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ABSTRACT
Tailored light diffusers offer the flexibility of shaping the delivered light dose (fluence rate) distribution, poten-
tially leading to conformal light delivery. Because of scattering and absorption, tissue acts as a spatial low pass
filter of the diffuser’s emission profile, and therefore some dose distributions with high spatial frequencies cannot
be delivered. We characterize the set of attainable light dose distributions in terms of the spatial frequency of
the emission profile and identify regimes where such distributions are less sensitive to changes in optical prop-
erties. Furthermore, we contrast two different algorithms to solve the inverse problem: Simulated Annealing
(SA) and Non-negative Least Squares (NNLS). SA is plagued by superimposed high frequency components that
do not contribute significantly to the cost. We present an iterative low pass filter that smooths the emission
profile without considerably increasing the cost. A non-negative least square (NNLS) algorithm is also tested.
We conclude that non-negative least squares (NNLS) is superior to simulated annealing (SA) in terms of time
performance and cost minimization.

Keywords: tailored diffusers, dosimetry, photodynamic therapy, interstitial, conformal, inverse problem, simu-
lated annealing

1. INTRODUCTION
In principle, the ability to tailor the longitudinal emission profile of fiber based light diffusers opens a great oppor-
tunity for conformal interstitial light delivery. Although a great variety of emission profiles can be manufactured,
this does not imply that the same flexibility exists for the attainable light dose distributions. This condition
also makes the inverse problem, i.e. finding an emission profile that corresponds to a desired dose distribution,
difficult to solve. Here we present our efforts of characterizing the attainable light dose distributions and solving
the inverse problem, in the context of a single diffuser, as is relevant in the treatment of selected conditions. A
single diffuser is also relevant to the multi-diffuser light delivery problem because sharp light attenuation implies
that dose is largely dictated by the sources closest to the point of interest. In this case, one can think of a diffuser
being responsible for conforming to a particular region of the treatment surface, with little contribution from
other diffusers.

To be useful, characterizing the attainable light dose distributions has to be general enough that it is in-
formative, but restricted to a small number of parameters. One would proceed by defining a set of emission
profiles and characterizing the resulting light dose distributions, in particular, the resulting isodose lines. Ideally,
such emission profiles would constitute an orthogonal basis for expressing any other emission profile. When the
light propagation problem is defined as a convolution of a point source function G with an emission profile S,
the harmonic functions (ensuring positivity) constitute an adequate basis choice for the emission profile.1 The
fluence rate φ(ρ, z) takes the form:

φ(ρ, z) =
∫

L

G(ρ, z − z′)S(z′)dz′ (1)

≈
∫ +∞

−∞
G(ρ, z − z′)(0.5 + 0.5 cos(kz′))dz′ (2)

= F(ρ, k = 0) + cos(kz)F(ρ, k), (3)
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where the approximation is due to extending the integration interval. The function F(ρ, k) denotes the Fourier
transform in k space of G(ρ, z) with respect to z. Equation (3) is used in Sect. 2 to characterize the attainable
fluence rate distributions. Here we use

G(ρ, z) =
3µ2

effa′

4πµa

exp(−µeff · r)
r

,

with r =
√

(ρ2 + z2), and where a′ is the reduced albedo and µeff and µa are the effective and absorption
coefficients, respectively.2,3 With this choice,

F =
3µ2

effa′

4πµa
K0(ρ

√
µ2

eff + k2),

where K0 is the zeroth-order Bessel function of the second kind, which behaves approximately like exp(−x)/
√

x.

We will describe the isodose lines of Eqn. (3) in Sect. 2 in order to characterize the attainable light dose
distributions. In particular we will relate the amplitude d of such contour lines to the distance from their center
to the diffuser ρ0, as a function of k and µeff . Figure 1 identifies these parameters.

F(ρ, k) falls off steeply as a function of ρ and k therefore acting as a low pass filter. This makes solving the
inverse problem not trivial. While diffuser manufacturing prefers a relatively smooth emission profile, the nature
of the inverse problem often leads to solutions with high spatial frequencies or consisting of disjoint collection of
point sources. In Sect. 3 we will describe our efforts to solve the inverse problem for a single diffuser.
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Figure 1. Description of the geometrical parameters used in the text. Two contour lines for the emission profile S =
0.5 + 0.5 cos(πz) are depicted. These represent two different regimes: (a) contour lines fully detached from diffuser (top
line), and (b) contour lines continuous with the z axis. The full amplitude of the contour lines is labeled 2d and the
distance from the center of the contour line to the z axis (the diffuser) is labeled ρ0. Notice that the principal spatial
frequency is maintained but other spatial frequencies that depend on ρ also emerge.

