
Exact Methods for the Travelling Salesperson1

Problem with Self-Deleting Graphs2

Daniel Pekar #3

Department of Mechanical and Industrial Engineering, University of Toronto, Canada4

J. Christopher Beck #5

Department of Mechanical and Industrial Engineering, University of Toronto, Canada6

Abstract7

Finding the minimal-cost closed loop on a weighted graph where every vertex is visited exactly once8

is known as the Travelling Salesperson Problem (TSP). In a recently proposed variant, TSP with9

Self-Deleting graphs (TSP-SD), visiting a vertex i deletes a set of edges in the graph, preventing their10

subsequent traversal. Due to the dependency between vertex visits and edge deletion, in TSP-SD11

the feasibility of a cycle depends on the start node. The best performing solution approaches12

in the literature rely on a simple problem reformulation to find a backward tour where vertex13

visits add edges rather than delete them. This paper investigates exact model-based approaches,14

specifically Constraint Programming (CP), Domain-Independent Dynamic Programming (DIDP),15

and Mixed Integer Linear Programming (MIP) to solve TSP-SD. We show that simple preprocessing16

can substantially reduce the options for start/end vertex pairs but typically has a limited positive17

impact on search performance. Our numerical results demonstrate that the difference between the18

deletion and addition variants is small for CP and MIP but that the reformulation is critical for19

DIDP performance. Overall, the DIDP addition model is the best of the exact methods on all test20

instances and outperforms existing heuristic solvers for small and medium-sized instances while21

trailing in terms of solution quality on larger instances.22

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;23

Mathematics of computing → Combinatorial optimization24

Keywords and phrases Decision Diagrams & Dynamic Programming, Operations Research &25

Mathematical Optimization, Modelling & Modelling Languages26

Digital Object Identifier 10.4230/LIPIcs.CP.2025.1927

Supplementary Material Software (Source Code): https://github.com/uoft-tidel/tsp-sd28

Dataset (Data): https://tidel.mie.utoronto.ca/external/Pekar_CP2025/extra.php29

Funding This work was supported the Natural Sciences and Engineering Research Council of Canada.30

Acknowledgements Computations were performed on the Niagara supercomputer at the SciNet31

HPC Consortium. SciNet is funded by ISED Canada; the Digital Research Alliance of Canada;32

Ontario Research Fund:RE; and the University of Toronto.33

1 Introduction34

The Travelling Salesperson Problem (TSP) is an NP-hard problem that has been extensively35

studied since it was first formulated by Hamilton in the 19th century [9]. Variations of the36

TSP with path or time dependencies, which alter the properties of the graph during its37

traversal, have also been studied with time-dependent TSP or TSP with time windows being38

the most common [6, 7, 17]. Carmesin et al. [2] introduced TSP with self-deleting graphs39

(TSP-SD) where subsets of edges are rendered unavailable after corresponding vertices are40

visited. TSP-SD has applications in mining, where visits correspond to excavation operations41

that make traversal of some areas unsafe as well as in driving pile foundations with the42

related problem of TSP with circle placement [11, 15, 21]. We are interested in TSP-SD as43

© Daniel Pekar and J. Christopher Beck;
licensed under Creative Commons License CC-BY 4.0

31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 19; pp. 19:1–19:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniel.pekar@mail.utoronto.ca
https://orcid.org/0009-0008-6281-935X
mailto:jcb@mie.utoronto.ca
https://orcid.org/0000-0002-4656-8908
https://doi.org/10.4230/LIPIcs.CP.2025.19
https://github.com/uoft-tidel/tsp-sd
https://tidel.mie.utoronto.ca/external/Pekar_CP2025/extra.php
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Exact Methods for the Travelling Salesperson Problem with Self-Deleting Graphs

a simple example of a state-dependent problem [8, 14], where problem components, such44

as costs, can change depending on the decisions that have already been made. With the45

goal of exploring solution approaches to such problems, this paper compares state-based and46

constraint-based approaches in terms of ease of modelling and problem solving performance.47

Carmesin et al. showed that TSP-SD could be solved by a depth-first search (DFS) that48

constructs the sequence in reverse order by iteratively adding vertices to the beginning of49

the tour; vertex visits, therefore, add edges to the graph rather than deleting them. For50

the DFS, a metaheuristic seeded by a DFS solution, and a later GRASP approach, this51

backward/addition approach was shown to perform significantly better than searching for52

forward sequences where visits delete edges [2, 21].53

We approach TSP-SD using exact solvers in a model-and-solve paradigm. To that54

end, eight distinct models are created: addition and deletion variants for two constraint55

programming (CP) models, one domain-independent dynamic programming (DIDP) model,56

and one mixed integer programming (MIP) model, respectively. We further observe that57

the final edge in a tour (i.e., the one that closes the loop from the last vertex visited to the58

first) must be an edge that is not deleted by any visit. As a consequence, preprocessing can59

identify a restricted set of first/last pairs that can be easily specified and experimented with60

in model-based approaches.61

Using problem instances from the literature [2], we compare our eight models, with and62

without first/last vertex restrictions, with existing approaches. We demonstrate that by a63

significant margin, the DIDP addition model performs best among all the exact approaches64

and outperforms previous heuristic approaches on small and medium-sized instances while65

trailing the previous work on larger problems. The addition variants typically exhibit66

small reductions in measures of search effort compared to the deletion variants with the67

exception of DIDP where the benefit of the addition model is substantial. The first/last68

vertex restrictions generally improve performance for finding an initial solution and reducing69

primal and optimality gaps. However, the addition variants in one CP model and the MIP70

model performed better without the imposition of first/last vertex restrictions.71

This paper is structured as follows. In Section 2, we formally define the problem and72

summarize related work. Section 3 observes that the first and last vertex pairs in the tour73

can be restricted through simple preprocessing. In Section 4, we present four exact models74

each with addition and deletion variants: a CP model based on the ranks of visits, a CP75

model based on a scheduling perspective, a DIDP model, and a MIP model. Section 5 details76

the experimentation and our analysis of the results. Finally, Section 6 concludes.77

2 Background78

We first introduce and define the TSP-SD to give a clearer picture of how it relates to other79

problems explored in the literature.80

2.1 Problem Definition81

Given a complete, undirected graph, G = (V, E), the TSP with self-deleting graphs (TSP-SD)82

problem is to find a Hamiltonian tour of minimum length such that no edge is traversed after83

a visit to a vertex that deletes it [2]. Formally, let cij be the length of the edge between84

vertices i and j and let Di be the set of edges that are deleted when vertex i is visited. If zij85

is a binary variable equal to 1 if edge {i, j} is traversed in the tour, then the objective to86

minimize
∑

i,j∈V cijzij subject to constraints that ensure a Hamiltonian tour and that edges87

are not deleted before their use. Carmesin et al. [2] show that TSP-SD is NP-hard. Note88

D. Pekar and J.C. Beck 19:3

11 2

34

11 2

34

11 2

34

11 2

34

11 2

34

11 2

34

11 2

34

11 2

34

11 2

34

11 2

34

Deletion

Addition

Solution: (1,2,3,4)
D1 = ∅, D2 = {{1,2},{2,4}}, D3 = {{1,3},{2,3}}, D4 = {{3,4}}

Solution: (4,3,2,1)

