
New Exact Methods for Solving Quadratic Traveling Salesman Problem

Yuxiao Chen1, Anubhav Singh1, Ryo Kuroiwa2, J. Christopher Beck1

1University of Toronto, Canada
2National Institute of Informatics / The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan

yuxiao.chen@mail.utoronto.ca, anubhav.singh@utoronto.ca, kuroiwa@nii.ac.jp, jcb@mie.utoronto.ca

Abstract

The Quadratic Traveling Salesman Problem (QTSP) is a vari-
ant of the Traveling Salesman Problem (TSP) in which the
objective function depends on pairs of consecutive edges in
the tour; hence, it is quadratic and generally hard to opti-
mize. While various exact-solving approaches have been ex-
plored, many rely on specialized procedures and struggle to
scale to large instances. Carefully crafted metaheuristics have
demonstrated better primal bounds and scalability than the
exact approaches, but, of course, cannot provide guarantees
of solution quality nor prove optimality. In this work, we de-
fine encodings of QTSP in domain-independent dynamic pro-
gramming (DIDP), constraint programming (CP), mixed in-
teger quadratic programming (MIQP), and mixed integer lin-
ear programming (MILP), and compare them with the best-
known exact method, a branch and cut (B&C) algorithm, and
the state-of-the-art metaheuristic, a hybrid genetic algorithm
(HGA). Our experimental results demonstrate that a DIDP
model finds the best feasible solutions and the smallest opti-
mality gaps on average among all exact solvers, including the
B&C algorithm, for sufficiently large problems. HGA finds
the best feasible solution among all approaches, with DIDP
within 15% of the HGA cost on all experimental instances.
Interestingly, our MILP model with the subtour elimination
constraints generally finds better feasible solutions than the
B&C algorithm while matching it in proving optimality, sug-
gesting that lazily adding sub-tour elimination cuts is not par-
ticularly helpful in QTSP.

Introduction
The quadratic traveling salesperson problem (QTSP) is an
extension of Traveling Salesman Problem (TSP), which
seeks an optimal tour that visits all customers exactly once
and returns to the starting location. However, unlike TSP,
the cost of moving between two locations is not solely
dependent on the pair of locations. Instead, the tour cost
is quadratic, determined by pairs of consecutive edges or,
equivalently, triples of consecutive customers.

Given a set of customers N = {0, . . . , n − 1}, with
σ(i) being the i-th customer visited, a tour is represented
as ⟨σ(0), . . . , σ(n− 1)⟩. Assuming σ(−1) = σ(n− 1) and

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

σ(n) = σ(0), the cost of the tour is defined as
n−1∑
i=0

cσ(i−1)σ(i)σ(i+1). (1)

QTSP was originally formulated based on its applications
in robotics. Aggarwal et al. (2000) introduced the angular-
metric traveling salesman problem (Angle-TSP), where the
tour cost is the sum of the absolute angles of rotation at each
turning point, motivated by the need for smooth tours in
nonholonomic robots. The authors proved that Angle-TSP
is NP-hard and proposed a polynomial algorithm that ap-
proximates the optimal solution within a ratio of O(log n).
Medeiros and Urrutia (2010) extended Angle-TSP to have a
cost depending on a linear combination of the angle change
and the travel distance to approximate another related prob-
lem from robotics, the Dubins Traveling Salesman Problem
(DTSP) (Savla, Frazzoli, and Bullo 2008). The DTSP was,
itself, originally approximated using the solution to the Eu-
clidean TSP (ETSP). Medeiros and Urrutia proposed the
AngleDistance-TSP to obtain a potentially more accurate
approximation of DTSP, highlighting the dependence of Du-
bins’ path length on both distances and initial and final ori-
entations. QTSP is a slight generalization of Angle-TSP and
AngleDistance-TSP with the tour cost independent of ge-
ometric constraints. A bioinformatics application of QTSP
for finding realistic binding site models that better explain
the transcription initiation process was introduced by Jäger
and Molitor (2008).

Various specialized algorithms have been proposed to
tackle the QTSP, including heuristic algorithms (Fischer
et al. 2014; Pham et al. 2023; Staněk et al. 2019), branch-
and-bound algorithms (Fischer et al. 2014, 2015; Jäger and
Molitor 2008), and branch-and-cut algorithms (Fischer et al.
2014, 2015; Jäger and Molitor 2008; Oswin et al. 2017).
However, none of these works investigate the performance
of general-purpose solvers for mathematical optimization
programs. While branch-and-cut algorithms are based on
integer linear programming (ILP) models, they require the
implementation of QTSP-specific separation algorithms that
lazily add constraints to the models. In this paper, we de-
velop, implement, and empirically evaluate a number of op-
timization models of QTSP in four problem paradigms.

