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1 State-change IP Model for Classical Planning
Consider Π = 〈Vp, Vn, A, I,G〉 with Vn = ∅ and T ∈ Z+. Let T = {0, ..., T − 1} and
T̃ = T ∪ {T} be sets of time-steps. For each p ∈ Vp, let

• pnd(p) = {a ∈ A : p ∈ prep(a), p 6∈ del(a)} be the set of actions that require
and do not delete p,

• anp(p) = {a ∈ A : p 6∈ prep(a), p ∈ add(a)} the set of actions that add and do
not require p, and

• pd(p) = {a ∈ A : p ∈ prep(a), p ∈ del(a)/add(a)} the set of actions that
require and delete p.

Variable ua,t ∈ {0, 1} ∀a ∈ A,∀t ∈ T indicates if a is applied at time-step t.
Consider variables uap,t, u

pa
p,t, u

pd
p,t and ump,t ∈ {0, 1} ∀p ∈ Vp,∀t ∈ T̃ .

• uap,t indicates whether p is added at time-step t but it is not required before.

• upap,t indicates whether p is required and it is not deleted by any action at time-step
t.

• updp,t = 1 if p is deleted and not added at time-step t but is required before.

• ump,t = 1 if p is true at time-step t and is not required nor deleted.

The state-change model SC(Π, T ) is as follows. Constraints (1) and (2) represent
the initial state and goal conditions, respectively. Constraints (3)-(5) update the value of
the state change variables. It should be noted that only one action at each time-step with
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a negative effect on the same proposition is allowed (5). Constraints (6)-(7) enforce ac-
tions preconditions and effects. Constraints (8)-(10) avoid the simultaneous application
of conflicting actions. Constraint (11) propagates the value of the state change variables
from one time-step to the next.

min
∑

a∈A,t∈T
costaua,t (SC(Π, T ))

s.t. uap,0 = I(p) ∀p ∈ Vp (1)

uap,T + upap,T + ump,T ≥ 1 ∀p ∈ Gp (2)∑
a∈pnd(p)

ua,t ≥ upap,t+1 ∀p ∈ Vp,∀t ∈ T (3)

∑
a∈anp(p)

ua,t ≥ uap,t+1 ∀p ∈ Vp,∀t ∈ T (4)

∑
a∈pd(p)

ua,t = updp,t+1 ∀p ∈ Vp,∀t ∈ T (5)

ua,t ≤ upap,t+1 ∀p ∈ Vp,∀a ∈ pnd(p),∀t ∈ T (6)

ua,t ≤ uap,t+1 ∀p ∈ Vp,∀a ∈ anp(p),∀t ∈ T (7)

uap,t + ump,t + updp,t ≤ 1 ∀p ∈ Vp,∀t ∈ T̃ (8)

upap,t + ump,t + updp,t ≤ 1 ∀p ∈ Vp,∀t ∈ T̃ (9)

ua,t + ua′,t ≤ 1 ∀a, a′ ∈ Ã s.t. a 6= a′∧
del(a) ∩ (add(a′) ∪ pre(a′)) 6= ∅∀t ∈ T̃ (10)

upap,t+1 + ump,1 + updp,t+1 ≤
uap,t + upap,t + ump,t ∀p ∈ Vp∀t ∈ T (11)

2 MILP Model of Numeric Planning Tasks
This section presents our extension to numeric planning valid for SC(Π, T ). We will
refer to the extended model as SCN (Π, T ). For modeling purposes, we partition the
set of actions affecting a numeric variable v ∈ Vn into:

• se(v) = {a ∈ A : (v := v + kv,a) ∈ num(a)} the set of actions that change v
via constant effects, and

• le(v) = {a ∈ A : (v := ξ) ∈ num(a), a /∈ se(v)} the set of actions that change
v via linear effects.

Given an action a ∈ A, we call nmutex(a) (numeric mutex of a) the set of mutex
actions of a due to an interference of some numeric variables.

Definition 2.1. Given actions a, a′ ∈ A, a′ is numeric mutex to a if there exists a
variable v ∈ Vn such that (v := ξ) ∈ num(a) and either: (i) v is used in one of the
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numeric effects of a′, i.e., ∃v′ ∈ Vn such that (v′ := ξ′) ∈ num(a′) and v ∈ ξ′, or
(ii) v is part of a precondition of a′, i.e., ∃ (c :

∑
v∈Vn

wc
vv+wc

0 � 0) ∈ pren(a′) with
wc

v 6= 0.

