggests that the existence and extent of the factors highlighted by Wilt

and Ruml (deep local minima and extensive backtracking behavior) depend on the constrainedness

of problems. This results supports the conjecture in Chapter 3 that there is a connection between

the existence and extent of local minima and the constrainedness of problems.

The heavy-tailed behavior observed in the investigated domains stems primarily from local minima,

one type of uninformative heuristic region [203]. A second type, plateaus, are a different kind of search

inefficiency that is not addressed in this work. The effect of constrainedness on domains with significant

plateaus and no local minima in GBFS is an interesting direction for future work.

4.6 Randomization and Heavy-tailed Behavior in Satisficing

Planning

In combinatorial search, the discovery of fat- and heavy-tailed behavior has inspired “boosted” search

methods that employ randomized restarts in order to eliminate heavy-tailed behavior, achieving significant

speedups on hard real-world problems [66]. Having established the existence of heavy-tailed behavior in

satisficing planning, in this section we investigate different approaches to incorporate randomization in

search and their impact on the heavy-tailed behavior. In Section 4.6.1 we analyze the impact of existing

techniques for randomized exploration in heuristic search on the runtime distribution of GBFS. In Section

4.6.2 we present RR-GBFS, a novel variant of GBFS that employs randomized restarts, and analyze its

impact on the heavy-tailed behavior of GBFS. RR-GBFS is inspired by similar techniques in CSPs [66]

and is designed specifically to deal with heavy-tails.
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4.6.1 Existing Techniques for Randomized Exploration

In satisficing planning, several works have suggested incorporating non-greedy random exploration, in

which the search allocates limited time to expand nodes with non-minimal h-values (see Section 2.2.3).

Two recent approaches are ε-GBFS [176] and Type-GBFS [205].

In this section we examine the effect of these methods on the heavy tail phenomenon. Given the

principled use of randomized restarts to escape heavy-tailed behavior in other combinatorial problems, an

obvious question is whether the benefits of the random exploration approaches are higher in heavy-tailed

regimes. Again, we start with a detailed analysis of the NoMystery domain and provide summarized

results for the other domains. In our analysis, we use the ensembles of random problems used in Section

4.4 and Section 4.5 and study the behavior of ε-GBFS and Type-GBFS on these ensembles. We also

study the behavior of these randomized variants on a single instance when using our randomized heuristic

function (Section 4.3.3).

NoMystery

Figure 4.32a and Figure 4.32b show the effort distribution for an ensemble of 1000 random problems and

1000 randomized runs on a single instance with hFF
∆0.1, respectively, for both standard GBFS and ε-GBFS

with ε = 0.2. For the most constrained instances we see little to no improvement by using ε-GBFS. As we

relax the problems and observe a fat- and heavy-tailed behavior for GBFS, we see that ε-GBFS manages

to reduce the search effort for the hardest instances. As we further relax the problems and they gradually

become easier, we see that again ε-GBFS offers smaller improvement. These results suggest that ε-GBFS

can help reduce the heavy-tailed behavior and that the impact is mostly on instances that are not highly

constrained or highly relaxed.
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(a) 1000 random instances with hFF .
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(b) 1000 randomized runs on a single instance with
hFF .

Figure 4.32: NoMystery: GBFS (solid) vs. ε-GBFS with ε = 0.2 (dashed).

Figure 4.33 compares the runtime distribution of a randomized FF heuristic with p = 0.1 in a standard

GBFS (solid lines) to a Type-GBFS (dashed lines), for both ensembles of 1000 random problems and

multiple runs of a randomized search on a single instance. To directly address the impact of a non-greedy

exploration, we use a simple type system that uses the h-values of the same heuristic (i.e., the type

system (h) [205]) rather then a more sophisticated one that uses new information. While the exact

numerical results are different from ε-GBFS, the results show similar trends and we observe a reduction

in the heavy-tailed behavior. Again, we see a smaller impact on the most constrained instances and the

most relaxed instances.
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(a) 1000 random instances with hFF .
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(b) 1000 randomized runs on a single instance with
hFF .

Figure 4.33: NoMystery: GBFS (solid) vs. Type-GBFS (dashed).

Rovers, TPP, Parking, Maintenance, Freecell

Figure 4.34 compares standard GBFS with Type-GBFS for the domains Rovers, TPP, Parking, Main-

tenance, and Freecell. The ensembles and the configuration of the randomized heuristic are similar to

Section 4.4. We can clearly see that incorporating elements of random exploration in the search helps to

reduce and even eliminate the heavy-tailed behavior. For the Rovers and TPP domains, we also observe

a significant improvement for the highly-constrained problems. Still, the reduction in the tail for the

more relaxed problems is significantly larger.
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(a) Rovers: 1000 randomized runs on a single instance.
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(b) Rovers: 1000 random instances.
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(c) TPP: 1000 randomized runs on a single instance.
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(d) TPP: 1000 random instances.
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(e) Maintenance (alternative): 1000 randomized runs on
a single instance.
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(f) Maintenance (alternative): 1000 random instances.
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(g) Parking: 1000 randomized runs on a single instance.
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(h) Parking: 1000 random instances.
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(i) Freecell: 1000 randomized runs on a single instance.
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(j) Freecell: 1000 random instances.

Figure 4.34: Results for 1000 randomized runs on a single instance with hFF .

Our results show a clear pattern: incorporating elements of random exploration in the search helps

to reduce the heavy-tailed behavior. We note that the impact of random exploration is not limited to

reducing the heavy-tailed behavior and depending on the domain, the heuristic, and the randomized
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variant, it can be beneficial even in highly constrained problems (e.g., in the Maintenance domain). In

the next section, we consider a different solution that is designed to directly address the heavy-tailed

behavior.

4.6.2 Randomized Restarting GBFS

Following the work on randomized restarts in combinatorial search [66], in this section we demonstrate

how such randomized restarts can be integrated into a GBFS to reduce the heavy-tailed behavior and

gain significant speed-ups.

A restart strategy is a sequence (t1, t2, ...) of cutoff values, i.e., run lengths (often expressing number

of backtracks) after which the search restarts. As we have established the connection between the

h-backtracks and the heavy-tailed behavior, we use cutoff values based on h-backtracks. Algorithm 4.1

presents pseudocode for a randomized restarting GBFS (RR-GBFS). In each iteration, we run a GBFS

with a given h-backtrack cutoff. If the cutoff is reached before a solution is found, the randomized search

is restarted with a different seed and the next cutoff value. We use randomized heuristic search with a

geometric restart policy [185] with an initial value of 16, increasing with a factor of 1.5: (16, 24, 36, ...).

Algorithm 4.1 Randomized restarting GBFS

function RR-GBFS (seed, cutoff)

while GBFS(seed, cutoff) = NO SOLUTION do

seed ← ChooseRandomSeed()

cutoff ← updateCutoff()

Figure 4.35a and 4.35b compare the runtime distribution of NoMystery for multiple runs on one

instance and for an ensemble of random instances respectively, using randomized restarting GBFS vs.

standard GBFS. Randomized-restarting GBFS manages to significantly reduce the tail in the fat- and

heavy-tailed regimes, outperforming GBFS when C > 1. However, for the most constrained problems

(C = 1), where the probability of a deep local minimum is very high and, therefore, restarting is likely to

lead to another deep local minimum, RR-GBFS underperforms GBFS, as expected. Figure 4.36 shows

similar analysis for the other domains. The experiments on multiple randomized runs on a single instance

use the same p value used in Section 4.4. For ensembles of 1000 random instances, we used randomized

restarts with p = 0.05 for all domain except for Parking where p = 0.1 is used.
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(a) 1000 random instances with hFF .
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Figure 4.35: NoMystery: GBFS (solid) vs. RR-GBFS (dashed).
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(a) Rovers: 1000 randomized runs on a single instance.
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(b) Rovers: 1000 random instances.
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(c) TPP: 1000 randomized runs on a single instance.

102 103 104 105 106

Expanded Nodes

10−3

10−2

10−1

100

1-
CD

F 
(S

ur
vi

va
l)

C= 1.0
C= 1.25
C= 1.35
C= 1.5

(d) TPP: 1000 random instances.
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(e) Maintenance (alternative): 1000 randomized runs on
a single instance.
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(f) Maintenance (alternative): 1000 random instances.
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(g) Parking: 1000 randomized runs on a single instance.
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(h) Parking: 1000 random instances.
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(i) Freecell: 1000 randomized runs on a single instance.
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(j) Freecell: 1000 random instances.

Figure 4.36: Results for RR-GBFS with hFF .

Table 4.3 reports the maximum local minimum h-depth encountered for GBFS and for the last

iteration of RR-GBFS, i.e., the iteration for which a solution was found, in both the heavy-tailed and

non-heavy-tailed regimes. It also reports the maximum number of restarts needed by RR-GBFS. These
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results explain the success of RR-GBFS for the less constrained problems. Exploiting the distribution of

local minima h-depth in the heavy-tailed regime, RR-GBFS tends to require fewer restarts to successfully

escape deep local minima in most of the domains, reducing the maximum h-depth significantly compared

to GBFS. In the non-heavy-tailed regime, the number of restarts tends to be significantly higher and the

maximum h-depth of RR-GBFS is much closer to GBFS.

Non-Heavy-tailed Heavy-tailed

Domain DG DRR #R DG DRR #R

NoMystery (1000) 14 15 24 13 8 10

NoMystery (one) 13 13 16 12 5 3

Rovers (1000) 28 24 29 24 13 16

Rovers (one) 19 19 16 21 9 6

TPP (1000) 17 16 23 14 10 11

TPP (one) 16 12 18 13 7 4

Maintenance (1000) 13 12 25 15 8 5

Maintenance (one) 12 11 11 13 9 5

Parking (1000) 19 18 20 12 10 12

Parking (one) 14 13 17 13 6 6

Freecell (1000) 24 22 21 20 13 14

Freecell (one) 12 8 9 14 8 7

Table 4.3: The maximum h-depth for GBFS (DG) and for RR-GBFS (DRR) and the number of restarts
in RR-GBFS (#R) in the non-heavy-tailed regime vs. the heavy-tailed regime.

Our results support the hypothesis that randomized restarts exploit the distribution of local minima

h-depth to escape deep local minima in the heavy-tailed regime. The proposed algorithm, RR-GBFS,

achieves significant speed-up in the heavy-tailed regime and reduces the phenomenon of exceptionally

hard problems. Consistent with our analysis in Section 4.5, RR-GBFS shows no improvement in the

non-heavy-tailed regime where the probability of encountering a deep local minimum is much higher.

4.6.3 Discussion

In Section 4.5, we showed that the heavy-tailed behavior is due to a low, but non-negligible, probability

of encountering a deep local minimum. Informed by this result, we investigated the use of randomization

that can help escape deep local minima in GBFS. We first investigated existing general techniques for

incorporating random exploration in GBFS and showed that they help reduce the heavy-tailed behavior.

Then, we presented RR-GBFS, a variant of GBFS that employs randomized restarts. RR-GBFS, unlike

the more general techniques for randomized exploration, is developed specifically to exploit the distribution

of local minima h-depth in the heavy-tailed regime and our empirical results show that RR-GBFS is

successful in reducing the heavy-tailed behavior and the phenomenon of exceptionally hard problems.

We can easily combine randomized restarts with random exploration by applying both techniques.

We demonstrate the impact of applying both RR-GBFS and Type-GBFS on an ensemble of 1000 random

problems in the NoMystery domain. Figure 4.37 compares the results for the combined configuration

to each of the individual configurations (we also plot the results for standard GBFS for reference). We
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can see that for the NoMystery domain, the combined configuration tends to outperform each of the

individual ones in reducing the heavy-tailed behavior.
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(a) GBFS (solid) vs. Type-GBFS (dashed) vs. RR-
Type-GBFS (dotted).
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Figure 4.37: Results for combined configuration of Type-GBFS and RR-GBFS.

The work presented in this section raises a number of avenues for future work:

• A detailed investigation of the differences between RR-GBFS and the various variants of GBFS

that incorporate random exploration in the search. Such variants include, in addition to ε-GBFS

and Type-GBFS, other methods auch as GBFS-LS [203], GBFS with width-based exploration

[122], DBFS [95], and IP-diversification [3]. Analyzing the effect of restarts in the presence of these

exploration methods is also an interesting direction for future work.

• A detailed study of restart policies for GBFS. In particular, it is interesting to investigate how

dynamic and learning restart policies (e.g., [102]) from combinatorial search can be incorporated in

GBFS.

4.7 Conclusion

In this chapter, we performed an empirical analysis of the heavy-tailed behavior in ensembles of random

planning problems and multiple runs of a randomized heuristic search on a single planning problem

instance. We considered two notions of constrainedness in planning problems and showed that relaxed

problems often exhibit fat- or heavy-tailed behavior, similar to CSPs and SAT.

Our empirical analysis indicates a strong exponential correlation between the h-depth of a local

minimum and the associated search effort and a similar strong correlation between the h-depth and the

number of h-backtracks. Surprisingly, we also find a strong exponential correlation between the h-depth of

the single deepest local minimum encountered in an instance and the total search effort for that instance

indicating that the deepest local minimum encountered in a search is an important factor in determining

the total search effort. Furthermore, a key result of our empirical analysis is that the probability of

entering a deep local minimum depends on the constrainedness of the problems and accounts for the

observed heavy-tailed behavior.

Inspired by combinatorial optimization, we proposed a novel randomized restarting GBFS variant and

show that it successfully escapes deep local minima in the heavy-tailed regime, resulting in better search

performance. We also show that existing techniques for incorporating random exploration in heuristic

search also reduce the heavy-tailed behavior.
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These results provide a deeper understanding of GBFS and its search topology and explain several

previous observations and conjectures on the behavior of GBFS, including Wilt and Ruml’s [194]

observations on the behavior of GBFS and our conjecture on the connection between constrainedness

and local minima (see Section 3.8.2). We have demonstrated a simple way that these insights can be

used to enhance search performance and believe that they can be further exploited to develop additional

improvements to heuristic search algorithms.
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Neural Sequence Decoding using

Beam Search
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Chapter 5

Background: Neural Sequence

Models and Beam Search

In this dissertation, we develop empirical models for the search behavior of heuristic search algorithms

in AI planning and neural sequence decoding. In Part I, we focused on satisficing AI planning using

greedy best first search and developed empirical models for problem difficulty in GBFS. In Chapter 3,

we established the existence of a phase transition in problem solubility of heuristic search problems and

its relation to problem difficulty in GBFS. Furthermore, we made the connection to different factors

that are known to impact problem difficulty, such as the operator cost ratio and the re-expansions of

nodes, and we discover the existence of exceptionally hard problems in ensembles of easy problems. Then,

in Chapter 4, we established the existence of a heavy-tailed behavior in GBFS that accounts for the

exceptionally hard problems and presented an explanatory model for this heavy-tailed behavior that

is based on the distribution of the h-depth of local minima. Based on this analysis, we showed how

incorporating randomization in the search procedure can help escape deep local minima and reduce the

heavy-tailed behavior and presented a novel variant of GBFS that addresses the heavy-tailed behavior

and outperforms GBFS.

In Part II, we focus on neural sequence models and present empirical models for the search behavior

of beam search in decoding neural sequence models. In Chapter 6, we study the well-known problem

of beam search performance degradation and present an explanatory model that is based on search

discrepancies. Informed by our analysis, we show how the performance degradation can be mitigated

by constraining the search discrepancies considered by the beam search. In Chapter 7, we focus on

goal-oriented complete beam search and observe a heavy-tailed behavior in problem difficulty, similar

to the one observed for GBFS in Chapter 4. Informed by our analysis of the heavy-tailed behavior in

GBFS, we introduce randomization in the beam search procedure, and show that a randomized variant

of beam search can reduce the heavy-tailed behavior and outperform standard beam search.

In this chapter we present relevant background and notation to the work presented in Chapter 6

and Chapter 7. Section 5.1 describes the modeling and training of neural sequence models and Section

5.2 describes algorithms for decoding neural sequence models with an emphasis on beam search. The

notation in this chapter is based on several sources [67, 107, 173, 69].
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5.1 Neural Sequence Models

A sequence model is a factorized parametric distribution over sequences [107]. The parameter θ defines

the probability pθ(yt|y1:t−1) of the next token yt, conditioned on the partial sequence y1:t−1. Typically

pθ is defined as a softmax normalization of unnormalized log-probabilities φ(yt|y1:t−1):

p(yt|y1:t−1) =
exp(φ(yt|y1:t−1))∑
y′ exp(φ(y′|y1:t−1))

. (5.1)

In models that are conditioned on a context, e.g., an input sentence in machine translation, we instead

model the distribution pθ(yt|x; y1:t−1) that is conditioned on both the context x and the partial sequence

y1:t−1. Note that these models are locally normalized since the normalization is w.r.t. a single token

[107].

A sequence model defines a valid probability distribution over both partial and complete sequences,

and the total probability of a sequence y1:t can be computed using the chain rule,

pθ(y1:t) = pθ(yt|y1:t−1) · pθ(y1:t−1) =
t∏

t′=1

pθ(yt′ |y1:t′−1). (5.2)

Similarly, the total conditional probability of a sequence y1:t conditioned on x can be computed as follows:

pθ(y1:t|x) = pθ(yt|x, y1:t−1) · pθ(y1:t−1|x) =
t∏

t′=1

pθ(yt′ |x, y1:t′−1). (5.3)

5.1.1 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) are a family of neural networks for processing sequential data [67].

Typically, an RNN is a nonlinear mapping from sequences to sequences. Given an input sequence

(i1, i2, ..., iT ), the RNN computes a sequence of hidden states (h1, h2, ..., hT ) and a sequence of outputs

o1, o2, ..., oT as follows [69]:

ht =f(ht−1, it) = σh(W (hh)ht−1 +W (ih)it + b(h))

ot =g(ht) = σo(W (ho)ht + b(o))
(5.4)

where σh is the hidden layer nonlinear function, typically tanh, and σo is the output layer nonlinear

function, typically softmax (see Table 5.1). The RNN is parameterized by the weights of the connections

between hidden units W (hh), the weights of the connections from the input to the hidden units W (ih),

and from the hidden units to the output units W (ho). Figure 5.1 illustrates the basic recurrent neural

network described in Eq. (5.4).
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Figure 5.1: A Recurrent Neural Network.

Table 5.1: Commonly used non-linear functions.

Name Function

Sigmoid f(x) = 1
1+exp−x

Tanh f(x) = expx − exp−x

expx +exp−x

RELU f(x) = max(0, x)

Softmax f(xi) =
expxi∑K

k=1 expxk
, i = 1..K

It is common to model pθ(yt | x; {y0, ..., yt−1}) using an RNN where the context x is represented

by the initial state of the RNN, h0, and in each step we set the input it to be the selected token in

the previous step, it = yt−1 (where y0 is normally a special token that represents the beginning of a

sequence).1 In each step, the fixed length hidden state ht therefore represents the context x and the

previous tokens in y and is updated using a non-linear function f : ht = f(ht−1, yt−1). The conditional

probability pθ(yt | x; {y0, ..., yt−1}) is then given by g(ht), assuming σo is a function that produces valid

probabilities, e.g., softmax.

