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Bellman Equation for QTSP
We consider the following Bellman equation for QTSP.

compute V(N \ {0},0,0,0) (la)
V({U,ij, f) =
mingey V(U \ {k},0,k, k) if 7 =0,
mingey (cijn + V(U \ {k}, 4.k, ) ifj#0ANU #0,
¢j,0,f + Ci 5,0 ifjA0ANU = 0.
(1b)

The Bellman equation has four state variables {U, i, j, f}
to represent QTSP: U is the set of unvisited customers,
1 is the previous customer visited, 7 is the current cus-
tomer, and f is the first customer visited after 0. We as-
sume all the tours start from location 0, eliminating sym-
metry without compromising generality. The first line of
the equation (1b) defines V (U, 4, j, f) as the optimal cost
of the tour that starts from O and visits all customers in
U, when j = 0. The second and third line of the equa-
tion (1b) defines V' (U, 4, j, f) as the optimal cost of the path
(4,5,01,...,010],0, f), where {o1,...,01y|} = U. Equa-
tion (la) defines the objective of the QTSP as the optimal
cost of the tour that starts from 0 and visits all customers in
N\ {0}. Observe that the target state in equation (1a) is the
only state with 5 = 0, as j is assigned a customer in U in
the recursive sub-problem formulation and U never contains
customer 0.

Proof of the Bellman Equation for QTSP

In this section, we prove that the Bellman Equation (1a)-(1b)
computes the smallest cost of any tour (o1, ..., 0,) visiting
all the customers in V.
The cost of a QTSP tour is defined as
n—2

s0n)) = Cop_yonor T Coporos + E Coioiy10i42-

i=1
2
In addition, we define cost of a QTSP path (o1, ..., o)) as

C(<O’17...

k—2
Q(<Ul7"'70k>) = Zco'io'i+10'i+2' (3)
=1
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Lemma 1. [f U C N \ {0} and j # 0, then
V(U,1i,j, f) in equation (1b) computes the cost of smallest
path formed by an optimal sequencing o* of U, defined by
Q(i, 4,07, “'vU|*U\70= 1)), where {07, ..., a‘*U‘} =U.

Proof. We provide a proof by induction.

Base Case: When |U| = 0 and j # 0, V(U,4,7, f) is
the cost of the only possible path (i, 7,0, f), and is thus the
least-cost path, i.e., V(U, 1, 7, f) takes the value in the third
line (base case) of the Bellman equation (1b).

Inductive hypothesis: We assume that when |U| = n
and j # 0, V(U,4,4, f) computes the smallest path cost
Q(i, j,07,...,07,0, f)) foraset U € N\ {0}.

Inductive Step: We prove that when |[U| = n + 1 and
Jj # 0, V(U,i,j, f) still computes the smallest path cost
Q(i, 4,07, "'7U|*U\’O’ ), where U C N\ {0}.

From equation (1b), we know that when n > 0,

Since, |U| = n + 1, the cardinality of U \ {k} must
be n. Then, from the inductive hypothesis, we know that
Vk € U, V(U\{k}, 4, k, f)) computes the smallest path cost
Q(<.]7 ka O-Tv ] UrU‘_17 O) f>)’ where {kv UT7 "'70"*U|_1} =
U.

Let k* = argming(cije- + V(U \ {k*}, 5, k", f)).
Then, for any path (i, j,01,...,01y,0,f) with
{o1,...,01y} = U, it holds that

Q(i,4,01,...,00,0, f)) = ¢ijo, + Q({j, 01, ..., 00,0, f))
> Cijo, + V(U \ {01}, 7,01, f)
> cijir +VUNA{E"}, 4,k%, f)
=V(U.i,j, f),

proving that V (U, 1, j, f) computes the smallest path cost

Qi 4,07, ...,05,0, f)) < Qi 4,01, ...,00,0, f)) for all
permutations o with {01, ...,0p} = U.
O

Theorem 2. V(N \ {0},0,0,0) computes the cost of an
optimal tour (0,075, ..., 0% _) that visits all locations in N



with the smallest cost, i.e., for all permulations o of N \ {0},

V(N \ {0},0,0,0) = C((0,07,...,07y_1))
< C(<O,O’1,. .. >U\N\71>)-

Note that we can fix the first visited customer to be 0, as the
overall tour cost is invariant to this choice.

Proof. From Lemma 1, we know that V& € N\ {0},
V(N\{0,k},0,k, k) is the smallest path cost
Q(<0,k,0'1*,...,O"/*Nl_Q,O,k», where {Ull*,...,o'll}kv‘_Q} =
N\ {0, k}.

Also, from equations (2) and (3), we know that the travel
cost of a path Q((o7, ... a|’§\,|+2>) is the same as the tour cost

C{(ay,... ,crl’E\,Q) when o} = o)y, and 0y = U\/§V+2 .
From the above and equation (1b), it follows that for all
permutations o of N \ {0},

V(N \ {0},0,0,0) = mlr{l }V(N\{O,k},O k)
V(N \{0,07},0,07,07)
(N\{O 0'1} 0 ,01,0 1)
§Q(<O,01,02,.. o|N|-1,0,01))
)

:C(<0,0'1,0'2,.. O—\N| 1> 5
where o7 = arg mingen jo3 V(N \ {0, k}, 0, k, k). O

Additional Experiment Results

We include the performance graphs (Figure 1) with results
from the CP-SAT solver on solving the two proposed CP
models: CPSAT-AD, using an all-different constraint and
CPSAT-CIR, with the circuit constraint. Both CP-SAT mod-
els trail their CP Optimizer counterparts in both primal gap
and optimality gap measurements. Further, the CP-SAT ap-
proaches have a worse performance than all of the other ex-
act approaches.

Diversity of Costs

To measure the difference between the minimum and the av-
erage traveling cost to each customer, we introduce the ratio
between the mean and the minimum of all cost terms in each
problem instance, i.e.,

mean{c;;i|t, 5,k € N,i # j,5 # k,i # k}
min{cijk‘i7j7k € N7/L 7&]7] 7& k,Z 7& k} .

Figure 2a and 2b show the relationship between the mean-to-
min ratio of the costs and the optimality gap that each DIDP
approach can achieve. The AngleDistance instances have a
smaller mean-to-min ratio that correlates with the optimal-
ity gap that is achieved by the two DIDP models. The data
points that have 0 optimality gap correspond to the instances
with up to 10 customers, which are easy to solve regardless
of the mean-to-min ratio.




(a) Average primal gap for Angle-TSP instances.

(b) Average primal gap for AngleDistance-TSP instances.
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Figure 1: The plots of average primal gap and optimality gap found by each solver.

(a) The optimality gap found by DIDP-1 vs. logarithm of the
mean-to-min ratio.
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(b) The optimality gap found by DIDP-2 vs. logarithm of the
mean-to-min ratio.
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Figure 2: The relationship between the optimality gap found by the DIDP solvers and the ratio between the mean

cost and the minimum cost in each instance.



