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1 Introduction30

Dynamic programming (DP) [1] is a problem-solving methodology based on a state-based31

representation. Recent work has developed model-based paradigms for combinatorial optimiza-32

tion based on DP, where a problem is formulated as a declarative DP model and then solved by33

a general-purpose solver, similarly to constraint programming (CP). For such paradigms, there34

are currently two primary directions with different solving approaches: domain-independent35

dynamic programming (DIDP) [12, 15], using state space search algorithms for solvers, and36

decision diagram-based (DD-based) solvers [2, 8, 16], using branch-and-bound algorithms37

with graph data structures called decision diagrams (DDs).38

The software implementation of DIDP, didp-rs [12, 15], provides three interfaces: a Rust39

library, a Python library, and a command-line interface that takes files written in a modeling40

language as input. In all interfaces, the DP model is described by expressions composed of a41

predefined set of operations. Internally, the expressions are converted to the same expression42

tree data structure in Rust and then evaluated by an interpreter. In contrast, the existing43
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two DD-based solvers, ddo [8] and CODD [16], are libraries in which the model is defined by44

structs and functions in the corresponding programming language.45

Ideally, a problem solving system exhibits strong computational performance while46

allowing modelers to quickly develop and experiment with problem formulations. Research47

progress for DP-based approaches has been slowed because the competing approaches differ48

in both the solver technology and the modeling interface. For example, it is unclear whether49

observed performance differences among solvers are due to underlying advantages of the50

solver technology or to the requirement for run-time interpretation of expressions. Similarly,51

it is difficult to determine whether improvements in modeling productivity are worthwhile52

if there is a performance impact. Indeed, this tension revives earlier debates in the CP53

community about “packages vs. languages” [18].54

We propose the Rust Programmable Interface for DIDP (RPID), a new interface for55

DIDP, where a DP model is defined using Rust code, similar to ddo and CODD. If writing a56

model in Rust is acceptable, RPID is a faster and more flexible option for using DIDP than57

didp-rs. In addition, with RPID, we can compare DIDP and the DD-based solvers, excluding58

the fundamental differences in interface design. Our contributions are as follows:59

We introduce RPID, novel DIDP software, that is faster and more flexible.60

We discuss design choices in RPID, comparing it to existing software.61

We empirically compare the performance of RPID and existing DIDP and DD-based62

solver software. We show that RPID is up to hundreds of times faster than didp-rs, and63

each of RPID, ddo, and CODD outperforms the other two in different problem classes.64

We show that new DIDP models, facilitated by the flexibility of RPID, outperform65

existing DIDP models in four of five problem classes tested.66

2 Dynamic Programming for Combinatorial Optimization67

In dynamic programming (DP) [1], a problem is represented by a state, and the value of the68

state corresponds to the optimal objective value of the problem. In this paper, we assume69

that a state S is transformed into another state S[[τ ]], called a successor state, by applying a70

transition τ , and the value of a state V (S) is recursively defined by the values of its successor71

states. To prevent infinite recursion, when a state S satisfies particular conditions, V (S)72

is non-recursively defined by a function v: V (S) = v(S). In such a case, we call S a base73

state. For computing V (S), we introduce the following assumption: a weight function wτ is74

associated with each transition, which returns the transition weight wτ (S) ∈ Q given a state75

S, and V (S) is computed by applying a binary operator ◦, such as +, to wτ (S) and V (S[[τ ]]).76

Let T (S) be the set of applicable transitions in a state S. In a minimization problem, V (S)77

is represented by the following recursive equation, called a Bellman equation:78

V (S) =

v(S) if S is a base state
min

τ∈T (S)
wτ (S) ◦ V (S[[τ ]]) otherwise. (1)79

The optimal objective value of the problem can be computed by solving the above equation.80

For maximization, min is replaced with max. We assume that V (S) = ∞ if T (S) = ∅ in the81

second line (V (S) = −∞ for maximization).82

As an example, in the traveling salesperson problem with time windows (TSPTW) [5]83

we are given a set of n customers N = {0, ..., n − 1}, where 0 is the depot, and the travel84

time cij from customer i to j. A solution is a tour starting from the depot at time t = 0,85

visiting each customer i within its time window [ai, bi], and returning to the depot. The86

objective function is to minimize the total travel time
∑n−1

i=0 cxi,xi+1 where xi is the i-th87
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customer in the tour with x0 = xn = 0. In the DP formulation, a state is represented by a88

set of unvisited customers U ⊆ N \ {0}, the current location i ∈ N , and the current time89

t ≥ 0. Each transition visits one of the unvisited customers j that can be reached by the90

deadline bj . The Bellman equation is defined as91

V (U, i, t) =

ci0 if U = ∅
min

j∈U :t+cij≤bj

cij + V (U \ {j}, j, max{t + cij , aj}) if U ̸= ∅. (2)92

The original problem corresponds to state (N \ {0}, 0, 0).93

2.1 Domain-Independent Dynamic Programming (DIDP)94

Domain-independent dynamic programming (DIDP) is a model-based paradigm where a95

combinatorial optimization problem is formulated as a declarative DP model and is solved by96

a general-purpose solver [12, 15]. The model is defined in Dynamic Programming Description97

Language (DyPDL), which is explicitly designed for combinatorial optimization by allowing98

a user to incorporate redundant information via state constraints, state dominance, and a99

dual bound function.100

A state constraint is a condition that must be satisfied by all states. In TSPTW, since101

we need to visit all customers, a state does not lead to a solution if one of the customers102

cannot be reached by its deadline. Let c∗
ij be the shortest travel time from customer i to j,103

which can be precomputed from the travel costs. A state (U, i, t) must satisfy t + c∗
ij ≤ bj for104

each customer j ∈ U . Using the value function V ,105

V (U, i, t) = ∞ if ∃j ∈ U, t + c∗
ij > bj . (3)106

This constraint is redundant, i.e., implied by Equation (2), but can be helpful for a solver.1107

A state S dominates another state S′ if the value of S is equal to or better than that of108