2.1 MILP Formulation
Consider parameters mc,t ∈ Q, ∀c ∪ C,∀t ∈ T̃ , Mstep

v,t ,mstep
v,t ,M

a
v,t,m

a
v,t ∈ Q, ∀v ∈

Vn,∀t ∈ T̃ . Let yv,t ∈ Q ∀v ∈ Vn,∀t ∈ T̃ represent the value of the numeric variable
v at time-step t. The constraints modeling numeric effects and conditions are:

yv,0 = I(v) ∀v ∈ Vn (12)∑
v∈Vn

wc
vyv,T +wc

0�0 ∀c ∈ Gn (13)

∑
v∈V

wc
vyv,t+w

c
0�mc,t(1−ua,t) ∀a ∈ A,∀c ∈ pren(a),∀t ∈ T (14)

yv,t+1 ≤ yv,t+
∑

a∈se(v)

kv,aua,t+M
step
v,t+1

∑
a∈le(v)

ua,t ∀v ∈ Vn,∀t ∈ T (15)

yv,t+1 ≥ yv,t+
∑

a∈se(v)

kv,aua,t+m
step
v,t+1

∑
a∈le(v)

ua,t ∀v ∈ Vn,∀t ∈ T (16)

yv,t+1−
∑
w∈Vn

kv,aw yw,t ≤ kv,a+Ma
v,t+1(1−ua,t) ∀v ∈ Vn,∀a ∈ le(v),∀t ∈ T (17)

yv,t+1−
∑
w∈Vn

kv,aw yw,t ≥ kv,a+ma
v,t+1(1−ua,t) ∀v ∈ Vn,∀a ∈ le(v),∀t ∈ T (18)

ua,t+ua′,t ≤ 1 ∀a ∈ A,∀a′ ∈ nmutex(a)∀t ∈ T (19)

Constraint (12) sets the variables to their initial state values, while constraint (13) en-
forces the numeric goal conditions. Constraint (14) ensures the satisfaction of numeric
preconditions. Constraints (15)-(18) update the values of the numeric variables accord-
ing to the action effects. Constraint (19) enforce the mutex action relation.

3 Proof of the Tighter Linear Relaxation
Proposition

Consider a planning task Π = 〈Vp, Vn, A, I,G〉 with le(v) = ∅ for all v ∈ Vn.
SCN (Π, T ) computes tighter LP relaxations when using constraints (15)-(16) instead
of (17)-(18), where the set le(v) is replaced by se(v).

Proof. Note that constraints (17) and (18) can only update a numeric variable when
there is only one action affecting the variable. Hence, we will restrict our proof to such
case, i.e.,

∑
a∈se(v) ua,t ≤ 1 for all v ∈ Vn, t ∈ T .
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Given le(v) = ∅ for all v ∈ Vn, (15) and (16) reduce to

yv,t+1 = yv,t +
∑

a∈se(v)

kv,aua,t ∀v ∈ Vn,∀t ∈ T . (i)

Similarly, (17) and (18) reduce to

yv,t+1 − yv,t ≤ kv,a +Mv,t(1− ua,t), (ii)
yv,t+1 − yv,t ≥ kv,a +mv,t(1− ua,t), (iii)

for every v ∈ Vn, t ∈ T and a ∈ se(v).
We will first show that every feasible solution (integer or continuous) respecting

constraint (i) also satisfies (ii) and (iii). Consider a feasible solution 〈ŷ, û〉 that satisfies
(i), with ŷ = {ŷv,t, ∀ v ∈ Vn, t ∈ T̃ } and û = {ûa,t ∀ a ∈ se(v), t ∈ T } . In
particular, we have that ŷv,t+1 − ŷv,t =

∑
a∈se(v) kv,aûa,t for an arbitrary v ∈ Vn and

t ∈ T . Notice that,∑
a∈se(v)

kv,aûa,t = kv,a′ ûa′,t +
∑

a∈se(v)\{a′}

kv,aûa,t

≤ kv,a′ ûa′,t + max
a∈se(v)

{kv,a}
∑

a∈se(v)\{a′}

ûa,t

≤ kv,a′ ûa′,t +Mv,t(1− ûa′,t).

Also, ∑
a∈se(v)

kv,aûa,t ≥ kv,a′ ûa′,t + min
a∈se(v)

{kv,a}
∑

a∈se(v)\{a′}

ûa,t

≥ kv,a′ ûa′,t +mv,t(1− ûa′,t)

Since the inequalities hold for any v ∈ Vn, t ∈ T and a′ ∈ se(v), solution 〈ŷ, û〉
satisfies (ii).

