
Congestion Graphs for Automated Time Predictions

Arik Senderovich, J. Christopher Beck
Mechanical and Industrial Engineering

University of Toronto
Canada

sariks@mie.utoronto.ca
jcb@mie.utoronto.ca

Avigdor Gal
Industrial Engineering and Management
Technion-Israel Institute of Technology

Israel
avigal@technion.ac.il

Matthias Weidlich
Department of Computer Science
Humboldt University zu Berlin

Germany
matthias.weidlich@hu-berlin.de

Abstract

Time prediction is an essential component of decision making
in various Artificial Intelligence application areas, including
transportation systems, healthcare, and manufacturing. Predic-
tions are required for efficient resource allocation and schedul-
ing, optimized routing, and temporal action planning. In this
work, we focus on time prediction in congested systems, where
entities share scarce resources. To achieve accurate and ex-
plainable time prediction in this setting, features describing
system congestion (e.g., workload and resource availability),
must be considered. These features are typically gathered
using process knowledge, (i.e., insights on the interplay of
a system’s entities). Such knowledge is expensive to gather
and may be completely unavailable. In order to automatically
extract such features from data without prior process knowl-
edge, we propose the model of congestion graphs, which are
grounded in queueing theory. We show how congestion graphs
are mined from raw event data using queueing theory based
assumptions on the information contained in these logs. We
evaluate our approach on two real-world datasets from health-
care systems where scarce resources prevail: an emergency
department and an outpatient cancer clinic. Our experimental
results show that using automatic generation of congestion
features, we get an up to 23% improvement in terms of rela-
tive error in time prediction, compared to common baseline
methods. We also detail how congestion graphs can be used to
explain delays in the system.

Introduction
Accurate time prediction is important in domains where hav-
ing an accurate estimate of resource availability and the du-
ration of tasks is critical for planning, scheduling, resource
allocation, and coordination. In healthcare, the time until a
patient sees a provider in an emergency department is cru-
cial for ambulance routing and provider scheduling (Ang
et al. 2015). Similarly, in smart cities, predicted travel and
arrival times of public transportation feed directly into rout-
ing and dispatching (Botea, Nikolova, and Berlingerio 2013;
Wilkie et al. 2011). In manufacturing, in turn, predictions of
cycle times for a product are used to set customer due dates
and anticipate job completion times (Backus et al. 2006).

An effective approach to solve a time prediction prob-
lem is to formulate it as a supervised learning task,
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where future time points are predicted based on raw event
data (Senderovich et al. 2015). This data is commonly avail-
able in the form of event logs, recordings of the behavior of
a system, which contain temporal information. For example,
every visit to the emergency department is associated with a
sequence of timestamped events that the patient experienced
(e.g., start of triage and end of treatment).

Previous work has shown that congestion has a substan-
tial impact on the total time spent in a system (Gal et al.
2017) and hence on the quality of time prediction. However,
event logs lack explicit information on the load imposed by
arriving entities that are processed by shared (and scarce)
resources. State-of-the-art methods, therefore, consider ad-
ditional features that capture congestion of shared resources.
These features are elicited by gathering extensive knowl-
edge about the underlying process (e.g., by conducting inter-
views with stakeholders) and subsequently computed from
the event logs (Ang et al. 2015). However, process knowl-
edge is expensive to gather and not always easy to elicit as
stakeholders often lack a global view of the process. It is well-
known that elicitation of process knowledge is hindered by its
fragmentation across stakeholders, their focus on individual
entities, and a general lack of conceptualization capabili-
ties (Rosemann 2006; Frederiks and van der Weide 2006;
Dumas et al. 2018). In addition, manual feature elicitation
is often time consuming and prone to biases and errors. The
process of feature generation is considered an art, making
it difficult to automate (Khurana, Samulowitz, and Turaga
2018).

In this work, we address the challenge of automatically
generating congestion features based on the information avail-
able in event logs, thus removing the need for prior process
knowledge. To this end, we propose a data-driven method
rooted in queueing theory, a sub-field in Operations Research
that analyzes the impact of congestion on a system’s perfor-
mance (Bolch et al. 2006). Our contribution is threefold.
1. We introduce congestion graphs, dynamic networks that

capture queueing information.
2. We present a declarative mining procedure that automati-

cally constructs congestion graphs from event data without
the need for process knowledge.