S′, i.e., V (S) ≤ V (S′) in minimization. In DyPDL, a user can explicitly define a sufficient109

condition for state dominance. In the TSPTW example, (U, i, t) is at least as good as (U, i, t′)110

if t ≤ t′, i.e.,111

V (U, i, t) ≤ V (U, i, t′) if t ≤ t′. (4)112

A dual bound function η defines a lower/upper bound on V (S) in minimization/maxim-113

ization, i.e., V (S) ≥ η(S) for minimization. In TSPTW, the travel cost to visit customer j114

can be underestimated by cto
j = mink∈N\{j} ckj . Given a state (U, i, t), the sum of cto

j over115

j ∈ U ∪ {0} is a dual bound function. Similarly, the travel cost from j to a customer is116

underestimated by cfrom
j = mink∈N\{j} cjk. In other words,117

V (U, i, t) ≥ max

 ∑
j∈U∪{0}

cto
j ,

∑
j∈U∪{i}

cfrom
j

 . (5)118

2.1.1 State Space Search Solvers for DIDP119

Kuroiwa and Beck [12, 14, 15] developed DIDP solvers using state space search algorithms.120

In particular, they used heuristic search algorithms such as A* [9] and beam search [19]. At121

1 In general, a state constraint is not necessarily redundant.

CVIT 2016
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each step, a state space search algorithm selects one state S from a set of candidates. Then,122

S is expanded, i.e., S is removed from the candidates and its successor states are added. In123

the beginning, the state corresponding to the original problem is the only candidate and,124

subsequently, the expansion of a state is repeated until termination criteria are met. The125

solvers use the dual bound function to select a state to expand and prune states that do126

not lead to a better solution than the current incumbent. The solvers also exploit state127

dominance to prune states that are known not to be better than another candidate or an128

already expanded state.129

2.1.2 didp-rs: Software Implementation of DyPDL130

Kuroiwa and Beck [12, 15] developed didp-rs, a software implementation of DyPDL and131

its solvers. There are four components: the modeling library dypdl, the solver library132

dypdl-heuristic-search, the command line interface didp-yaml, and the Python interface133

DIDPPy, all of which are implemented in Rust.134

In didp-rs, states are defined by state variables, and each state variable has a type, either135

of set, element, integer, or continuous. In the TSPTW example, U is a set variable, i is an136

element variable, and t is an integer or continuous variable depending on a problem instance.137

The state dominance is specified by defining element, integer, and continuous variables as138

resource variables with a preference, either of less or greater. In our example, to represent139

Inequality (4), t is defined as a resource variable where less is preferred.140

Transitions and base states are described by expressions, which are composed of predefined141

operations on state variables and evaluated given a state. In the TSPTW example, the142

condition to be a base state, U = ∅, and the condition to apply a transition, t + cij ≤143

bj , are expressions returning a Boolean value. To update state variables, set expression144

U \ {j}, element expression j, and integer or continuous expression max{t + cij , aj} are145

used. Expressions ci0 and cij are used to compute the value of a state. The state constraint146

(Equation (3)) and the dual bound function (Inequality (5)) are also defined by expressions.147

With the dypdl library, a DP model is formulated in Rust by defining state variables148

and transitions. As of dypdl 0.8.0, an expression is represented as a tree data structure.149

The library overloads arithmetic operations in Rust and provides functions with which150

an expression tree can be constructed. The DP model can be solved by calling a solver151

implemented in dypdl-heuristic-search. During solving, to evaluate an expression tree given152

a state, a solver uses an interpreter implemented in the dypdl library. The two interfaces,153

didp-yaml and DIDPPy, convert a DP model written in a specific syntax into the data154

structure in dypdl and call solvers in dypdl-heuristic-search. In didp-yaml, YAML-DyPDL, a155

modeling language based on the YAML data format,2 is implemented employing a LISP-like156

syntax for expressions. In DIDPPy, a user constructs expressions using Python syntax.157

2.2 Decision Diagram-Based Solvers158

Hooker [11] proposed that a DP formulation can be represented as a decision diagram (DD),159

a data structure based on a directed graph, and that a solution can be extracted from such a160

DD. Based on this observation, Bergman et al. [2] proposed a branch-and-bound algorithm161

to solve DPs based on DDs. Since constructing an exact DD, which fully represents the DP162

formulation, is computationally expensive, the algorithm repeatedly constructs restricted163

2 https://yaml.org

https://yaml.org
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and relaxed DDs, which are computationally cheaper and provide bounds on the optimal164

objective value. To construct a relaxed DD, a function called a merge operator is required,165

which maps two states to a single state. DD-based branch-and-bound can also exploit state166

dominance and a dual bound function when they are defined [3, 7, 16].167

2.2.1 Ddo168

Ddo is a software library for DD-based solvers [8] in Rust and uses generics for modeling. In169

particular, ddo uses traits, which define an abstract interface. With traits, a function can be170

defined generically: one function definition is sufficient for different types of arguments as171

long as each type implements the required traits. In ddo 2.0.0, a DP model is formulated172

as a Rust program that defines a data type and implements a particular trait, Problem, for173

it. The data type for a state is defined as an associated type, State, and a concrete type is174

specified when implementing the trait. Problem requires seven methods:175

1. initial_state returns the initial state, which corresponds to the original problem (for176

TSPTW, (N \ {0}, 0, 0)).177

2. nb_variables defines the number of transitions in a solution, which is assumed to be fixed178

in all solutions. With this assumption, a base state is not defined.179

3. for_each_domain defines transitions applied to a given state.180

4. transition returns the successor state, given a state and a transition.181

5. transition_cost returns the transition weight, given a state, a transition, and the resulting182

successor state.183

6. initial_value returns a constant offset for the objective value. In ddo, the objective value184

of a solution is the sum of the transition weights and the offset.185

7. next_variable controls the behavior of a solver and is not part of a DP model.186