5.1.2 Sequence-to-Sequence Models

Sequence models where the input context x is a sequence as well are called sequence-to-sequence models.

The most commonly used model in these scenarios is the encoder-decoder model [173] where the encoder

takes in a sequence and generates a vector representation of fixed dimensionality called the context and

the decoder generates the output sequence based on the context vector.

Given an input sequence x = (x1, x2, ...xTx), the encoder typically consists of an additional RNN

such that henc
t = fenc(henc

t , xt) where the last hidden state henc
Tx+1 is used as the context that is passed

1Alternatively, the context x can be provided as an extra input in each time step [67].
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to the decoder. However, several recent works have employed alternative encoders, most notably the

Transformer model [178] and convolutional encoders [49, 183].

Attention-based Decoding

One of limitations of the encoder-decoder model is the use of fixed-size context vector. For long sequences,

it might not be sufficient to represent all the important information from the input sequence. To address

this limitation, Bahdanau [4] proposed the mechanism of attention where the decoder attends to different

parts of the input sequence at each time step t based on a dynamic context ct. Each context vector ct is

computed as a weighted linear combination of the hidden states produced by the encoder RNN:

ct =
Tx∑
k=1

αtkh
enc
k

where henck is the hidden state of the encoder at time step k and αt ∈ RTx

is a probability distribution

over the encoder hidden states computed using a Multi-Layer Perceptron (MLP) that takes in the previous

decoder hidden state ht−1 and the hidden states of the encoder henc,

αt = softmax(et)

etk = MLP (ht−1, h
enc
k ),

(5.5)

where et ∈ RTx

are unnormalized scores representing how well inputs around position k and the output

at position t match [4].

5.1.3 Training Neural Sequence Models

Neural sequence models are typically trained with a cross entropy loss [67]. For an output sequence y,

the cross entropy loss is calculated based on the individual losses at each time step,

L =

T∑
t=1

Lt =

T∑
t=1

L(ot, y
∗
t ),

where L(ot, y
∗
t ) is the cross entropy loss between ot, the output of the softmax in Eq. (5.4) at time t, and

the ground truth token y∗t . The cross entropy loss is derived as follows:

L(ot, y
∗
t ) = −1try∗t · log ot,

where −1try∗t is the transpose of one-hot vector of the ground truth token y∗t and log ot is a vector of

log-probabilities for each token generated by softmax in Eq. (5.4). Typically, training is done using

teacher forcing, where the model gets the ground truth output y∗t as an input at time t+ 1. Training of

recurrent models that have hidden-to-hidden connection (e.g., in Eq. (5.4)) requires backpropogation

through time (BPTT) [189].
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5.1.4 Vanishing and Exploding Gradients

Previous work has highlighted difficulties in training recurrent neural networks with long-term dependen-

cies using gradient-based learning algorithms due to vanishing and exploding gradients [10, 141]. For

example, consider the gradient of the loss with respect to the weights W (hh),

∂L
∂W (hh)

=
T∑
t=1

∂Lt
∂W (hh)

(5.6)

∂Lt
∂W (hh)

=
t∑

k=1

(∂Lt
∂ht

∂ht
∂hk

∂+hk
∂W (hh)

)
. (5.7)

Each gradient component ∂Lt

∂W (hh) is the sum of components that are called the temporal contributions

(∂Lt

∂ht

∂ht

∂hk

∂+hk

∂W (hh) ) that measure how W (hh) at step k affects the cost at step t > k [141]. When k � t,

these components are referred to as long-term contributions. The term ∂ht

∂hk
takes the form of a product

of t− k Jacobian matrices that, in the case of long-term components, can result in the norm growing

quickly towards infinity (the exploding gradients problem) or, alternatively, shrinking quickly towards

zero (the vanishing gradients problem) [141].

In order to address the problem of exploding gradients, Mikolov [130] and Pascanu et al. [141]

proposed gradient clipping, a method of rescaling the gradients based on their norm whenever the norm

goes over a given threshold.

To address the problem of vanishing gradient, Hochreiter and Schmidhuber [86] proposed the long

short-term memory (LSTM) architecture that consists of memory cells that have a self connection of

weight 1 and the flow of information to and from the cell is controlled by learned input and output gates.

When the gates are shut, the gradients can flow through the memory cells without alteration for many

time steps thus overcoming the vanishing gradients problem [172]. Eq. (5.8) describes a widely-used

LSTM variant that includes an additional forget gate that controls the weight of the self-connection and

allows the cell to clear its memory [58]:

gnt =sigmoid(W (in)it +W (hn)ht−1 +W (cn)ct−1 + b(n))

gft =sigmoid(W (if)it +W (hf)ht−1 +W (cf)ct−1 + b(f))

ct =gft · ct−1 + gnt · tanh(W (ic)it +W (hc)ht−1 + b(c))

got =sigmoid(W (io)it +W (ho)ht−1 +W (co)ct + b(o))

ht =got · tanh(ct),

(5.8)

where gn, gf , and go are the input gate, forget gate, and output gate, respectively. Figure 5.2 illustrates

the structure of LSTM and describes the role of each weight matrix.
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Figure 5.2: Long Short-Term Memory (LSTM).

An alternative RNN variant that was found effective in addressing the vanishing gradient problem is

the Gated Recurrent Unit (GRU) [23]:

grt =sigmoid(W (ir)it +W (hr)ht−1 + b(r))

gzt =sigmoid(W (iz)it +W (hz)ht−1 + b(z))

h̃t =tanh(W (ih)it +W (hh)(grt · ht−1) + b(h))

ht =(1− gzt )ht−1 + gzt h̃t.

(5.9)

Similar to LSTM, GRU has gates that control the flow of information, however it does not have a

separate memory cell. The update gate gz controls how much the unit updates its content, while the

reset gate gr allows the unit to forget its content.

5.2 Decoding Neural Sequence Models

In Section 5.1, we described neural sequence models and how they are trained. In this section, we describe

how neural sequence models are decoded.

Typically, the goal of the decoding process is the find a sequence y of length T that has the highest

probability, conditioned on a context x, according to our model [181],

arg max
y

pθ(y|x), (5.10)

where θ represents the parameters of our model and x represents the context. Since neural sequence

models estimate the conditional probability pθ(yt|x, y1:t−1), we can write Eq. (5.10) as the product of

the tokens’ conditional probabilities (using Eq. (5.2)):

arg max
y

pθ(y|x) = arg max
y1,...,yT

T∏
t=1

pθ(yt|x, y1:t−1). (5.11)

Solving Eq. (5.11) can be viewed as Maximum a Posteriori (MAP) inference on a T -order Markov
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chain [181]. Since exact inference is NP-hard, Eq (5.10) is normally solved using approximate inference

algorithms. In this section we cover the most commonly used approximate algorithms for MAP inference

on neural sequence models.

5.2.1 Sampling

Random sampling is a simple inference algorithm where we iteratively sample sequences from our model,

token-by-token, according to the conditional probability distribution of each token conditioned on the

previous tokens and the context [137]. To approximate Eq. (5.11) we usually collect multiple samples and

return the one that has the highest probability. Pseudo-code of this algorithm is provided in Algorithm

5.1.

Algorithm 5.1 Random Sampling

function RandomSampling(model θ, context x, number of samples N)

for i=1..N do . Collect N samples, yi, i = 1..N

for t=1..T do

yit ∼ pθ(y|x, yi1:t−1) . Draw random token conditioned on context and y1:t−1

return yi such that pθ(y
i|x) ≥ pjθ(yj |x) . Return the highest probability sample

To control the randomness of the sampling, it is common to use softmax temperature [107],

pθ(yt|x; y1:t−1) =
exp(φθ(yt|x; y1:t−1)/T )∑
y′ exp(φθ(y

′|x; y1:t−1)/T )
, (5.12)

where T represent the softmax temperature. When T = 1, sampling is done according to the standard

softmax probabilities. Setting 0 < T < 1 will lead to a less diverse sampling, while setting T > 1 will

lead to more diverse sampling compared to standard softmax.

5.2.2 Greedy Decoding

Greedy decoding is a simple and fast algorithm: at each step, the most likely token, conditioned on the

previous tokens and the context, is selected [137]. Algorithm 5.2 shows pseudo-code for greedy decoding.

Greedy decoding makes a sequence of locally optimal decisions, however it often reaches a local

minima if there are higher probability sequences that start with lower probability tokens.

Algorithm 5.2 Greedy Decoding

function GreedyDecoding(model θ, context x)

for t=1..T do

yt = arg maxy′ pθ(y
′|x, y1:t−1) . Select the most likely token conditioned on x and y1:t−1

return y

5.2.3 Beam Search

Beam search is any search algorithm in which a number of alternatives (the beam) are examined in

parallel, while heuristic rules are used to prune non-promising alternatives [12].
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In the context of neural sequence decoding, beam search is a limited-width breadth-first search that

is used as an approximation to finding the (single) sequence y that maximizes Eq. (5.11), or as a way to

obtain a set of high-probability sequences from the model [107]. Starting from an empty sequence, at

every step t = 0, 1, 2, ... beam search expands at most B partial sequences (those with highest probability)

to compute the probabilities of sequences with length t + 1. It terminates with a set of B complete

sequences, which we assume to be of equal length (as they can be padded). B is called the beam width

or the beam size and the set of B complete sequences is viewed as the M -best list of the MAP inference

[7]. Pseudo-code of beam search can be found in Algorithm 5.3.2

Algorithm 5.3 Beam Search

function BeamSearch(model θ, context x, beam width B)

beams← {∅} . Initialize the beam with empty sequence

score(∅)← 1.0 . Set probability of empty sequence to be 1.0

for t = 1..T do

candidates← {}
for b ∈ beams do

for v ∈ V do . For each token in the vocabulary V
b′ ← b ‖ v . Extend sequence b with token v

scores(b′)← score(b) + pθ(v|x, b)
candidates← candidates ∪ b′

beams← Top−B(candidates, scores) . Keep top B extensions of sequences in beam

return beams

Vijayakumar et al. [181] provided a mathematical notation to describes the set of beam candidates

in each step. We denote the set of B partial solutions held by the beam search at time step t − 1 as

Y[t−1]={y1,[t−1], ..., yB,[t−1]}. At each step, beam search selects the top scoring B candidates from the set

of all possible one token extensions of its beams Yt={y[t] | y[t−1] ∈ Y[t−1] ∧ yt ∈ V}. Formally, the beam

search candidates are updated as follows:

Y[t] = arg max
y1,[t],...,yB,[t]∈Yt

∑
b∈[1..B]

logPθ(yb,[t] | x)

s.t. yi 6= yj ∀i 6= j; i, j ∈ [1..B]

(5.13)

5.3 Beam Search Variants and Enhancements

Beam search is the most popular algorithm for neural sequence decoding [181], and is the focus of

Chapters 6 and 7. In this section, we review notable variants of beam search and commonly used beam

search enhancements.

2The pseudo-code is provided to conceptually explain how beam search works. In practice, there are different, and more
efficient, implementations of beam search. In particular, when used for neural sequence decoding, it is common to use the
GPU to compute the candidates scores’ and select the top B candidates.
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5.3.1 Complete Variants of Beam Search

Previous works have considered the use of beam search for solving combinatorial problems such as

constraint satisfaction problems (CSPs) [208] and domain-specific planning [199, 47]. In these problems,

we are not looking for the most likely sequence according to some learned model. Instead, we are looking

for a solution that satisfies some goal criteria. In this context, we consider beam search to be incomplete:

the use of pruning rules (e.g., limited beam width) can lead to pruning all partial solutions that lead to a

solution that satisfies the goal criteria [199]. There are two types of approaches to make beam search

complete. The first, called complete anytime beam search [208], consists on restarting the search with

a wider beam until a solution is found. An alternative that does not require increasing the memory

consumption is to use backtracking [47, 209]. In this section, we describe the two approaches in detail.

Complete Anytime Beam Search

Complete anytime beam search [208] is a complete variant of beam search that relies on iterative weakening

[146]: each time a beam search fails to find a solution, the beam search is restarted with weakened

pruning rules. In state spaces where all returned solutions are feasible, complete anytime beam search

is an anytime algorithm [33] since it can quickly find a solution in the first iteration and continuously

find better solutions in subsequent iterations. In the case of neural sequence decoding, beam search is a

limited-width breadth-first search and the pruning is based on the beam width B. The common variant

of the complete anytime beam search in neural sequence decoding involves restarting the beam search

with a larger beam width each time it fails to find a solution [199, 210, 5, 111]. Algorithm 5.4 provides

pseudo-code of this variant of complete anytime beam search, using a parameter κ that controls the rate

of increase in beam width in each iteration.

Algorithm 5.4 Complete Anytime Beam Search

function CAB(goal criteria G, beam width increase factor κ)

beamWidth← 1

while not solved do

candidates← BeamSearch(beamWidth)

for c ∈ candidates do

if c satisfies G then

return c

beamWidth← κ · beamWidth

Beam Search with Backtracking

An alternative approach to iterative weakening is to use backtracking [209]. Unlike iterative weakening,

this approach maintains a similar memory complexity to standard beam search.

Zhou and Hansen [209] proposed beam-stack search, an anytime complete variant of beam search that

is based on backtracking and pruning of nodes using an admissible heuristic. Beam-stack starts with an

initial upper bound based on an initial solution found by an approximation algorithm, however Wilt et

al. [199] modified it to take infinity as the upper bound in case we do not have such initial solution.

Furcy and Koenig [47] proposed Beam Search Using Limited Discrepancy Backtracking (BULB),

another complete, backtracking-based variant of beam search, however instead of using chronological
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backtracking, they use limited discrepancy search [73]. Table 5.2 shows Furcy and Koenig’s [47] taxonomy

of beam search methods. Note that depth-first beam search [47] is a simplified version of Zhou and

Hansen’s [209] beam-stack search.

Table 5.2: Taxonomy of beam search methods [47].

Beam Type of backtracking

width None Chronological Limited discrepancy

1 Greedy search Guided depth-first search Limited discrepancy search

1 < n <∞ Beam search Depth-first beam search Beam search using limited discrepancy

∞ Breadth-first search Breadth-first search Breadth-first search

5.3.2 Diversity in Beam Search

Despite the popularity of beam search, previous work has highlighted that the M -best list generated by

beam search tends to include similar sequences (often differing by only one token), and is a poor surrogate

for the entire search space [59, 114, 115]. Different methods have been proposed to increase the diversity

in beam search results (e.g., [181, 107, 114, 115]), many of them exclusive to natural language applications.

In this section, we describe in detail two recent techniques that can be used across applications.

Diverse Beam Search (DBS)

Vijayakumar et al. [181] proposed to modify the objective of beam search (Eq. (5.13)) to account for

diversity. They considered a partition of the beams Y[t] into G groups, Y g[t], g ∈ [1, G], each containing

B′ = B/G elements. At each time step, each group is greedily updated by selecting extensions of

the current partial sequences Y g[t] = {Y g1,[t], ..., Y
g
B′,[t]} that maximize a linear combination of sequence

likelihood and diversity with respect to previous groups. To measure diversity, Vijayakumar et al.

introduced a diversity function ∆(y[t], Y
g
[t]) that measures the dissimilarity between a sequence y[t] and a

group Y g[t],

∆(y[t], Y
g
[t]) =

B′∑
b=1

δ(y[t], y
g
b,[t]),

where δ(·, ·) is a measure of sequence dissimilarity, e.g., Hamming distance. DBS optimizes each group

while holding previously extended groups fixed and incorporating diversity into the beam search objective

(Eq. (5.13)). In time step t, the objective for updating each group g is as follows:

Y g[t] = arg max
yg
1,[t]

,...,yg

B′,[t]∈Yt

∑
b∈[1..B]

logPθ(y
g
b,[t] | x) + λ

g−1∑
h=1

∆(ygb,[t], Y
h
[t])

s.t. λ > 0, ygi,[t] 6= ygj,[t] ∀i 6= j.

(5.14)

Algorithm 5.5 presents Vijayakumar et al.’s beam search procedure modified to reflect the objective in

Eq. (5.14). Each argmax can be computed in a similar manner to Algorithm 5.3.
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Algorithm 5.5 Diverse Beam Search [181]

function DBS(model θ, context x, beam width B, number of groups G)

B′ ← B/G
for t = 1..T do

Y 1
[t] ← arg maxy1

1,[t]
,...,y1

B′,[t]∈Yt

∑
b∈[1..B] logPθ(y

1
b,[t] | x) s.t. y1

i,[t] 6= y1
j,[t]∀i 6= j

for g = 2..G do

logPθ(Y
g
[t])← logPθ(Y

g
[t]) + λ

∑g−1
h=1 ∆(ygb,[t], Y

h
[t])

Y g[t] ← arg maxyg
1,[t]

,...,yg

B′,[t]∈Yt

∑
b∈[1..B] logPθ(y

g
b,[t] | x) s.t. ygi,[t] 6= ygj,[t]∀i 6= j

Y[T ] ←
⋃G
g=1 Y

g
[T ]

return Y[T ]

Stochastic Beam Search (SBS)

The Gumbel-Max trick [70, 125] allows sampling from the categorical distribution by perturbing the

log-probability for each category. The process involves adding Gumbel-distributed noise and selecting the

category with the highest perturbed log-probability. Selecting the k categories with the highest perturbed

log-probabilities is equivalent to sampling k items without replacement from the categorical distribution

(Gumbel-Top-k trick; [180]).

Stochastic Beam Search (SBS) [107] applies the Gumbel-Top-k trick to a sequence model, without

instantiating the entire search tree, by using top-down sampling. At each step, the beam search expands

the k partial sequences that have the highest perturbed log-probabilities, where the Gumbel-perturbed

log-probabilities are sampled conditioned on their maximum being equal to their parent perturbed

log-probability.

Given a partial sequence S with log-probability φS , for each extension S′ ∈ children(S), we start

by computing their Gumbel-perturbed log-probabilities GφS′ ∼ Gumbel(φS′) independently, and set

Z = maxS′GφS′ . Then,

G̃φS′ = − log(exp(−GφS
)− exp(Z) + exp(−GφS′ ))

is a set of Gumbels with a maximum equal to GφS
. Algorithm 5.6 presents pseudo-code of SBS.3

3The pseudo-code is provided to conceptually explain SBS. In the original paper [107], Kool et al. describe a numerically
stable implementation of SBS.
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Algorithm 5.6 Stochastic Beam Search [107]

function SBS(conditional probability logPθ, beam width B)

beam← {}
beam← beam ∪ (yN = ∅, φN = 0, GφN

= 0) . Initialize beam with empty sequence

for t = 1..T do

expansions← {}
for (yS , φS , GφS

) ∈ beams do . For each (partial) sequence in beam

Z ← −∞
for S′ ∈ children(S) do . For each one-token extension of the sequence

φS′ ← φS + logPθ(y
S′ | yS)

GφS′ ∼ Gumbel(φS′) . Compute Gumbel-perturbed log-probabilities

Z ← max(Z,GφS′ )

for S′ ∈ children(S) do

G̃φS′ = − log(exp(−GφS
)− exp(Z) + exp(−GφS′ )) . G̃φS′ conditioned on maximum GφS

expansions← expansions ∪ (yS
′
, φS′ , G̃φS′ )

beams← Top− B(expansions, G̃)

5.3.3 Beam Search Enhancements

In this section, we describe notable enhancements and commonly used techniques to improve beam search

performance.