3. We show how to extract congestion-related features from
congestion graphs.
We empirically test our approach using event logs from two



real-world healthcare systems, predicting the time to meet
the first physician in an emergency department and the total
time spent in an outpatient cancer clinic. Incorporating our
congestion features improves the relative error of prediction
by up to 23% and 14%, respectively, compared to baseline
prediction methods using the same process knowledge.

Data-Driven Time Predictions
In this section, we define our data model in the form of
event logs and then pose the problem of automated time
prediction via supervised learning. We conclude the section
with an overview of our approach to generate congestion-
related features from an event log in order to solve the time
prediction problem.

Event Logs
As our data model, we consider event data as collected by
modern information systems (i.e., event logs) that trace the
events that occur in the underlying system (van der Aalst
2016). For example, in a hospital setting, an event log will
comprise patient pathways, represented by a sequence of
timestamped services that denote treatment steps (e.g., XRAY
ordering, start of physical examination, etc.). Table 1 is a
sample from the event log of an emergency department. Here,
the handling of a specific entity (i.e., a patient) is represented
by the notion of a case that is encoded by a case identifier
present in all log entries. Event logs represent raw data for
individual cases, but do not contain explicit system-level
information (e.g., the number of available resources and the
number of cases waiting for a service).

Table 1: An event log of an emergency department.

Case Id Event Name Timestamp

11 Registration 7:30:04
11 Nurse Admission Start 7:35:52
13 Additional Vitals End 7:36:07
13 Lab Tests Results Start 7:40:32
11 Nurse Admission End 7:47:12
13 Lab Tests Results End 7:51:02
12 Additional Vitals Start 7:52:48
11 Order Blood Test 8:05:10
11 Additional Vitals Start 8:36:22
11 Additional Vitals End 8:48:37
12 Additional Vitals End 8:57:45
13 Doctor Admission Start 8:59:08
11 Doctor Admission Start 9:12:45

To formalize the notions of cases and their traces in event
logs, let I , E , and T be the finite universes of case identifiers,
event names, and timestamps, respectively. Then, an event
log L ⊆ (I × E × T ) is a set of log entries, triplets that
combine a case, an event name, and a timestamp.

We define some short-hand notation to refer to the log
entries of a single case. Given a log L, the trace σi of case
i ∈ I comprises all the related log entries in order:

σi = 〈(i, ei1, ti1), (i, ei2, ti2), . . . , (i, ein, tin)〉
with σi(q) = (i, eiq, t

i
q) ∈ L, 1 ≤ q ≤ n, such that tq <

tr for 1 ≤ q < r ≤ n (log entries are ordered by their

timestamp) and
⋃

1≤q≤n{(i, eiq, tiq)} = {(ir, er, tr) ∈ L |
ir = i} (the trace contains all log entries of case i). As such,
eiq and tiq denote the event name and timestamp of the q-th log
entry of the trace of case i, respectively. We assume that the
first event ei1 is an arrival event of case i into the system. In
what follows, we shall omit sub- and superscripts whenever
clear from the context. Moreover, we write |σi| = ni to
denote the length of the i-th trace.

Time Prediction with Supervised Learning
We are interested in predicting the timestamp of an event
related to a specific case. For example, in an emergency
department, we are interested in the time that a patient sees
a physician for the first time, as it is crucial information
for online ambulance routing (for acute patients) and for a
patient’s choice of an emergency department (for low-acuity
patients) (Ang et al. 2015). In other contexts, such as the
treatment of cancer patients, the time until the end of the last
treatment step is an important indicator for quality-of-service.

The prediction target is therefore the time te, when a pa-
tient first reaches a specific event e ∈ E , conditioned on
time t1 of arrival (e1). Using supervised learning, every log
entry in the training set is given a label y = te − t1 for the
prediction target, denoting the universe of such labels by Y .
Consequently, the input for the learning algorithm is a labeled
event log denoted by Ly ⊆ L× Y . We aim to obtain a func-
tion h : L → Y , which maps log entries to corresponding
labels (Shalev-Shwartz and Ben-David 2014).