In addition, ddo requires the implementation of the Relaxation trait to define a merge operator187

and the StateRanking trait to define the order to select states to merge using the merge188

operator during solving. Note that the merge operator is an instruction to a solver rather189

than model information. A dual bound function is optionally defined in Relaxation, and state190

dominance is optionally defined by implementing the Dominance trait.191

Ddo has a Python interface, Py-DDO, where a DP model is formulated as a Python class192

implementing a particular set of methods. Internally, Py-DDO defines a Rust struct that193

has a Python object as a member and implements Problem, Relaxation, and StateRanking for194

the struct by calling methods of the Python class.195

2.2.2 CODD196

CODD is a software library for DD-based solvers in C++ [16]. In CODD, a solver takes197

first-order functions defined as C++ lambda functions as input, representing a DP model and198

a merge operator. For a DP model, five functions are mandatory, which return the following:199

1. Initial state.200

2. Base state.201

3. Set of applicable transitions, given a state.202

4. Successor state, given a state and a transition.203

5. Transition weight, given a state and a transition. The objective value of a solution is the204

sum of the weights.205

In addition, a function for a merge operator is required. A dual bound function and state206

dominance are optionally defined as first-order functions. Unlike ddo, CODD does not assume207

that the number of transitions in a solution is fixed and explicitly defines a single base state.208

CVIT 2016
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3 Rust Programmable Interface for DIDP209

We propose the Rust Programmable Interface for DIDP (RPID), a DIDP implementation210

using a strategy similar to DD-based solvers: a DP model is formulated as a Rust program211

using traits. To solve a model, we implement heuristic search solvers, following didp-rs.212

Listing 1 The DP model for TSPTW in RPID.
213

struct Tsptw { a: Vec<i32>, b: Vec<i32>, c: Vec<Vec<i32>> }214

struct S { u: FixedBitSet, i: usize, t: i32 }215

216

impl Dp for Tsptw {217

type State = S;218

type CostType = i32;219

220

fn get_target(&self) -> Self::State {221

let mut u = FixedBitSet::with_capacity(self.a.len());222

u.insert_range(1..);223

S { u, i: 0, t: 0 }224

}225

fn get_successors(&self, s: &Self::State)226

-> impl IntoIterator<Item = (Self::State, Self::CostType, usize)> {227

s.u.ones().filter_map(|j| {228

if s.t + self.c[s.i][j] > self.b[j] { return None; }229

let mut u = s.u.clone();230

u.remove(j);231

let t = cmp::max(s.t + self.c[s.i][j], self.a[j]);232

if u.ones().any(|k| t + self.c[j][k] > self.b[k]) {233

None234

} else {235

Some((S { u, i: j, t }, self.c[s.i][j], j))236

}237

})238

}239

fn get_base_cost(&self, s: &Self::State) -> Option<Self::CostType> {240

if s.u.is_clear() { Some(self.c[s.i][0]) } else { None }241

}242

}243244

We show the DP model for TSPTW formulated with RPID in Listing 1. First, Tsptw, a245

struct containing data of a problem instance (a and b for the time windows and c for the246

travel time), is defined. Then, S is defined to represent a state of the DP model, where field247

u is the set of unvisited customers U , i is the current location i, and t is the current time t.248

Trait Dp is implemented for Tsptw. Associated type State is used for a state, and CostType is249

used for the objective value. Dp has three required methods:250

1. get_target returns the state corresponding to the original problem, which we call the251

target state following the convention in DIDP.252

2. get_successors returns the successor states, transition weights, and transitions labels,253

given a state.254

3. get_base_cost returns the value of a given state if it is a base state and None otherwise.255

The return type of get_successors is impl IntoIterator, which means that any data type256

implementing the IntoIterator trait can be used. The easiest way is to return a dynamic array257

in the Rust standard library (Vec), which implements IntoIterator. In our example, filter_map258
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is used to avoid allocating memory with Vec. Inside filter_map, each customer j included in259

s.u is examined, and the transition is labeled with j, representing visiting j. The successor260

states are filtered by the constraint in Equation (3), assuming cij = c∗
ij for simplicity.261

By default, the objective value of a solution is the sum of transition weights and the value of262

the base state. The binary operator to combine the transition weights (◦ in Equation (1)) can263

be changed by overriding method combine_cost_weights. Similarly, minimization is assumed264

by default, and maximization can be selected by overriding method get_optimization_mode.265

Listing 2 State dominance in RPID.
266

impl Dominance for Tsptw {267

type State = S;268

type Key = (FixedBitSet, usize);269

270

fn get_key(&self, s: &Self::State) -> Self::Key {271

(s.u.clone(), s.i)272

}273

fn compare(&self, s1: &Self::State, s2: &Self::State) -> Option<Ordering> {274

Some(s2.t.cmp(&s1.t))275

}276

}277278

Listing 3 Dual bound function in RPID.
279

impl Bound for Tsptw {280

type State = S;281

type CostType = i32;282

283

fn get_dual_bound(&self, s: &Self::State) -> Option<Self::CostType> {284

let sum_to = s.u.ones().map(|j| self.c_to[j]).sum::<i32>();285

let sum_from = s.u.ones().map(|j| self.c_from[j]).sum::<i32>();286

Some(cmp::max(sum_to + self.c_to[0], sum_from + self.c_from[s.i]))287

}288

}289290

Implementing the Dominance trait defines a sufficient condition for state dominance291

(Listing 2). Our design is inspired by ddo. The associated type Key is the type of the key,292

the part of a state that must be the same if one state dominates another. Given two states,293

if their keys extracted by the required method get_key are the same, then dominance is294

checked by method compare. The return value is None or Some(Ordering), an enumerated295

type in the Rust standard library, with value of Equal, Less, or Greater. Given two states,296

Equal is returned if they dominate each other, Less if the first state is known to be dominated297

by the second and not vice versa, Greater if the first is known to dominate the second and298

not vice versa, and None if no dominance is detected. In our example, Greater is returned if299

the first state has smaller t.300

In practice, Dominance is required by all solvers currently implemented. However, a301

user does not always need to come up with sufficient conditions to check state dominance.302

Implementing compare is optional, and it returns Equal by default, meaning two states have303

the same value if their keys are the same. Thus, the easiest way to implement Dominance is304

to let get_key return the state itself. In such a case, a solver uses Dominance just to detect305

duplicate states to avoid redundant work. A user can also use a customized implementation306

of get_key without overriding compare when using only parts of the state data structure is307

sufficient; a state may cache information resulting from expensive computation.308