Figure 1 An example of deletion and addition variants of TSP-SD.

that an edge may or may not be incident to a vertex that deletes it, a given edge may be89

deleted by more than one vertex visit, and that, unlike standard TSP, the vertex at which90

the tour starts can affect the tour’s feasibility. We call this definition of the problem the91

deletion variant.92

The top row of Figure 1 shows a four-vertex example. Starting from the complete graph,93

vertex 1 is chosen as the start node and no edges are deleted as D1 = ∅. Then, edge {1, 2} is94

traversed to vertex 2 and the edges in D2 are deleted. The deletion of {1, 2} has no effect on95

the tour as that edge has already been traversed. However, now edge {2, 4} can no longer be96

traversed. The sequence continues to vertices 3 and 4 with corresponding deletions of edges97

in D3 and D4 before edge {4, 1} is used to return to the start vertex. Of course, finding such98

a solution without backtracking is not guaranteed.99

2.2 Literature Review100

Carmesin et al. [2] proposed a depth-first search (DFS) algorithm to solve the TSP-SD. The101

algorithm begins by choosing a start vertex and then builds the vertex sequence by choosing102

the next one to visit, while ensuring that the intervening edge has not yet been deleted.103

When the final vertex is selected, the algorithm ensures that the edge connecting it with the104

start vertex has not been deleted to ensure that the tour can be completed.105

Carmesin et al. also defined a DFS algorithm that constructs the sequence backward from106

the final vertex to the start vertex. Starting with a graph only containing edges that are not107

deleted by any vertex visit (i.e., edges {j, k} s.t. ∄i, {j, k} ∈ Di), a vertex is inserted at the108

beginning of the partial sequence, while ensuring that the intervening edge exists. Under this109

regime, a visit to vertex i adds the edges Di to the graph. If an edge appears in multiple110

deletion sets, then all corresponding vertex visits must be present in the partial sequence111

before the edge can be used to add a vertex to the beginning of the partial sequence. When112

the starting vertex is selected (i.e., in the last step of the DFS), it is not sufficient for the113

edge connecting it to the final node to be present in the current graph because in the forward114

sequence the edge connecting the first and last vertices is the last edge to be traversed. Thus,115

to close the tour, the last edge must exist after all vertices have been visited (i.e., it must be116

an edge that no vertex deletes). The DFS algorithm performs this extra check when adding117

the starting vertex and backtracks if it is not satisfied. Carmesin et al. prove the correctness118

of their backward DFS. We refer to this approach to solving as the addition variant.119

CP 2025

19:4 Exact Methods for the Travelling Salesperson Problem with Self-Deleting Graphs

The second row of Figure 1 illustrates the backward DFS algorithm. Vertex 4 is selected120

as the last vertex and the edges in D4 are added to the graph. Vertices 3, 2, and 1 are then121

iteratively added to the beginning of the sequence traversing edges that exist at the time of122

the traversal. As noted, the DFS checks that the edge {1, 4} existed in the starting graph to123

ensure that the forward tour can be completed.124

Carmesin et al. show, experimentally, that the backward DFS outperforms the forward125

DFS in finding feasible solutions and proving infeasibility, requiring significantly fewer search126

nodes and less time. Further work [2, 21], proposed a metaheuristic, warm-started with a127

solution found by a time-limited backward DFS, and a Greedy Randomized Adaptive Search128

Procedure (GRASP) [5]. The metaheuristic improved on the backward DFS and GRASP129

further improved performance, finding best and mean solutions up to 16% and 6.7% better,130

respectively, than the warm-started metaheuristic on large instances.131

While TSP-SD shares similarities with other time- or path-dependent routing problems132

such as the time-dependent TSP (TDTSP) [18], the closest work is by Lipovetzky et al.133

[15]. That work investigates AI planning for a mining application where parts of the mine134

are only physically accessible after previous blocks have been excavated. These physical135

considerations impose partial orderings of operations, similar to TSP-SD, but whereas the136

mining operations add subsequent travel paths, vertex visits in TSP-SD remove them.137

3 First/Last Vertex Constraints138

Before presenting our exact models of TSP-SD, we make the following observation.139

▶ Observation 1. Since all vertices are visited upon completion of a Hamiltonian path, in140

any solution, all edges that could be deleted are deleted. As such, the set of undeleted edges141

at the end of the tour, Eremain, can be defined as: Eremain = E \
n⋃

i=1
Di.142

Since the tour must return to the start vertex, the returning edge must be an edge in143

Eremain, and therefore the start and end vertices of the tour must be incident to the remaining144

edges. From this we can define Vremain as: Vremain =
⋃

{i, j}, ∀{i, j} ∈ Eremain.145

While the existing DFS approaches correctly ensure that the edge between the first and146

last vertices in the tour is not deleted, they do not exploit this observation. No restrictions147

are made on the choice of the start vertex nor is any reasoning done about partial tours with148

remaining return edges to the first vertex. We implement these first/last restrictions in our149

models and evaluate their impact on problem solving.150

4 TSP-SD Models151

Given the performance differences in the literature between the deletion and addition variants152

and their embedding in a DFS search, we are interested in understanding if such differences153

are manifest in model-based approaches. Thus, we formulated four distinct models (two CP154

models, one DIDP model, and one MIP model) each with a deletion and addition variant.155

Further, we investigate Observation 1 by testing each of the eight models with and without156

first/last restrictions. The notation we adopt is summarized in Table 1.157

4.1 Constraint Programming158

We present two CP models: a rank-based model, where the main decision variable is the159

position of each vertex in the tour, and a scheduling-based model, where we use optional160

interval variables to represent the sequence of edge traversals.161

D. Pekar and J.C. Beck 19:5

Table 1 Notation used to define TSP-SD.

Symbol Explanation

cij Distance from vertex i to vertex j
V Set of all vertices {1, . . . , n}
E Set of all edges
Di Set of edges deleted after visiting vertex i
Dij Set of vertices which delete the edge {i, j}
Eremain Set of remaining edges after all vertices are visited
Vremain Set of vertices along remaining edges

4.1.1 CP Rank Model162

The CP Rank model is premised on the idea that each vertex must be assigned a unique163

rank (i.e., position in the sequence) and each rank must be associated with a unique vertex.164

Let xi ∈ X be the vertex visited at rank i in the tour and let yj ∈ Y be the rank of vertex j165

in the tour. The domains of both variables are {1, ..., n} for n vertices.166

The CP Rank Del model is defined in Figure 2. The objective function seeks to minimize167

the sum of costs between vertices in consecutive ranks, with the modulo function accounting168

for the return edge. Constraint (1b) ensures that xyi
= yxi

. Each vertex is visited exactly169

once so the values of both X and Y must form permutations as enforced with constraints170

(1c) and (1d). Constraint (1e) expresses the deletion behavior by constraining the ordering of171

vertex visits and edge traversals. For every deleted edge, {j, k} ∈ Di, either the two vertices172

j, k are not adjacent in the sequence or visits to both vertices j and k must be before the visit173

to i. Note that the ranks of vertex i and either vertex j or k may be equal as it is possible to174

traverse an edge to a vertex that deletes it. That is, i may be equal to j or k. Constraint (1f)175

ensures that the edge between the first and last vertices is not deleted by any vertex visit.176

We can modify CP Rank Del to represent the addition variant of the problem simply by177

reversing the ordering in constraint (1e): an edge {j, k} can be traversed only after visiting178

every vertex i in the set Djk = {i : {j, k} ∈ Di}. Thus, constraint (1e) is replaced with179

constraint (3).180

min
∑
i∈V

cix(yi mod n)+1 (1a)

s.t. Inverse(X, Y) (1b)
AllDifferent(X) (1c)
AllDifferent(Y) (1d)
(|yj − yk| ≠ 1) ∨ (yj ≤ yi ∧ yk ≤ yi) ∀{j, k} ∈ Di ∀i ∈ V (1e)
|yj − yk| ≠ n − 1 ∀{j, k} ∈ Di ∀i ∈ V (1f)
Integer variable xi = {1, . . . , n} ∀i ∈ V (1g)
Integer variable yj = {1, . . . , n} ∀i ∈ V (1h)

Figure 2 The CP Rank Del model.