Length Normalization

In many natural language generation tasks, it is common to apply length normalization to the (partial)

sequences in beam search [105, 49]. When using length normalization, the score of a (partial) sequence is

its likelihood divided by the length of the sequence,

score(y) =
pθ(y|x)

|y|
, (5.15)

where |y| denotes the length of sequence y.

In Google’s NMT system, Wu et al. [202] improved over Eq. (5.15) by dividing the likelihood by |y|α

where α ∈ [0.6, 0.7]. Eventually, Wu et al. [202] used the following length normalization scheme that was

empirically found to be better:

score(y) =
pθ(y|x)(
5+|y|
5+1

)α .
Beam Search Re-ranking

Beam search re-ranking (or re-scoring) [171, 157] refers to the following two-step process:

1. First, a beam-search is run to compute the M -best list.

2. Then, sequences in the M -best list are re-ranked according to a different scoring function.
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In this setting, the beam search is used to generate a set of high quality candidate sequences, however

the final ranking of these sequences is done using a different scoring function that may lead to a different

top-1 sequence being returned.

Common examples for additional scoring functions are global scoring functions that can only score

complete sequences or additional trained models that can be utilized for re-ranking the beam search

M -best list of a base model [162, 137]. In order to use a set of additional scoring models m′1,m
′
2, ...,m

′
z

to re-rank the M -best list of a base model mbase, we can use the following procedure:

1. Use beam search to generate the M -best list of promising candidates from mbase.

2. Compute the score of each sequence in the M -best list according to each of the z additional models.

3. Combine the score of all models by a simple average or a weighted combination with learned weights

(e.g., using MIRA [19]).

4. Re-rank the M -best list according to the new combined scores and return the top candidate in the

re-ranked list.

Previous works considered a variety of additional models, including ensemble models [171], right-to-left

models [157], etc.

Constrained Beam Search

In recent years, several works have considered incorporating constraints into beam search. We review

notable extensions of beam search that incorporate different types of constraints that the solution

sequences must satisfy.

Anderson et al. [2] proposed a constrained beam search that forces inclusion of selected tokens in the

output. The authors consider two types of constraints: (1) token sets that at least one token of each set

must appear in the output; (2) sub-sequences that must appear in the output. The authors construct a

finite-state machine (FSM) that is able to keep track of which constraints are currently satisfied by each

partial sequence during the beam search decoding. For each FSM state s and each decoding step t, a

corresponding search beam is maintained containing at most B partial sequences. In each step, the FSM

state-transition function determines for each potential expansion of a partial sequence the corresponding

state in the FSM. The accepting state represent the conjunction of all constraints and the algorithm

terminates when an accepting state contains a completed sequence. In a later work, Hasler et al. [74]

adapted Anderson et al.’s [2] constrained beam search to machine translation and proposed employing

alignment information between target-side constraints and their corresponding source words to reduce

the computational complexity.

Hokamp and Liu [91] proposed grid beam search (GBS), a variant of beam search that must satisfy

constraints in the form of sub-sequences that must appear in the solution sequences. To generate sequences

that satisfy the constraints, GBS maintains a grid-based data structure of beams where the beams are

indexed by t, the time step of the search, and c, the number of constraint tokens that are covered by the

partial sequences in this beam. The partial sequences in each beam are separated into two types:

1. open sequences that can either generate tokens from the model’s distribution or generate a token

that starts an available constraint.

2. closed sequences that can only generate the next token for a currently unfinished constraint.
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The beams at the top level of the grid, i.e., beams for which c is equal to the total number of tokens in

all constraints, contain partial sequences that satisfy all the constraints and can be returned once they

are completed. Post and Vilar [144] proposed to change GBS such that the beam slots are dynamically

allocated across the constraints, reducing the complexity of the algorithm to T × B, i.e., the complexity

does not scale with the number of constraints.

Building on the background presented in this chapter, in Chapter 6 and Chapter 7 we present empirical

models for the search behavior of beam search in neural sequence decoding. In Chapter 6 we analyze the

problem of performance degradation in beam search with large beam widths [105] and in Chapter 7 we

study the problem difficulty of beam search in goal-oriented neural sequence decoding.



Chapter 6

Empirical Analysis of Beam Search

Performance Degradation in Neural

Sequence Decoding

In this chapter, we develop an empirical model for the behavior of beam search in neural sequence

decoding. Our model is based on the notion of search discrepancies [73], adapted from combinatorial

search. Consistent with our thesis statement, we show that this model can explain the well-known

problem of performance degradation in beam search with large beams [105] and demonstrate how this

model can be used to devise heuristic techniques that eliminate the performance degradation.

6.1 Introduction

Neural sequence models are among the most popular tools for modeling sequential data and have been

applied to a range of applications including machine translation [49], summarization [21], image captioning

[183], and conversation modeling [182]. The most commonly used inference algorithm for decoding neural

sequence models is beam search, as discussed in Chapter 5.

Recently, several works have reported the problem of performance degradation in beam search. In

machine translation, Koehn and Knowles [105] found that beam search “only improves translation for

narrow beams and deteriorates when exposed to a larger search space” (p. 28). While length-normalization

can alleviate the problem somewhat, it does not eliminate it. Koehn and Knowles [105] chose this problem

as one of six central challenges in machine translation.

To explain the performance degradation in length-normalized machine translation models, Ott et

al. [138] proposed the existence of training pairs in which the target is a copy of the source. For larger

beams, they found that more of the predictions are “copies”1 and that pruning these copies from the

beam search results reduces the performance degradation.

In image captioning, Vinyals et al. [183] observed performance degradation for wider beams and

highlighted the use of a narrower beam search as one of the most significant improvements in their model.

They hypothesized that the degradation is either due to overfitting or that the objective used in training

1“Copies” are predictions that share at least 50% of their unigrams with their source [138].
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(likelihood) is not aligned with human judgement. Their analysis found that wider beams exhibited more

predictions that repeat training captions and fewer novel ones. This observation is used to support the

hypothesis that the model is overfitted and therefore they propose the use of smaller beam width as

“another way to regularize” (Vinyals et al. [183], p. 660).

In this chapter, we study the phenomenon of beam search performance degradation in neural sequence

models. Based on an extensive empirical analysis across different neural sequence decoding tasks, we

develop an explanatory model of the beam search performance degradation. We make the following

contributions:

• We introduce an explanatory model of the beam search performance degradation in neural sequence

models that is based on the concept of search discrepancies that represent deviations from greedy

choices.

• We conduct an extensive empirical study of the distribution of search discrepancies and show

that increasing the beam width leads to solutions with more and larger discrepancies early in the

sequence. These sequences often have lower evaluation score, leading to the observed performance

degradation. As we increase the beam width, the differences in the distribution of discrepancies

that are associated with improved vs. degraded solutions grow substantially.

• We show, empirically, that our explanatory model generalizes previous observations on “copies”

in machine translation and predictions that repeat training set targets in image captioning and

accounts for more of the degraded predictions.

• Based on our empirical analysis, we propose two heuristics for constraining the beam search from

considering large search discrepancies and show that these heuristics eliminate the performance

degradation.

The work in this chapter is based on the publication [24].

6.1.1 Organization

In Section 6.2, we provide the necessary notation and formally define search discrepancies in neural

sequence decoding using beam search. In Section 6.3, we describe the experimental setup we use in

our analysis. In Section 6.4, we conduct an extensive empirical analysis of the search discrepancies in

neural sequence decoding using beam search. Based on the results of the analysis, in Section 6.4.7 we

hypothesize that the performance degradation is due to early and large search discrepancies. Then,

in Section 6.5, we empirically verify our hypothesis by introducing two heuristics for constraining the

beam search from considering large search discrepancies and show that they eliminate the performance

degradation. Finally, in Section 6.6 we present a detailed discussion on the implications of our results

and the connections to other related works and in Section 6.7 we summarize the chapter.

6.2 Preliminaries

In this section we present the notation and definitions used in our work. Chapter 5 includes detailed

background on neural sequence models and beam search. For convenience, we repeat the main definitions

that are relevant for this chapter. Then, in Section 6.2.1, we present the definition of search discrepancies

we use in our empirical analysis.
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Neural Sequence Models A sequence model is a factorized parametric distribution over sequences.

The parameter θ defines the probability pθ(yt|x, y1:t−1) of the next token yt, conditioned on the input

x and the partial sequence y1:t−1. A sequence model defines a valid probability distribution over both

partial and complete sequences, and the total probability of a sequence y1:t conditioned on input x can

be computed using the chain rule,

pθ(y1:t|x) = pθ(yt|x, y1:t−1) · pθ(y1:t−1|x) =
t∏

t′=1

pθ(yt′ |x, y1:t′−1). (6.1)

Beam Search Beam search is a limited-width breadth-first search that is used as an approximation to

finding the (single) sequence y that maximizes Eq. (6.1), or as a way to obtain a set of high-probability

sequences from the model. Following Vijayakumar et al. [181], we denote the set of B solutions held

by the beam search at time step t − 1 as Y[t−1]={y1,[t−1], ..., yB,[t−1]}. At each step, beam search

selects the top scoring B candidates from the set of all possible one token extensions of its beams

Yt={y[t] | y[t−1] ∈ Y[t−1] ∧ yt ∈ V}. Formally, the beam search candidates are updated as follows:

Y[t] = arg max
y1,[t],...,yB,[t]∈Yt

∑
b∈[1..B]

logPθ(yb,[t] | x)

s.t. yi 6= yj ∀i 6= j; i, j ∈ [1..B]

(6.2)

6.2.1 Search Discrepancies in Neural Sequence Generation

In combinatorial search, a search discrepancy is a decision made by the search algorithm that is not the

most highly rated one according to the heuristic [73]. Search discrepancies have been used as the basis

of different combinatorial search algorithms such as limited discrepancy search [73, 108], depth-bound

discrepancy search [184], discrepancy-bounded depth-first search [8], and beam search using limited

discrepancy backtracking (BULB) [47]. However, these methods are aimed at finding feasible solutions in

a constrained combinatorial optimization or path-finding problems.

In the context of search for neural sequence generation, we define a search discrepancy as extending a

partial sequence with a token that is not the most probable one. For each search discrepancy, we denote

the difference in log-probability between the most likely token and the chosen token as discrepancy gap.

We formally define search discrepancy and discrepancy gap as follows:

Definition 21 (Search Discrepancy) Consider a sequence model parameterized by θ and an input context

x. A sequence y is considered to have a search discrepancy at time step t if

logPθ(yt | x;{y0,..., yt−1}) < max
y∈V

logPθ(y | x;{y0,..., yt−1})

Definition 22 (Discrepancy Gap) Consider a sequence model parameterized by θ and an input context

x. At time step t, the discrepancy gap is defined as

max
y∈V

logPθ(y | x;{y0,..., yt−1})− logPθ(yt | x;{y0,..., yt−1})

Note that if there is no discrepancy at time step t then logPθ(y | x;{y0,..., yt−1}) = logPθ(yt |
x;{y0,..., yt−1}) and the token at index t is considered to have a discrepancy gap of zero.
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To demonstrate how the discrepancy gap is computed, Figure 6.1 shows the extension of a partial

hypothesis in machine translation. The candidate with the highest conditional probability has a

discrepancy gap of zero, by definition, while the gap of the other candidates is the difference in log-

probability.

<sos> comment

vas: -0.69 [0] est: -0.92 [0.23] venu: -2.99 [2.30] ...

Figure 6.1: Example: expanding a partial hypothesis in the translation of “How are you?” to French.
Discrepancy gap in brackets.

In this work we investigate if the notion of search discrepancies we adapt from combinatorial search

can help explain the performance degradation in neural sequence decoding using beam search.

6.3 Experimental Setup

We perform an extensive empirical evaluation over multiple tasks, models, datasets, and evaluation

metrics. Following is a description of the experimental setup for each task.

6.3.1 Sequence Decoding Tasks

Machine Translation

Neural machine translation (NMT) is an end-to-end approach to machine translation [4]. Most of

the approaches to neural machine translation are sequence-to-sequence models [173], with an encoder

and a decoder for each language. The encoder network reads a source sentence and encodes it into a

fixed-length hidden vector. The decoder takes in the encoded vector and outputs a translation. The

whole encoder–decoder system is jointly trained to maximize the probability of a correct translation

given a source sentence.

We use Gehring et al.’s [49] model that includes a convolutional encoder and a recurrent decoder

based on LSTM, implemented in the fairseq-py toolkit [139]. We present results for two models:

1. English-to-French translation model, trained on the WMT’14 En-Fr dataset and evaluated on the

newstest2014 En-Fr dataset.

2. English-to-German translation model, trained on the WMT’14 En-De dataset and evaluated on the

newstest2014 En-De dataset.

Both models use a vocabulary that is based on byte pair encoding (BPE) [158] that allows for open-

vocabulary translation by encoding rare and unknown words as sequences of subword units.
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Abstractive Summarization

Automatic Summarization is the task of generating a condensed version of a passage while preserving

its meaning. Extractive summarization systems generate summaries by extracting important segments

from the source text and putting them together to form a summary. Abstractive summarization systems

generate summaries from scratch without being constrained to using phrases from the source text.

We use a sequence-to-sequence abstractive summarization model [21] that includes two-layer LSTMs

for the encoder and the decoder, implemented in the OpenNMT toolkit [104]. The model is trained and

evaluated using Rush et al.’s [154] test split of the Gigaword corpus [68].

Image Captioning

Image captioning is the task of automatically describing the content of an image. Vinyals et al. [183]

proposed a end-to-end approach, inspired by neural machine translation systems. Their model includes a

deep convolution neural network encoder that takes in an image and produces a rich representation of

the image by embedding it in a fixed-length vector. This vector is used as the input to a recurrent LSTM

decoder.

The model is trained on the MSCOCO dataset [119]. We evaluate the model using a test set of 5000

images based on Karpathy and Fei Fei’s [101] splits.

In machine translation and summarization, we apply length normalization on the hypotheses log-likelihood,

as it was shown to reduce the performance degradation by not prioritizing short sentences [105, 49]. For

image captioning, consistent with previous works, we do not use length normalization (we also found

that such normalization reduces the overall performance).

6.3.2 Evaluation Metrics

While beam search finds the (approximately) most probable sequence, the quality of a sequence is

evaluated based on human references using a task-specific evaluation metric.

BLEU-N

For machine translation and image captioning, we use the bilingual evaluation understudy (BLEU) score

[140] to evaluate the sequence returned by the beam search. Given a candidate sentence and a reference

sentence, BLEU-N is a geometric average of precision over 1- to N -grams multiplied by a brevity penalty

for short sentences,

BLEU-N = BP · exp(
N∑
n=1

wn log pn),

where pn is the n-gram precision and the brevity penalty BP is computed based on the reference length

r and the candidate length c:

BP =

1 if c > r

e(1− r
c ) if c ≤ r

As in recent literature, we present results for BLEU-4. Corpus-level BLEU is reported without smoothing,

while for sentence-level BLEU we use smoothed n-gram counts for n > 1 [118].
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ROUGE-N

For summarization, we use the recall-oriented understudy for gisting evaluation (ROUGE) score [116].

ROUGE-N is the N -gram recall between candidate summary c and a set of reference summaries

R = {r1, r2, ..., rm}, such that ROUGE-1 represents unigram recall, ROUGE-2 represents bigram recall,

etc. In recent works, ROUGE-N recall has been replaced by F1 scores of ROUGE-N [135, 21]. In

addition, Lin and Och [117] proposed ROUGE-L that is based on the longest common subsequence (LCS)

between a candidate and a reference. Given a candidate summary c of length lc and a reference summary

r of length lr, ROUGE-L is defined as the LCS-based F-measure:

RLCS =
LCS(c, r)

lc

PLCS =
LCS(c, r)

lr

FLCS =
(1 + β2)RLCSPLCS
RLCS + β2PLCS

where LCS(c, r) is the longest common subsequence of c and r and β = PLCS/RLCS . We report the

ROUGE-1 F1 score, however similar trends were observed for ROUGE-L.

6.4 Empirical Analysis of Search Discrepancies in Beam Search

In this section, we present an empirical analysis of the search discrepancies in neural sequence decoding

using beam search. We analyze and compare the most likely hypotheses found by a beam search for the

following beam widths: {1, 3, 5, 25, 100, 250}.

6.4.1 Baseline Results

Table 6.1 presents the performance of beam search with different beam widths, based on the chosen

evaluation metrics. The performance degradation for larger beam widths appears for all tested tasks

based on their task-specific evaluation metric. These results are consistent with the existing reports of

such performance degradation [105, 138, 183].

Table 6.1: Baseline results for different beam widths (higher values are better, best results in bold).

Task Dataset Size Metric B=1 B=3 B=5 B=25 B=100 B=250

Translation En-De 3003 BLEU4 25.27 26.00 26.11 25.11 23.09 21.38

En-Fr 3003 BLEU4 40.15 40.77 40.83 40.52 38.64 35.03

Summariz. Gigaword 1751 ROUGE-1 33.56 34.22 34.16 34.01 33.67 33.23

Captioning MSCOCO 5000 BLEU4 29.66 32.36 31.96 30.04 29.87 29.79

6.4.2 The Distribution of Search Discrepancies

Figure 6.2a shows the number of discrepancies per position (index) for the most likely hypotheses

generated by a beam search on the WMT’14 En-De test set for different beam widths. All graphs are
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based on the same number of solutions, however the total number of discrepancies in the generated

solutions is not necessarily the same for different beam widths. In general, the majority of discrepancies

happen in early positions. More interestingly, for larger beams, the number of early discrepancies grows

significantly while the number of later discrepancies stays approximately constant. Larger beams allow

the search to find solutions with higher overall probability by exploring less probable early tokens, however

they do not seem to lead to more probable sequences that share a prefix with solutions found for a smaller

beam width.
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(a) WMT’14 En-De: Distribution of discrepancy positions for different beam widths.
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(b) WMT’14 En-Fr: Distribution of discrepancy positions for different beam widths.
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(c) Gigaword: Distribution of discrepancy positions for different beam widths.
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(d) MSCOCO: Distribution of discrepancy positions for different beam widths.

Figure 6.2: Distribution of discrepancy positions for different beam widths.

Figure 6.2b, Figure 6.2c, and Figure 6.2d show similar results for WMT’14 En-Fr translation, Gigaword

summarization, and MSCOCO image captioning, respectively. For image captioning (MSCOCO), we

find the majority of early search discrepancies appear on the second token due to the first token being
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“a” with high probability in almost all sentences (in greedy search, for example, 99% of the generated

captions start with “a”).

Next, we analyze the discrepancy gap vs. sequence position. Figure 6.3a presents the mean discrepancy

gap per position for WMT’14 En-De for different beam widths. Again, we can see that the differences

are mainly in the early positions: for larger beams, the search tends to find solutions with larger early

discrepancy gap, i.e., the early tokens are relatively less likely. The gap of the other tokens remains

similar.