CVIT 2016
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A dual bound function is defined by trait Bound, which has only one required method,309

get_dual_bound, returning the value of a dual bound function given a state. It returns None310

if it turns out that the state does not lead to a solution, i.e., V (S) = ∞ in minimization. In311

our example, assuming that fields c_to and c_from are added to Tsptw, corresponding to cto
312

and cfrom in Inequality (5), the bound is computed as in Listing 3.313

3.1 Discussion314

We discuss the design of RPID. First, we argue the advantage of RPID over didp-rs. Then,315

we highlight the differences between RPID and existing DD-based solvers.316

3.1.1 RPID vs. didp-rs317

In didp-rs, expression trees are used for modeling. As of dypdl 0.8.0, expressions are318

designed for declarative definitions and are somewhat limited; loops cannot be used, and319

thus, implementing complicated algorithmic procedures or data structures is difficult. In320

the TSPTW example, as a dual bound function, we could use the minimum spanning tree321

(MST) weight in a complete graph, where U is the set of nodes and cjk is the weight of edge322

(j, k). We can further improve this bound by constructing a 1-tree [10]: since U does not323

include the current location i and the depot 0, the cheapest edge from i to a customer in U324

and the cheapest edge from a customer in U to the depot are added to the MST. However,325

computing the MST weight using expressions is difficult in didp-rs. In contrast, RPID, ddo,326

and CODD are more flexible since we can directly write algorithms in the programming327

languages in which they are implemented.328

Another potential advantage of RPID over didp-rs is performance. Methods in RPID are329

directly compiled Rust and so running them is substantially faster than evaluating expressions330

using the intermediate interpreter in didp-rs.331

Note, however, that RPID complements didp-rs rather than replacing it; didp-rs is332

preferred in some use cases. For example, didp-rs provides a Python interface, DIDPPy. We333

could provide a Python interface for RPID similar to Py-DDO by defining a Rust struct with334

a Python object as a member. However, it may not be as efficient as DIDPPy since we need335

to call Python functions during solving. In addition, with explicit expression trees, a DIDP336

solver can analyze and exploit particular structures of expressions, as done in Kuroiwa and337

Beck [13]. In contrast, when components of a DP model are implemented as Rust methods,338

they become black-boxes for a solver, and such analysis and exploitation are difficult.339

We could also port the didp-rs interfaces to RPID by implementing structs and traits340

that parse expressions. While it is unclear that such a system would have any computational341

advantages over didp-rs, it would facilitate a workflow of rapid prototyping in the didp-rs342

interface followed by production implementation in the lower-level Rust. Such a unification343

is one direction for future work.344

3.1.2 Traits vs. Functions345

A design advantage of traits is their explicitness: required methods and their signatures are346

clear for a user from the trait definitions. The downside is that the struct implementing the347

trait may have many fields to provide all necessary information to each method, e.g., a, b, c,348

c_to, and c_from in Tsptw. In contrast, CODD can avoid defining such a struct since each349

first-order function implemented as a C++ lambda function captures necessary information350

in addition to its arguments.351
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3.1.3 Successor Generation352

Ddo and CODD use separate functions to identify applicable transitions, apply each transition353

to generate the successor state, and compute the transition weight. In contrast, RPID354

performs all of them at once in get_successors. This design choice was made for two reasons.355

First, successor generation becomes more explicit. When reading a model, a user does not356

need to refer to multiple methods to understand how successor states are generated. While357

decomposing the successor generation function into pieces may be useful when the function358

is complicated, a user can do that in their own way, not forced by the trait definition.359

Second, successor generation becomes more efficient when the same information is required360

in multiple places. Since it is not the case with TSPTW, we introduce single machine total361

weighted tardiness (1||
∑

wiTi) as a motivating example. In this problem, a set of jobs N is362

processed on a single machine, and each job j ∈ N has the processing time pj , the due date363

dj , and the weight wj . The optimal solution is a sequence of the jobs that minimizes the364

total weighted tardiness
∑

j∈N wj max{Cj − dj , 0}, where Cj is the completion time of job j.365

In our DP model, we represent a state by a single state variable S, representing the set of366

processed jobs, and process one job j ∈ N \ S in each decision. We present the DP model in367

Equation (6) and its implementation with RPID in Listing 4.3368

V (S) =

0 if S = N

min
j∈N\S

wj max
{(∑

k∈S pk

)
+ pj − dj , 0

}
+ V (S ∪ {j}) if S ̸= N.

(6)369

Listing 4 The DP model for 1||
∑

wiTi in RPID.
370

struct Wt { p: Vec<i32>, d: Vec<i32>, w: Vec<i32> }371

372

impl Dp for Wt {373

type State = FixedBitSet;374

type CostType = i32;375

376

fn get_target(&self) -> Self::State {377

FixedBitSet::with_capacity(self.p.len())378

}379

fn get_successors(&self, s: &Self::State)380

-> impl IntoIterator<Item = (Self::State, Self::CostType, usize)> {381

let t = s.ones().map(|k| self.p[k]).sum::<i32>();382

s.zeroes().map(move |j| {383

let mut next_s = s.clone();384

next_s.insert(j);385

let tardiness = cmp::max(t + self.p[j] - self.d[j], 0);386

(next_s, self.w[j] * tardiness, j)387

})388

}389

fn get_base_cost(&self, s: &Self::State) -> Option<Self::CostType> {390

if s.is_full() { Some(0) } else { None }391

}392

}393394

3 Our actual DP model used in the experimental evaluation exploits precedence between jobs extracted
by preprocessing following Kuroiwa and Beck [14, 15].
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In this model, the time job j starts is
∑

k∈S pk, which requires O(|N |) time to compute.395

If we compute it for each j, we need O(|N |2) computation to generate all successors. To396

avoid such computation, we could introduce a redundant state variable t that is increased by397

pj when j is processed, but this approach increases the amount of memory used for each state.398