CP 2025

19:6 Exact Methods for the Travelling Salesperson Problem with Self-Deleting Graphs

min
∑
i∈V

cix(yi mod n)+1 (2a)

s.t. (1b), (1c), (1d), (1e)
AllowedAssignments({x1, xn}, {{i, j} ∈ Eremain}) (2b)

Integer variable xi =
{

{1, . . . , n} ∀ i ∈ {2, . . . , n − 1}
Vremain ∀ i ∈ {1, n}

(2c)

Integer variable yj =
{

{2, . . . , n − 1} ∀ j /∈ Vremain

{1, . . . , n} ∀ j ∈ Vremain

(2d)

Figure 3 The CP Rank Del model with first/last vertex restrictions.

(|yj − yk| ≠ 1) ∨ (yj ≥ yi ∧ yk ≥ yi) ∀{j, k} ∈ Di ∀i ∈ V (3)181

We call this second formulation CP Rank Add. The solutions to CP Rank Add is a182

solution to CP Rank Del with each xi, yj in the addition variant being equal to xn−i+1, yn−i+1183

in the deletion variant.184

We can include Observation 1 in the CP Rank models by directly constraining the domains185

of the corresponding variables in X and Y as in the model presented in Figure 3. We replace186

constraint (1f) with a table constraint specifying the possible return edges and restrict the187

domains of the variables xi and yj in constraints (2c) and (2d), respectively.188

4.1.2 CP Interval Model189

Motivated by the success of CP scheduling constructs both in scheduling and non-scheduling190

problems [10, 16], we present the intuition of the CP Interval model in Figure 4. In the191

model, each edge {i, j} is represented as an optional interval variable, traverseij , with length192

cij . As each vertex i must have exactly one edge entering and one edge exiting it in a tour,193

we create two interval variables, ini and outi, and employ an Alternative constraint to194

ensure that ini is set to the chosen traverseji variable that enters vertex i and outi is set to195

the chosen traverseij variable that exits vertex i. Each traverseij variable appears in two196

Alternative

out2

Alternative

in3 out3 in4

traverse23 traverse23

traverse34

traverse21

traverse24

traverse13

traverse43

traverse31

traverse34

traverse24

traverse14

Alternative

traverse32

Alternative

Figure 4 An illustration of the interval variables in the CP Interval model. The traversal of an
edge {i, j} is represented by an optional interval variable traverseij that occurs in the Alternative
constraints with the outi and inj interval variables.

D. Pekar and J.C. Beck 19:7

min EndOf(inn+1) (4a)
s.t. NoOverlap(INS) (4b)

Last(INS, inn+1) (4c)
StartAtEnd(outi, ini) ∀i ∈ V (4d)
Alternative(ini, traverseji∀j ∈ V) ∀i ∈ V) (4e)
Alternative(outi, traverseij ∪ traverse_lastij∀j ∈ V) ∀i ∈ V \ {0}) (4f)
Alternative(inn+1, traverse_lastij) ∀{i, j} ∈ E (4g)
IsPresent(traverse_lastij) ↔

(IsPresent(traverse0i) ∧ IsPresent(traversej,n+1)) ∀{i, j} ∈ E (4h)
EndBeforeEnd(traversejk, ini ∀{j, k} ∈ Di) ∀i ∈ V (4i)
¬IsPresent(traverse_lastjk) ∀{j, k} ∈ Di, i ∈ V (4j)
Optional interval variable traverseij size = dij ∀{i, j} ∈ E (4k)
Optional interval variable traverse0i size = 0 ∀i ∈ V (4l)
Optional interval variable traverse_lastij size = dij ∀{i, j} ∈ E (4m)
Interval variable ini ∀i ∈ V ∪ {n + 1} (4n)
Interval variable outi ∀i ∈ V ∪ {0} (4o)
Sequence variable INS {ini ∀i ∈ V ∪ {n + 1}} (4p)

Figure 5 The CP Interval Del model.

Alternative constraints, one related to outi and one for inj , and thus when the solver sets197

traverseij as present, outi will correctly equal inj . We further constrain outi to start at the198

end of ini as visits are instantaneous. Finally, though not illustrated in Figure 4, the ini199

variables are sequenced to form a permutation.200

Figure 5 presents the formal definition of CP Interval Del. In addition to the interval201

variables described above, we introduce two dummy vertices, with indices i = 0 and i = n + 1,202

as the start and end points in the permutation with corresponding interval variables out0,203

inn+1, traverse0j , and traversej,n+1. The return edges are represented by another interval204

variable, traverse_lastij , that are alternative realizations of inn+1.205

We seek to minimize the end time inn+1 in objective (4a). Constraints (4b) and (4c)206

constrain all ini variables to form a permutation with inn+1 coming last. Constraint (4d)207

ensures that the ini and outi variables are sequenced contiguously. The Alternative208

constraints (4e)-(4g) represent the logic described in Figure 4 extended to include the return209

edge. Constraint (4h) defines the return edge to be between the vertices visited immediately210

after the dummy start vertex and immediately before the dummy end vertex. The self-211

deletion requirement is modeled by sequencing of intervals outi and intervals traversejk for212

{j, k} ∈ Di. Finally, constraint (4j) prevents a deleted edge from being the return edge.213

To define the CP Interval Add model, the deletion constraint (4i) is replaced with (5),214

such that if traversejk is present, it must occur after the visit to the vertex that adds it.215

StartBeforeStart(outi, traversejk) ∀{j, k} ∈ Di ∀i ∈ V (5)216

To incorporate first/last vertex restrictions, we adjust the domains of the traverse0i217

CP 2025

19:8 Exact Methods for the Travelling Salesperson Problem with Self-Deleting Graphs

min EndOf(inn+1) (6a)
s.t.