Figure 6.3b, Figure 6.3c, and Figure 6.3d show similar results for WMT’14 En-Fr translation, Gigaword

summarization, and MSCOCO image captioning, respectively.
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(a) WMT’14 En-De: Mean discrepancy gap per position for different beam widths.
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(b) WMT’14 En-Fr: Mean discrepancy gap per position for different beam widths.
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(c) Gigaword: Mean discrepancy gap per position for different beam widths.
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(d) MSCOCO: Mean discrepancy gap per position for different beam widths.

Figure 6.3: Mean discrepancy gap per position for different beam widths.

The increase in number and size of early discrepancies for larger beams means that the search manages

to find solutions with higher overall probability when starting from a large discrepancy. However, these

solutions are not necessarily better according to the evaluation metric. The observed performance
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degradation in Section 6.4.1 suggests that the more probable solutions found by larger beams are, in

fact, worse in terms of the evaluation metric. Identifying discrepancies that are likely to lead to a worse

solution is therefore a key task in addressing the performance degradation.

6.4.3 Discrepancies in Improved vs. Degraded Solutions

We now compare the solutions generated by a greedy search with the solutions generated by beam search

with different widths. We then analyze the discrepancies in solutions that were improved by increasing

the beam width (based on the evaluation metric and with respect to the greedy solution ) vs. solutions

that were degraded.

Figure 6.4a shows the number of discrepancies per position for WMT’14 En-De, comparing solutions

that were improved vs. solutions that were degraded. For B=5 there are 386 solutions in which the

first token is not based on a greedy decision. Of those, 200 have a better evaluation than the greedy

solution and 169 have a worse evaluation. However, as we increase the beam width, the increase in early

discrepancies observed in Figure 6.2a is associated almost entirely with degraded solutions. This result

leads to the observed performance degradation for larger beam widths.

Figure 6.4b, Figure 6.4c, and Figure 6.4d show similar results for WMT’14 En-Fr translation, Gigaword

summarization, and MSCOCO image captioning, respectively.
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(a) WMT’14 En-De: Distribution of discrepancy positions for improved vs. degraded solutions.
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(b) WMT’14 En-Fr: Distribution of discrepancy positions for different beam widths.
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(c) Gigaword: Distribution of discrepancy positions for different beam widths.
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(d) MSCOCO: Distribution of discrepancy positions for different beam widths.

Figure 6.4: Distribution of discrepancy positions for improved vs. degraded solutions.

Next, we compare the discrepancy gaps in degraded vs. improved solutions. Figure 6.5a presents

the mean discrepancy gap per position in the WMT’14 En-De dataset, for both the improved and the

degraded solutions. Interestingly, we find that the additional early discrepancies that are associated with

degraded solutions tend to have a much higher discrepancy gap compared to the ones associated with

improved solutions.

Figure 6.5b, Figure 6.5c, and Figure 6.5d show similar results for WMT’14 En-Fr translation, Gigaword

summarization, and MSCOCO image captioning, respectively.
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(a) WMT’14 En-De: Mean discrepancy gap per position for improved vs. degraded solutions.
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(b) WMT’14 En-Fr: Mean discrepancy gap per position for different beam widths.
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(c) Gigaword: Mean discrepancy gap per position for different beam widths.
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(d) MSCOCO: Mean discrepancy gap per position for different beam widths.

Figure 6.5: Mean discrepancy gap per position for improved vs. degraded solutions.

6.4.4 Discrepancies and the Most Likely Hypothesis

In order for a sequence with an early large discrepancy to be selected by a beam search as (approximately)

the most likely hypothesis, it must be followed by tokens with higher (conditional) probability. Figure

6.6a shows the average (conditional) token probability for WMT’14 En-De (we use log-scale on the x axis

to highlight the early positions). For larger beams, the average probability of early tokens decreases (due

to larger discrepancy gaps) while the average probability of later tokens increases explaining the overall
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higher probability.

Figure 6.6a also shows the same graph for the improved vs. degraded solutions (compared to greedy

search). For improved solutions, we do not see significant change as we increase the beam width. For

degraded solutions, however, as we increase the beam width we find more and more early discrepancies

that lead to an overall higher probability but a worse evaluation metric value.
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(a) WMT’14 En-De: Average token probability per position for different beam widths.
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(b) WMT’14 En-Fr: Average token probability per position for different beam widths.
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(c) Gigaword: Average token probability per position for different beam widths.

Figure 6.6: Average token probability per position for different beam widths.

Figure 6.6b and Figure 6.6c show similar analyses for WMT’14 En-Fr and Gigaword summarization.

Again, we find that for larger beams, the average probability of early tokens decreases while the average

probability of later tokens increases explaining the overall higher probability. We also find that the

changes in the tokens’ average probability for increased beam width are larger in the case of degraded

solutions than for improved solutions.

For image captioning, length normalization is not used. We therefore need to compare the product
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of token probabilities rather than the average token probabilities. Table 6.2 shows the mean sum of

log-probabilities (that corresponds to the product of probabilities) of the first two tokens and the mean

sum of log-probabilities of the rest of the tokens. As we increase the beam width, the probability of the

early tokens decreases, while the probability of the rest of the tokens increases. Furthermore, the change

in probabilities is larger for degraded sequences compared to improved sequences.

Table 6.2: MSCOCO: Log-probability of the early (first two) tokens vs. the log-probability of the rest.

All Improved Degraded

Beam Early Rest Early Rest Early Rest

B=1 -1.48 -6.98 N/A N/A N/A N/A

B=3 -1.68 -5.11 -1.76 -5.32 -1.78 -5.09

B=25 -2.02 -4.09 -2.04 -4.26 -2.21 -3.99

B=100 -2.07 -4.02 -2.06 -4.21 -2.30 -3.91

B=250 -2.08 -4.01 -2.06 -4.20 -2.31 -3.90

6.4.5 Generalizing Copies and Training Set Predictions

Ott et al. [138] observed the pattern observed above for copies, i.e., they have low first token probability

and higher probabilities for subsequent tokens. Our analysis accounts for this behavior and suggests that

copies are one instance of a more general pattern that leads to degraded sequences. In this section, we

show that our analysis generalizes copies, as well as training set predictions in image captioning, and

even accounts for additional degraded sequences.

Table 6.3 shows the number of predictions that were copies in machine translation and training set

predictions in summarization and image captioning. For larger beams, the number of copies and training

set predictions grows. Table 6.3 also reports the mean discrepancy gap of the first token (second token

for MSCOCO, see Section 6.4.2). As our analysis predicts, the early gap of these predictions also grows

significantly.
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Table 6.3: Number of copies and training set examples and the average first token discrepancy gap.

B=1 B=3 B=5 B=25 B=100 B=250

En-De # Copies 23 40 49 179 385 567

En-De First token gap (copies) 0.0 0.12 0.28 1.79 3.05 3.71

En-De First token gap (all) 0.0 0.05 0.07 0.18 0.46 0.77

En-Fr # Copies 25 28 41 89 227 358

En-Fr First token gap (copies) 0.0 0.12 0.31 1.69 3.68 4.38

En-Fr First token gap (all) 0.0 0.04 0.05 0.10 0.32 0.60

Gigaword # Training set predictions 81 86 86 115 163 224

Gigaword First token gap (train pred.) 0.0 0.07 0.07 0.98 1.84 2.61

Gigaword First token gap (all) 0.0 0.12 0.12 0.29 0.39 0.55

MSCOCO # Training set predictions 163 260 371 588 582 576

MSCOCO Second token gap (train pred.) 0.0 0.39 0.87 1.76 1.82 1.82

MSCOCO Second token gap (all) 0.0 0.20 0.29 0.49 0.51 0.51

Note that copies and training set predictions only partially account for the performance degradation.

In WMT’14 En-De translation with B=25, we find that copies account for ≈ 40% of degraded solutions

with first token gap. In Gigaword summarization with a similar beam width, training set examples

account for ≈ 68% of degraded solutions with first token gap. Furthermore, in MSCOCO, since many of

the improved sequences are training set captions, eliminating them all together is not desired. Instead,

we are interested in avoiding only the training captions in the larger beams that lead to the performance

degradation. These, as Table 6.3 shows, have a larger difference in the discrepancy gap.

6.4.6 An Illustrative Example

Consider the following example of training set predictions in Gigaword. As we increase the beam width,

we find more predictions with the structure: “〈weekday〉’s sports scoreboard” (Table 6.4).2 As expected,

these predictions have a large early discrepancy, followed by highly (conditionally) probable tokens. For

B=100, the average first token discrepancy gap for these summaries is ≈3.6 compared to ≈0.4 in the

full test set. As none of the test references includes “sports scoreboard”, these summaries have low

evaluation.

Table 6.4: Number of “〈weekday〉’s sports scoreboard” predictions.

B = 3 B = 5 B = 25 B = 100 B = 250

0 1 17 19 19

As a potential explanation for this phenomenon, we find that all texts that were summarized as

“〈weekday〉’s sports scoreboard” included the corresponding weekday. In the training set, we found

that 2962 of the 2971 texts that were summarized to “〈weekday〉’s sports scoreboard” included the

corresponding weekday. The existence of the weekday in the text can lead to the 〈weekday〉 token being

2Without length normalization, the numbers are higher as this sequence is shorter than most summaries.
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suggested as a first token with a low, but sufficiently high, probability to get into the top B tokens.

Followed by high probability tokens, it can, in some cases, have an overall probability that is higher than

the alternatives.

6.4.7 Search Discrepancies and the Performance Degradation in Beam Search

Our baseline results support the observations that performance degradation is a significant problem that

occurs across different neural sequence tasks, using different models and evaluation metrics. Consistent

with previous results we find this problem even in length-normalized models.3

Based on our empirical analysis, we hypothesize that large search discrepancies are the cause of the

previously reported performance degradation in beam search. To test this hypothesis, we modify the

beam search algorithm to prevent it from considering large discrepancies, with the prediction that it will

eliminate the observed performance degradation.

6.5 Discrepancy-Constrained Beam Search

We evaluate two heuristic methods of constraining the beam search from considering large search

discrepancies.

Discrepancy gap: Given a threshold M, we modify beam search to only consider candidates with a

discrepancy gap smaller or equal to M. Formally, we modify Eq. 6.2 to include the constraint

max
y∈V

logPθ(y|x;{y0, ..., yt−1})−logPθ(yt|x;{y0...yt−1}) ≤M

Beam candidate rank: Given a threshold N , we modify Yt to only include the top N one-token

extensions in each beam. Note that the beam search still retains (at most) B candidates, however it will

not consider more than N candidates from each beam.

Using the setup in Section 6.4.1, we compare these methods to the baseline. Although the analysis in

Section 6.4 was done on the test set (to account for the performance degradation that was previously

observed on the test set), M and N are tuned on a held-out validation set and no information from the

test set was used to tune our methods.

3We further show that this problem is not due to length bias in Section 6.6.4.
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Table 6.5: A comparison of the baseline results vs. the constrained beam search methods (higher values
are better, best baseline results in bold).

Dataset Method Threshold B=1 B=3 B=5 B=25 B=100 B=250

En-De
(BLEU-4)

Baseline 25.27 26.00 26.11 25.11 23.09 21.38

Constr. Gap M = 1.5 25.27 26.00 26.18 26.18 26.22 26.29

Constr. Rank N = 2 25.27 26.07 26.01 26.08 26.10 26.10

En-Fr
(BLEU-4)

Baseline 40.15 40.77 40.83 40.52 38.64 35.03

Constr. Gap M = 2.0 40.15 40.78 40.86 40.98 41.05 41.06

Constr. Rank N = 3 40.15 40.77 40.81 40.99 41.05 41.02

Gigaword
(ROUGE-1)

Baseline 33.56 34.22 34.16 34.01 33.67 33.23

Constr. Gap M = 0.85 33.56 34.27 34.29 34.43 34.33 34.32

Constr. Rank N = 2 33.56 34.48 34.45 34.25 34.23 34.32

MSCOCO
(BLEU-4)

Baseline 29.66 32.36 31.96 30.04 29.87 29.79

Constr. Gap M = 0.45 29.66 32.24 32.33 32.36 32.35 32.35

Constr. Rank N = 2 29.66 32.52 31.97 30.88 30.87 30.87

As shown in Table 6.5, both methods significantly reduce, and in some cases completely eliminate, the

performance degradation. In machine translation and summarization, we improve performance compared

to the baseline with the best test beam width. In general, the discrepancy gap constraint seems to

perform better (most notably, for MSCOCO). The gap constraint allows for a finer-grained control over

the accepted search discrepancies, however the rank constraint is simpler and easier to tune.

We repeated the analysis in Section 6.4 on discrepancy-constrained beam search and found that both

constrained beam search variations substantially reduce the discrepancy phenomena detailed in Section

6.4. Complete results for both constrained methods on WMT’14 En-De are in Appendix B (other tasks

exhibited similar results).

Ott et al. [138] proposed to add an inference constraint that prunes copies in the beam search and

showed that it significantly reduces the performance degradation in machine translation. However, their

empirical analysis still found a drop of approximately a point in the BLEU evaluation for B = 200,

consistent with our observation that copy predictions do not fully account for the performance degradation

in machine translation (Section 6.4.5). Our inference constraints, more general and not limited to copies,

completely eliminate the performance degradation (and even slightly improve the evaluation) in machine

translation.

6.5.1 Copies and Training Set Predictions in Discrepancy-Constrained Beam

Search

In this section, we analyze the impact of the two discrepancy-constrained variants of beam search on the

number of copies and training set predictions. Table 6.6 compares the number of copies in the baseline

vs. the discrepancy-constrained methods for the machine translation tasks for each beam width. For

the baseline, we can see that as we increase the beam width, the number of copies grows significantly.

However, both discrepancy-constrained methods significantly reduce this growth.
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Table 6.6: Number of copies in machine translations for the baseline and the two types of discrepancy-
constrained beam search for different beam widths.

Dataset Method Parameter B=1 B=3 B=5 B=25 B=100 B=250

En-De Baseline 23 40 49 179 385 567

En-De Constr. Gap M = 1.5 23 39 42 50 53 55

En-De Constr. Rank N = 2 23 38 44 46 54 55

En-Fr Baseline 25 28 41 89 227 358

En-Fr Constr. Gap M = 2.0 25 27 37 43 46 45

En-Fr Constr. Rank N = 3 25 28 38 42 42 46

Table 6.7 compares the number of training set predictions in the baseline vs. the discrepancy-

constrained methods for the summarization and image captioning tasks for each beam width. For the

baseline, we can see that as we increase the beam width, the number of training set predictions grows

significantly. However, as with copies, both discrepancy-constrained methods significantly reduce the

growth in training set predictions.

Table 6.7: Number of predictions that are in the training set for the baseline and the two types of
discrepancy-constrained beam search for different beam widths.

Dataset Method Parameter B=1 B=3 B=5 B=25 B=100 B=250

Gigaword Baseline 81 86 86 115 163 224

Gigaword Constr. Gap M = 0.85 81 81 77 79 78 78

Gigaword Constr. Rank N = 2 81 81 79 79 79 79

MSCOCO Baseline 163 260 371 588 582 576

MSCOCO Constr. Gap M = 0.45 163 265 271 271 271 271

MSCOCO Constr. Rank N = 2 163 242 262 231 231 231

The above results show that our methods reduce the growth in the number of both copies and training

set predictions, supporting the claim that our hypothesis is a generalization of the previous explanations.

6.5.2 Generation of Non-English Text

To show that our results extend beyond generating text in English or in European languages that

share some similarity to English, we present results for the WMT’17 En-Zh dataset (that involves

generating translations in Chinese), using the Nematus toolkit [156]. Table 6.8 shows the results for the

baseline vs. the constrained methods for different beam widths. Consistent with WMT’17 instructions for

evaluating Chinese output, we report BLEU-4 scores computed on characters.4 The results show a clear

performance degradation for the baseline, with BLEU-4 score dropping by more than 3 points. Note that

the performance degradation on this dataset is not due to copies, as there are none in the translations.

Similar to the other tasks, our constrained methods successfully eliminate the performance degradation

and even lead to a higher evaluation.

4http://www.statmt.org/wmt17/translation-task.html
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Table 6.8: A comparison of the baseline results vs. the constrained beam search methods for the WMT’17
En-Zh dataset based on the BLEU-4 metric (higher values are better; best baseline result in bold).

Dataset Method Parameter B=1 B=3 B=5 B=25 B=100 B=250

En-Zh Baseline 32.41 33.17 33.16 33.01 31.33 29.61

En-Zh Constr. Gap M = 1.0 32.41 33.15 33.22 33.43 33.45 33.50

En-Zh Constr. Rank N = 2 32.41 33.20 33.17 33.35 33.28 33.30

Figure 6.7 shows the distribution of discrepancy positions for different beam widths and Figure 6.8

shows the mean discrepancy gap per position for different beam widths. We can see that the results for

WMT’17 En-Zh exhibit the same phenomena observed for the other datasets in Section 6.4.
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Figure 6.7: WMT’17 En-Zh: Distribution of discrepancy positions for different beam widths.
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Figure 6.8: WMT’17 En-Zh: Mean discrepancy gap per position for different beam widths.

6.6 Discussion

6.6.1 Connection to Exposure and Label Bias

Our results show that larger beam width leads to increasingly large early discrepancies. These very

unlikely early tokens are later compensated by subsequent tokens with a much higher (conditional)

probability compared to the subsequent tokens of the more probable early tokens. The large difference

in the conditional probability of the subsequent tokens is at the heart of the observed performance

degradation.

Previous work has highlighted two potential biases that can account for this difference.

• Exposure bias [147] occurs since the model is only exposed to the training data distribution instead

of its own predictions: Due to the use of teacher forcing training (see Section 5.1.3), the model is
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trained to predict the next token conditioned on the ground truth prefix. However, during inference

the model is conditioned on predicted prefix that could also be erroneous. Models trained using

teacher forcing can be overly reliant on previously predicted tokens which, during inference, can

exacerbate error propagation [186]. In the illustrative example in Section 6.4.6, over-relying on an

erroneous prefix leads to a conditional distribution that is biased to a specific repetitive pattern in

the training data.

• Label bias [110] occurs in locally-normalized sequence models: The token probabilities at each

time step are locally normalized and therefore the successors of incorrect histories receive the same

probability mass as the successors of a correct history [200]. In the illustrative example in Section

6.4.6, the conditional distribution over the successors of a low probability partial sequence is more

concentrated compared to more probable partial sequences. Since the conditional distributions at

each time step are locally normalized to sum to one, in some cases, a concentrated distribution can

compensates a low probability prefix and lead to an overall higher probability sequence.

These biases help explain the observed behavior with large beam width: a biased (conditional)

probability that concentrates high probability mass on one token and is locally normalized to sum

to one compensates for earlier low probability tokens. The negative effects of these biases have been

discussed before [147, 200], however the connection to the performance degradation in beam search and

the explanatory framework to allow such analysis is, to our best knowledge, novel.

6.6.2 Connection to Previous Results on Heuristic Search

While beam search is used to perform (approximate) inference, it is a heuristic search algorithm [12]. We

therefore believe it is natural to address the performance degradation from a heuristic search perspective.