In our implementation with RPID, we compute
∑

k∈S pk only once, save it as a Rust variable399

t, and use it for each j. We use similar approaches in the DP models for the minimization of400

open stacks problem and talent scheduling evaluated in Section 4.401

A disadvantage of this design is that a solver has less flexibility in generating successor402

states: it cannot compute applicable transitions, the successor states, and the transition403

weights separately, potentially limiting the design of a solving algorithm. In the current404

implementation, our heuristic search solvers are not affected by this restriction.405

4 Empirical Evaluation406

We compare the performance of RPID against existing DIDP and DD-based solvers. Building407

on previous DIDP solvers [12, 14, 15], we implement cost-algebraic A* [6] and complete408

anytime beam search (CABS) [19]; A* is a fundamental algorithm in heuristic search, and409

CABS performs the best in the existing DIDP solvers due to its memory efficiency. We410

publish the source code for RPID4 and DP models.5 We use Rust 1.76.0 for all solvers411

implemented in Rust. For each problem instance, we use a 30-minute time limit, an 8GB412

memory limit, and a single core of Intel Xeon Gold 6418, run with GNU parallel [17].413

4.1 RPID vs. didp-rs414

With didp-rs, previous work [15] used DP models for eleven problem classes: TSPTW, the415

capacitated vehicle routing problem (CVRP), the multi-commodity pickup and delivery416

traveling salesperson problem (m-PDTSP), the orienteering problem with time windows417

(OPTW), the multi-dimensional knapsack problem (MDKP), bin packing, the simple assembly418

line balancing problem (SALBP-1), 1||
∑

wiTi, talent scheduling, the minimization of open419

stacks problem (MOSP), and graph-clear. DIDP solvers in didp-rs outperformed commercial420

CP and mixed-integer programming solvers in TSPTW, m-PDTSP, OPTW, SALBP-1,421

1||
∑

wiTi, talent scheduling, MOSP, and graph-clear. The original models are available in422

YAML-DyPDL and DIDPPy in a public repository,6 and we reimplement them in RPID.423

As a baseline, we also reimplement these models in Rust using didp-rs 0.8.0: we define424

the DP models by writing expressions with the dypdl library and solve them using the425

dypdl-heuristic-search library in Rust. We call this baseline ‘didp-rs.’426

We confirmed that the numbers of expanded states are the same in RPID and didp-rs for427

the same solver and the same problem instance. Thus, we compare the number of optimally428

solved instances and the average time to solve an instance in each problem class. As shown429

in Table 1, RPID dominates didp-rs: solving more instances than didp-rs in six problem430

classes with A* and eight with CABS and never failing to solve an instance solved by didp-rs.431

On average, RPID is faster than didp-rs in all problem classes and reduces the solving time432

by at least half in five classes with A* and eight with CABS. We also show the number of433

solved instances against time for TSPTW, m-PDTSP, and OPTW in Figure 2 and for other434

problem classes in Appendix B.435

4 https://github.com/domain-independent-dp/rpid/releases/tag/v0.1.0
5 https://github.com/Kurorororo/didp-rust-models
6 https://github.com/Kurorororo/didp-models

https://github.com/domain-independent-dp/rpid/releases/tag/v0.1.0
https://github.com/Kurorororo/didp-rust-models
https://github.com/Kurorororo/didp-models
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Table 1 RPID vs. didp-rs with the same DP models. ‘#opt’ is the number of optimally solved
instances, and ‘time’ is the time in seconds to solve an instance optimally, averaged over instances
where didp-rs takes at least 1 second. The higher value of ‘#opt’ is in bold, and ‘time’ by RPID is
in bold if less than half of that of didp-rs.

A* CABS

didp-rs RPID didp-rs RPID

#opt time #opt time #opt time #opt time

TSPTW (340) 257 64 257 17 259 196 267 44
CVRP (207) 6 54 6 29 6 118 6 46
m-PDTSP (1178) 953 24 953 14 1034 149 1049 66
OPTW (144) 64 54 64 5 64 212 85 13
MDKP (276) 4 3 4 2 5 63 5 33
Bin Packing (1615) 922 42 939 4 1168 140 1230 33
SALBP-1 (2100) 1657 31 1667 8 1801 195 1821 71
1||

∑
wiTi (375) 270 31 277 18 288 173 299 66

Talent Scheduling (1000) 207 62 225 26 235 277 257 88
MOSP (570) 483 8 487 4 527 172 527 142
Graph-Clear (135) 78 17 80 11 103 173 104 135
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Figure 1 Time in seconds to solve each instance optimally (only instances with at least 1 second).

We present an instance-wise comparison of the solving time by RPID and didp-rs in436

Figure 1. In the majority of instances, RPID achieves a speedup of more than two times. For437

A*, RPID is slower in one SALBP-1 instance, where we observe that RPID proves optimality438

faster than didp-rs but takes more time for termination, including freeing allocated memory.439

For CABS, RPID is slower than didp-rs in 19 MOSP instances. This performance degradation440

seems to be due to the implementation of state variables. The DP model for MOSP has441

two set state variables, and each transition performs set operations on them. Both our442

RPID model and didp-rs use the same library, fixedbitset, to represent set state variables.443

However, while didp-rs 0.8.0 uses fixedbitset 0.4.2, our model uses 0.5.7 (the latest version as444

of writing). We observe that using 0.4.2 with our RPID model results in better performance445

than didp-rs. We suspect that the overhead of didp-rs is relatively low in MOSP, sometimes446

outweighed by the difference in the set variable implementation.447

Table 1 and Figure 1 present large performance gains in bin packing and OPTW. In448

particular, RPID achieves more than 100 times speedup in some bin packing instances. In449
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Table 2 Comparison of models with the new dual bound functions vs. the models by Kuroiwa
and Beck [15] using RPID. We use the 1-tree bound for TSPTW, CVRP, and m-PDTSP and the
Dantzig bound for OPTW and MDKP. ‘#opt’ is the number of optimally solved instances, ‘time’ is
the time in seconds to solve an instance optimally, and ‘#expanded’ is the number of expansions
before the last f -layer. ‘time’ and ‘#expanded’ are averaged over instances where the model by
Kuroiwa and Beck [15] takes at least 1 second. Better values are bolded.