(4b), (4c), (4d), (4e), (4i)
Alternative(outi, traverseij ∪ traverse_lastik∀j ∈ V

k ∈ Vremain : {i, k} ∈ Eremain) ∀i ∈ V \ {0}) (6b)
Alternative(inn+1, traverse_lastij) ∀{i, j} ∈ Eremain (6c)
Alternative(out0, traverse0i) ∀i ∈ Vremain (6d)
IsPresent(traverse0i) =∑

(j,i)∈Eremain

IsPresent(traverse_lastji) ∀i ∈ Vremain (6e)

Optional interval variable traverse0i size = 0 ∀i ∈ Vremain (6f)
Optional interval variable traverse_lastij size = dij ∀{i, j} ∈ Eremain (6g)

Figure 6 The CP Interval Del model with first/last vertex restrictions.

and traverse_lastij variables in Figure 6. The domain of traverse0i is restricted Vremain218

(constraint (6f)), while the domain of traverse_lastij is restricted to Eremain (constraint219

(6g)). The same domain restrictions are similarly replicated in constraints (6b), (6c), and220

(6d). We also replace constraint (4h) in the CP Interval Del model with constraint (6e) to221

link the first traverse variable with the corresponding traverse_lastji variables.222

4.2 Domain-Independent Dynamic Programming223

DIDP is a declarative model-based paradigm for combinatorial optimization based on dynamic224

programming [12]. Our TSP-SD model builds on existing formulations for TSPTW [4, 13]225

and assembly line balancing problem with sequence-dependent setup times [22]. The deletion226

variant, DIDP Del, is shown in Figure 7.227

The state variables are U , the set of unvisited vertices, i, the current vertex, and f , the228

first vertex visited in the tour. As in the CP Interval model we let vertex 0 represent a229

dummy start node.230

We aim to compute the value function of target state ⟨N \{0}, 0, 0⟩ (term (7a)). Equation231

(7b) recursively computes the cost of the state as we traverse each edge. When i = 0, the232

transition to the start vertex is selected. Subsequently, while the set of unvisited vertices is233

not a singleton, the next vertex is chosen ensuring that the intervening edge has not been234

deleted. This condition is expressed as Dij ⊆ U , as all vertices that delete edge {i, j} must235

still be unvisited. The selection of the final vertex is a special case, captured in the next236

condition that requires that the return edge has not been deleted: Djf ⊆ U . The base case237

of U = ∅ has a cost of 0. If none of these conditions are satisfied, the state is a deadend238

and so is assigned the cost of ∞. Following the TSPTW model [12], we specify two dual239

bounds, inequalities (7c) and (7d), based on the minimum cost of all incoming edges from or240

all outgoing edges to the unvisited vertices.241

To create the addition variation, DIDP Add, the Bellman equation is replaced by (8). In242

the second and third cases, rather than ensuring the traversed edge has not yet been deleted,243

we require that all adding vertices must be already visited: Dij ∩ U = ∅.244

D. Pekar and J.C. Beck 19:9

compute V(N \ {0}, 0, 0) (7a)

V (U, i, f) =

min
j∈V

V (U \ {j}, j, j) if i = 0

min
j∈U |Dij⊆U

cij + V (U \ {j}, j, f) else if |U | > 1 ∧ (∃j ∈ U | Dij ⊆ U)

min
j∈U

cij + cjf + V (U \ {j}, j, f) else if |U | = 1 ∧

(∃j ∈ U | Dfj = ∅ ∧ Dij ⊆ U)
0 else if U = ∅
∞ else

(7b)

V (U, i, f) ≥
∑

j∈U\{i}

min
k∈N\{j}

ckj (7c)

V (U, i, f) ≥
∑

j∈U\{f}

min
k∈N\{j}

cjk (7d)

Figure 7 The DIDP Del model.

V (U, i, f) =

min
j∈V

V (U \ {j}, j, j) if i = 0

min
j∈U |Dij∩U=∅

cij + V (U \ {j}, j, f) else if |U | > 1 ∧

(∃j ∈ U | Dij ∩ U = ∅)
min
j∈U

cij + cjf + V (U \ {j}, j, f) else if |U | = 1 ∧

(∃j ∈ U | Dfj = ∅ ∧ Dij ∩ U = ∅)
0 else if U = ∅
∞ else

(8)

Figure 8 The Bellman equation in the DIDP Add model.

Finally, to incorporate first/last vertex restrictions into the DIDP Del model, the possible245

choices for the first vertex are restricted to only those in set Vremain. Similarly, the possible246

choices for the last vertex are restricted to only those such that the edge {j, f} is in the set247

of remaining edges Eremain. The Bellman equation is shown in Figure 9.248

4.3 Mixed Integer Programming249

We develop a MIP model similar to the one for Time Dependent TSP [17]. The primary250

difference, and an advantage in TSP-SD, is that the variables are indexed by rank as opposed251

to time slot and thus do not scale with the time horizon, only with the number of vertices.252

Let binary decision variable xijr represent the traversal of edge {i, j} at rank r. As such,253

the number of binary decision variables for a given graph is O(n3). To account for the cost254

of returning to the starting vertex, we introduce the binary variable yij that is 1 if {i, j} is255

the return edge.256

Figure 10 shows the MIP Del model. The objective is to minimize the total distance257

CP 2025

19:10 Exact Methods for the Travelling Salesperson Problem with Self-Deleting Graphs

V (U, i, f) =

min
j∈Vremain

V (U \ {j}, j, j) if i = 0

min
j∈U |Dij⊆U

cij + V (U \ {j}, j, f) else if |U | > 1 ∧ (∃j ∈ U | Dij ⊆ U)

min
j∈U

cij + cjf + V (U \ {j}, j, f) else if |U | = 1 ∧

(∃j ∈ U | (j, f) ∈ Eremain ∧ Dij ⊆ U)
0 else if U = ∅
∞ else

(9)

Figure 9 The Bellman equation for the DIDP Del model with first/last vertex restrictions.

traveled on all intermediate edges plus the return edge. Constraints (10b) and (10c) ensure258

that each vertex is entered once and each rank is chosen once. The proper rank of edges is259

maintained via constraint (10d). The next three constraints specify that the return edge260

cannot be deleted (10e), that it must connect vertices in the first and last rank (10f), and261

that there can be only one return edge (10g). Finally, constraint (10h) ensures that the rank262

of any deleted edge must be less than or equal to any vertex that deletes it.263

For the addition variant, MIP Add, constraint (10h) is replaced with constraint (11) to264

ensure that either an added edge is ranked after all adding vertices or the edge is not used.265

∑
r∈V

rxklr + M(1 −
∑
r∈V

xklr) ≥ 1 +
∑
r∈V

∑
j∈V

rxjir ∀{k, l} ∈ Di ∀i ∈ V (11)266

We can adjust the MIP Del model to include first/last vertex restrictions by modifying267

the constraints that affect the choice of first and last vertex and the scope of variable yij268

as shown in Figure 11. Constraints (12b) and (12c) are added to restrict the first and last269

vertices to only those in the set Vremain. We ensure that the first and last vertices are270

connected by an edge in Eremain using constraint (12d). Finally, constraints (12e) and (12f)271

are analogous to (10f) and (10g), only restricted to the set of possible edges in Eremain.272

5 Numerical Experiments273

The aims of our numerical experiments are to evaluate the performance of the exact models,274

to investigate whether the deletion or addition variants perform differently, to assess the275

impact of the first/last restrictions, and finally to compare the best-performing model-based276

techniques to the existing custom approaches. We address the first three aims in Experiment277

1 and the final one in Experiment 2.1278

Recall that Carmesin et al. [2] found a substantial computational advantage in adopting279

the addition variant within a depth-first search that built the sequence backward. For our280