Our analysis, based on the search discrepancy concept from heuristic and combinatorial search, views the

probabilities predicted by the neural network as a heuristic value to guide search for a solution. Early

mistakes have been shown to have a large negative effect on the performance of combinatorial search

[52] and substantial work has analyzed and proposed techniques to mitigate the phenomenon [62, 28],

including limited discrepancy search [73]. In combinatorial search, early mistakes were associated with

deep inconsistent subtrees [29, 184, 52] and can account for a large variability in performance between

different heuristics [201]. In the next chapter, we consider goal-oriented neural sequence decoding in

which, similar to combinatorial search, we need to find a solution that satisfies a goal condition. Inspired

by work on combinatorial search and our analysis of GBFS in Chapter 4, we investigate whether high

variability in the performance of goal-oriented beam search can be observed and, subsequently, exploited

to boost the search performance.

6.6.3 Alternative Models and Training Schemes for Sequence Models

In this work, we studied the previously reported beam search performance degradation in the most

commonly used neural sequence models that are based on an RNN decoder and are trained to maximize

the word-level likelihood, conditioned on the input sequence and the reference history [173, 4]. Recently,

there have been several proposals for alternative models and training schemes that rely on sequence-level

losses and that can potentially mitigate the effects of the biases described above [147, 200, 39]. These

works only report the results for small beam widths, and it is not clear if they reduce, or even eliminate,
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the performance degradation in beam search. Analyzing the performance of these models for larger beam

widths, and the associated distribution of search discrepancies in these models is a direction for future

work. We are also interested in analyzing the recent Transformer model [178] as it represents a different

type of sequence-to-sequence model.

6.6.4 Analysis of Length Bias

A recent line of work in machine translation suggested that performance degradation is due to length

bias [206, 133]. For larger beams, an end-of-sentence token with a lower probability that leads to an

overall more probable hypothesis is more likely to be considered by the beam search. However, we showed

performance degradation above even when using length normalization and in tasks where length bias

does not appear.

Table 6.9 shows the mean length of generated sentences for different beam widths for the baseline,

normalized to the best tested beam width. All values are very close 1.0, which suggest that the

observed performance degradation is not due to length bias. We note that for machine translation and

summarization this pattern is due to the use of length normalization on the hypotheses log-likelihood,

as suggested by Koehn and Knowles [105] (without normalization, the performance degradation would

have been worse).5 In image captioning, however, there is no observed length bias even when length

normalization is not used.6

Table 6.9: Analysis of the mean length, normalized to best test width (in bold).

Task Dataset B=1 B=3 B=5 B=25 B=100 B=250

Translation En-De 0.99 1.0 1.0 1.0 0.99 0.98

En-Fr 0.99 1.0 1.0 1.0 0.99 0.91

Summarization Gigaword 1.03 1.0 0.99 0.99 1.0 1.01

Captioning MSCOCO 1.04 1.0 0.99 0.98 0.98 0.98

In Section 6.4.1, we showed substantial performance degradation as we increase the beam width.

As the results in Table 6.9 demonstrate that there is no significant change in the length of generated

sequences, the observed performance degradation cannot be attributed to length bias.

6.7 Conclusion

In this work, we perform an empirical analysis of performance degradation in beam search across three

neural sequence decoding tasks. We find that the performance degradation for large beam widths is

associated with increasing number of early and large search discrepancies. We hypothesize that the

fact that beam search exhibits large discrepancies is the cause of the performance degradation and that

avoiding such discrepancies will eliminate the performance degradation. We show that this hypothesis

generalizes previous results including the existence of copy predictions in machine translation and the

training set predictions in image captioning, and accounts for additional degraded sequences. To validate

5This is consistent with Ott et al.’s [138] results on performance degradation even when using length normalization.
6In fact, as we stated earlier, we found that length normalization reduces the overall performance.
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this hypothesis, we show that methods that prevent the search from considering large search discrepancies

eliminate the performance degradation in beam search.

Consistent with our thesis statement, the work in this chapter demonstrates how an empirical model

of beam search behavior, that is based on the notion of search discrepancies, can explain the observed

performance degradation and inform the design of algorithmic solutions that mitigate it. In the next

chapter, we continue our investigation of empirical models for beam search. We consider a complete

variant of beam search and investigate whether it exhibits a high variability in search performance and

whether, similar to our analysis of GBFS, randomized restarts can be used to reduce this variability and

improve the performance.



Chapter 7

Randomized Restarting Beam

Search in Goal-Oriented Neural

Sequence Decoding

Continuing our investigation of empirical models for neural sequence decoding using beam search, in this

chapter we focus on beam search for goal-oriented neural sequence decoding. Informed by our analysis

of the fat- and heavy-tailed behavior of GBFS in planning problems, we investigate whether a similar

behavior can be observed for goal-oriented neural sequence decoding and whether our use of randomized

restarts can be adapted to boost the performance of beam search in this setting.

7.1 Introduction

Neural sequence models are commonly used in the modeling of sequential data. As demonstrated in

Chapter 6, neural sequence models are the state-of-the-art approach for tasks such as machine translation

[49], text summarization [21], and image captioning [183]. Beam search (see Section 5.2.3) is the most

commonly used algorithm for decoding neural sequence models by (approximately) finding the most

likely output sequence conditioned on the input.

Recently, neural sequence models have been successfully applied to different combinatorial search

problems such as program synthesis and routing problems. Unlike machine translation and image

captioning, such problems often have a goal criteria that can be used to evaluate candidate solution

and we wish to generate solutions that satisfy the goal criteria. For example, in resource-constrained

combinatorial routing problems, we may wish to find a tour that satisfies some resource constraint

(e.g., limited fuel or budget). In these scenarios, beam search is used to produce a set of promising

(high-likelihood) candidate sequences that are evaluated to determine if they satisfy the goal criteria.

If none of these satisfy the criteria, the beam search can be restarted with a larger beam size until a

satisfying solution is found.

In Chapter 4, we focused on GBFS, another goal-oriented heuristic search algorithm, and showed

that the distribution of search efforts exhibits a fat- and heavy-tailed behavior that can be exploited

to boost its performance by incorporating randomization in the search. In this chapter, we investigate

120
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whether a heavy-tailed behavior can also observed for goal-oriented beam search. We focus on complete

anytime beam search (CAB; see Section 5.3.1), a complete variant of beam search commonly used in

goal-oriented neural sequence decoding, and perform an extensive empirical study of the heavy-tailed

behavior. Specifically, we make the following contributions:

1. We consider the setting of goal-oriented neural sequence decoding, where the decoded sequence must

satisfy a goal condition. We consider four neural decoding tasks for which a selected evaluation

metric is available at decoding time and develop a goal-oriented variant of these problems where

the goal condition enforces bounded suboptimality with respect to the evaluation metric.

2. We show that for goal-oriented neural sequence problems, complete anytime beam search exhibits a

fat- or heavy-tailed behavior on ensembles of relaxed problems, similar to the behavior exhibited

for GBFS.

3. We consider a randomized variant of beam search that is based on noise injection to the inputs

of the neural network and show that randomized complete anytime beam search exhibits fat- or

heavy-tailed behavior on ensembles of multiple runs on a single instance.

4. Inspired by our results for GBFS, we introduce a randomized restarting variant of complete anytime

beam search and show that it solves some of the hardest instances faster and outperforms the

baseline.

5. We conduct extensive empirical evaluation and analyze the impact of different parameters including

the constrainedness of the goal-criteria, the restart policy, and the type of randomization on the

effectiveness of our method.

7.1.1 Organization

In Section 7.2 we define the problem of goal-oriented neural sequence decoding using beam search. Section

7.3 describes the benchmark problems used in our analysis and how they can be posed as goal-oriented

neural sequence decoding tasks. In Section 7.4, we show that complete anytime beam search exhibits a

fat- and heavy-tailed behavior on goal-oriented neural sequence decoding tasks. Then, in Section 7.5,

we consider a randomized variant of complete anytime beam search that is based on noise injection to

the input of the neural network and show that it exhibits a fat- and heavy-tailed behavior on a single

instance. Finally, in Section 7.6 we introduce RR-CAB a randomized restarting variant of complete

anytime beam search and in Section 7.7 we perform an extensive experimental evaluation of RR-CAB

and show it outperforms the baseline. In Section 7.8 we discuss the impact of different design choices,

potential limitations, and directions for future work and in Section 7.9 we summarize the chapter.

7.2 Beam Search for Goal-Oriented Decoding of Neural Se-

quence

As discussed in Section 5.2, beam search is a limited-width breadth-first search that can be used to decode

neural sequence models token-by-token while keeping a fixed number of active candidates at each step.

In tasks such as machine translation and image captioning, we use beam search to find an approximation
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of the most likely sequence y conditioned on the input x according to some learned model θ,

arg max
y

pθ(y|x). (7.1)

In goal-oriented decoding of neural sequence models, we are not looking for the most-likely sequence

according to the learned model. Instead, we are looking for a solution that satisfies the goal criteria. In

such scenarios, we use beam search to generate a set of B high-quality candidates that are then evaluated

to determine if they satisfy the goal criteria. Once a candidate satisfies the goal criteria, it is returned as

the solution of the beam search.

This setting allows us to perform a complete search, that is guaranteed to find a satisfying solution, if

one exists. Previous work on goal-oriented neural sequence decoding considered a variant of the complete

anytime beam search (CAB) [208] in which failing to find a satisfying solution results in doubling the

beam width and re-running the beam search [210, 5, 111]. As the beam width increases, a larger portion

of the hypothesis space is explored and the search is guaranteed to find a solution, if one exists, provided

the hypothesis space is finite. Algorithm 7.1 shows a pseudo-code for this variant of complete anytime

beam search. For more detailed discussion on complete variants of beam search, including CAB, see

Section 5.2.

Algorithm 7.1 Complete Anytime Beam Search

function CAB(goalCriteria)

beamWidth← 1

while not solved do

candidates← BeamSearch(beamWidth)

for cand ∈ candidates do

if Satisfy(cand, goalCriteria) then

return cand

beamWidth← 2 · beamWidth

7.3 Goal-Oriented Benchmark Problems

We introduce a set of four goal-oriented benchmark problems that will be used in our analysis. Following

is a description the problems and the goal criteria for each problem.

7.3.1 Combinatorial Routing Problems

Several recent works have demonstrated the potential of using deep learning to solve combinatorial

optimzation problems [106, 103, 35, 136]. A recent work [106] proposed an architecture based on attention

layers and trained using REINFORCE [191] to generate solutions for combinatorial routing problems

that minimize the solution cost. The authors use this architecture to generate solutions to the Travelling

Salesman Problem (TSP), two variants of the Vehicle Routing Problem (VRP), the Orienteering Problem

(OP), and the Prize Collecting TSP (PCTSP) and show it outperforms a wide range of baselines. Decoding

can be done using sampling or beam search, and the best solution among the generated candidates

is returned. To eliminate infeasible solutions, e.g., re-visting the same node in TSP, the authors use
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masking (setting the log-probabilities of infeasible solutions to −∞). In our work, we use Kool et al.’s

[106] architecture and problem instances and run experiments on two combinatorial routing problems:

• The Travelling Salesman Problem (TSP) consists of constructing a tour that starts at the depot,

visits all nodes exactly once, and returns to the depot.

• The Capacitated Vehicle Routing Problem (CVRP) consists of constructing multiple routes, each

starting and ending at the depot, such that the total demand of the nodes in each route does not

exceed the vehicle capacity.

The cost of solution in both problems is the sum of pairwise euclidean distances of consecutive nodes in

the solution path (including the depot).

Goal Criteria.

As the current model is trained to minimize the solution cost, we consider the goal-oriented problem of

finding a solution with a bounded optimality gap. Assuming a minimization problem with cost function

C, our goal criteria for a candidate solution x is C(x)−C(x∗)
C(x∗) ≤ ε, where x∗ is an optimal solution and

ε controls the constrainedness of problems (increasing ε leads to a higher expected number of feasible

solutions). We note that this notion of constrainedness matches the notion of resource-constrainedness

used in Chapter 4 that was previously used to evaluate planning algorithms in resource-constrained

environments [134].

7.3.2 Visual Program Synthesis

Several recent works have considered the problem of synthesizing programs for images using deep neural

networks [161, 174, 123]. These networks take an image as input and output a program that generates

the image. The quality of a candidate solution program can be evaluated using a metric of projection

loss, typically a distance measure between the generated image and the original one. In our experiments,

we use CSGNet [161], a neural architecture that takes in a 2D or 3D shape image and outputs a program

to generate the shape using instructions based on constructive solid geometry (CSG). CSGNet is trained

using a combination of supervised learning and reinforcement learning (using REINFORCE [191]) to

minimize the visual distance between the generated solutions and the input images.

Goal Criteria.

Our goal criteria is based on Chamfer Distance (CD), a measure of visual similarity between two shapes

that is used in the original paper [161],

CD(X,Y ) =
1

2|X|
∑
x∈X

min
y∈Y
‖x− y‖2 +

1

2|Y |
∑
y∈Y

min
x∈X
‖x− y‖2,

where X and Y are the sets of points on the edges of the two shapes. We define our goal criteria for a

candidate solution x to be CD(x, i) ≤ γ where i is the input image and the parameter γ controls the

constrainedness of problems.
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7.3.3 Conditional Molecular Design

A recent line of work focuses on generating molecules with specific properties [98, 97, 96], such as the

molecular weight (MolWt), the Wildman-Crippen partition coefficient (LogP) [190], and a quantitative

estimation of drug-likeness (QED) [11]. Kang and Cho [98] proposed a semi-supervised variational

autoencoder that is trained on a set of existing molecules from the ZINC dataset [169] with only a partial

annotation (i.e., only a fraction of the molecules are labelled with the property values). The model

represent a generative process in which the input molecule x is generated from the distribution p(x|z, y)

that is conditioned on the molecule properties y and a latent variable z. The proposed architecture

includes three RNNs with Gated Recurrent Units (GRU):

1. The property prediction network represents the conditional probability p(y|x) and is used to predict

the properties of unlabelled molecules.

2. The encoder network represents the conditional probability p(z|x, y).

3. The decoder network represents the conditional probability p(x|y, z).

The molecules are represented using SMILES [188] strings and are generated character-by-character.

For the conditional generation of molecule with specific property, we sample z from its prior and y from

its prior conditioned on the specific property. A molecule representation x̂ is obtained from y and z using

the decoder’s conditional probability p(x|y, z),

x̂ = arg max p(x|y, z), (7.2)

where Eq. (7.2) is approximated by a beam search.

Goal Criteria.

Our goal criteria is based on the QED property [11],

QED = exp(
1

n

n∑
i=1

ln di),

where di, i = 1..n are n desirability functions [71], each corresponding to a chosen molecular descriptor.

We use RDKit [112] to compute the QED of the generated molecule and define our goal criteria based on

the absolute difference between its QED and the desired QED. Formally, we define our goal criteria for a

candidate solution x to be |QED(x)− q| ≤ ρ where q is the desired value of QED and the parameter ρ

represents a bound on the deviation from the desired QED value and controls the constrainedness of the

criteria.

7.4 Fat- and Heavy-tailed Behavior in Goal-Oriented Neural-

Guided Search

In this section we demonstrate the existence of heavy-tailed behavior and the associated exceptionally

hard problems in goal-oriented neural sequence decoding.
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7.4.1 The Travelling Salesman Problem (TSP)

We consider a collection of 500 randomly generated TSP problem instances with 100 nodes solved using

beam search with a beam width of 10. Figure 7.1 shows the distribution of solution quality presented

as optimality gap (C(x)−C(x∗)
C(x∗) ) to match our goal criteria. The center of the distribution is around 0.03

with the mean (marked in a dashed line) at approximately 0.034. However, there is a small number of

problems for which the optimality gap can be much higher (up to approximately 0.1).
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Figure 7.1: TSP (100 nodes): Histogram of of solution quality for 500 random instances.

We consider the case of solving the goal-oriented problem where solutions must satisfy a bound on

the optimality gap denoted as ε (as discussed in Section 7.3.1). We then use complete anytime beam

search (Algorithm 7.1) to solve the problems with the given bound as goal criteria. We start with a beam

width of 1, and double the beam width in each iteration if no solution that satisfies the goal criteria is

found. We record the beam width for which a satisfying solution was found representing the required

search effort.

Figure 7.2 shows the the search effort distribution for three different goal criteria ε = 0.04, ε = 0.05,

ε = 0.06. The y-axis represents the number of unsolved problems in log-scale, while the x axis represents

the search effort (i.e., beam width) in discrete log2-scale (i.e., in steps of 2i, i = 0, 1, ...) to match the

behavior of the complete anytime beam search. We artificially add the step 0 (i.e., no search effort) to

denote the total number of problems. For ε = 0.05 and ε = 0.06, there is a clear heavy-tailed behavior

with a very low median (beam width of 1) and a slow decay of the tail over multiple orders of magnitude.

In fact, not all problems were solved for the maximum beam width of 32, 768. Note that when ε = 0.05,

332 of the 500 problems are solved with a beam width of 1, while five exceptionally hard problems could

not be solved for a beam width of 32, 768. For a more constrained goal criteria of ε = 0.04, we still

observe a fat-tailed behavior, however we see a noticeable increase in the difficulty of problems and the

number of problems that could not be solve in the search effort limits is significantly higher. We could

not analyze more constrained goal criteria due to the high computational cost, however we hypothesize
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that problem will become significantly harder and the heavy-tailed behavior will reduce, consistent with

the results for GBFS in Chapter 4. Since we cannot solve the hardest instances in the search effort limit,

i.e., we do not fully observe the tail of the distribution, we could not compute the quantitative metrics

we use in Chapter 4 such as the L-Kurtosis and the stability index α of the fitted GPD model.
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Figure 7.2: TSP (100 nodes): Distribution of beam widths for 500 random instances.

7.4.2 The Capacitated Vehicle Routing Problem (CVRP)

We consider a collection of 500 randomly generated CVRP problems with 50 nodes. Figure 7.3a shows

the histogram of optimality gap for beam search with a beam width of 10. The center of the distribution

is around 0.04 with the mean (marked in a dashed line) is at approximately 0.043, however there is a

small number of problems for which the optimality gap can be much higher.

Similar to TSP, we run experiments for ε = 0.04, ε = 0.05, ε = 0.06 and present the distribution of

search efforts in Figure 7.3b. We observe a clear heavy tailed behavior for the more relaxed problems

(ε = 0.06), with most problems solved for a beam width of 1 and one problem that could not be solved in

the maximum beam width of 32, 768. As problems become more constrained we observe an increase in

the median problem difficulty and the number of problems that could not be solved in the maximum

beam width increases.
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(a) Histogram of solution quality.
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(b) Distribution of beam widths.

Figure 7.3: CVRP (50 nodes): Results for 500 random instances.

7.4.3 Visual Program Synthesis

We consider a set of 500 visual program synthesis problems from the CAD dataset of CSGNet [161]

solved using beam search with a beam width of 10. Figure 7.4a shows the distribution of solution quality

presented as the Chamfer distance between the candidate image x and the input image i, CD(x, i). The

center of the distribution is around 1.5 with the mean (marked in a dashed line) at approximately 1.55,

however there is a small number of problems for which the Chamfer distance can be much higher.