Kuroiwa and Beck [15] 1-Tree/Dantzig

A* #opt time #expanded #opt time #expanded

TSPTW (340) 257 25 3,681,570 257 89 3,344,561
CVRP (207) 6 29 3,577,960 8 5 390,277
m-PDTSP (1178) 953 19 2,516,593 1075 5 356,029
OPTW (144) 64 8 2,897,171 71 4 1,220,461
MDKP (276) 4 2 735,507 6 0 342

CABS #opt time #expanded #opt time #expanded

TSPTW (340) 267 161 16,855,270 247 287 4,420,454
CVRP (207) 6 55 9,579,821 8 19 989,025
m-PDTSP (1178) 1049 129 18,352,633 1074 34 820,919
OPTW (144) 85 340 78,952,253 92 97 20,692,072
MDKP (276) 5 33 16,356,224 6 0 29,756

bin packing, we minimize the number of bins to pack a set of items N , where a bin has the450

capacity c, and each item i ∈ N has the weight wi. In the DP model, a state is represented by451

the remaining capacity of the current bin r and the set of unpacked items U . Each transition452

packs an item i ∈ U with wi ≤ r and reduces r by wi. If no such item exists, only one453

transition is applicable, which opens a new bin and packs an arbitrary item i, updating r to454

c − wi. In didp-rs, two transitions are defined for each item i, one to pack it in the current455

bin and another to pack it in a new bin. The latter has a precondition j /∈ U ∨ wj > r for456

each j ∈ N to confirm that no item can be packed in the current bin, requiring O(|N |) time457

to check in the worst case. Since there are O(|N |) such transitions, identifying applicable458

transitions requires O(|N |2) time. In RPID, we can avoid such computation by checking459

∀j ∈ U, wj > r only once in the successor generator function, as presented in Appendix A.460

For OPTW, the restrictions of the DyPDL syntax result in a large expression tree with461

less efficient execution than what can be done with Rust code. In the model, the dual462

bound function computes
∑

j∈U :ϕj
cj , where U ⊆ N is a set state variable, ϕj is a Boolean463

condition on j, and cj is a constant depending on j. To represent this computation, the464

current implementation takes the sum of expressions representing ‘cj if j ∈ U ∧ ϕj and 0465

otherwise’ for all j ∈ N , resulting in an expression tree with depth O(|N |).466

4.2 Comparison of Dual Bound Functions467

As we discussed in Section 3.1.1, a dual bound function based on the 1-tree weight can be468

used for the DP model of TSPTW. The DP models for CVRP and m-PDTSP are similar to469

that of TSPTW, and dual bound functions similar to Inequality (5) are used, so they can also470

be replaced with the 1-tree bound. We implement such DP models in RPID, using Kruskal’s471

algorithm to compute the MST weight, which requires sorting edges in the ascending order472

of the weights. In our implementation, sorting is performed in preprocessing, and Kruskal’s473

algorithm ignores edges connected to visited customers in a given state.474

Since OPTW and MDKP can be considered generalizations of 0-1 knapsack, the Dantzig475



R. Kuroiwa and J.C. Beck 23:13

1 10 100 1000
Time (s)

100
150
200
250

#s
ol

ve
d

A*
CABS

didp-rs
RPID

RPID 1-Tree

(a) TSPTW

1 10 100 1000
Time (s)

600

800

1000

#s
ol

ve
d

A*
CABS

didp-rs
RPID

RPID 1-Tree

(b) m-PDTSP

1 10 100 1000
Time (s)

0

50

100

150

#s
ol

ve
d A*

CABS
didp-rs
RPID

RPID Dantzig

(c) OPTW

Figure 2 Time in seconds vs. the number of optimally solved instances.

bound [4] can be used as a dual bound function. Due to restrictions of expressions in didp-rs,476

Kuroiwa and Beck [15] approximated the Dantzig bound in their DP models. In RPID, we477

implement DP models using the Dantzig bound as a dual bound function. We compare the478

new DP models with the original models (the ones used in Section 4.1) using A* and CABS479

in RPID, measuring the number of state expansions by each heuristic search algorithm to480

solve an instance optimally. Our heuristic search algorithms maintain the global dual bound,481

a lower/upper bound of the optimal objective value in minimization/maximization. We482

subtract the number of expansions after the global dual bound matches the optimal objective483

value from the total number of expansions. This metric is called ‘expansions before the last484

f -layer’ and is conventionally used to compare different heuristic functions for A*.485

As shown in Table 2, our dual bound functions reduce the number of expansions in all486

problem classes. In CVRP, m-PDTSP, OPTW, and MDKP, the number of optimally solved487

instances is increased, and the time to solve an instance is reduced by a factor of two to488

six. We also present the number of solved instances against time for TSPTW, m-PDTSP,489

and OPTW in Figure 2. The result shows that the flexibility of the RPID modeling can490
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Table 3 Comparison of the RPID model implementations for 1||
∑

wiTi where
∑

k∈S
pk is

computed once for all successors (Original), separately computed for each successor (Separate), and
cached as a state variable (StateCache). ‘#opt’ is the number of optimally solved instances, and
‘time’ is the time in seconds to solve an instance optimally, averaged over co-solved instances where
Original takes at least 1 seconds. The best value is bolded.