A main challenge when applying supervised learning to
solve prediction problems is to obtain features that explain the
target variable. However, in systems with shared and scarce
resources, raw event recordings do not contain congestion
related information, such as system load and the number
of available resources. In this work, we therefore propose a
feature transformation function φ : L × Y → X × Y that
maps raw labeled event recordings into a set of features (X )
with the following two capabilities:

(i) The proposed method is automatically applicable with-
out prior knowledge of the system under investigation
or the specific semantics of events recorded in the log;

(ii) The proposed method is grounded in well-established
results from queueing theory, thereby guiding the fea-
ture generation procedure with insights on the impact
of congestion on the system’s temporal behavior.

Approach Overview
We use a model-driven approach to automatically generate
congestion-related features, as illustrated in Figure 1. Given
an event log, we first mine congestion graphs, graphical rep-
resentations of the dynamics observed in the system. These
dynamic graphs represent the flow of entities in terms of
events and are labeled with performance information that is
extracted from the event log. Extraction of such performance
information is grounded in some general assumptions on the
system dynamics: in this work, on a state representation of an
underlying queueing system. Lastly, we create a transforma-
tion function φG that encodes the labels of a congestion graph
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Figure 1: Our solution to generate congestion features.

into respective features. This feature creation yields an en-
riched event log, which can be used as input for a supervised
learning method.

Congestion Graphs
We start the section with an overview of a general queueing
model that serves as our theoretical basis, before introduc-
ing the model of congestion graphs. Then, we demonstrate
mining of congestion graphs and show how these graphs are
used for feature extraction.

Generalized Jackson Networks
For time prediction in queueing networks, we consider the
model of a Generalized Jackson Network (GJN), the most
general model in single-server queueing theory (Gamarnik
and Zeevi 2006). A GJN describes a network of queueing
stations, where entities wait for a particular service (e.g., a
treatment step) that is conducted by or uses shared resources.

The entities are assumed to be non-distinguishable and
may arrive exogenously into any of the queueing stations ac-
cording to a renewal process. Upon arrival, entities are served
in a First-Come First-Served order by a single resource, with
service times being independent and identically distributed.
Hence, the length-of-stay (or sojourn time) at a queueing
station is the sum of waiting time and service time. When
entities complete service at a station, they are either routed to
the next station or depart the system. Routing is assumed to
be Bernoulli distributed: a coin is flipped at the end of service
to decide on the next station (or departure).

As a GJN model postulates that each station has a single
resource, multiple resources are modeled by an increased
processing rate of a station: the service rate is multiplied by
the number of resources.

The state of the GJN corresponds to a Markov process,
known as the Markov state representation (MSR), that com-
prises three components: the queue length, the elapsed
time since the most recent arrival, and the time since the
start of the most recent service (Gamarnik and Zeevi 2006;
Chen and Yao 2013). To capture the state at time t, the three
components must be measured just prior to time t.

The Model of Congestion Graphs
A congestion graph is a fully-connected, vertex-labeled, di-
rected graph, G = (V, F, ω) with V being the vertices and
F = V × V being the edges. The labeling is based on a
universe Ω of vertex labels and is time-varying. With T as
the universe of timestamps (as introduced above for event
logs), function ω : V × T → Ω assigns a label to vertices at
particular points in time. We denote ωt(v) the label of vertex
v ∈ V at time t ∈ T .

In our work, we define congestion graph labels using the
MSR of a GJN. Specifically, a congestion graph can be

thought of as a GJN where each edge represents a queueing
station. The time that cases spend on edges of the congestion
graph represent service times, while events (in the event log)
correspond to congestion graph vertices. Hence, given a point
in time t and an edge (v, v′) of the congestion graph, its MSR
is given by a triplet that consists of: (1) the number of cases
traveling on edge (v, v′); (2) the time elapsed since the most
recent arrival of a case into edge (v, v′); and (3) the time
elapsed since the start of the most recent service at (v, v′).
However, we cannot determine the edge of an ongoing case
at time t as this information is not directly accessible in event
logs. At a time point t, we only know the last event observed
for each case (v), without knowing the next event (v′). Thus,
we label the vertices of the congestion graph rather than its
edges.