Next, we consider the goal-oriented setting in which solutions must satisfy a bound on the Chamfer

distance from the input image, CD(x, i) ≤ γ. We run experiments for γ = 1.55, γ = 1.65, γ = 1.75 and

present the distribution of search efforts in Figure 7.4b. Again, we observe a very slow decay of the tail,

with most problems solved for a relatively small search effort (beam width between 2 and 8, depending

on γ), while some problems require several orders of magnitude larger beam width. For γ = 1.55, we

even have an unsolved problem at the maximum beam width of 32, 768.
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(b) Distribution of beam widths.

Figure 7.4: Visual Program Synthesis: Results for 500 random instances.
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7.4.4 Conditional Molecule Generation

We consider a set of 500 random problem instances of conditional molecule generation conditioned on

QED of 0.9 [98] solved using beam search with a beam width of 10. Recall that our goal condition is

that the difference between the QED of the generated molecule and the desired level is at most ρ. Figure

7.5a shows the distribution of solution quality presented as the difference in QED from the desired level

of 0.9, |QED(x)− 0.9|. The mean (marked in a dashed line) is at approximately 0.03, however there is a

small number of problems for which the difference can be much higher.

Next, we consider the goal-oriented setting in which solutions must satisfy a bound on the solution

quality, |QED(x) − q| ≤ ρ. We run experiments for ρ = 0.01, ρ = 0.05, ρ = 0.07 and present the

distribution of search efforts in Figure 7.5b. For ρ = 0.07, we observe a clear heavy-tailed behavior, with

the majority of problems were solved for a beam width of 1 while two problems remain unsolved even at

the maximum beam width of 32, 768. For the more constained problems ρ = 0.01, we see that an increase

in problem difficulty even in the lower quantiles of search efforts with fewer problems solved for small

beam widths.
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(a) Histogram of solution quality.
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(b) Distribution of beam widths.

Figure 7.5: Conditional Molecule Generation: Results for 500 random instances.

The above results suggest that goal-oriented beam search exhibits a heavy-tailed behavior in ensembles

of random problems, similar to the one we observe in Chapter 4 for GBFS. In GBFS, we found that

the large variability in the search effort in ensembles of random problems was often associated with the

algorithm, rather than problem instances. To isolate the variability of the search algorithm, we studied

the search effort distribution of a randomized variant of GBFS on a single instance. In the next section,

we propose a method to randomize a goal-oriented beam search and perform an empirical analysis of the

distribution of search effort, similar to our analysis in Section 4.4.

7.5 Fat- and Heavy-tailed Behavior on a Single Instance

In this section, we study the distribution of search effort of a randomized goal-oriented beam search on

a single problem instance. In order to introduce randomization into beam search decoding of neural

sequence models, we inject random noise in the input of the neural network that is being decoded using

beam search. Injecting random noise in the inputs of a neural network is a known technique in the
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training of neural networks in order to improve their robustness [67].1 Note that the noise injected to the

network’s inputs does not impact the goal test that is still based on the original input, i.e., the noise does

not change the problem we are solving. The sole purpose of the noise is to introduce some randomness in

the network’s predicted probabilities and, as a result, in the beam search decoding process.

7.5.1 The Travelling Salesman Problem (TSP)

For TSP instances, the inputs to the network consist of the locations of all nodes, expressed as two-

dimensional coordinates normalized in the range [0, 1]. We inject noise to the network inputs by adding

small random noise drawn from a uniform distribution, U(−0.1, 0.1). We note, again, that the change in

the neural network outputs does not impact the actual problem being solved, i.e., the computation of the

cost of solution and the goal criteria are based on the real problem inputs without the noise injection.

Figure 7.6 shows the distribution of search effort for 500 randomized runs (i.e., runs with different

random injected noise) for different values of ε. We can see a fat-tailed behavior that indicates a significant

variability that is associated with the search method.
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Figure 7.6: TSP (100 nodes): Distribution of beam widths for 500 randomized runs on a single instance.

The results in Figure 7.6 were observed for a specific instance chosen arbitrarily. Experiments with

different instances also yielded fat- and heavy-heavy tailed behavior, however we found larger differences

among instances compared to GBFS instances in Chapter 4: instances exhibited different levels of fat-

and heavy-tailedness for different levels of goal-condition constrainedness. We note that this observation

is relevant for the other problems described below.

1Note that we are not aware of any direct connection between noise injection in training to increase robustness and
our use of noise injection in testing to introduce randomness in the decoding process. However, it might be interesting to
consider whether there is some underlying connection.



Chapter 7. Randomized Restarting Beam Search in Goal-Oriented Problems 130

7.5.2 The Capacitated Vehicle Routing Problem (CVRP)

For CVRP instances, the inputs to the network consist of the location and demand of each of the nodes.

We inject noise to the network inputs by multiplying the location and demand values by random factor

that is close to 1 drawn from uniform distribution U(0.95, 1.05), i.e., we create random variants of the

input values that are at most 5% higher or lower than the original values. The differences in the type

and amount of injected noise are due to the need to tailor problem-specific noise injection as we discuss

later in Section 7.8.1.

Figure 7.7 shows the distribution of search effort for 500 randomized runs on a single instance for

different values of ε. For ε = 0.7 or ε = 0.8, we observe a very fat-tailed behavior with the hardest

problems require several order of magnitude larger beam width to solve. As problems become more

constrained we observe an increase the median effort and more and more problems become hard to solve.
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Figure 7.7: CVRP (50 nodes): Distribution of beam widths for 500 randomized runs on a single instance.

7.5.3 Visual Program Synthesis

For visual program synthesis instances, the input to the network is a two-dimensional binary shape image,

i.e., a matrix whose values are either zero or one. To add noise to images we flip, with small probability,

the bits that are close to the edges of the shape. The detailed procedure of noise injection is described

and demonstrated in Appendix C.

Figure 7.8 shows the distribution of search effort for 500 randomized runs on a single instance for

different values of γ. For example, for γ = 1.45, we observe a very fat-tailed behavior with more than

half of the problem instances solved for a beam width of 16, while the hardest instance could not be

solved with a beam width of 32,768.
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Figure 7.8: Visual Program Synthesis: Distribution of beam widths for 500 randomized runs on a single
instance.

7.5.4 Conditional Molecule Generation

In conditional molecule generation, the input to the network consists of y that represents the molecule

properties and z that represents a point in the latent space. We inject noise to the network inputs, both

z and y, by adding random zero-centered Gaussian noise drawn from N(µ, σ2) with µ = 0 and σ = 0.3.

Figure 7.9 shows the distribution of search effort for 500 randomized runs on a single instance for

different values of ρ. The results show a fat-tailed behavior. For example, for ε = 0.4 , the majority of

instances are solved for a beam width of 8, while the hardest instance requires a beam width of 16,384 to

be solved. As we increase the constrainedness of the goal criteria, problems become harder. For ρ = 0.02,

the median problem is only solved for a beam width of 128.
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Figure 7.9: Conditional Molecule Generation: Distribution of beam widths for 500 randomized runs on a
single instance.

The results in this section indicate that significant variability can be associated with the search

algorithm itself. This result suggests that a significant part of the variability observed for the ensembles

of random problems in Section 7.4 might be due to the search algorithm. Our work on GBFS in Chapter

4 and previous work on CSPs/SAT [62, 66] has exploited the variability associated with the search

algorithm by introducing randomized restarts. In the next section, we propose a complete variant of

beam search that incorporates randomized restarts and evaluate its impact on the distribution of search

effort. Based on our results on GBFS in Chapter 4, we expect that randomized restarts will exploit the

high variability observed in Section 7.5 and reduce the search effort for the hardest problem instances.

7.6 Randomized Restarting Neural-Guided Beam Search for

Goal-Oriented Combinatorial Problems

In this section, we present randomized-restarting complete anytime beam search (RR-CAB). A variant of

complete anytime beam search (Algorithm 7.1) that uses randomized beam search and a custom restart

strategy.

Algorithm 7.2 presents the pseudo-code of RR-CAB, where the goal criteria and the restart strategy

are passed as parameters. In each iteration the algorithm runs a randomized beam search (using a

random seed) with a beam width that is determined by the restart strategy. The algorithm returns when

one of the candidate solutions generated by the beam search satisfies the goal criteria.
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Algorithm 7.2 Randomized Complete Beam Search

function RR-CAB(goalCriteria, restartStrategy)

iteration← 1

while not solved do

beamWidth← restartStrategy(iteration)

seed← RandomSeed()

candidates← RandomizedBeamSearch(beamWidth, seed)

for cand ∈ candidates do

if Satisfy(cand, goalCriteria) then

return cand

iteration← iteration+ 1

In order to randomize the results of a beam search, we consider the following two options.

Beam search with injected input noise. Following the methodology in Section 7.5, we inject noise

to the inputs of the neural networks.

Stochastic beam search (SBS) [107]. SBS is a stochastic variant of beam search that samples k

elements without replacement from a sequence model and is therefore a variant of beam search that

produces randomized output (see Section 5.3.2 for a detailed description). Note that we could not

perform the analysis in Section 7.5 using SBS since, unlike input noise injection, we cannot guarantee

that repeated runs with different beam widths will maintain similar conditional probability distributions

(see discussion in Section 7.8.1). However, in RR-CAB, we are not interested in maintaining the same

probability distributions across runs and therefore SBS can be used as a randomized variant of beam

search.

7.6.1 Restart Strategies

A restart strategy is a sequence (t1, t2, t3, ...) of run lengths after which the search restarts. In goal-oriented

neural sequence decoding, the sequence length is either fixed (e.g., in TSP and CVRP) or predicted by

the network (e.g., in visual program synthesis or conditional molecule generation). If we want to allocate

more search effort, we simply extend the beam width thus allowing more sequences to be tested against

the goal condition.

In each iteration, we run a beam search with a given beam width until a solution if found. In

deterministic complete anytime beam search (Algorithm 7.1), the beam width is increased in each

iteration. In RR-CAB, running a search with the same beam width multiple times leads to different

results and can sometimes be more efficient than increasing the beam width. We therefore employ a

custom restart strategy to determine the beam width in each iteration. We consider two popular restart

strategies from the literature.

Fixed-Cutoff Strategy. Fixed-cutoff strategies [66] are simple strategies of the form (tc, tc, ...) where

tc is a constant. This strategy is often not robust enough: a small tc value might not be sufficient to

solve all problems, while a larger value will be computationally inefficient.
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Geometric Strategy. Geometric strategies [185] take the form (r0, r1, r2, r3, ....) where the geometric

factor r controls how fast the cutoff values grow. When r = 2 and randomization is not applied, this

strategy has a similar behavior to the complete beam search procedure described in Section 7.2.

7.7 Empirical Results

In this section, we present empirical analysis of the performance of RR-CAB on the goal-oriented

benchmarks. We compare results for the two randomization techniques (input noise injection and SBS)

and the two restart policies (geometric and fixed-cutoff) described in Section 7.6.

7.7.1 Results for the Travelling Salesman Problem (TSP)

We consider the same collection of 500 randomly generated TSP problems with 100 nodes used in Section

7.4. We analyze the results of RR-CAB with random noise injection and the two restart strategies:

geometric with r = 2 and fixed-cutoff with beam width B = 8. In order to directly compare the

performance of a fixed-cutoff strategy and a geometric strategy, we organize the results of fixed-cutoffs

beam search in batches of multiple beam searches with a constant beam width, such that they sum to the

beam width of the corresponding beam search with geometric restarts. For example, we present results

for a geometric restart policy for the beam width thresholds 1, 2, 4, 8, 16, 32, etc. In comparison, for

fixed-cutoff restarts, the result for a threshold of 16 represents a batch of two beam searches, each with a

constant beam width of 8.

Figure 7.10 compares the distribution of search effort of standard CAB and RR-CAB in the configu-

rations described above.2 In general, the randomized variants tend to under perform for the very small

beam width: problems that were easily solved without randomization do not benefit, and even suffer,

from adding randomization. In particular, since we use a beam width B = 8 for the fixed-cutoff strategy,

solutions are only found starting from a threshold of 8. However, as we increased the search effort, we

see that the randomized variants outperform standard CAB. For the more constrained problems, we see

that the fixed-cutoff strategy significantly outperforms the geometric restarts strategy. This could be due

the use of relatively large r (in Chapter 4, we used r = 1.5 for GBFS) chosen for fair comparison with

CAB. For ε = 0.6, geometric restarts seem to have similar performance to fixed cut-offs.

2Detailed numeric results for all the graphs in this section appear in Appendix D.
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Figure 7.10: TSP (100 nodes): Distribution of beam widths for 500 random instance for RR-CAB with
input noise injection.

The inherent differences between the two restart policies result in an apparent inferiority of fixed-cutoffs

in smaller beam widths: in addition to having no solutions for beam widths smaller than 8, even for a beam

width of 8 it underperforms since RR-CAB with geometric restarts has already made three randomized

runs (for beam width 1, 2, and 4) that can lead to solutions. In practice, this is easily mitigated by using

a restart policy that starts with geometric restarts before changing to fixed-cutoffs: 1, 2, 4, 8, 8, ... To

maintain simple and clear comparison we do not adopt this enhancement in our evaluation.

Figure 7.11 shows similar comparison to Figure 7.10 where the beam search is randomized using

SBS. Again, we see that introducing randomization to CAB leads to better performance. However, the

performance gain from SBS is smaller compared to noise injection (we discuss this issue in more detail in

Section 7.8.2). Interestingly, for SBS we find that geometric restarts are at least as good as fixed-cutoff

strategy.
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Figure 7.11: TSP (100 nodes): Distribution of beam widths for 500 random instance for RR-CAB with
SBS.

The above results show that introducing randomization in the search can help solve some of the

hardest instances faster. Consistent with our results on GBFS in Chapter 4, the impact on the more

relaxed instances tends to be more significant. However, we note that we cannot analyze the impact of
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RR-CAB on more constrained instances due to computational limitations and even for ε = 0.4, using

randomization seems to have positive impact on the performance.

7.7.2 Results for the Capacitated Vehicle Routing Problem (CVRP)

We consider the collection of 500 randomly generated CVRP problems with 50 nodes used in Section 7.4.

Figure 7.12 compares the performance of RR-CAB with input noise injection to standard CAB. We can

see that RR-CAB solves more problems within the search effort limit, and solves some of the hardest

problems for a smaller beam width. As with TSP, the fixed-cutoff policy tends to work better for input

noise injection.
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Figure 7.12: CVRP (50 nodes): Distribution of beam widths for 500 random instance for RR-CAB with
input noise injection.

Figure 7.13 shows the performance of RR-CAB with beam search randomization based on SBS.

RR-CAB with SBS also outperforms the baseline, and as with TSP, geometric restarts tend to work

better in this setting. As with TSP, the performance gain when using SBS is smaller compared to noise

injection.
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Figure 7.13: CVRP (50 nodes): Distribution of beam widths for 500 random instance for RR-CAB with
SBS.
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The results for CVRP show that, similar to TSP, using randomization can help solve some of the

hardest instances faster. As we constrain the instances the performance gain tends to be smaller.

7.7.3 Results for Constrained Visual Program Synthesis

We consider the collection of 500 visual program synthesis problem instances that was used in Section

7.4. We compare the result of a standard complete anytime beam search to RR-CAB for three levels of γ

that represent the constrainedness of the goal-condition. Figure 7.14 shows the results for RR-CAB with

input noise injection, as described in Section 7.5. We can see that RR-CAB solves the hardest problems

with a smaller search effort, reducing the heavy-tailed behavior. Again, we see that fixed-cutoff restarts

tend to work better when using input noise injection.
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Figure 7.14: Visual Program Synthesis: Distribution of beam widths for 500 random instance for RR-CAB
with input noise injection.

Next, we analyze the results for RR-CAB with beam search randomization based on SBS. Note that

the number of potential expansions of each of the beam’s candidate in this problem is much higher than

the other problems (approximately 400, compared to 50-100 in the previous problems). Therefore, when

using SBS for this problem, we only consider the top 50 extensions of each candidate. Practically, it is

very unlikely that an extension of partial hypothesis that is not in the most likely 50 extensions will lead

to a hypothesis that will be returned by the beam search. However, when applying randomization it may

have the undesired outcome of promoting very low-ranked hypotheses and we therefore consider only the

top 50 hypotheses.

Figure 7.15 shows the results for RR-CAB with SBS randomization. Again, we find that RR-CAB

solves the hardest instances for a smaller search effort. Geometric restarts and fixed-cutoffs have

approximately similar performance.
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Figure 7.15: Visual Program Synthesis: Distribution of beam widths for 500 random instance for RR-CAB
with SBS.

Consistent with previous results, we find that RR-CAB outperforms the baseline and solves some of

the hardest instances faster. Unlike with TSP and CVRP, we find that the performance of SBS is close

to the performance of noise injection (we discuss this difference in more detail in Section 7.8.2).

7.7.4 Results for Conditional Molecule Generation

We consider the set of 500 instances of conditional molecule generation with QED = 0.9, used in

Section 7.4. We analyze the results for RR-CAB with three values of ρ that represent different levels

of constrainedness of the goal-condition. Figure 7.16 shows the results for RR-CAB with input noise

injection as described in Section 7.5. As with previous problems, RR-CAB solves the hardest problems for

a smaller search effort, reducing the heavy-tailed behavior. And, as with previous problems, a fixed-cutoff

restart policy tends to work better for input noise injection.
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Figure 7.16: Conditional Molecule Generation: Distribution of beam widths for 500 random instance for
RR-CAB with input noise injection.

Figure 7.17 shows similar analysis to Figure 7.16 when using beam search randomization based on

SBS. While RR-CAB with SBS does seem to solve some hard problems for a smaller beam width, the
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performance gain is relatively small compared to input noise injection and compared to previous problems.

Still, we see that geometric restarts tend to work better with SBS.
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Figure 7.17: Conditional Molecule Generation: Distribution of beam widths for 500 random instance for
RR-CAB with SBS.

The above results show that, similar to previous problems, RR-CAB outperforms the baseline

and solves some of the hardest instances faster. In conditional molecule generation, we find that the

performance gain from SBS is significantly smaller compared to noise injection.

7.8 Discussion and Future Work

Our empirical analysis shows that a fat- and heavy-tailed behavior, similar to the one observed for GBFS

on planning problems in Chapter 4, can be observed for complete anytime beam search on goal-oriented

neural sequence decoding problems. Inspired by our work on randomized restarts in GBFS, we propose

RR-CAB, a randomized restarting variant of CAB, and show that it outperforms the baseline.

In Chapter 4, we showed that the heavy-tailed behavior of GBFS is due to the distribution of local

minima h-depth. For goal-oriented beam search, we have yet to develop a well-defined notion of a

local minimum. Whether the observed heavy-tailed behavior in beam search can be associated with a

well-defined pattern of search behavior, similar to our analysis of local minima in GBFS, remains an

open question (see detailed discussion in Section 8.3).

While RR-CAB reduces the search effort for hard problems, our results show that, unlike GBFS, the

relaxed ensembles still contain very hard problems that could not be solved in the search effort limit even

by RR-CAB (see, for example, Figures 7.10 and 7.11). This difference in behavior can potentially be

associated with the relatively large differences observed within the ensembles: as noted in Section 7.5,

not all instances exhibit similar variability in the performance of the randomized search procedure. This

can be due to the difference in heuristic information (learned probabilities vs. cost-to-go) that may not

be similarly effective across instances, differences in the constrainedness criteria, or differences in the

search algorithm. Further investigation of the difference in behavior is an interesting direction for future

work that may interact with the analysis of local minima described above.