CP and MIP models, the difference between the addition and deletion variants is simply281

the direction of a set of sequencing constraints. Further, as the corresponding solvers do282

1 GitHub: https://github.com/uoft-tidel/tsp-sd
Instance Data and Results: https://tidel.mie.utoronto.ca/external/Pekar_CP2025/extra.php

https://github.com/uoft-tidel/tsp-sd
https://tidel.mie.utoronto.ca/external/Pekar_CP2025/extra.php

D. Pekar and J.C. Beck 19:11

min
∑
r∈V

∑
{i,j}∈E

cijxijr +
∑

{i,j}∈E

cijyij (10a)

s.t.
∑
i∈V

∑
r∈V

xijr = 1 ∀j ∈ V (10b)∑
{i,j}∈E

xijr = 1 ∀r ∈ V (10c)

∑
j∈V

xijr =
∑
j∈V

xj,i,r−1 ∀i ∈ V, r ∈ V (10d)

yjk = 0 ∀{j, k} ∈ Di, i ∈ V (10e)

x0i0 +
∑
k∈V

xkjn ≤ yij + 1 ∀{i, j} ∈ E (10f)∑
(i,j)∈E

yij = 1 (10g)

∑
r∈V

rxklr ≤
∑
r∈V

∑
j∈V

rxjir ∀{k, l} ∈ Di, i ∈ V (10h)

xijr =
{

1 if traversing edge {i, j} at rank r
0 else

∀i,j ∈ V, r ∈ V (10i)

yij =
{

1 if traversing edge {i, j} last
0 else

∀{i, j} ∈ E (10j)

Figure 10 The MIP Del model.

not necessarily build the sequence in order (either backward or forward), we expect limited283

performance differences between the variants. In contrast, the DIDP models are solved by284

adding vertices to the start or end of a partial sequence. Thus, we expect to see a similar285

effect as observed in the previous work with the addition variant performing better than286

deletion. As the first/last restrictions limit the search space, we expect to see their inclusion287

will improve performance of all of our models.288

5.1 Experiment 1: Comparison of Exact Models289

Problem Set. The exact models were compared using a dataset of 60 instances chosen from290

an existing set of 30,000 randomly generated problems with size n = [10, 20, . . . , 100, 150, 200]291

and 50 instances per size [20]. For each size, a deletion function was randomly generated292

with differing probabilities to produce instances with varying expected vertex density over293

the course of the tour (see Carmesin et al. [2] for the exact definition of density used). For294

each n, we chose the first instance at each quintile of average vertex degree (0%, 25%, 50%,295

75%, 100%), producing 60 instances in total with diverse sizes and densities.296

We did not filter the problem instances for feasibility. A posteriori, at least one of our297

exact methods found a feasible solution or proved infeasibility for each instance showing that298

the set consists of 39 feasible and 21 infeasible instances.299

Experimental Set-up. Each model is run with a single-thread with a 30-minute time-out300

and an 8 GB memory limit for each instance. All model-based approaches are run on a301

dedicated Linux server, with Intel(R) Xeon(R) Gold 6148 CPUs running at 2.4 GHz. The302

CP 2025

19:12 Exact Methods for the Travelling Salesperson Problem with Self-Deleting Graphs

min
∑
r∈V

∑
{i,j}∈E

cijxijr +
∑

{i,j}∈Eremain

cijyij (12a)

s.t. (10b), (10c), (10d), (10h)∑
i∈Vremain

x0i0 = 1 (12b)

∑
i∈V

∑
j∈Vremain

xijn = 1 (12c)

x0i0 ≤
∑

j∈Vremain|(j,i)∈Eremain

∑
k∈V

xkjn ∀i ∈ Vremain (12d)

x0i0 +
∑
k∈V

xkjn ≤ yij + 1 ∀{i, j} ∈ Eremain (12e)∑
{i,j}∈Eremain

yij = 1 (12f)

xijr =
{

1 if traversing edge {i, j} at rank r
0 else

∀i, j ∈ V, r ∈ V (12g)

yij =
{

1 if traversing edge {i, j} last
0 else

∀{i, j} ∈ Eremain (12h)

Figure 11 The MIP Del model with first/last vertex restrictions.

CP models were run using CP Optimizer 22.1.1.0 via IBM DOcplex, DIDP was run using303

the CABS solver via DIDPPy v0.8.0, and the MIP models were solved by Gurobi 12.0.0.304

Model Comparison. An overview of the results can be seen in Figures 12 and 13 with305

detailed results in Appendix A.306

The DIDP Add model and both CP Rank models outperform the others, with DIDP307

Add having the overall advantage. DIDP Add proved optimality or infeasibility on the308

largest number of instances, produced substantially better solutions, and achieved the best309

optimality gap (see Table 5). The CP Rank models typically achieve second and third place310

on these measures. The MIP models are next in terms of proofs of optimality/infeasibility311

but trail the CP Interval models in terms of primal gap. This poor MIP performance is due312

to the solver running out of memory for some instances with n ≥ 100, while none of the313

other solvers exhibited memory issues. Finally, DIDP Del is the worst performing model in314

terms of proofs but outperforms the MIP models based on the quality of primal solutions.315

Deletion vs. Addition Variants. As expected, the DIDP Add model is substantially316

better than DIDP Del model: using the deletion variant takes DIDP from the best performing317

exact approach to the worst. Consistent with Carmesin et al.’s DFS, Figure 13 shows that318

the ability to quickly find high quality solutions in DIDP Add is substantially impaired in the319

DIDP Del model. Similarly following expectations, the MIP and CP Rank models exhibit320

minor differences in performance between their deletion and addition variants in Figures 12321

and 13. Interestingly, CP Interval Add performs substantially better than CP Interval Del,322

with the quick improvement in primal solution quality again likely a key factor. We speculate323

that in solving a scheduling model, CP Optimizer may be employing primal heuristics that324

build the solution chronologically.325

D. Pekar and J.C. Beck 19:13

0 250 500 750 1000 1250 1500 1750
Time (s)

0

10

20

30

40

50

60

Pr
ov

en
 O

pt
im

al
 o

r I
nf

ea
si

bl
e

With First/Last Vertex Restrictions

0 250 500 750 1000 1250 1500 1750
Time (s)

0

10

20

30

40

50

60
Without First/Last Vertex Restrictions

DIDP Add
CP Rank Add
CP Rank Del
MIP Add
MIP Del
CP Interval Add
CP Interval Del
DIDP Del

Figure 12 Instances proven optimal or infeasible over time for all exact models. Recall that 21 of
the instances are infeasible and the rest admit feasible solutions.

0 250 500 750 1000 1250 1500 1750
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
im

al
 G

ap

With First/Last Vertex Restrictions

0 250 500 750 1000 1250 1500 1750
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
Without First/Last Vertex Restrictions

MIP Del
MIP Add
DIDP Del
CP Interval Del
CP Rank Add
CP Rank Del
CP Interval Add
DIDP Add

Figure 13 Mean primal gap to best known solution over time of all exact models, averaged over
39 feasible instances. Note the the two CP Rank plots coincide.