2. FORWARD PROBLEM

Characterizing the forward problem serves several purposes. In particular, it permits the characterization of
the attainable fluence rate distributions by examining the shape of the contour lines as a function of spatial
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frequency. From this, one can determine regimes where using tailored diffusers is most appropriate. In this
respect, there are two aspects of the contour lines that are important: the maximum modulation along ρ (our d
parameter) and the robustness of the shape of a contour line with respect to changes in the optical properties.
One would like to understand how these properties vary with increasing ρ and with k as a function of µeff . For
this purpose we have numerically found the contour lines of Eqn. (3).

Contour lines are iso-fluence rate curves. Figure 2 shows two representations of Eqn. (3). The two regimes
presented in Fig. 1 correspond to the contour lines with fluence rates above or below the intersection of the
minima of the fluence rate and the z axis. This fluence rate can be found by taking the limit of Eqn. (3) when ρ
approaches 0, for z such that cos(kz) = −1. The value of the fluence rate for the separation of the contour lines
from the contour lines is given by φs = 3µ2

effa′/(4πµa) log(1 + k2/µ2
eff), for the point source function specified

above.
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Figure 2. Fluence rate arising from the source profile S = 0.5 + 0.5 cos(πz) with µeff = 1 cm−1, according to Eqn. (3).
Contour lines for this source were shown in Fig. 1. (A) Mesh graph shows the overall shape of the function. (B) Side view
along the ρ axis: the z-independent term in Eqn. (3) (solid line) and the values of the maximum (z=0 cm) and minimum
(z=1 cm) fluence rates (dashed lines) are shown. Notice that the fluence rate that separates the two contour level regimes
depicted in Fig. 1 corresponds to the minimum fluence rate at ρ = 0. This is also the fluence rate that achieves maximum
modulation as seen in (B).

2.1. Modulation transfer properties

The maximum achievable amplitude d depends on ρ0, k and the optical properties. Figure 3 depicts this
dependence. For contour lines of fluence rates less than φs the amplitude equals ρ0, as expected from the
definition of these dimensions. This linear behavior is followed by a fast decay of amplitude, the maximum
being achieved for φs. Furthermore, as the spatial frequency decreases (larger periods) the amplitude increases,
however its sensitivity to the optical properties increases as well, as is evidenced by comparing d for a given k
between the different panels of Fig. 3, and noticing that the change in d is larger for smaller k.

Figure 3 also shows that even for small µeff and a periodicity of 6 cm−1 the maximum value that d takes is
approximately 0.7 cm. These dimensions roughly define an ellipsoid with semi-axes 3 and 1.4 cm long, which
corresponds to the maximum treatment volume for such a source.

2.2. Robustness to changes in optical properties

In vivo optical properties are difficult to measure and often vary between treatment planning and light delivery,
or even throughout light delivery (e.g. due to changes in blood flow and oxygenation). This results in changes
in the light dose distribution. The total fluence delivered at a given contour level can be adjusted by increasing
the power or the irradiation time. This kind of dosimetry is amenable to online detection and correction. On
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Figure 3. Dependence of d with ρ0, for different spatial frequencies k and optical properties (as indicated in the panels).
The curves in each panel correspond to spatial frequencies k = π, π/2, π/3 cm−1 from bottom to top, in each panel as
labeled.

the other hand, the emission profile is fixed. It then becomes important to identify regimes where the shape of
the contour lines is robust to changes in the optical properties.

We have looked at the effect of different optical properties on d for a given ρ0, shown in Fig. 4. There are
two important trends to note. Higher spatial frequencies are less sensitive to changes in the optical properties,
however display comparatively smaller d. This is evidenced by vertical stripes with similar d in the first panel of
Fig. 4 (compare to the other two panels). Additionally, regime b defined in Fig. 1 is more robust to changes in
µeff . Therefore, as a general guideline it is better to position tailored light diffusers within this regime. Solutions
in regime a are desired because they are further away from the diffuser, thus requiring less diffusers to cover the
same volume, but these solutions are less stable and can lead to unexpected regions of over or under-treatment.
This effect is more pronounced for sources with small spatial frequencies, i.e. when conforming to large features.

We have only looked at changes in the shape along ρ. These changes are associated with the transfer of
modulation. Changes along z also exist and can be relevant to treatment planning, but are not described here.
This can be investigated for example by the emergence of new spatial frequencies of the contour lines as a function
of ρ. These spatial frequencies are suppressed as ρ0 increases, until the contour lines are sinusoidal with the
same spatial frequency of the source (cf. Fig. 1 regimes a and b).

