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Bellman Equation for QTSP
We consider the following Bellman equation for QTSP.

compute V (N \ {0}, 0, 0, 0) (1a)
V (U, i, j, f) =

mink∈U V (U \ {k}, 0, k, k) if j = 0,

mink∈U (cijk + V (U \ {k}, j, k, f)) if j ̸= 0 ∧ U ̸= ∅,
cj,0,f + ci,j,0 if j ̸= 0 ∧ U = ∅.

(1b)
The Bellman equation has four state variables {U, i, j, f}

to represent QTSP: U is the set of unvisited customers,
i is the previous customer visited, j is the current cus-
tomer, and f is the first customer visited after 0. We as-
sume all the tours start from location 0, eliminating sym-
metry without compromising generality. The first line of
the equation (1b) defines V (U, i, j, f) as the optimal cost
of the tour that starts from 0 and visits all customers in
U , when j = 0. The second and third line of the equa-
tion (1b) defines V (U, i, j, f) as the optimal cost of the path
⟨i, j, σ1, . . . , σ|U |, 0, f⟩, where {σ1, . . . , σ|U |} = U . Equa-
tion (1a) defines the objective of the QTSP as the optimal
cost of the tour that starts from 0 and visits all customers in
N \ {0}. Observe that the target state in equation (1a) is the
only state with j = 0, as j is assigned a customer in U in
the recursive sub-problem formulation and U never contains
customer 0.

Proof of the Bellman Equation for QTSP
In this section, we prove that the Bellman Equation (1a)-(1b)
computes the smallest cost of any tour ⟨σ1, . . . , σn⟩ visiting
all the customers in N .

The cost of a QTSP tour is defined as

C(⟨σ1, . . . , σn⟩) = cσn−1σnσ1 + cσnσ1σ2 +

n−2∑
i=1

cσiσi+1σi+2 .

(2)
In addition, we define cost of a QTSP path ⟨σ1, ..., σk⟩ as

Q(⟨σ1, ..., σk⟩) =
k−2∑
i=1

cσiσi+1σi+2
. (3)
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Lemma 1. If U ⊆ N \ {0} and j ̸= 0, then
V (U, i, j, f) in equation (1b) computes the cost of smallest
path formed by an optimal sequencing σ∗ of U , defined by
Q(⟨i, j, σ∗

1 , ..., σ
∗
|U |, 0, f⟩), where {σ∗

1 , ..., σ
∗
|U |} = U .

Proof. We provide a proof by induction.

Base Case: When |U | = 0 and j ̸= 0, V (U, i, j, f) is
the cost of the only possible path ⟨i, j, 0, f⟩, and is thus the
least-cost path, i.e., V (U, i, j, f) takes the value in the third
line (base case) of the Bellman equation (1b).

Inductive hypothesis: We assume that when |U | = n
and j ̸= 0, V (U, i, j, f) computes the smallest path cost
Q(⟨i, j, σ∗

1 , ..., σ
∗
|U |, 0, f⟩) for a set U ⊆ N \ {0}.

Inductive Step: We prove that when |U | = n + 1 and
j ̸= 0, V (U, i, j, f) still computes the smallest path cost
Q(⟨i, j, σ∗

1 , ..., σ
∗
|U |, 0, f⟩), where U ⊆ N \ {0}.

From equation (1b), we know that when n > 0,

V (U, i, j, f) = min
k∈U

(cijk + V (U \ {k}, j, k, f)).

Since, |U | = n + 1, the cardinality of U \ {k} must
be n. Then, from the inductive hypothesis, we know that
∀k ∈ U , V (U\{k}, j, k, f)) computes the smallest path cost
Q(⟨j, k, σ∗

1 , ..., σ
∗
|U |−1, 0, f⟩), where {k, σ∗

1 , ..., σ
∗
|U |−1} =

U .
Let k∗ = argmink∈U (cijk∗ + V (U \ {k∗}, j, k∗, f)).