Our contributions are new optimization models and an
extensive empirical study. We propose novel encodings of

the QTSP as domain-independent dynamic programming
(DIDP), a new model-based paradigm for solving dynamic
programming (DP) problems (Kuroiwa and Beck 2023a,
2024), and constraint programming (CP). Additionally, we
introduce mixed-integer quadratic programming (MIQP)
and mixed-integer linear programming (MILP) models in-
spired by the existing models of TSP (Desrochers and La-
porte 1991). We empirically compare our models against the
best known exact approach and metaheuristic in the litera-
ture: a branch and cut (B&C) algorithm (Oswin et al. 2017),
and a hybrid genetic algorithm (HGA) (Pham et al. 2023)
and show that our DIDP model scales the best among all
exact solvers as the size of the instance increases. Further-
more, our MILP model based on subtour elimination con-
straints introduced by Desrochers and Laporte (1991) per-
forms equally well in proving optimality as the B&C ap-
proach with lazily added subtour elimination cuts and finds
better feasible solutions for most of the instances. These
observations indicate the importance of studying the per-
formance of applying off-the-shelf solvers on mathematical
models without specialized sub-routines.

Related Work
The first exact algorithms for QTSP were proposed by Jäger
and Molitor (2008): a branch-and-bound (B&B) algorithm
that visits all tours in the worst case and an integer pro-
gramming (IP) based algorithm. They observed that B&B
proves optimality faster than the IP on small QTSP instances
but that the trend reverses with increasing size, likely ow-
ing to the exponential growth in the number of tours that
B&B must visit in the worst case. Fischer et al. (2014) in-
troduced two new exact approaches, a QTSP-to-Symmetric-
TSP transformation solved by the Concorde TSP solver (Ap-
plegate et al. 2003) and a B&C approach based on an MILP
model. Two key differences between the Fischer et al.’s
B&C approach and the IP-based approach of Jäger and
Molitor are the variables in the models and the separation
problem used to add valid inequalities. Jäger and Molitor’s
approach only uses boolean variables representing two con-
secutive edges in the tour and solves the separation prob-
lem on integer solutions. In contrast, Fischer et al. uses
boolean variables to represent individual edges and consecu-
tive edge-pairs and solves a separation problem on fractional
solutions.

In their subsequent work, Fisher et al. (2015) presented a
DP model for QTSP and solved the quadratic Hamiltonian
path problem (QHPP) arising in bioinformatics by trans-
forming it to a QTSP. However, their DP formulation is tai-
lored to QHPP and lacks sufficient state information to com-
pute the QTSP tour cost accurately as it omits some terms
in the QTSP cost expression. The authors observed that the
B&C approach worked better at proving optimality than the
B&B and DP approach.

Most recently in terms of exact approaches, Oswin et
al. (2017) studied various formulations of B&C on Angle-
TSP and AngleDistance-TSP and observed that, similar to
the approach of Jäger and Molitor, the B&C algorithm with
the standard subtour elimination constraints and separation
procedures acting on integral solutions performed better at

proving optimality than the B&C algorithm that added cuts
on fractional solutions. This behavior is different from that
of B&C on classic TSP (Pferschy and Staněk 2017) where
separation on fractional solutions proves more efficacious.

In recent years, the studies of QTSP have focused on solv-
ing the problem with heuristic methods. Stanĕk et al. (2019)
introduced metaheuristic algorithms based on the heuristics
of previous works, the geometric properties of the optimal
QTSP solutions, and linear programming (LP) relaxations.
Their best method outperformed all of the previous heuris-
tic algorithms that had been applied to the QTSP problems.
Pham et al. (2023) proposed a hybrid genetic algorithm
(HGA) inspired by the hybrid genetic search framework in-
troduced by Vidal et al. (2012). The authors showed that the
HGA is a state-of-the-art algorithm for the quality of the fea-
sible solutions, improving the best-known primal bounds on
many benchmark instances.

Optimization Models
We first develop MIQP and MILP models of QTSP as they
naturally build on established TSP models. We then present
novel CP and DIDP formulations of QTSP. To our knowl-
edge QTSP has not been previously addressed by either of
these latter two frameworks.

Mixed-Integer Quadratic Programming Model
Fischer et al. (2014) developed an MIQP model for the
QTSP problem, but due to the exponential number of sub-
tour elimination constraints, the model is solved by a B&C
algorithm. Our MIQP model is based on the compact MILP
model for TSP proposed by Desrochers and Laporte (1991)
with a difference in the objective. Given n customers, we
use O(n) decision variables and O(n2) constraints to intro-
duce the position of each customer in a tour. These positions
are consecutive in a solution and, thus, replace the O(2n)
subtour elimination constraints in the Fischer et al. model.