Table 2 provides more detailed data. For a given approach (e.g., CP Rank), we identified326

the problem instances for which both the deletion and addition variants proved optimality or327

infeasibility. We provide the shifted geometric mean (with a shift of 1) and the arithmetic328

mean of solver-specific measures of the search effort in Table 2. With the exception of MIP329

Add having almost four times the number of simplex iterations in geometric mean as MIP330

Del, CP Rank and MIP models show minor differences. The CP Interval models show a331

larger reduction in most measures of search effort when using the addition variant, consistent332

with the overall performance results. DIDP shows a substantial difference in the search effort333

(e.g., 4 orders of magnitude in the arithmetic means of the number of generated nodes), again334

consistent with the overall performance.335

The Impact of First/Last Restrictions. Against our expectations, the inclusion of the336

first/last vertex restrictions appears to have either no impact or a small positive one on all337

models in terms of proving optimality or infeasibility. In terms of primal gap, however, both338

MIP Add and, to a greater extent, CP Interval Add improve when the redundant restriction339

constraints are not present. We speculate that the lack of restrictions allows some primal340

heuristics to perform better in these solvers. Further analysis is needed to understand the341

behavior of the models both with and without the first/last restrictions.342

CP 2025

19:14 Exact Methods for the Travelling Salesperson Problem with Self-Deleting Graphs

Table 2 The arithmetic and shifted geometric mean with shift of 1 of the solver specific search
space measures over problems where each pair proved optimality or infeasibility for models without
first/last vertex processing. The number in parentheses is the number of such instances.

Geometric Mean Arithmetic Mean

Model Measure Deletion Addition Deletion Addition

CP Rank (25) No. Branches 111 139 333 006 239 412
No. Fails 113 139 157 413 113 665

CP Interval (16) No. Branches 1104 1069 1 288 442 795 770
No. Fails 1038 1044 870 779 554 633

DIDP (9) Nodes Generated 570 23.3 5 332 782 502
Nodes Explored 518 21.9 4 630 268 421

MIP (21) Nodes Explored 2.96 2.68 799 787
Simplex Iterations 5.13 19.7 107 668 109 639

5.2 Experiment 2: Comparison with Previous Approaches343

Problem Set. The second experiment uses the 11 instances with sizes from 14 to 1084344

vertices adapted from TSPLIB [19] that Carmesin et al. [2] used for a detailed analysis.345

Experimental Set-up. We use the same hardware and software as used in Experiment 1346

for the single-threaded experiments. Unlike Experiment 1, following Carmesin et al., the time347

limit for each instance is 10n seconds, where n is the number of vertices. We also run each348

model using 8 threads with a memory limit of 32 GB to better compare with the settings of349

previous work. For Exact Init., following the literature, we run the single and multi-threaded350

versions 50 times for each instance and report the mean results.351

The best performing approaches in the literature are the Exact Init. approach of Carmesin352

et al. [2] which employs a metaheuristic that is warm-started with the addition DFS approach353

and the GRASP of Woller et al. [21]. As the source code for Exact Init. is provided in the354

authors’ repository,2 we run it on our hardware based on the published hyper-parameter355

settings. We rely on the published results for the GRASP approach for which the source code356

is not available. The mean results for GRASP were back calculated given the gap between357

the mean results for the Exact Init. We compare the existing state of the art to the three358

best models in Experiment 1: CP Interval Add without first/last vertex processing, CP Rank359

Add with first/last vertex processing, and DIDP Add with first/last vertex processing.360

Results. Table 3 presents the single-threaded results run on our hardware. DIDP Add361

dominates all other approaches by a considerable amount.362

Moving to eight threads (Table 4), all approaches show some improvement compared to363

their single-thread results but the relative performance is the same, with DIDP Add again364

being dominant. In comparison to the literature, DIDP Add out-performs the reported365

results for Exact Init. on all problem instances and the reported results for GRASP up to366

and including size n = 160. For the three larger instances, GRASP finds the best solutions.367

Note that the berlin52-10.4 instance was proved infeasible by the exact solvers. However,368

the published results for both Exact Init. and GRASP show that a feasible solution was369

found. We checked the solution published by Carmesin et al. and confirmed that it uses a370

2 https://imr.ciirc.cvut.cz/Research/TSPSD

D. Pekar and J.C. Beck 19:15

Table 3 The primal bounds obtained by the exact approaches and mean primal bound for the
heuristic algorithms, all run on a single thread for 10n seconds with a memory limit of 8 GB. ‘w.’
indicates the model was run with first/last vertex restrictions, while ‘w.o.’ indicates the model was
run without them. The ‘-’ symbol indicates the instances was proved infeasible, while ‘t.o.’ is a
time-out, and ‘m.o.’ indicates a memory-out.

CP Rank CP Interval DIDP Exact
Instance Add w. Add w.o. Add w. Init.

burma14-3.1 52 52 52 52
ulysses22-5.5 141 141 141 141
berlin52-10.4 - t.o. - t.o.
berlin52-13.2 22 810 17 045 15 331 19 741

eil101-27.5 2 270 1 382 1 183 1 806
gr202-67.3 1 485 880 777 1 402
lin318-99.3 238 643 t.o. 94 776 312 641
fl417-160.6 213 448 t.o. 22 789 264 009
d657-322.7 465 012 t.o. 85 547 414 544

rat783-481.4 89 614 m.o. 13 458 62 679
vm1084-848.9 5 517 296 m.o. 366 429 2 667 016

Table 4 The primal bounds obtained by the exact approaches and mean primal bound for the
heuristic algorithms, all run with 8 threads for 10n seconds with a memory limit of 32 GB. The ‘∗’
symbol indicates an invalid solution. See Table 3 for the meaning of the remaining symbols.

CP Rank CP Interval DIDP Exact Exact GRASP [21]
Instance Add w. Add w.o. Add w. Init. Init. [2]

burma14-3.1 52 52 52 52 52 52
ulysses22-5.5 141 141 141 141 166 141
berlin52-10.4 - - - t.o. 25 741∗ 26 231∗

berlin52-13.2 20 025 17 438 15 265 18 908 17 835 18 852
eil101-27.5 2 153 1 416 1 187 1 655 1 513 1 484
gr202-67.3 1 446 835 777 1 152 849 870
lin318-99.3 223 836 t.o. 93 660 225 803 110 888 105 787
fl417-160.6 119 525 t.o. 22 272 27 259 27 259 25 787
d657-322.7 322 985 t.o. 84 257 264 829 85 347 82 531

rat783-481.4 69 212 t.o. 13 763 36 148 13 833 12 906
vm1084-848.9 5 756 755 m.o. 358 163 913 184 326 067 305 525

deleted edge and thus is invalid. In our execution, the Exact Init. algorithm, correctly, did371

not find any feasible solutions for berlin52-10.4.372

6 Conclusion373

In this paper, we investigated three model-and-solve paradigms for the Traveling Salesperson374

with Self-Deleting graphs (TSP-SD), a problem introduced by Carmesin et al. [2]: two375

constraint programming (CP) models based, respectively, on ranking and scheduling of vertex376

visits, a domain-independent dynamic programming (DIDP) model, and a mixed integer377

programming (MIP) model. We experimented with four variants of each model, constraining378

them to find forward sequences with edge deletion or backward sequences with edge addition,379

and with or without redundant constraints that restricted the start and end vertices.380