In the remainder of this section, we discuss different modeling choices and their implications, as well

as directions for future work.
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7.8.1 Randomization and Restart Strategies

In Chapter 4, we used a randomized heuristic in order to randomize the heuristic search algorithm. In

neural sequence decoding, the heuristic values that guide the search are conditional probabilities predicted

by a deep neural network (see discussion in Section 6.6.2). Unlike with planning heuristics that represent

distance to goal, we cannot simply add uniform noise to predicted probabilities. We therefore consider two

techniques that can naturally lead to randomization of the predicted probabilities: input noise injection

and SBS. While both techniques introduce randomization to the predicted probabilities, there are some

important differences between them. A key limitation of the noise injection technique is that it needs to

be tailored for each problem. In our work, we had to manually try different randomization approaches

in order to find one that would generate sufficient variability on a single instance without making the

problem significantly harder across different runs. In particular, the choices regarding the use of additive

or multiplicative noise and the use of uniform or Gaussian distribution are tailored specifically to each

problem and different choices are likely to have impact on the performance of our approach. Alternatively,

an inherent limitation of SBS is that we are unable to guaranteed that repeated runs with different beam

widths will maintain similar conditional probability distributions. The implication of this limitation is

that we cannot analyze the search effort distribution of SBS on a single problem instance, as we do for

beam search with noise injection in Section 7.5.

The differences in performance between the two techniques and in particular, the differences in

performance for each of the restart strategies suggest that different types of randomization may interact

differently with problems and restart strategy. Development of empirical models for a deeper analysis of

the impact of each randomization technique is an interesting direction for future work.

As our approach of injecting noise to the inputs of the neural network requires a tailored solution for

each problem, it is interesting to investigate generic ways of introducing noise into the decoding process.

Potential research directions include applying noise to hidden units [143, 20] or using dropout [168] in

inference.

In this work, we focused on two well known restart strategies: fixed-cutoff and geometric restarts.

Research work in the area of combinatorial optimization has considered more advanced restart strategies

such as dynamic and learning restart policies (e.g., [102]) that are dynamically updated in real-time.

Investigating ways to incorporate such policies in RR-CAB is an interesting direction for future work.

7.8.2 Softmax Temperature

When using sampling for decoding, it is common to use softmax temperature (see Section 5.2.1) to

control the randomness. In SBS, Kool et al. [107] noted that the softmax temperature can control the

diversity of decoded solutions: higher temperature results in a less concentrated distribution and higher

diversity. Even in standard beam search, softmax temperature has been used to change the conditional

distributions during the decoding to generate more or less diversity in the outputs (e.g., [22]).

In our study, we find that RR-CAB with SBS tends to underperform RR-CAB with noise injection. A

potential explanation is that RR-CAB with SBS exhibits smaller variability compared to noise injection

and therefore is less likely to significantly reduce the search effort of the hardest instances. Using softmax

temperature will increase the level of randomization of SBS and can, potentially, increase the variability

in the distribution of search effort. While our current study is conducted using the default temperature

value (T = 1), investigating the impact of softmax temperature on the performance of RR-CAB with
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different restart strategies is an interesting direction for future work.

To further motivate the interest in softmax temperature, we note that our analysis found that the

different models in our study exhibit different levels of concentration in their predicted (conditional)

distributions. As an example, Table 7.1 reports the mean token conditional probability in the solutions of

a greedy search for each of the problems. We can see that the average token probability in visual program

synthesis has a much lower mean and higher variance, while the average token probability in TSP and

CVRP has very high mean and lower variance. These results can potentially explain the difference in

the performance of SBS between visual program synthesis and the other problems: the high level of

uncertainty is likely to result in higher variability in the sequences generated by SBS and potentially in

the distribution of search effort.

Table 7.1: Mean (conditional) token probability in greedy search solutions.

Token Probability

Problem (Mean ± SD)

Travelling Salesman Problem (TSP) 0.955± 0.108

Capacitated Vehicle Routing Problem (CVRP) 0.948± 0.115

Visual Program Synthesis 0.382± 0.300

Conditional Molecule Generation 0.849± 0.209

7.8.3 Parallelization Implementation

A key feature of using beam search for decoding sequences from deep sequence models is its ability to be

parallelized on a GPU. In our empirical evaluation, we present the results for the fixed-cutoff restart

strategy by batching together beam searches and comparing these results to the corresponding final beam

width of a geometric strategy. As we start investigating more complicated restart strategies, such as

Luby’s universal strategy [124], we will not be able to batch the results together to maintain comparability.

Furthermore, even in our comparison, it is not clear that a set of four beam search instances, each with

a beam width of 8 and executed together on a GPU, are comparable to one beam search with a beam

width of 32.

Our work raises the need for well-defined evaluation metrics that can be used to compare the results

of complete beam searches with different restart strategies, even when it not possible to batch together

runs as we currently do. Furthermore, due the centrality of parallelization in neural sequence decoding,

we believe that investigating parallelization-friendly restart strategies is an important direction for future

work.

7.9 Conclusion

In this chapter, we investigate whether a fat- and heavy-tailed behavior, similar to the one we observe

in Chapter 4 for GBFS in planning problems, is observed for complete anytime beam search in goal-

oriented neural sequence decoding. We perform an extensive empirical analysis, across four goal-oriented

benchmark problems, and find fat- and heavy-tailed behavior in the distribution of search efforts of beam

search. Inspired by our analysis of randomized restarts in GBFS, we propose a randomized restarting

variant of complete anytime beam search, RR-CAB, and study the impact of different randomization
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techniques and restart strategies. Our experiments show that RR-CAB reduces the search effort for

some of the hardest instances and outperforms the baseline. The work in this chapter further support

our thesis statement by demonstrating how empirical models can help explain algorithm performance

and inform more efficient search algorithms. Furthermore, this chapter demonstrates that our analysis

on GBFS for satisficing planning can be adapted to neural sequence decoding using beam search and

suggests that it may be applicable to other tasks and additional heuristic search algorithms.



Chapter 8

Concluding Remarks

8.1 Summary

In this dissertation, we developed several empirical models for the behavior of heuristic search algorithms

in AI planning and neural sequence decoding. Inspired by work on CSPs and SAT and consistent with

our thesis statement, we showed that empirical models can help explain the performance of greedy best

first search and beam search and inform the design of more efficient search algorithms.

In Part I, we developed empirical models for problem difficulty in satisficing AI planning using

GBFS. We established the existence of a rapid phase transition in problem solubility as we vary the

constrainedness of problem and an associated pattern of easy-hard-easy that peaks at the phase transition.

We also showed that the phase transition phenomenon interacts with other factors that impact the

difficulty of planning problems. To further understand the connection between constrainedness and

problem difficulty, we studied the distribution of local minima encountered in the search. We established

an exponential correlation between the depth of encountered local minima and the associated search

effort. The constrainedness of problems controls the distribution of local minima depths that, in turn,

impacts the problem difficulty. Our analysis explains many of the observed phenomena on the behavior

of GBFS, including the impact of node re-expansions, operator cost ratio, the existence of exceptionally

hard problems, and the correlation between the heuristic values and the distance to the goal. Building on

our analysis, we proposed a randomized variant of GBFS that exploits the distribution of local minima

depths and outperforms the baseline.

In Part II, we developed empirical models for the behavior of beam search in neural sequence decoding.

We first studied the well-known phenomenon of performance degradation in beam search. We presented

an explanatory model that is based on search discrepancies and demonstrate how this model can inform

the design of heuristic techniques that successfully mitigate the performance degradation. Then, in

Chapter 7, we studied the patterns of problem difficulty in goal-oriented neural sequence decoding using

a complete variant of beam search. Inspired by our analysis in Part I, we showed that complete anytime

beam search exhibits a heavy-tailed behavior similar to GBFS. Based on our analysis, we proposed a

randomized variant that, similar to our randomized variant of GBFS, outperforms the baseline.

Throughout the dissertation, we followed the approach described in Section 1.1. We started by

designing an analytical framework that contains all the components needed to conduct experiments that

study the behavior of the search algorithm. Using this framework we conducted an extensive set of

143
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experiments that involve varying different parameters of the search algorithm and recording the results.

Then, building on our empirical analysis, we developed empirical models that explain the observed

performance and support the design of more efficient heuristic search algorithms.

We note that all of the empirical models presented in the work are inspired by existing works in the

combinatorial search literature. The work in this dissertation suggest that many of the ideas developed for

combinatorial search problems that consist of searching for an assignment of variables and are typically

solved by a tree search algorithm could be adapted to heuristic search algorithms such as greedy best

first search and beam search.

8.2 Contributions

The main contributions of this dissertation are summarized as follows.

8.2.1 Phase Transition and Problem Difficulty in Domain-Specific Heuristic

Search (Chapter 3)

1. We introduce the tool of phase transition to heuristic search using an abstract model of a heuristic

search problem that is based on random graphs and demonstrate an abrupt transition in problem

solubility as a parameter controlling the density of the transitions in the state space is varied.

2. We show that the abrupt transition in the problem solubility is accompanied by an easy-hard-easy

pattern of problem difficulty across the transition region.

3. Exploiting our random graph model, we provide analytical bounds on the “mushy region” between

the fully soluble and fully insoluble problems.

4. We demonstrate how to transfer the abstract graph model to existing heuristic search benchmark

problems, allowing the generation of versions of each problem across the phase transition and

demonstrating both the phase transition and the easy-hard-easy pattern on five standard heuristic

search benchmarks.

5. We study the behavior of systematically stronger heuristics across the phase transition region and

show that the reduction in search effort for strong heuristics is orders of magnitude smaller for the

hard soluble instances at the phase transition than in the underconstrained regions.

6. We show that the number of node re-expansions peaks in the phase transition and declines outside.

7. We demonstrate that the effect of large operator cost ratio on the search effort is most significant

in the phase transition region and diminishes outside.

8. We show that exceptionally hard problems [52, 165] appear in the relaxed region of the phase

transition where the median effort is relatively low.

8.2.2 Heavy-tailed Behavior and Randomization in Satisficing Planning (Chap-

ter 4)

1. We show that fat- and heavy-tailed behavior can be observed on ensembles of random planning

problems across different domains and heuristic functions.
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2. We present a variant of greedy best-first search that introduces a limited amount of randomization

in the search procedure and show that heavy-tailed behavior can be observed in multiple runs of

the randomized search procedure on a single problem instance.

3. We demonstrate how different notions of constrainedness that are commonly used in the modeling

of planning problems can lead to a fat- or heavy-tailed distribution of search effort.

4. We introduce the notion of local minimum h-depth and find an exponential correlation between the

h-depth of the single deepest local minimum encountered and the total search effort (i.e., number

of expanded nodes).

5. We show that the distribution of local minima h-depth in planning problems depends on the

constrainedness of problems, and that heavy-tailed behavior appears when there is a low, but

non-negligible, probability of encountering a deep local minimum during search.

6. We show that recent methods of non-greedy random exploration can help reduce the heavy-tailed

behavior in a similar manner to randomized restarts in CSPs.

7. Inspired by combinatorial search, we propose RR-GBFS, a randomized restarting GBFS that

outperforms GBFS by escaping deep local minima.

8.2.3 Empirical Analysis the Beam Search Performance Degradation in Neu-

ral Sequence Decoding (Chapter 6)

1. We introduce an explanatory model of the beam search performance degradation in neural sequence

models that is based on the existing concept of search discrepancies that represent deviations from

greedy choices.

2. We conduct an extensive empirical study of the distribution of search discrepancies and show

that increasing the beam width leads to solutions with more and larger discrepancies early in the

sequence. These sequences often have lower evaluation score, leading to the observed performance

degradation. As we increase the beam width, the differences in the distribution of discrepancies

that are associated with improved vs. degraded solutions grow substantially.

3. We show, empirically, that our explanatory model generalizes previous the observations on “copies”

in machine translation and predictions that repeat training set targets in image captioning and

accounts for more of the degraded predictions.

4. Based on our empirical analysis, we propose two heuristics for constraining the beam search from

considering large search discrepancies and show that these heuristics eliminate the performance

degradation.

8.2.4 Randomized Restarting Beam Search in Goal-Oriented Neural Sequence

Decoding (Chapter 7)

1. We consider the setting of goal-oriented neural sequence decoding, where the decoded sequence must

satisfy a goal condition. We consider four neural decoding tasks for which a selected evaluation

metric is available at decoding time and develop a goal-oriented variant of these problems where

the goal condition enforces bounded suboptimality with respect to the evaluation metric.
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2. We show that for goal-oriented neural sequence problems, complete anytime beam search exhibits a

fat- or heavy-tailed behavior on ensembles of relaxed problems, similar to the behavior exhibited

for GBFS.

3. We consider a randomized variant of beam search that is based on noise injection to the inputs

of the neural network and show that randomized complete anytime beam search exhibits fat- or

heavy-tailed behavior on ensembles of multiple runs on a single instance.

4. Inspired by our results for GBFS, we introduce a randomized restarting variant of complete anytime

beam search and show that it solves some of the hardest instances faster and outperforms the

baseline.

5. We conduct extensive empirical evaluation and analyze the impact of different parameters including

the constrainedness of the goal-criteria, the restart policy, and the type of randomization on the

effectiveness of our method.

8.3 Future Work

As immediate directions for future work have been discussed in the respective chapters (see Sections 3.8,

4.6.3, 6.6, and 7.8), in this section, we take a broader view and propose several lines of research that

arise from the work presented in the dissertation.

8.3.1 Local Minima vs. Plateaus in AI Planning

Plateaus and local minima are two of the main factors that have negative impact on the problem difficulty

for GBFS [204]. Both local minima and plateaus are instances of uninformative heuristic regions (UHR).

However, they represent different challenge for GBFS. Wilt and Ruml [197] note that heuristic plateaus

can sometimes be mitigated by tie breaking, but local minima cannot be avoided by standard greedy

best-first search. Still, plateaus represent a significant challenge in satisficing planning [176, 205]. While

several works have studied the negative impact of these factors and proposed different techniques to

overcome local minima and plateaus, little work has focused on understanding when each of these

phenomena appear.

In this dissertation, we have provided a deeper understanding of the local minima phenomenon. In

Chapter 3, we hypothesized a connection between the constrainedness of problems and the structure

of local minima in GBFS. Our hypothesis was informed by our analysis of the operator cost ratio and

the discovery of exceptionally hard problems. In Chapter 4 we establish our hypothesis by showing that

the distribution of local minima h-depth depends on the constrainedness of problems. Since h-depth is

shown to be highly correlated with search effort, this result has a direct impact on problem difficulty.

Similar to local minima, heuristic plateaus are one of the central factors that impact problem difficulty

in GBFS and their study is crucial to the development of a deep and comprehensive understanding of

problem difficulty in satisficing planning. Our work in Chapter 4 suggests that developing empirical

models for heuristic plateaus can be a useful way of deepening our understanding of this phenomenon

and inspiring new algorithmic enhancements that address such plateaus.

Informed by our analysis of local minima, a particularly interesting research question is whether the

structure of heuristic plateaus encountered in the search is also empirically connected to the constrainedness
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of problems. In Chapter 3, we compare a set of systematically stronger heuristics across the phase

transition and find that the impact of more informed heuristics is orders of magnitudes higher in the

relaxed region of the phase transition. According to our definition of the set of systematically stronger

heuristics, both for the abstract model and for the benchmarks, a less informed heuristic has a bound on

its heuristic value that leads to a large plateau of states whose heuristic value is above some threshold.

While these results are not sufficient to characterize the connection between plateaus and problem

constrainedness, they suggest that a connection is likely to exist and that the negative impact of plateaus,

unlike local minima, could be stronger in relaxed problems. We believe that a careful investigation of the

connection between the structure of plateaus and problem constrainedness is an interesting direction for

future work.

8.3.2 Understanding the Impact of Different Randomization Techniques

In this dissertation, we show that randomization can be used to boost the performance of GBFS and

beam search by reducing the fat- and heavy-tailed behavior. In Chapter 4 we compared both randomized

restarts (using a randomized heuristic) and two variants of GBFS that incorporate random exploration

in the search. Our results shows that these techniques reduce the heavy-tailed behavior, however the

performance for each of the approaches was different. In particular, we found that, in some domains, the

variants that incorporate randomized exploration reduced the search effort even in the non-heavy-tailed

regime.

In Chapter 7, we compare two techniques to randomize the beam search in the randomized restarting

complete anytime beam search (RR-CAB) algorithm: input noise injection and stochastic beam search

(SBS). Our empirical analysis shows that while both techniques could help reduce the search effort for the

hardest instances, their performance is not identical. In particular, we found that input noise injection

tends to work better with a restarting strategy based on fixed-cutoff values, while SBS tends to work

better with geometric restarts. However, we found that the differences between the different restart

strategies change as we vary the goal-condition constrainedness.

The results in both Chapters 4 and 7 suggest that different randomization techniques may benefit

heuristic search algorithm in different ways. Specifically, it seems that the impact of randomization on the

search effort depends not only on the constrainedness of problems, but also on the type of randomization.

Investigating the interaction between constrainedness and randomization is an interesting direction for

future work. Another potential research direction concerns the impact of the different randomization

techniques on problems that, instead of deep local minima, suffer from large heuristic plateaus (see above

discussion on heuristic plateaus).

8.3.3 Local Minima in Neural Sequence Decoding using Beam Search

In Chapter 4, we formally defined the notion of local minima that were encountered in search. These

local minima represent regions of the state spaces that do not participate in the solution, however, they

need to be exhausted by GBFS due to their heuristic evaluation. The search effort associated with these

local minima is shown to be highly correlated to the backtracking behavior of the search.

Unlike GBFS, beam search is not a complete search algorithm in itself. If the search is misled into

local minima, i.e., all the nodes in the beam do not lead to a goal, beam search will not be able to find a

solution. Therefore, complete anytime beam search, the complete variant of beam search considered in
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Chapter 7, consists of repeatedly restarting beam search with a wider beam until a solution is found. In

this setting, the definition of local minima from GBFS is not applicable. First, there is no backtracking

as done in GBFS and the way to overcome a local minimum is to restart with a large enough beam width.

Second, at each step the beam consists of multiple nodes, each can be in a different local minimum.

Third, neural sequence decoding uses predicted probabilities that are different from the estimations of

distance-to-goal used in GBFS.

The formal definition and empirical characterization of local minima in CAB remain open questions.

While the definition used in GBFS cannot be applied to beam search, we believe the core idea behind local

minima is still relevant in the analysis of problem difficulty in CAB. These local minima would represent

regions of the state space, induced by the heuristic estimations, that have to be exhausted by a sufficiently

large beam width. In GBFS, we found that the existence and structure of local minima is connected to the

constrainedness of problems, and that the change in the distribution of local minima depth accounts for

the observed heavy-tailed behavior. In Chapter 7, we showed the impact of constrainedness on problem

difficulty of complete anytime beam search, as well as the existence of heavy-tailed behavior. Building on

our results in Chapter 4, we believe that an analysis that is based on an adaptation of the local minima

notion to beam search can help explain the observed patterns of problem difficulty.