Original Separate StateCache

#opt time #opt time #opt time

A* 277 27 277 28 274 27
CABS 299 139 295 154 298 144

contribute to significant performance improvement. However, in TSPTW, the time to solve491

an instance is increased, and the number of instances solved optimally by CABS is decreased.492

One potential reason is the quadratic computational complexity of Kruskal’s algorithm493

on a complete graph compared to the linear complexity of the dual bound function in494

Inequality (5). While the expensive dual bound function pays off in CVRP and m-PDTSP,495

it does not in TSPTW, possibly because many states are already pruned by Equation (3).496

4.3 Impact of the Successor Generation Interface497

As discussed in Section 3.1.3, the single successor generation function of RPID can be498

beneficial when the same information is required by multiple transitions. We evaluate the499

impact of this interface design using the DP model for 1||
∑

wiTi, presented in Equation (6).500

In our original implementation presented in Listing 4 and used in Section 4.1, the total501

processing time of already processed jobs,
∑

k∈S pk, is computed once for all successor states.502

We consider two different implementations, ‘Separate’, where
∑

k∈S pk is separately computed503

each time a successor state is generated, and ‘StateCache’, where
∑

k∈S pk is stored as a504

state variable and increased by pj when j is added to S.505

We compare the three implementations in Table 3. With A*, Separate slightly increases506

the average time to solve an instance, and StateCache reaches the memory limit in three507

instances solved by Original and Separate, possibly due to increased memory usage per state.508

With CABS, both Separate and StateCache increase average solving time and solve fewer509

instances than Original due to the time limit. These results confirm that our interface design510

has a positive impact on performance.511

4.4 RPID vs. Ddo and CODD512

We compare RPID, didp-rs, ddo, and CODD using the problem classes with which previous513

work compared CODD with didp-rs and ddo [16]: 0-1 knapsack, Golomb ruler, and the514

maximum independent set problem (MISP). For 0-1 knapsack and MISP, instances are515

retrieved from the CODD repository.7 For Golomb ruler, an instance is uniquely determined516

from a parameter n. While previous work compared heuristic search solvers and DD-based517

solvers [15, 16], the interface designs of the solvers are different; didp-rs uses expression518

trees and DD-based solvers use functions in the programming language in which they are519

implemented. With RPID, we conduct the first empirical evaluation comparing heuristic520

search solvers and DD-based solvers without such differences.521

7 https://github.com/ldmbouge/CODD/tree/main/data

https://github.com/ldmbouge/CODD/tree/main/data
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Table 4 RPID vs. didp-rs, ddo, and CODD in time in seconds to optimally solve a 0-1 knapsack
instance. ‘t.o.’ indicates time out, and ‘m.o.’ indicates memory out. The smallest value is in bold.

Dantzig No Dantzig

Ddo CODD RPID didp-rs RPID

Instance width=4 width time A* CABS A* CABS A* CABS

PI:1 2000 0.37 64 0.76 0.12 0.25 2.72 2.96 1.13 0.92
PI:1 5000 0.47 64 2.73 0.13 0.28 175.14 106.83 41.58 32.77
PI:1 10000 0.71 64 m.o. 0.16 0.28 t.o. 1227.55 566.74 321.07
PI:2 2000 0.16 64 3.70 0.02 0.04 1.05 1.73 0.42 0.61
PI:2 5000 0.44 64 m.o. 0.15 0.29 52.65 64.20 13.97 21.09
PI:2 10000 0.76 64 m.o. 0.16 0.27 835.28 870.12 220.60 222.25
PI:3 1000 0.26 1024 0.08 0.14 0.27 0.90 1.53 0.50 0.48
PI:3 2000 3.23 2048 3.47 0.34 1.38 10.92 14.27 3.40 4.89
PI:3 5000 4.87 4096 6.29 0.74 4.83 243.29 297.93 66.10 81.09
PI:3 10000 4.32 8192 m.o. 1.26 8.73 t.o. t.o. 651.70 656.50

We use ddo 2.0.0 and the latest model implementations available in its repository at the522

time of writing.8 Ddo requires a parameter called a width as input, and each model code523

defines a default width. In 0-1 knapsack, we use a width of 4 as it performs better than the524

default width of 2. In the other two problem classes, we use the default parameters, 10 for525

Golomb ruler and the width automatically decided based on a problem instance in MISP.526

For CODD, from models in its repository,9 we use knapsack2 for 0-1 knapsack, gruler_midlb527

for Golomb ruler, and misp5 for MISP,10 compiled with GCC 13.2.0. Similar to ddo, CODD528

also requires a width parameter as input. Following the previous work using the same529

instances [16], we use 64 for Golomb ruler and 128 for MISP. In 0-1 knapsack, we use the530

best width for each instance reported in the previous work [16].531

For didp-rs and RPID, we implement models following the CODD models. For 0-1532

knapsack, ddo, CODD, and RPID models use the Dantzig bound as a dual bound function.533

As mentioned earlier, the Dantzig bound is difficult to use with didp-rs, so we define a dual534

bound function similar to those used in the DP models for MDKP and OPTW, and we also535

evaluate a RPID model with such a dual bound function (No Dantzig).536

Tables 4–6 present the results, omitting instances solved within 1 second by all solvers.537

There is no single winner: RPID with A* shows a clear advantage in 0-1 knapsack, CODD is538

the best in Golomb ruler, and ddo is almost always the best in MISP. While previous work539

reported that didp-rs with CABS fails to solve four 0-1 knapsack instances in their evaluation540

[16], it solves all but one in our evaluation. We suspect that previous work did not use any541

dual bound function with DIDP, following the model in the didp-rs repository.11 In our542

evaluation, CODD reaches the 8GB memory limit in four instances of 0-1 knapsack. Given a543

larger memory limit, CODD solves all such instances in at most a few tens of seconds, but it544

is slower than DDO and RPID with the Dantzig bound. Further analysis of the performance545

difference between DIDP and DD-based solvers is left for future work.546

8 https://github.com/xgillard/ddo/tree/3b39798874b66ac965a0ce915c6f21f562ebaa6e/ddo/
examples

9 https://github.com/ldmbouge/CODD/tree/main/examples
10 They seem to be the best models according to authors’ description and our preliminary experiments.
11 https://github.com/domain-independent-dp/didp-rs/blob/main/didppy/examples/knapsack.

ipynb
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Table 5 RPID vs. didp-rs, ddo, and CODD in time in seconds to optimally solve a Golomb ruler
instance. ‘t.o.’ indicates time out, and ‘m.o.’ indicates memory out. The smallest value is in bold.

Ddo CODD didp-rs RPID

n width=10 width=64 A* CABS A* CABS

8 0.71 0.04 2.61 5.73 1.88 1.19
9 6.89 0.20 26.25 51.49 14.02 13.85
10 50.55 0.68 m.o. 532.55 m.o. 143.84
11 m.o. 10.51 m.o. t.o. m.o. m.o.
12 m.o. 55.56 m.o. t.o. m.o. t.o.
13 m.o. 1318.98 m.o. t.o. m.o. m.o.
14 m.o. t.o. m.o. t.o. m.o. t.o.