3. INVERSE PROBLEM

In practice Eqn. (2) is solved numerically for an arbitrary source S(z′). The kernel G(ρ, z − z′) can be sampled
and given a matrix form following lexicographic ordering of ρ and z along the rows and indexing z′ along the
columns. Then Eqn. (2) becomes

φα = ∆z′
N∑
β

GαβSβ , (4)
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Figure 4. Effects in d due to changes in the optical properties. Three different spatial frequencies of the emission profile
are presented as labeled above each panel. Each panel shows the ratio of d to its maximum value in each panel. Contour
lines for the ratio are placed at multiples of 0.15. The maximum values of d for each panel from left to right are: 0.23,
0.46, and 0.68 cm.

with ∆z′N the length of the diffuser. Currently, there is only one manufacturer of tailored diffusers.4 The
manufacturing specifications define ∆z′, the spacing of the emission profile vector Sβ , as 1.4 mm. In the
remainder, ∆z′ will be conveniently incorporated into Gαβ . The spacing of the space variables ρ and z is given
by the resolution of the imaging system that acquired the anatomical information. We set the voxel size at a
reasonable 1.4 mm on the side.

Assuming a threshold model of tissue response, the clinician’s task is to define a set of light doses (fluence
values) at locations on the tumor anatomy, e.g. the threshold dose at the treatment volume boundary. Let
us call this prescription Dα, where α indexes the space coordinates. The inverse problem becomes finding an
emission profile Sβ with a resulting dose distribution that best conforms to Dα. To this aim one defines

cost =

∣∣∣∣∣∣Dα −
∑

β

GαβSβ

∣∣∣∣∣∣ (5)

for the cost function that evaluates how well the dose conforms to the prescription. This cost function is then
minimized in terms of Sβ . Equation (5) is the simplest of multiple cost functions available. Such cost functions
may be subject to sets of constraints

We have investigated two different algorithms to minimize Eqn. (5), non-negative least squares (NNLS) and
simulated annealing (SA). NNLS, supplied in MATLAB as lsqnonneg, is an iterative algorithm that restricts
solutions to non-negative numbers, as required here.5 SA is a stochastic minimum search method, typically
less prone than local search methods to terminating at local minima. We have implemented the algorithm in
MATLAB according to the method of Kirkpatrick et al.6 NNLS is one to two orders of magnitude faster than
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SA depending on the data set. For Sβ partitioned in 50 intervals and 503 voxels, typical execution times on a
Pentium 4 (2.8GHz, 512MB) for NNLS range between 0.5 to 1 seconds, and for SA between 30 to 60 seconds.
While speed is not critical, it is desirable, particularly when solving multiple diffuser problems.

In addition to speed, solutions must be manufacturable. When a solution exists (see Fig. 5 A), such as when
an emission profile is defined and Dα taken from the resulting light distribution, NNLS often converges to the
right solution. This convergence is not always achieved because NNLS is somewhat sensitive to initial conditions.
For both algorithms, we pre-compute a starting point S0 by increasing the power at all positions evenly in small
intervals, until the first minimum occurs. Starting points for NNLS are then generated randomly from the
uniform interval between zero and twice the common power calculated above. In our trials, approximately 45%
of these starting points converge to the same result (data not shown). Choosing the initial condition to be S0,
makes NNLS converge to the right solution in all the test cases.

SA is started directly from S0 and stochastically finds a minimum every time. These minima have very similar
cost but correspond to different solutions. The solutions are all characterized by high frequency components
superimposed on the original emission profile. This is not surprising when realizing that tissue acts as a low pass
filter, therefore high frequencies do not contribute substantially to the cost. This observation is used in Sect. 3.1
to derive and iterative smoothing filter for the SA solutions.

In Sect. 2 we identified regimes where an exact solution does not exist. In these regimes (see Fig. 5 B),
NNLS returns spiked solutions constituted by a small collection of spaced point sources with large emission
powers. Since diffusers are function by coupling light out of the fiber core via etching of scattering centers,
diffusers tailored according to these solutions have particularly high powers remaining at the distal end (since
overall little light has been coupled out) and display increased fragility due to fiber etching. In this case SA
has the advantage of returning smoother solutions, although with costs higher than the NNLS solutions and
still containing high frequency components. The SA algorithm randomly chooses a point along the diffuser and
changes its power up or down. The solutions obtained by the NNLS algorithm are difficult to obtain using SA
because of the small likelihood that random choices would bring the solution to such shape, given that the cost
increase is not significantly higher. This also explains why SA solutions are, notwithstanding the high frequency
components, smoother on average. One can alternatively take the NNLS solutions and apply a smoothing filter
that recapitulates the positive properties of the SA solutions.

3.1. Iterative low pass filter

There is a simple way to remove the high frequency components from the SA solutions. Considering the stochastic
nature of the process, one can average multiple solutions thus reducing uncorrelated noise. To quantify the
deviation of a solution from the ideal source profile, one calculates the mean square error (MSE) 〈|Sβ − Sideal

β |〉
between the two profiles. Averaging multiple solutions decreased both the cost and MSE aproximately as a
function of N (0.5), where N is the number of solutions averaged (data not shown). The exact exponent of N
depends on the particular ideal solutions. While an effective approach, in practice it becomes prohibitively time
consuming to calculate these solutions.