A related direction for future work consists of analyzing the patterns of problem difficulty in complete

variants of beam search that are based on backtracking (see Section 5.3.1). These variants use backtracking

instead of restarting with a wider beam in order to make beam search complete. As a first step, we need

to check whether the heavy-tailed behavior observed for CAB also exists in backtracking beam search

variants. Then, we can see if our definitions of local minima and h-backtracks could be adapted to a

backtracking beam search.

8.3.4 The Use of MLE Training and MAP Inference in Neural Sequence

Decoding

Recent work has highlighted challenges that are associated with inference on neural sequence models

including the length bias [105, 206, 133], “copies” in machine translation [138], and lack of novelty in

image captioning [183]. Our analysis in Chapter 6 shows that several of these known issues in neural

sequence decoding are instances of a more general problem in MAP inference using beam search on

MLE-trained models. We also make the connection between the observed problem and the existence of

two well-known biases in the models: exposure bias and label bias. Investigating new models and training

schemes that are robust to these biases is a direction for future work. In particular, it is interesting

to investigate whether recently proposed models such as the transformer model [178] and new training

methods such as minimum risk training [163] are robust, or at least less sensitive, to these biases.

Our study of goal-oriented neural sequence decoding in Chapter 7 highlights a different type of task

for which the use of MLE training and MAP inference might not be the most appropriate: first, the

beam search algorithm evaluates all the candidates in the beam and does not only choose the most likely

one; second, the combinatorial nature of many of these problems can lead to different sequences that may

represent equivalent solutions and, alternatively, we can have a pair of very similar sequences with one

satisfying the goal criteria and the other does not. However, existing approaches consist of models that

are trained to maximize the probability of a reference solution and are known to generate M -best lists

that tend to have very similar solutions [59, 114, 115]. It is therefore interesting to investigate alternative

training methods that might be more suitable for goal-oriented neural sequence decoding tasks. It is



Chapter 8. Concluding Remarks 149

particularly interesting to study the impact of training techniques that are aware of the whole set of

candidates in the beam, e.g., Wiseman and Rush [200], on the performance of goal-oriented tasks and

the heavy-tailed behavior we observe in Chapter 7.

In a recent work on neural machine translation (NMT), Eikema and Aziz [40] suggest that some of the

known pathologies in NMT are due to the use of MAP decoding and not to due to NMT as a model or

due to its training algorithm, maximum likelihood estimation (MLE). They claim that the core problem

is the attempt to identify the highest-probability hypothesis, i.e., the mode, under the model distribution.

To support their hypothesis, they show, empirically, that the most likely hypotheses according to the

model distribution accumulate a very small probability mass and claim that the mode can therefore

be considered essentially arbitrary. Instead, they suggest that we should base decisions on statistics

gathered from the distribution holistically. They present experimental results for minimum Bayes risk

(MBR) decoding [109] and show that it outperforms beam search. It is interesting to investigate whether

this type of approach is useful beyond NMT, in particular in goal-oriented neural sequence decoding.

Furthermore, developing empirical models for such new approaches that are able to explain the observed

improvement and account for the mistakes that still appear is an interesting direction for future work.
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Appendix A

NoMystery: Results for Standard

Evaluation

A.1 Heavy-tailed Behavior

Figure A.1a and Figure A.1b show the runtime distribution for 1000 random problems and 1000 randomized

runs (with p = 0.05) on a single problem, respectively. We observe a transition from a non-heavy-tailed

regime to a fat- and heavy-tailed regime, consistent with the results in Section 4.4.

101 102 103 104 105 106

Expanded Nodes

10−3

10−2

10−1

100

1-
CD

F 
(S

ur
vi

va
l) C= 1.0 (τ4 = 0.42)

C= 1.5 (τ4 = 0.8)
C= 1.75 (τ4 = 0.86)
C= 2.0 (τ4 = 0.95)
C= 2.5 (τ4 = 0.9)

(a) 1000 random instances with hFF .

102 103 104 105

Expanded Nodes

10−3

10−2

10−1

100

1-
CD

F 
(S

ur
vi

va
l)

C= 1.0 (τ4 = 0.12)
C= 1.5 (τ4 = 0.27)
C= 2.0 (τ4 = 0.81)
C= 2.5 (τ4 = 0.96)

(b) 1000 randomized runs on a single instance with
hFF .

Figure A.1: Results for NoMystery with standard evaluation.

Figure A.2a, Figure A.2b, and Figure A.2c show similar analysis to Figure A.1b using the landmark

cut heuristic, the landmark count heuristic, and the CEA heuristic, respectively, all with p = 0.05.
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Figure A.2: NoMystery: Results for other heuristics with standard evaluation.
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A.2 Local Minima Distribution

Figure A.3a shows the distribution of local minima size vs. h-depth in ensemble of 1000 random problems

in both the non-heavy-tailed regime (C = 1.0) and the heavy-tailed regime (C = 2.0). Figure A.3b shows

a similar analysis for 1000 randomized runs on a single instance. We can clearly see an exponential

correlation, consistent with the results in Section 4.5.
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Figure A.3: NoMystery: local minima sizes vs h-depth in standard evaluation.

Figure A.4a and Figure A.4b show the distribution of number of h-backtracks vs. h-depth in an

ensemble of 1000 random problems and in 1000 randomized searches on a single problem, respectively, in

both the non-heavy-tailed and the heavy-tailed regimes. Again, we observe an exponential correlation,

consistent with the results in Section 4.5.
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Figure A.4: NoMystery: number of h-backtracks vs h-depth in standard evaluation.

Table A.1 and Table A.2 shows similar analysis to Table 4.1 and Table 4.2, for standard evaluation.

We find strong exponential correlation between the h-depth of the deepest local minimum and the search

effort (number of h-backtracks), consistent with the results in Section 4.5.
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log(search effort) log(h-backtracks)

Domain N-HT HT N-HT HT

NoMystery (1000) 0.93 0.93 0.93 0.96

NoMystery (one) 0.89 0.97 0.91 0.96

Table A.1: Pearson correlation coefficient between h-depth and log(search effort) (log(h-backtracks)) in
the non-heavy-tailed (N-HT) and heavy-tailed (HT) regimes for ensembles of random problems and for
multiple runs on one problem (standard evaluation).

log(search effort) log(h-backtracks)

Domain N-HT HT N-HT HT

NoMystery (1000) 0.97 0.95 0.98 0.94

NoMystery (one) 0.99 0.98 0.99 0.98

Table A.2: Weighted Pearson correlation coefficient between h-depth and log(search effort)
(log(h-backtracks)) in the non-heavy-tailed (N-HT) and heavy-tailed (HT) regimes for ensembles of
random problems and for multiple runs on one problem (standard evaluation).

Figure A.5a shows the distribution of of h-depth of the deepest local minimum in the non-heavy-tailed

regime (C = 1.0) and in the heavy-tailed regime (c = 2.0), for 1000 random problems. Figure A.5b shows

similar analysis for 1000 randomized problems.
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Figure A.5: NoMystery: Distribution of deepest local minima h-depth in standard evaluation.

A.3 Randomization and Heavy-tailed Behavior

Figure A.6 compares GBFS to Type-GBFS for both 1000 randomized instances and 1000 randomized

runs on a single instance (p = 0.05). Similarly, Figure A.7 compares GBFS to RR-GBFS. The results are

consistent with the analysis in Section 4.6.
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Figure A.6: NoMystery: GBFS (solid) vs. Type-GBFS (dashed).
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Figure A.7: NoMystery: GBFS (solid) vs. RR-GBFS (dashed).



Appendix B

Results for Constrained Beam

Search on WMT’14 En-De

B.1 Results for Discrepancy Gap Constrained Beam Search

(M = 1.5)
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Figure B.1: WMT’14 En-De: Distribution of discrepancy positions (M = 1.5).
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Figure B.2: WMT’14 En-De: Mean discrepancy gap per position (M = 1.5).
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Figure B.3: WMT’14 En-De: Distribution of discrepancy positions (M = 1.5).

1 2 3 4 5 6 7 8 9

1
0

Discrepancy Position

0.0

0.1

0.2

0.3

0.4

0.5

D
is

c
re

p
a
n
c
y
 G

a
p

beamWidth = 5

1 2 3 4 5 6 7 8 9

1
0

Discrepancy Position

beamWidth = 100

1 2 3 4 5 6 7 8 9

1
0

Discrepancy Position

beamWidth = 250

type

Improved

Degraded

Figure B.4: WMT’14 En-De: Mean discrepancy gap per position (M = 1.5).
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Figure B.5: WMT’14 En-De: Average token probability per position (M = 1.5).

B.2 Results for Rank Constrained Beam Search (N = 2)
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Figure B.6: WMT’14 En-De: Distribution of discrepancy positions (N = 2).
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Figure B.7: WMT’14 En-De: Mean discrepancy gap per position (N = 2).
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Figure B.8: WMT’14 En-De: Distribution of discrepancy positions (N = 2).
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Figure B.9: WMT’14 En-De: Mean discrepancy gap per position (N = 2).
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Figure B.10: WMT’14 En-De: Average token probability per position (N = 2).



Appendix C

Input Noise Injection for CSGNet

For visual program synthesis instances, the input to the network is a two-dimensional binary shape image,

i.e., a matrix whose values are either zero or one. To add noise to images we flip, with small probability,

the bits that are close to the edges of the shape. The process is described below, and demonstrated on

an image of a circle shape.

We consider a binary image of a circle presented in Figure C.1. In order to identify a set of pixels

that are close to the edges of the shape, we apply a transformation based on two-dimensional randomized

kernels. We use a 3× 3 kernel where the element in center position is one and the other elements are

zero, as in Figure C.2. We then randomize an additional element from the other 8 positions and set it to

one as well. Figures C.3 and C.4 demonstrate the pixels detected as edges for two potential randomized

kernels.
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Figure C.1: Binary image of a circle shape.
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Figure C.2: Base 2-dimensional kernel.
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Figure C.3: Example #1 of edge detection using a randomized kernel.
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Figure C.4: Example #2 of edge detection using a randomized kernel.

We consider only the set of pixels whose value is not the highest (the shape itself) or lowest (the

background) as the edge pixels and flip the binary value of each pixel with a probability p. In our

experiments, we use p = 0.1.



Appendix D

Detailed Empirical Results for

Goal-Oriented Neural Sequence

Decoding

D.1 Detailed Results for TSP

D.1.1 Results for RR-CAB with Input Noise Injection

Table D.1: TSP: Results for RR-CAB with Input Noise Injection

CAB RR-CAB (Fixed) RR-CAB (Geom.)
ε 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6
Threshold

0 500 500 500 500 500 500 500 500 500
1 265 168 84 500 500 500 344 250 156
2 234 136 69 500 500 500 271 158 73
4 200 114 48 500 500 500 226 103 43
8 177 93 34 255 160 74 179 71 30
16 157 77 31 157 72 21 151 52 17
32 133 62 26 110 34 10 117 41 12
64 123 49 17 65 26 3 96 37 6
128 104 39 14 44 14 2 78 32 4
256 86 29 9 35 7 1 65 21 3
512 74 25 8 25 4 1 55 17 1
1024 64 18 7 21 4 1 45 16 1
2048 55 15 6 18 3 1 39 13 1
4096 46 12 3 13 2 1 32 8 1
8192 38 10 2 11 2 1 25 5 1
16384 31 6 2 7 1 0 24 5 1
32768 26 5 2 6 1 0 19 4 1
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D.1.2 Results for RR-CAB with SBS

Table D.2: TSP: Results for RR-CAB with SBS

CAB RR-CAB (Fixed) RR-CAB (Geom.)

ε 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6

Threshold

0 500 500 500 500 500 500 500 500 500

1 265 168 84 500 500 500 315 206 132

2 234 136 69 500 500 500 220 114 53

4 200 114 48 500 500 500 173 79 30

8 177 93 34 163 79 29 142 55 17

16 157 77 31 113 47 20 115 36 12

32 133 62 26 98 32 8 92 30 8

64 123 49 17 76 25 4 75 26 6

128 104 39 14 64 18 4 65 19 4

256 86 29 9 50 12 3 54 14 4

512 74 25 8 40 9 2 47 12 2

1024 64 18 7 34 8 2 42 7 2

2048 55 15 6 32 6 2 32 5 2

4096 46 12 3 23 5 2 25 5 2

8192 38 10 2 19 5 1 20 5 2

16384 31 6 2 17 5 1 14 3 2

32768 26 5 2 15 5 0 12 3 1
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D.2 Detailed Results for CVRP

D.2.1 Results for RR-CAB with Input Noise Injection

Table D.3: CVRP: Results for RR-CAB with Input Noise Injection

CAB RR-CAB (Fixed) RR-CAB (Geom.)

ε 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6

Threshold

0 500 500 500 500 500 500 500 500 500

1 378 303 211 500 500 500 454 385 293

2 347 259 172 500 500 500 380 287 194

4 316 223 141 500 500 500 330 215 125

8 271 182 102 355 277 193 276 168 77

16 235 141 74 244 139 78 235 127 49

32 197 103 50 167 68 32 189 93 29

64 158 72 35 116 39 13 148 70 19

128 128 54 22 70 27 3 116 49 13

256 102 40 15 46 18 2 83 34 11

512 79 34 11 35 10 1 63 27 6

1024 62 29 9 29 6 1 48 21 2

2048 46 19 5 18 3 1 36 12 1

4096 38 15 3 11 2 1 31 8 1

8192 29 10 2 5 1 1 25 4 1

16384 21 4 1 5 1 1 20 2 1

32768 15 3 1 4 1 0 12 1 1
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D.2.2 Results for RR-CAB with SBS

Table D.4: CVRP: Results for RR-CAB with SBS

CAB RR-CAB (Fixed) RR-CAB (Geom.)

ε 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6

Threshold

0 500 500 500 500 500 500 500 500 500

1 378 303 211 500 500 500 406 326 222

2 347 259 172 500 500 500 322 223 136

4 316 223 141 500 500 500 263 150 82

8 271 182 102 244 160 77 210 115 59

16 235 141 74 196 100 38 174 75 35

32 197 103 50 140 66 24 138 59 20

64 158 72 35 115 49 15 104 38 15

128 128 54 22 91 39 12 81 33 11

256 102 40 15 74 29 9 65 26 9

512 79 34 11 61 25 5 53 20 8

1024 62 29 9 51 20 3 43 14 3

2048 46 19 5 44 16 3 32 8 2

4096 38 15 3 37 13 2 28 5 1

8192 29 10 2 29 10 2 19 1 1

16384 21 4 1 22 7 2 16 1 1

32768 15 3 1 19 3 2 9 1 1
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D.3 Detailed Results for Visual Program Synthesis

D.3.1 Results for RR-CAB with Input Noise Injection

Table D.5: Visual Program Synthesis: Results for RR-CAB with Input Noise Injection

CAB RR-CAB (Fixed) RR-CAB (Geom.)

γ 1.55 1.65 1.75 1.55 1.65 1.75 1.55 1.65 1.75

Threshold

0 500 500 500 500 500 500 500 500 500

1 377 343 314 500 500 500 452 425 392

2 317 275 238 500 500 500 376 337 279

4 270 220 178 500 500 500 305 257 181

8 228 169 121 334 283 223 225 178 100

16 170 123 79 192 139 69 159 105 59

32 127 89 48 100 63 17 108 58 32

64 88 54 25 49 21 7 77 31 14

128 61 38 19 24 3 2 55 20 7

256 46 21 14 15 0 0 35 9 2

512 29 13 9 8 0 0 19 5 0

1024 18 9 5 6 0 0 13 2 0

2048 10 3 1 2 0 0 4 1 0

4096 10 3 0 1 0 0 4 1 0

8192 6 1 0 0 0 0 1 0 0

16384 6 0 0 0 0 0 0 0 0

32768 1 0 0 0 0 0 0 0 0
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D.3.2 Results for RR-CAB with SBS

Table D.6: Visual Program Synthesis: Results for RR-CAB with SBS

CAB RR-CAB (Fixed) RR-CAB (Geom.)

γ 1.55 1.65 1.75 1.55 1.65 1.75 1.55 1.65 1.75

Threshold

0 500 500 500 500 500 500 500 500 500

1 377 343 314 500 500 500 438 424 410

2 317 275 238 500 500 500 379 345 323

4 270 220 178 500 500 500 303 260 215

8 228 169 121 296 244 179 225 169 119

16 170 123 79 184 119 80 150 105 67

32 127 89 48 112 55 34 98 63 33

64 88 54 25 71 28 14 68 30 15

128 61 38 19 40 17 10 43 12 6

256 46 21 14 22 8 0 21 7 3

512 29 13 9 13 6 0 10 4 0

1024 18 9 5 4 1 0 6 1 0

2048 10 3 1 1 0 0 3 0 0

4096 10 3 0 1 0 0 1 0 0

8192 6 1 0 0 0 0 1 0 0

16384 6 0 0 0 0 0 0 0 0

32768 1 0 0 0 0 0 0 0 0
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D.4 Detailed Results for Conditional Molecule Generation

D.4.1 Results for RR-CAB with Input Noise Injection

Table D.7: Conditional Molecule Generation: Results for RR-CAB with Input Noise Injection

CAB RR-CAB (Fixed) RR-CAB (Geom.)

ρ 0.01 0.05 0.07 0.01 0.05 0.07 0.01 0.05 0.07

Threshold

0 500 500 500 500 500 500 500 500 500

1 449 271 215 500 500 500 452 281 210

2 401 196 145 500 500 500 384 174 99

4 341 151 109 500 500 500 301 113 55

8 283 118 80 318 138 88 208 63 29

16 227 87 57 171 53 32 141 45 25

32 169 65 41 100 28 16 100 32 17

64 138 52 26 68 22 11 79 24 11

128 121 41 20 49 16 7 68 14 7

256 104 30 17 34 7 4 56 12 7

512 88 23 11 24 5 4 46 11 4

1024 74 19 9 19 5 4 32 7 4

2048 62 17 4 13 3 3 27 5 4

4096 48 11 4 10 2 3 22 3 4

8192 37 6 4 8 2 2 13 3 3

16384 29 4 3 6 2 2 12 3 2

32768 22 3 2 6 2 1 10 3 1
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D.4.2 Results for RR-CAB with SBS

Table D.8: Conditional Molecule Generation: Results for RR-CAB with SBS

CAB RR-CAB (Fixed) RR-CAB (Geom.)

ρ 0.01 0.05 0.07 0.01 0.05 0.07 0.01 0.05 0.07

Threshold

0 500 500 500 500 500 500 500 500 500

1 449 271 215 500 500 500 464 355 293

2 401 196 145 500 500 500 401 206 146

4 341 151 109 500 500 500 314 118 80

8 283 118 80 297 110 73 228 73 50

16 227 87 57 216 76 44 165 57 34

32 169 65 41 156 62 36 121 47 24

64 138 52 26 117 50 25 102 37 15

128 121 41 20 98 35 14 85 25 13

256 104 30 17 84 25 8 71 20 11

512 88 23 11 66 19 6 60 15 7

1024 74 19 9 58 15 5 51 11 5

2048 62 17 4 52 11 5 42 9 4

4096 48 11 4 48 9 4 28 5 4

8192 37 6 4 36 7 4 22 4 3

16384 29 4 3 30 5 4 18 2 1

32768 22 3 2 21 3 4 13 2 0
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