Following this idea, we construct the congestion graph
G = (V, F, ω) by setting the vertices V to be the set of all
events observed in the log and by assigning time-dependent
vertex labels, as approximations of the MSR. Specifically, we
set ωt(v) to be a tuple (n(v, t), ε(v, t), τ(v, t)), where n(v, t)
is the number of cases for which v is the most recent event
(i.e., the number of cases that are in transition to the service
after v); ε(v, t) is the total time since these cases visited v
(i.e., the accumulated partial transition delays); and τ(v, t)
is the time between the two most recent occurrences of the
respective event v.

Feature Extraction from Mined Congestion Graphs
We conclude this section by providing the declarative proce-
dure to derive the approximated MSR from an event log L
and demonstrating how to extract features from the mined
congestion graph.

Given an event log L, mining of a congestion graph in-
volves the extraction of events that yield the vertices of the
graph, V = {e ∈ E | (i, e, t) ∈ L}, the identification
of dependencies between the events that yield the edges,
F = {(eiq, eiq+1) ∈ (E × E) | i ∈ I, 1 ≤ q < |σi|}, and the
definition of the labeling function. As explained above, these
labels are defined for particular points in time. However, in
practice, the labeling function does not need to be defined for
every timestamp in T , but may be limited to the timestamps
that appear in the event log (T = {t ∈ T | (i, e, t) ∈ L}).

We derive the labels in terms of the approximated MSR
as follows. The number of cases in transition at time t, for
which the last event was v is given by:

n(v, t) =∣∣{i ∈ I | ∃ 1 ≤ q ≤ |σi| : eiq = v ∧ tiq < t < tiq+1

}∣∣ .
The total elapsed time ε(v, t) for cases, for which event v has
just been observed, is calculated as:

ε(v, t) =∑
i∈I

t− tiq | ∃ 1 ≤ q ≤ |σi| : eiq = v ∧ tiq < t < tiq+1.

Finally, the time between the two most recent occurrences of
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Figure 2: A part of the congestion graph constructed using
the event log of Table 1.

events v prior to time t is defined as:

τ(v, t) = t′ − t′′, with t′ = max
i∈I,1≤q≤|σi|

eiq=v ∧ t
i
q<t<t

i
q+1

tiq

t′′ = max
i∈I,1≤q≤|σi|

eiq=v ∧ t
i
q<t

′<tiq+1

tiq

Note that the mining procedure for label derivation has a
complexity that is linear in the number of events recorded in
the event log: the algorithm makes a single pass over the log
to compute the labels.

We illustrate mining a congestion graph using the event
log of Table 1. The general structure of the congestion graph
is shown in Figure 2, which maps out all the events and
their dependencies as recorded in the event log. Note that
for clarity the figure presents only edges that appear Table 1
rather than showing the fully-connected congestion graph.
We further illustrate the MSR of one of the graph’s vertices.
Consider the fourth event, referring to the additional vitals.
The MSR ωt(4) of this event is estimated for time 9:00:00 as
follows: Two patients are in transition (patients 11 and 12),
their accumulated delay is 13m38s, and the delay between
the respective treatment events is 9m8s. Hence, the MSR
for the fourth event at time 9:00:00 is given as ωt(4) =
(2, 13m38s, 9m8s)).

The vertex labels of the congestion graph induce a set of
congestion features. For a graph G = (V, F, ω), the transfor-
mation applied to the event log to extract these features at
time t, denoted by φG, is simply:

φG : L × Y → L×Ω × Y,
φG(i, e

i
q, t

i
q, y) = (i, eiq, t

i
q, ωt(e

i
q)),

with q being the most recent event with respect to t.

Evaluation
In this section, we present the main findings of evaluating
our congestion mining technique against real-world event
logs from two healthcare systems, namely an emergency
department and a large outpatient cancer clinic. Our main
results are summarized as follows:
• Extracting features from congestion graphs increases the

accuracy of time prediction by up to 8% with respect to
the best benchmark.

• In terms of relative error (i.e., the ratio between the error
and the actually observed time), we achieve improvements
of up to 23%.

• Congestion graphs are able to provide insights into causes
of delay via feature ranking.