Our numerical results showed that DIDP solving the addition variant of the problem381

CP 2025

19:16 Exact Methods for the Travelling Salesperson Problem with Self-Deleting Graphs

significantly outperformed all the other exact models, performed better than the state-of-382

the-art heuristic methods on smaller and medium instances, but trailed the best heuristic383

approach in terms of solution quality on the largest of the tested instances.384

Reformulating the problem to add edges rather than delete them showed little impact on385

the rank-based CP model and the MIP model but had modest and large positive impact,386

respectively, for the scheduling-based CP model and the DIDP model.387

Our primary direction for future work is to generalize the problem to allow edges to be388

added and deleted by vertex visits. We expect this problem to be more challenging and,389

given the poor performance of DIDP on the deletion variant, that CP models may prove390

superior to the other approaches. We also plan to investigate model-based approaches to391

more complex state-dependent problems such as scheduling with time- or sequence-dependent392

costs [1, 3].393

References394

1 Matan Atsmony, Baruch Mor, and Gur Mosheiov. Single machine scheduling with step-learning.395

Journal of Scheduling, 27(3):227–237, June 2024. doi:10.1007/s10951-022-00763-5.396

2 S. Carmesin, D. Woller, D. Parker, M. Kulich, and M. Mansouri. The Hamiltonian Cycle397

and Travelling Salesperson problems with traversal-dependent edge deletion. Journal of398

Computational Science, 74:102156, 2023. doi:10.1016/j.jocs.2023.102156.399

3 Erik Diessel and Heiner Ackermann. Domino sequencing: Scheduling with state-400

based sequence-dependent setup times. Operations Research Letters, 47(4):274–280, July401

2019. URL: https://linkinghub.elsevier.com/retrieve/pii/S0167637719300598, doi:402

10.1016/j.orl.2019.04.004.403

4 Y. Dumas, J. Desrosiers, E. Gelinas, and M.M. Solomon. An optimal algorithm for the404

traveling salesman problem with time windows. Operations Research, 43(2):367–371, 1995.405

URL: http://www.jstor.org/stable/171843.406

5 T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally dif-407

ficult set covering problem. Operations Research Letters, 8(2):67–71, 1989. URL:408

https://www.sciencedirect.com/science/article/pii/0167637789900023, doi:10.1016/409

0167-6377(89)90002-3.410

6 F. Focacci, A. Lodi, and M. Milano. A hybrid exact algorithm for the tsptw. INFORMS411

Journal on Computing, 14(4):403, Fall 2002.412

7 A.R. Güner, A. Murat, and R.B. Chinnam. Dynamic routing for milk-run tours with time413

windows in stochastic time-dependent networks. Transportation Research Part E: Logistics and414

Transportation Review, 97:251–267, 2017. URL: https://www.sciencedirect.com/science/415

article/pii/S1366554515301198, doi:10.1016/j.tre.2016.10.014.416

8 Christoph Hansknecht, Imke Joormann, and Sebastian Stiller. Dynamic Shortest Paths417

Methods for the Time-Dependent TSP. Algorithms, 14(1):21, January 2021. URL: https:418

//www.mdpi.com/1999-4893/14/1/21, doi:10.3390/a14010021.419

9 Jahangirnagar University, E. Islam, M. Sultana, and F. Ahmed. A Tale of Revolution:420

Discovery and Development of TSP. International Journal of Mathematics Trends and421

Technology, 57(2):136–139, May 2018. doi:10.14445/22315373/IJMTT-V57P520.422

10 W.-K. Ku and J. C. Beck. Revisiting off-the-shelf mixed integer programming and constraint423

programming models for job shop scheduling. Computers & Operations Research, 73:165–173,424

2016.425

11 M. Kulich, D. Woller, S. Carmesin, M. Mansouri, and L. Přeučil. Where to place a pile?426

In 2023 European Conference on Mobile Robots (ECMR), pages 1–7, 2023. doi:10.1109/427

ECMR59166.2023.10256330.428

12 R. Kuroiwa. Domain-Independent Dynamic Programming. PhD thesis, University of Toronto,429

2024.430

https://doi.org/10.1007/s10951-022-00763-5
https://doi.org/10.1016/j.jocs.2023.102156
https://linkinghub.elsevier.com/retrieve/pii/S0167637719300598
https://doi.org/10.1016/j.orl.2019.04.004
https://doi.org/10.1016/j.orl.2019.04.004
https://doi.org/10.1016/j.orl.2019.04.004
http://www.jstor.org/stable/171843
https://www.sciencedirect.com/science/article/pii/0167637789900023
https://doi.org/10.1016/0167-6377(89)90002-3
https://doi.org/10.1016/0167-6377(89)90002-3
https://doi.org/10.1016/0167-6377(89)90002-3
https://www.sciencedirect.com/science/article/pii/S1366554515301198
https://www.sciencedirect.com/science/article/pii/S1366554515301198
https://www.sciencedirect.com/science/article/pii/S1366554515301198
https://doi.org/10.1016/j.tre.2016.10.014
https://www.mdpi.com/1999-4893/14/1/21
https://www.mdpi.com/1999-4893/14/1/21
https://www.mdpi.com/1999-4893/14/1/21
https://doi.org/10.3390/a14010021
https://doi.org/10.14445/22315373/IJMTT-V57P520
https://doi.org/10.1109/ECMR59166.2023.10256330
https://doi.org/10.1109/ECMR59166.2023.10256330
https://doi.org/10.1109/ECMR59166.2023.10256330

D. Pekar and J.C. Beck 19:17

13 R. Kuroiwa and J.C. Beck. Domain-independent dynamic programming: Generic state431

space search for combinatorial optimization. In Proceedings of the Thirty-Third International432

Conference on Automated Planning and Scheduling (ICAPS2023), pages 245–253, 2023.433

14 Raphael Kühn, Christian Weiß, Heiner Ackermann, and Sandy Heydrich. Scheduling a single434

machine with multiple due dates per job. Journal of Scheduling, 27(6):565–585, December435

2024. doi:10.1007/s10951-024-00825-w.436

15 N. Lipovetzky, C. Burt, A. Pearce, and P. Stuckey. Planning for mining operations with time437

and resource constraints. Proceedings of the International Conference on Automated Planning438

and Scheduling, 24(1):404–412, May 2014. URL: https://ojs.aaai.org/index.php/ICAPS/439

article/view/13666, doi:10.1609/icaps.v24i1.13666.440

16 Yiqing L. Luo and J. C. Beck. Packing by scheduling: Using constraint programming to441

solve a complex 2d cutting stock problem. In Pierre Schaus, editor, Integration of Constraint442

Programming, Artificial Intelligence, and Operations Research, pages 249–265, Cham, 2022.443

Springer International Publishing.444

17 J.J. Miranda-Bront, I. Méndez-Díaz, and P. Zabala. An integer programming approach for the445

time-dependent tsp. Electronic Notes in Discrete Mathematics, 36:351–358, 2010. ISCO 2010 -446

International Symposium on Combinatorial Optimization. URL: https://www.sciencedirect.447

com/science/article/pii/S1571065310000466, doi:10.1016/j.endm.2010.05.045.448

18 J.-C. Picard and M. Queyranne. The time-dependent traveling salesman problem and its449

application to the tardiness problem in one-machine scheduling. Operations Research, 26(1):86–450