Table 6 RPID vs. didp-rs, ddo, and CODD in time in seconds to optimally solve an MISP
instance. ‘t.o.’ indicates time out, and ‘m.o.’ indicates memory out. The smallest value is in bold.

Ddo CODD didp-rs RPID

Instance width=128 A* CABS A* CABS

johnson8-4-4 0.17 0.24 0.81 1.04 0.70 0.58
johnson16-2-4 2.64 1.43 1.04 1.11 0.92 0.62
keller4 5.47 29.63 27.55 65.46 15.62 39.02
hamming6-2 0.17 0.28 2.84 14.22 1.56 9.07
hamming8-2 0.30 63.69 m.o. t.o. m.o. t.o.
hamming8-4 29.65 36.81 m.o. m.o. m.o. m.o.
hamming10-2 10.01 1520.08 m.o. t.o. m.o. t.o.
brock200-1 403.20 t.o. m.o. t.o. m.o. m.o.
brock200-2 1.10 3.68 5.68 15.09 3.41 8.72
brock200-3 7.88 22.21 m.o. 131.98 m.o. 80.07
brock200-4 22.67 102.52 m.o. 797.01 m.o. 455.68
p_hat300-1 0.49 1.25 2.09 1.53 1.42 1.01
p_hat300-2 19.82 317.83 m.o. t.o. m.o. m.o.

5 Conclusion547

We propose new software for domain-independent dynamic programming (DIDP): the Rust548

Programmable Interface for DIDP (RPID). We use traits in Rust for modeling, following549

an existing decision diagram-based (DD-based) solver. RPID is novel in that the successor550

generation is defined in a single function, motivated by readability and efficiency. As DIDP551

software, RPID enables flexible modeling and fast execution by using Rust functions. Our552

experiment shows that given the same models, RPID is faster than the existing DIDP553

implementation, didp-rs, in most cases, and further performance improvement is achieved554

with the better models facilitated by the flexibility of RPID. We also demonstrate that the555

relative performance of RPID and existing DD-based solvers changes by problem classes.556

As we discussed, didp-rs is preferred to RPID in some use cases that are particularly557

related to model development and analysis. To close the performance gap between didp-rs558

and RPID, improving the flexibility and efficiency of expressions in didp-rs is an important559

direction. For example, we may want to implement specialized expressions for particular560

computations that are commonly used in DIDP models.561
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A DP Model for Bin Packing622

Listing 5 The DP model for bin packing in RPID.
623

struct BinPacking { c: i32, w: Vec<i32> }624

struct S { u: FixedBitSet, r: i32 }625

626

impl Dp for BinPacking {627

type State = S;628

type CostType = i32;629

630

fn get_target(&self) -> Self::State {631

let mut u = FixedBitSet::with_capacity(self.w.len());632

u.insert_range(..);633

S { u, r: 0 }634

}635

fn get_successors(&self, s: &Self::State)636

-> impl IntoIterator<Item = (Self::State, Self::CostType, usize)> {637

let candidates = s.u.ones().filter(|&i| s.r >= self.w[i])638

.collect::<Vec<_>>();639

if candidates.is_empty() {640

let i = s.u.ones().next().unwrap();641

let mut next_u = s.u.clone();642

next_u.remove(i);643

vec![(S { u: next_u, r: self.c - self.w[i] }, 1, i)]644

} else {645

candidates.into_iter().map(|i| {646

let mut next_u = s.u.clone();647

next_u.remove(i);648

(S { u: next_u, r: s.r - self.w[i]}, 0, i)649

}).collect()650

}651

}652

fn get_base_cost(&self, s: &S) -> Option<Self::CostType> {653

if s.u.is_clear() { Some(0) } else { None }654

}655

}656657

In bin packing, a set of items N is given, and each item i ∈ N has the weight wi. The658

objective is to minimize the number of bins to pack all items, where each bin has the capacity659

c. In our DP model, as state variables, we use the set of unpacked items U and the remaining660

capacity r of the current bin. Each transition packs item i ∈ U in a bin. If i fits in the661

current bin, i.e., wi ≤ r, we can pack it in the current bin, and r is decreased by wi. If662
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wi > r, we need to open a new bin to pack i, and r becomes c − wi in such a case. Without663

loss of optimality, we open a new bin only when no item can be packed in the current bin.664

In addition, any item can be selected as the first item packed in the newly opened bin.12 We665

show the DP model in Equation (7) and its implementation with RPID in Listing 5.666

V (U, r) =


0 if U = ∅
1 + V (U \ {i}, c − wi) if ∀j ∈ U, wj > r ∧ ∃i ∈ U

min
i∈U :wi≤r

V (U \ {i}, r − wi) otherwise.
(7)667

B Number of Optimally Solved Instances Against Time668

We present the number of optimally solved instances against time for CVRP, MDKP, bin669

packing, SALBP-1, 1||
∑

wiTi, talent scheduling, MOSP, and talent scheduling.670
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Figure 3 Time in seconds vs. the number of optimally solved instances for CVRP.
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Figure 4 Time in seconds vs. the number of optimally solved instances for MDKP.

12 In our DP model used in the experimental evaluation, we further break symmetries by enforcing that
item i is packed in the i-th or earlier bin, following Kuroiwa and Beck [12, 15].
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Figure 5 Time in seconds vs. the number of optimally solved instances for bin packing.
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Figure 6 Time in seconds vs. the number of optimally solved instances for SALBP-1.
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Figure 7 Time in seconds vs. the number of optimally solved instances for 1||
∑

wiTi.
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Figure 8 Time in seconds vs. the number of optimally solved instances for talent scheduling.
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Figure 9 Time in seconds vs. the number of optimally solved instances for MOSP.

1 10 100 1000
Time (s)

40
60
80

100

#s
ol

ve
d

A*
CABS

didp-rs
RPID

Figure 10 Time in seconds vs. the number of optimally solved instances for graph-clear.
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