Experimental Setup and Procedure
We first describe the experimental setup in terms of the two
real-world datasets and the benchmarks used to assess the
applicability of our approach. We then outline the overall
experimental procedure and implementation and define our
accuracy evaluation measures.

Datasets and Time Prediction Queries Our experiments
use two real-world event logs:

• ED: The event log from the Electronic Health Records of
an Israeli emergency department that serves approximately
100 patients per day. Every patient that enters the emer-
gency department receives a bar-code that is scanned at the
start and end of every medical procedure. A subset of the
patient treatment events was illustrated in Table 1 and Fig-
ure 2. The actual treatment procedures, however, are more
complex, as there are 13 different types of treatments. The
dataset covers April 2014 to December 2014 and includes
approximately 42, 000 patient visits.

• CC: An outpatient cancer clinic (the Dana-Farber Cancer
Institute in Boston, MA), in which 250 health providers
serve 1, 000 patients per day. The dataset is based on a
track log that comes from a Real-Time Locating System
(RTLS). The resulting event log is based on nearly 1, 000
RTLS sensors that track patients, physicians, nurses, and
equipment with a resolution of 3 seconds, thereby moni-
toring the system in real-time. The recordings contain sen-
sor (location) description and the floor number where the
tracked entity was observed. The dataset contains record-
ings between April 2014 and December 2014.

Comparing the two datasets, we observe that the average
length-of-stay for ED is 300 minutes with a standard de-
viation of 307 minutes, while for CC patients the stay is
approximately 150 minutes with a standard deviation of 120
minutes. ED patients wait for a physician an average of 60
minutes. Furthermore, the emergency department (ED) oper-
ates on a 24/7 basis, while the outpatient clinic (CC) opens
at 6:00 and closes for new arrivals at 18:00. Both healthcare
systems experience high load during morning hours: for ED
the load peaks between 10:00 and noon, while for CC, the
high load period spans 9:00 to noon.

For each healthcare system, we chose the query that is
most relevant given the specific application context. That is,
for ED, we predict the time-to-physician upon a patient’s
arrival. For CC, our prediction target is the length-of-stay of
an arriving patient.

Baseline Techniques We compare our approach for time
prediction based on features extracted from mined con-
gestion graphs against several baseline techniques. First,
we consider the long-term average (LongTerm) based on
the training set. This technique should perform poorly as
it does not account for varying congestion levels. How-
ever, it is often used for time prediction in hospitals across
the United States (Dong, Yom-Tov, and Yom-Tov 2015;
Ang et al. 2015). Second, a refined version of LongTerm
is a rolling horizon predictor that is based on the moving
average of H periods (e.g., hours) (Ang et al. 2015). We



denote it by Rolling(H) and cross-validate the optimal H
using the training data. Third, we use an hourly average
(HourAvg) to accommodate for seasonal effects, deriving
time-of-day information from the timestamps assigned to log
entries. Fourth, we use the snapshot predictor, which predicts
time-to-physician and length-of-stay, respectively, based on
the wait time of the most recent patient that finished waiting.
This result is considered the state of the art in delay prediction
for single-station queues (Senderovich et al. 2015).

Experimental Procedure and Implementation We fol-
low the training-validation-test paradigm (Friedman, Hastie,
and Tibshirani 2001) to evaluate our approach and randomly
partition the two datasets into training data and test data.
Specifically, for each dataset we make the following four
partitions:

• Single month training: We use patients that arrived during
April 2014 as training data and patients that were admitted
during May 2014 as test data. This reduces the possibility
of concept drift, at the expense of reducing the size of the
training set.

• Summer months: We use April 2014 - June 2014 for train-
ing and test the technique on patients that arrived during
July 2014. We leave out winter months as they are known
to be heavily loaded (concept drift).

• Entire year: we use April 2014 - October 2014 for training
and November 2014 - December 2014 for testing. This
increases the variability due to concept drift, yet provides
the learning algorithm with much more training data.

• Peak hours: We choose the heavily loaded hours for each
of the healthcare systems, as measured by the arrival rates
of patients. As in the entire year scenario, we use April
2014 - October 2014 for training and November 2014 -
December 2014 for testing.