An alternative approach is to directly remove the high frequency components using an iterative low pass filter
that determines the cutoff frequency when a significant increase in the cost occurs. We have implemented this by
iteratively removing higher frequency components (starting by the highest), calculating the mean and standard
deviation of the cost of all preceding iterations and determining whether the current cost is significantly different
than the mean. For this comparison, a Student’s t-test is used, with the number of iterations corresponding to
the number of degrees of freedom. The results of filtering the same data set from Fig. 5 A are shown in figure
Fig. 6.

As seen in Fig. 6, a compromise between increasing the cost and reducing the MSE is obtained. Furthermore,
increasing the significance level also has the same effect. This simple filter is proof of principle that filtering is
possible with a favorable compromise. One can think of filters that can offer better performance in terms of cost
and possibly MSE, using a smoother frequency cutoff (here a simple step function was used).
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Figure 5. Types of solutions to the inverse problem with the NNLS (circles) and SA (crosses) algorithms. Panel (A)
shows profiles obtained when a solution exists. Notice that the NNLS solution is indistinguishable from the ideal solution
(solid line). Also notice the high spatial frequency components on the SA solutions. Panel (B) shows the type of profiles
that result when no exact solution exists. The NNLS profile is constituted by a collection of point sources of with large
powers, while the SA profile is more continuous and of smaller powers. Solutions in (A) were obtained by defining the ideal
emission profile shown, forward calculating the fluence rate at ρ = 0.5 cm and solving with the indicated algorithms. In
(B), a boundary of constant unit fluence rate (ρ = 0.6+0.4 cos(πz)) was used for Dα and solutions calculated accordingly.
The ideal light distribution (solid line) and the contour lines for the NNLS and SA solutions are shown in the inset. Notice
that the NNLS contour line is closer to the prescribed one.
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Figure 6. Iterative low pass filter applied to the same data set from Fig. 5 A. 200 SA solutions were analyzed for the
statistical properties of the filter. The significance level was placed at 99%. (A) shows the cost prior (crosses) and after
(circles) filtering. Notice the slight increase in the cost due to filtering. (B) depicts the mean square error of the solutions.
The filtered solutions that groups at 0.02 all share an equal cutoff frequency lower than that of the remaining points. The
ratio average costs is increased 1.8 times while the average MSE is reduced 5 times.
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4. CONCLUSIONS

The potential for tailored light diffusers to improve conformal light delivery is limited by the physics of light
propagation in tissue. Tissue acts as a low pass filter of the emission profile. As a result, high spatial frequencies
rapidly lose modulation leading to a flattening of the light dose distribution. This behavior was characterized
in Sect. 2. Additionally, regimes of stability of the light dose distribution with respect to the optical properties
were described. Taken together, these two properties help define regimes where tailored diffusers can be useful
for conformal light delivery.

We also began to investigate the behavior of the inverse problem. Initially we examined a SA algorithm
because it is more likely to find the global minimum of the cost function. It was observed that the SA solutions
have high spatial frequency components superimposed on a smooth curve. These high frequency components
arise because small deviations from the ideal source have very small incremental cost and are often accepted in
the Metropolis step.6 We implemented an iterative low pass filter that successfully removed the high frequency
noise, while marginally increasing the cost. Nevertheless, SA takes a long time to converge and, when compared
to NNLS, the second algorithm investigated, it does not converge to a global minimum.

NNLS is a local search iterative algorithm that only results in non-negative solutions. For this reason, it has
been classically used in image reconstruction. We found that NNLS executed two orders of magnitude faster
than SA and resulted in solutions with overall lower costs. When no emission profile exists that can exactly
conform to the prescribed dose, the solutions obtained with NNLS are typically comprised by a collection of
point sources. When manufactured, such solutions lead to fragile diffusers with large remaining powers at the
distal end. In principle, one can smooth these solutions to achieve better diffuser properties, clearly increasing
the cost. Alternatively, one can incorporate the smoothing into the algorithm by solving a regularized problem.

Tailored diffusers are currently manufactured by etching imperfections that couple light out of the fiber core.
One can, in principle, solve the problem in the space of the coupling constants (scattering coefficients) plus the
input and distal powers. These three sets of parameters are equivalent to the description in terms of emission
powers and fully describe the diffuser fabrication. Additionally they can be constrained to obtain solutions with
adequate manufacturing properties.

Future work will investigate metrics to determine when a tailored diffuser does not perform significantly
better than a standard flat diffuser. Finally, the findings from this work need to be taken into consideration for
implementing solutions to the inverse problem with multiple tailored diffusers.
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