To complete the proof we need to show that there is a numeric example that satisfies
(ii) and (iii), but not (i). Consider an instance of the counter domain with Vn = {v0, v1},
Vp = ∅, I = {v0 = 1, v1 = 1}, Gn = {v1 − v0 − 1 ≥ 0} and actions definitions
presented in the table below. Let Mv0,1 = Mv1,1 = 2, mv0,1 = mv1,1 = 0 and T = 1.

action pren num cost

a1 v0 ≤ 2 v0 := v0 + 1 1
a2 v0 ≥ 1 v0 := v0 − 1 1
a3 v1 ≤ 2 v1 := v1 + 1 1
a4 v1 ≥ 1 v1 := v1 − 1 1

Solution ûa1,0 = ûa2,0 = ûa4,0 = 0, ûa3,0 = 0.5, ŷv0,0 = ŷv1,0 = ŷv0,1 = 1 and
ŷv1,1 = 2 is feasible for (12)-(14), (ii),(iii) and (19). However, it violates constraint (i),
which implies that the linear relaxation when using (i) is tighter.
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4 Correctness of the Encoding
Proposition 4.1

Given a numeric planning task Π and a plan π, a solution S = M(π) satisfies all the
constraints of IP (Π, |π|+ 1).

Proof. We show the proof for constraints (12)-(19). Constraints (12) and (13) are satis-
fied by definition. For constraint (14), if an action a with numeric precondition c is not
in π at time-step t, then ua,t = 0 and the expression is satisfied since mc,t is a lower
bound on the numeric expression in c. If action a is applied at time-step t, the action is
applicable, since π is a feasible plan c is satisfied, ua,t = 1, therefore constraint (14) is
satisfied.

For constraints (15)-(18), given a time-step t, only one action at is applied. If an
action at does not have any effect on a numeric state variable v, then the value of v
is unchanged. Therefore, all the terms containing ua,t in (15)-(16) are equal to 0 and
the constraints are satisfied. Constraints (17)-(18) are satisfied because the quantities
M/ma

v,t+1 are upper and lower bounds on the expression on the r.h.s.
If action at has a simple effect on a state variable v, then it changes the value of

v by adding the quantity kv,at . Constraints (17)-(18) are satisfied because every term
containing ua,t ∀a 6= at are equal to 0. Similarly, constraints (17)-(18) are satisfied,
since M/ma

v,t+1 are upper and lower bounds on the expression on the r.h.s.
If the action at has a linear effect on a numeric variable v, then constraints (15)-

(16) are satisfied since M/mstep
v,t are upper and lower bounds on expression yv,t+1 −

yv,t. Also, constraints (17)-(18) are satisfied because action a changes the value of the
numeric state variable according to the values of the variables in the previous state. For
each t, there is only one action such that ua,t = 1, so constraint (19) is satisfied.

Proposition 4.2

Given a feasible solution S of IP (Π, T ), a plan π = M̃(S) is a feasible plan for Π.

Proof. We need to show that for the plan π = M̃(S): (i) state π(I) satisfies all the goal
conditions; (ii) every the action a in π at time-step t is applicable in at−1(...(a0(I))).

For condition (i) we show that the application of all the actions for which ua,t = 1,
then the values of variables yv,t+1 change according the effect of actions a evaluated
on the state at−1(...(a1(v))). Given a numeric state variable v ∈ Vn in a time-step t,
if no actions with effect on a numeric variables v has ua,t = 1, then the value of v
remains unchanged, due to constraints (15)-(16). If an action with simple effects on
v has ua,t = 1, then the value of v is only increased by the quantity of the applied
action. Due to constraint (19) no other action with linear effects on v can be applied
simultaneously. If an action with a linear effect on v has ua,t = 1, then the values of the
numeric state variables are unequivocally assigned to the linear expression representing
the effect of the action, evaluated in the previous time-step. If two actions a and a′ have
ua′,t = ua,t = 1, then a′(a(...(I))) = a(a′(...(I))), because due to constraint (19),
only variables corresponding to actions with no effects or a state-independent effect on
the same numeric state variable can occur simultaneously. The effect of the application
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of the sequence of action induces a state for which the numeric goal conditions are
satisfied.

For condition (ii) we show that every action in π is applicable in the predecessor
state. Due to constraint (14), if only one action a has ua,t = 1, then its numeric precon-
ditions are satisfied by the numeric state variables at time t, which correspond to the
predecessor state of a. If two actions a and a′ have ua,t = ua′,t = 1, then constraint
(19) ensures that none of the numeric state variables appearing in the numeric precon-
dition of one action are affected by the other action. Therefore, the order of application
of does not affect the applicability of these two actions.
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