In our experiments, we rely on a state-of-the-art supervised
learning algorithm, XGBoost (Chen and Guestrin 2016), im-
plemented in Python. It is employed to learn a function h
(see Motivation) based on the training set, validate its hyper-
parameters using cross-validation on the validation set (the
training data is partitioned 80/20 chronologically for this
purpose), and evaluate prediction accuracy on the test set.

All algorithms for congestion graph mining and feature
extraction are implemented in Python and are publicly avail-
able.1 Our experiments were conducted on an 8-core server,
Intel Xeon CPU E5-2660 v4 @ 2.00GHz, each core being
equipped with 32GB main memory, running on Linux Centos
7.3 OS.

Evaluation Measures We measure the accuracy of predic-
tion with three empirical measures. First, the Root Mean
Squared Error (RMSE) is based on the squared difference
between the actual time and the predicted value. Let y∗l be the
actual value of yl, the time of interest for a log entry of the
test set l ∈ Ltest. With ŷl be the predicted value, the RMSE
is defined as:

1http://bit.ly/2lcq37s

RMSE =

√
1

|Ltest|
∑

l∈Ltest

[ŷl − y∗l ]2.

RMSE quantifies the error in the time units of the original
measurements, in our case, seconds (which are converted to
minutes below for convenience).

The RMSE is sensitive to outliers (Friedman, Hastie, and
Tibshirani 2001). Therefore, in addition, we consider the ab-
solute error, which is known to be more robust (Friedman,
Hastie, and Tibshirani 2001). Specifically, we use the fol-
lowing two measures. The Mean Absolute Error (MAE) is
defined as:

MAE =
1

|Ltest|
∑

l∈Ltest

|ŷl − y∗l |,

and quantifies the absolute deviation between the predicted
value and the real value. The Mean Absolute Relative Error
(MARE), in turn, is defined as:

MARE =
1

|Ltest|
∑

l∈Ltest

|ŷl − y∗l |
y∗l

,

and quantifies the ratio between the absolute error and the pre-
dicted value. The latter is used to provide a relative measure
for the absolute error, as an error of 10 minutes in a 100-
minute length-of-stay is tolerable, while the same error in a 5
minute length-of-stay points toward a significant problem in
the method.

Results
The main results of our experiments are summarized in Ta-
ble 2. The rows correspond to all combinations of dataset (ED
and CC), the training period, and the method (‘LongTerm’,
‘Rolling(H)’, ‘HourAvg’, ‘Snapshot’, and ‘CG’ for conges-
tion graph). To denote the training and test periods, we use
the numeric values of months (e.g., 4 for April). Further,
we add the relevant hours for the high load scenario (e.g.,
9-12 corresponds to 9:00-noon). The boldfaced values are
the dominating methods in terms of the three measures. The
values of the first two accuracy measures (RMSE and MAE)
correspond to the prediction error in minutes. The third accu-
racy measure, namely MARE, is a ratio between the absolute
error and the actual time that we wish to predict.

As shown in Table 2, considering inter-patient dependen-
cies in the data, by means of features extracted from conges-
tion graphs, improves prediction accuracy beyond the base-
lines (‘LongTerm’, ‘Rolling(H)’, ‘HourAvg’, ‘Snapshot’),
especially when considering the MARE measure. When con-
sidering the time-to-physician in the emergency department
(ED), congestion features increase prediction accuracy by
up to 6%. As for relative error (ratio between the error and
the actual time), we observe an improvement of 23%. This
general trend is mirrored for the second dataset. For the can-
cer clinic (CC), congestion features improve the accuracy
of length-of-stay prediction by up to 8%, while the relative
error is improved by up to 14%. The consistent results for
both datasets provide evidence that the automatic extraction



Table 2: Prediction accuracy based on the test set.