Then, for any path ⟨i, j, σ1, ..., σ|U |, 0, f⟩ with
{σ1, ..., σ|U |} = U , it holds that

Q(⟨i, j, σ1, ..., σU , 0, f⟩) = cijσ1
+Q(⟨j, σ1, ..., σU , 0, f⟩)

≥ cijσ1 + V (U \ {σ1}, j, σ1, f)

≥ cijk∗ + V (U \ {k∗}, j, k∗, f)
= V (U, i, j, f),

proving that V (U, i, j, f) computes the smallest path cost
Q(⟨i, j, σ∗

1 , ..., σ
∗
U , 0, f⟩) ≤ Q(⟨i, j, σ1, ..., σU , 0, f⟩) for all

permutations σ with {σ1, ..., σU} = U .

Theorem 2. V (N \ {0}, 0, 0, 0) computes the cost of an
optimal tour ⟨0, σ∗

1 , . . . , σ
∗
n−1⟩ that visits all locations in N



with the smallest cost, i.e., for all permulations σ of N \{0},

V (N \ {0}, 0, 0, 0) = C(⟨0, σ∗
1 , . . . , σ

∗
|N |−1⟩)

≤ C(⟨0, σ1, . . . , σ|N |−1⟩).

Note that we can fix the first visited customer to be 0, as the
overall tour cost is invariant to this choice.

Proof. From Lemma 1, we know that ∀k ∈ N \ {0},
V (N \ {0, k}, 0, k, k) is the smallest path cost
Q(⟨0, k, σ′∗

1 , ..., σ′∗
|N |−2, 0, k⟩), where {σ′∗

1 , ..., σ′∗
|N |−2} =

N \ {0, k}.
Also, from equations (2) and (3), we know that the travel

cost of a path Q(⟨σ′′
1 , ..., σ

′′
|N |+2⟩) is the same as the tour cost

C(⟨σ′′
1 , . . . , σ

′′
|N |⟩) when σ′′

1 = σ′′
|N |+1 and σ′′

2 = σ′′
|N+2|.

From the above and equation (1b), it follows that for all
permutations σ of N \ {0},

V (N \ {0}, 0, 0, 0) = min
k∈N\{0}

V (N \ {0, k}, 0, k, k)

= V (N \ {0, σ∗
1}, 0, σ∗

1 , σ
∗
1)

≤ V (N \ {0, σ1}, 0, σ1, σ1)

≤ Q(⟨0, σ1, σ2, ..., σ|N |−1, 0, σ1⟩)
= C(⟨0, σ1, σ2, ..., σ|N |−1⟩),

where σ∗
1 = argmink∈N\{0} V (N \ {0, k}, 0, k, k).

Additional Experiment Results
We include the performance graphs (Figure 1) with results
from the CP-SAT solver on solving the two proposed CP
models: CPSAT-AD, using an all-different constraint and
CPSAT-CIR, with the circuit constraint. Both CP-SAT mod-
els trail their CP Optimizer counterparts in both primal gap
and optimality gap measurements. Further, the CP-SAT ap-
proaches have a worse performance than all of the other ex-
act approaches.

Diversity of Costs
To measure the difference between the minimum and the av-
erage traveling cost to each customer, we introduce the ratio
between the mean and the minimum of all cost terms in each
problem instance, i.e.,

mean{cijk|i, j, k ∈ N, i ̸= j, j ̸= k, i ̸= k}
min{cijk|i, j, k ∈ N, i ̸= j, j ̸= k, i ̸= k}

.

Figure 2a and 2b show the relationship between the mean-to-
min ratio of the costs and the optimality gap that each DIDP
approach can achieve. The AngleDistance instances have a
smaller mean-to-min ratio that correlates with the optimal-
ity gap that is achieved by the two DIDP models. The data
points that have 0 optimality gap correspond to the instances
with up to 10 customers, which are easy to solve regardless
of the mean-to-min ratio.



(a) Average primal gap for Angle-TSP instances. (b) Average primal gap for AngleDistance-TSP instances.

(c) Average optimality gap for Angle-TSP instances. (d) Average optimality gap for AngleDistance-TSP instances.

Figure 1: The plots of average primal gap and optimality gap found by each solver.

(a) The optimality gap found by DIDP-1 vs. logarithm of the
mean-to-min ratio.

(b) The optimality gap found by DIDP-2 vs. logarithm of the
mean-to-min ratio.

Figure 2: The relationship between the optimality gap found by the DIDP solvers and the ratio between the mean
cost and the minimum cost in each instance.