110, 1978. URL: http://www.jstor.org/stable/169893.451

19 G. Reinelt. Tsplib—a traveling salesman problem library. ORSA Journal on Computing,452

3(4):376–384, 1991. arXiv:https://doi.org/10.1287/ijoc.3.4.376, doi:10.1287/ijoc.3.453

4.376.454

20 D. Woller. URL: https://imr.ciirc.cvut.cz/Research/TSPSD.455

21 D. Woller, M. Mansouri, and M. Kulich. Making a complete mess and getting away with it:456

Traveling salesperson problems with circle placement variants. IEEE Robotics and Automation457

Letters, 9(10):8555–8562, 2024. doi:10.1109/LRA.2024.3445817.458

22 J. Zhang and J.C. Beck. Domain-independent dynamic programming and constraint459

programming approaches for assembly line balancing problems with setups. INFORMS460

Journal on Computing, 2024. in press, published onlinne October 2024. arXiv:https:461

//doi.org/10.1287/ijoc.2024.0603, doi:10.1287/ijoc.2024.0603.462

A Detailed Results463

CP 2025

https://doi.org/10.1007/s10951-024-00825-w
https://ojs.aaai.org/index.php/ICAPS/article/view/13666
https://ojs.aaai.org/index.php/ICAPS/article/view/13666
https://ojs.aaai.org/index.php/ICAPS/article/view/13666
https://doi.org/10.1609/icaps.v24i1.13666
https://www.sciencedirect.com/science/article/pii/S1571065310000466
https://www.sciencedirect.com/science/article/pii/S1571065310000466
https://www.sciencedirect.com/science/article/pii/S1571065310000466
https://doi.org/10.1016/j.endm.2010.05.045
http://www.jstor.org/stable/169893
https://arxiv.org/abs/https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1287/ijoc.3.4.376
https://imr.ciirc.cvut.cz/Research/TSPSD
https://doi.org/10.1109/LRA.2024.3445817
https://arxiv.org/abs/https://doi.org/10.1287/ijoc.2024.0603
https://arxiv.org/abs/https://doi.org/10.1287/ijoc.2024.0603
https://arxiv.org/abs/https://doi.org/10.1287/ijoc.2024.0603
https://doi.org/10.1287/ijoc.2024.0603

19:18 Exact Methods for the Travelling Salesperson Problem with Self-Deleting Graphs

Table 5 Exact models run for 30 minutes with an 8 GB memory limit over 39 randomly generated
feasible instances. The time to first solution (TTFS) in seconds, initial, and final primal gaps are
averaged over all 39 instances. If the model experienced a memory-out prior to obtaining a feasible
solution, the time was taken as 1800s, and the primal and optimal gap were taken as 100%.

Primal Gap Optimality Gap
Model Feasible Best Opt TTFS Initial Final Final

Add CP Rank 39 6 4 1.4 59.1% 35.0% 81.7%
CP Interval 31 6 6 548 55.0% 31.2% 74.9%

DIDP 39 39 9 <0.01 22.2% 0.0% 32.9%
MIP 5 4 3 1 577 91.2% 87.4% 88.0%

Del CP Rank 39 6 4 1.1 58.9% 34.7% 78.7%
CP Interval 14 7 6 1 200 79.2% 69.0% 80.9%

DIDP 9 5 2 1 421 80.8% 78.7% 84.4%
MIP 6 4 2 1 559 88.8% 84.9% 85.8%

Without First/Last Vertex Restriction

Add CP Rank 39 4 4 5.9 59.4% 35.6% 83.3%
CP Interval 36 5 6 238 47.4% 20.1% 78.8%

DIDP 39 38 9 <0.01 22.9% 0.1% 33.0%
MIP 11 4 4 1 395 86.0% 78.5% 83.9%

Del CP Rank 39 6 4 5.3 58.9% 35.6% 82.6%
CP Interval 10 3 4 1 372 82.7% 74.8% 88.3%

DIDP 9 5 2 1 422 80.9% 78.7% 84.5%
MIP 6 3 2 1 609 88.1% 85.7% 88.0%

Table 6 Performance of exact models, averaged over the 21 infeasible instances. Time taken as
1800s if the instance could not be proven infeasible.

With First/Last
Vertex Restrictions

Without First/Last
Vertex Restrictions

Model Infeasible Time (s) Infeasible Time (s)
Add CP Rank 21 1.2 21 9.4

CP Interval 11 929 8 1 127
DIDP 21 <0.01 21 <0.01

MIP 20 108 15 543
Del CP Rank 21 2.9 21 10.7

CP Interval 10 1 021 3 1 543
DIDP 7 1 222 6 1 350

MIP 19 179 18 321

D. Pekar and J.C. Beck 19:19

0 50 100 150 200
Number of Vertices

0

5

Pr
ov

en
 O

pt
im

al
 o

r I
nf

ea
si

bl
e

With First/Last Vertex Restrictions

0 50 100 150 200
Number of Vertices

0

5

Without First/Last Vertex Restrictions
DIDP Add
DIDP Del
CP Interval Add
CP Interval Del
CP Rank Add
CP Rank Del
MIP Add
MIP Del

Figure 14 Instances proven optimal or infeasible for all exact models by the number of vertices
in the instance for Experiment 1. Recall that 21 of the instances are infeasible and the rest admit
feasible solutions, and that there are 5 instances per n.

0 50 100 150 200
Number of Vertices

0.00

0.25

0.50

0.75

1.00

Pr
im

al
 G

ap

With First/Last Vertex Restrictions

0 50 100 150 200
Number of Vertices

0.00

0.25

0.50

0.75

1.00

Without First/Last Vertex Restrictions
DIDP Add
DIDP Del
CP Interval Add
CP Interval Del
CP Rank Add
CP Rank Del
MIP Add
MIP Del

Figure 15 Mean gap to best known solution (i.e., primal gap) by the number of vertices in the
instance of all exact models for Experiment 1, averaged over 39 feasible instances.

0 50 100 150 200
Number of Vertices

0.00

0.25

0.50

0.75

1.00

O
pt

im
al

ity
 G

ap

With First/Last Vertex Restrictions

0 50 100 150 200
Number of Vertices

0.00

0.25

0.50

0.75

1.00

Without First/Last Vertex Restrictions
DIDP Add
DIDP Del
CP Interval Add
CP Interval Del
CP Rank Add
CP Rank Del
MIP Add
MIP Del

Figure 16 Mean optimality gap by the number of vertices in the instance of all exact models for
Experiment 1, averaged over 39 feasible instances.

CP 2025

	1 Introduction
	2 Background
	2.1 Problem Definition
	2.2 Literature Review

	3 First/Last Vertex Constraints
	4 TSP-SD Models
	4.1 Constraint Programming
	4.1.1 CP Rank Model
	4.1.2 CP Interval Model

	4.2 Domain-Independent Dynamic Programming
	4.3 Mixed Integer Programming

	5 Numerical Experiments
	5.1 Experiment 1: Comparison of Exact Models
	5.2 Experiment 2: Comparison with Previous Approaches

	6 Conclusion
	A Detailed Results