DS Time Period Method RMSE MAE MARE

E
D

Tr=5
LongTerm 46 33 0.79
Rolling(H) 47 33 0.73

Test=6 HourAvg 47 33 0.72
Snapshot 47 34 0.74
CG 45 32 0.70

Tr=4,5,6
LongTerm 43 33 0.77
Rolling(H) 42 31 0.74

Test=7 HourAvg 43 32 0.76
Snapshot 43 31 0.74
CG 41 29 0.69

Tr=4:10
LongTerm 99 38 1.48
Rolling(H) 98 35 1.37

Test=11,12 HourAvg 100 38 1.46
Snapshot 101 42 1.65
CG 97 32 1.27

Tr=4,5,6
LongTerm 39 28 0.67
Rolling(H) 39 27 0.65

Test=7 HourAvg 38 28 0.64
High Load (10-12) Snapshot 38 27 0.64

CG 36 25 0.60

C
C

Tr=5
LongTerm 118 95 1.35
Rolling(H) 115 90 1.28

Test=6 HourAvg 112 89 1.26
Snapshot 120 96 1.36
CG 106 82 1.17

Tr=4,5,6
LongTerm 123 96 1.3
Rolling(H) 117 90 1.22

Test=7 HourAvg 115 89 1.2
Snapshot 122 94 1.27
CG 108 81 1.09

Tr=4:10
LongTerm 123 97 1.36
Rolling(H) 119 92 1.3

Test=11,12 HourAvg 117 93 1.28
Snapshot 123 95 1.33
CG 110 83 1.16

Tr=4,5,6
LongTerm 114 93 1.37
Rolling(H) 113 92 1.36

Test=7 HourAvg 114 93 1.34
High Load (9-12) Snapshot 114 93 1.36

CG 104 82 1.2

of congestion features indeed improves the accuracy of time
prediction significantly.

When observing the difference between entire year pre-
diction and shorter periods, we encounter a noticeable, yet
expected concept drift. Predicting winter months using the
beginning of the year is expected to perform worse than
short-term predictions, as winter behavior is different due to
higher arrival rates into the emergency department and an
increased number of cancellations in the outpatient hospital.
Specifically, the error grows by a factor of 2, compared to
summer-time prediction. Testing the different predictors for
their robustness to concept drift, we discover that congestion
features deteriorate less than other prediction methods across
the different selections of time periods for training and test.

Table 3: Importance of congestion features (ED dataset).

Ranking Feature Description

1 n(1) # of Patients in Reception
2 ε(5) Elapsed Time: Lab Results
3 ε(4) Elapsed Time: Additional Vitals

Insights using Feature Importance
Providing insights as to the most important features and root-
causes for delays in the system is a crucial step when opti-
mizing systems. We now take the dataset of the emergency
department (ED) as an example to show how the features
obtained from congestion graphs provide insights into the
root-causes of delays.

We evaluate feature importance by ranking features accord-
ing to their role in the prediction task. Specifically, gradient
boosting enables the ranking of features in correspondence
to their predictive power (Pan et al. 2009). Table 3 presents
the top-3 features given as an output by the cross-validated
XGBoost method during heavily loaded hours.

The extracted features (over all times in the event
log, hence time index t is omitted) are denoted by
(n(v), ε(v), τ(v)) with n(v) being the number of cases for
which v is the most recent event, ε(v) being the total time
since these cases visited v and τ(v) being the time between
the two most recent occurrences of the respective event v.
Also, for illustration purposes, Figure 3 shows the full con-
gestion graph, which represents the pathway of a patient in
the Emergency Department. The vertices and outgoing edges
that correspond to the highest-ranked congestion features are
highlighted. Recall that the congestion graph was created
automatically from the event log and that, as noted in the
Introduction, such a system view is exactly what is expen-
sive and difficult to obtain through traditional methods. The
dominant feature for the emergency department based on
the congestion graph is n(1), the number of patients who
entered reception. This implies that a greater arrival volume
has an impact on time prediction, as it results in delays. The
second feature, ε(5), corresponds to the elapsed time since
lab results are ready (i.e., blood work). This feature is highly
predictive as the next step after lab is typically the visit to the
physician, the prediction target. Hence, an important feature
is the time in queue for the physician (which is ε(5)). For the
same reason, feature ε(4) turned out to be of high predictive
power, as some patients immediately pass from the checking
vitals to the physician.

To summarize, an interpretation of feature importance
yields insights on root causes of delays in patient treatment.
As such, mined congestion graphs provide a means for analy-
sis and understanding of the process beyond time prediction.

Related Work
The importance of extracting features that account for con-
gestion has been recognized in the literature. A recent work
proposes the Q-Lasso method for predicting waiting times
in emergency departments (Ang et al. 2015). The authors as-
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sume full knowledge of the patient flow process and use this
knowledge to manually define queueing features (e.g., the
number of patients waiting for a physician) that are inserted
into a Lasso regression model for feature selection. Similarly,
Senderovich et al. (2015) proposed a single-station queueing
model that is heavily based on process knowledge to generate
predictive features. In our work, we do not assume a-priori
knowledge of the process and the events that we observe
in the event log. Furthermore, compared to Senderovich et
al. (2015) our approach handles event logs from multi-stage
processes.

Liu et al. (2014; 2016) propose a method for discovering
a stochastic workflow model from event data that is emitted
by a real-time location system. Applied in healthcare, the
developed model considers dependencies between patients
that stay in the hospital at the same time. However, in these
works, the authors assume known relations between sensor
locations and activities. This information is used to enrich
the data with additional knowledge, while our method does
not require a data enrichment step.

Congestion estimation and prediction have been the subject
of numerous works in traffic analysis (Liu, Yue, and Krishnan
2013; Van Lint 2008). Most works in this area aim to learn a
generative model of dynamic traffic conditions. In contrast,
our work is based on discriminative machine learning and
formalizes this idea using congestion graphs.

Automated feature generation has been a popular research
topic (see Khurana, Samulowitz, and Turaga (2018) and ref-
erences within for a review). Specifically, given a pre-defined
set of generic feature transformation functions (e.g., sine,
squared root, logarithm), a wide range of techniques has been
applied to elicit optimal transformation sequences, including
reinforcement learning (Khurana, Samulowitz, and Turaga
2018), local search (Markovitch and Rosenstein 2002), and
deep neural networks (Bengio, Courville, and Vincent 2013).
However, these methods are either computationally expensive
(e.g., training a deep neural network) and/or lack the capabil-
ity to discover complex features. In our work, we provide an
approach that generates predictive features that come from
queueing theory and cannot be easily derived using generic
transformation functions. Furthermore, unlike generic fea-
tures, our congestion graph based features can be used for a
root-cause analysis of delays. Importantly, our method has a
complexity that is linear in the number of events recorded in
the event log.

In addition, temporal point processes were fitted from

data to provide accurate time prediction (Lian et al. 2015;
Trivedi et al. 2017). These methods learn features from node
representations of a temporal graph, which can then be used
to predict times. An important distinction between our paper
and these two papers is that our congestion graphs are based
on Generalized Jackson Networks, a queueing model that
does not assume prior knowledge on the distributions of
its building blocks (e.g., arrival rates and service times). In
contrast, the two papers, assume that the underlying model
is either a temporal point process (Trivedi et al. 2017) or a
Gaussian renewal process (Lian et al. 2015) with parametric
or non-parametric structures.

Lastly, our work also relates to the task of activity predic-
tion, an established problem in the data mining field (Mi-
nor, Doppa, and Cook 2015). However, our setting is ori-
ented towards cold start queries, where information about
the progress of a specific patient is unavailable. Specifically,
Minor, Doppa, and Cook capture inter-entity dependencies
via pre-defined features, such as the most frequent event type
in a time window. Our method, in contrast, automatically
generates these features using congestion-based reasoning
rooted in queueing theory.

Conclusion
We presented a novel approach for automated feature ex-
traction for time prediction in congested systems, based on
the notion of congestion graphs, dynamic representations of
event data that are grounded in queueing theory. Specifically,
our notion of congestion graphs is based on a Markovian state
representation of queueing systems. Empirical evaluation
confirms that the features that come from these congestion
graphs improve prediction performance. In addition, we ob-
serve that our approach goes beyond accurate time prediction
by providing insights into the root-causes of system behavior.

Future work involves extending our methods to support
changes in the underlying system. Specifically, our tech-
niques are prone to failure when the mapping of states to
predictions is unstable. Therefore, we aim at developing an
adaptive online component to compensate for such changes.
Furthermore, congestion graphs result in O(|V |) features,
with |V | being the number of events in the data, which ham-
pers its scalability. Specifically, in large systems with thou-
sands of events, this can lead to feature explosion. Hence,
in the future, we shall provide techniques for regularizing
congestion graphs, e.g., by considering edges that have sig-
nificant predictive power.
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