We use binary decision variables xij to represent visiting
customer j immediately after i, and an integer decision vari-
able ui to denote the position of customer i in the tour. The
MIQP model is as follows,

min
∑
i∈N

∑
j∈N\{i}

∑
k∈N\{i,j}

cijkxijxjk (2a)

∑
j∈N\{i}

xij =
∑

j∈N\{i}

xji = 1 ∀i ∈ N (2b)

ui − uj + (n− 1)xij + (n− 3)xji ≤ n− 2

∀i ∈ N \ {0},∀j ∈ N \ {0, i} (2c)

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈ N \ {i} (2d)
1 ≤ ui ≤ n− 1 ∀i ∈ N \ {0}. (2e)

Constraints (2b) ensure that each customer has exactly
one incoming and one outgoing edge. Constraints (2c) elim-
inate subtours by assigning a position to each customer in
the solution tour; every customer must have a position in-
dex greater by 1 than the index of the previous customer,
except for customer 0, who has a position index 0. Thus, the
selected edges must form a cycle that visits all customers ex-
actly once. The objective function (2a) includes the cost for

consecutively visiting i, j, k if and only if xij and xjk are
both 1.

Mixed-Integer Linear Programming Model
Our MILP model is based on our MIQP model where we
linearize the objective function using additional variables.
As above, we use a binary decision variable xij to represent
immediately visiting customer j after customer i, but add an-
other binary decision variable yijk to indicate the customers
i, j, k are visited consecutively. The integer decision variable
ui continues to denote the position of customer i in the tour.

min
∑
i∈N

∑
j∈N\{i}

∑
k∈N\{i,j}

cijkyijk (3a)

xij =
∑

k∈N\{i,j}

yijk =
∑

k∈N\{i,j}

ykij

∀i ∈ N, ∀j ∈ N \ {i}
(3b)

yijk ∈ {0, 1}
∀i ∈ N, ∀j ∈ N \ {i},∀k ∈ N \ {i, j} (3c)

(2b), (2c), (2d), and (2e).
Constraints (2b), (2c), (2d), and (2e) have the same inter-

pretation as the MIQP Model. Constraints (3b) guarantee the
yijk is 1 if and only if both xij and xjk are 1, which means
the customers i, j, k are visited consecutively in the tour.

Constraint Programming Models
We present two CP models of QTSP using different global
constraints. Our first CP model uses an integer decision vari-
able xi to represent the i-th customer visited in a tour. An
all-different global constraint over these variables eliminates
subtours.

min cxn−1x0x1
+

n−3∑
i=0

cxixi+1xi+2
+ cxn−2xn−1x0

(4a)

all different(x0, ..., xn−1) (4b)
x0 = 0 (4c)
xi ∈ N i = 0, ..., n− 1. (4d)

The objective function is encoded using an element ex-
pression, element(⟨i, j, k⟩ | c) = cijk, where i, j, and k
are decision variables. Constraint (4b) ensures that each cus-
tomer is visited exactly once. Constraint (4c) forces all fea-
sible tours to start at customer 0, which reduces the sym-
metry without loss of generality since rooting a customer
to a position does not alter the space of possible tour cycles.
The above CP model is generic and convenient to implement
as both element expressions and all-different constraints are
commonly available in CP solvers.

There are additional global constraints that are suitable
for encoding TSP-like problems, including circuit con-
straints, which enforce a Hamiltonian cycle on a directed
graph (Hooker 2012), and specializations of disjunctive
scheduling no-overlap constraints that enforce a separation
between jobs specified by a distance-matrix (Laborie et al.
2018). The QTSP’s quadratic cost function cannot be en-
coded using distance-matrix in the no-overlap constraints;
hence, we do not use this constraint.

For our second model, we encode QTSP using a circuit
constraint over integer variables z1, . . . , zn, where zi repre-
sents the edge (i, zi). We add a boolean variable xij repre-
senting a directed edge from customer i to j, which allows
us to describe the QTSP objective.

min
∑
i∈N

∑
j∈N\{i}

∑
k∈N\{i,j}

cijkxijxjk (5a)

circuit(z1, . . . , zn) (5b)
xij ↔ (zi = j) ∀i ∈ N, ∀j ∈ N\{i} (5c)
zi ∈ N\{i} ∀i ∈ N. (5d)

The circuit constraint (5b) restricts the solutions to
valid Hamiltonian cycles. We add additional logical con-
straints (5c) to channel between the boolean variables in the
cost expression and the integer variables in the circuit con-
straint.

Dynamic Programming Models
Fischer et al. (2015) introduced a DP model; however, that
DP model only solves the quadratic Hamiltonian path prob-
lem (QHPP). The QHPP differs from QTSP in its objective,
as the cost of the tour ⟨σ(0), . . . , σ(n− 1)⟩ in QHPP is

n−3∑
i=0

cσ(i)σ(i+1)σ(i+2),

which excludes the costs of traveling back to the start of the
tour, cσ(n−2)σ(n−1)σ(0) and cσ(n−1)σ(0)σ(1), that are part of
the QTSP cost function (1). These costs are missing in the
recursive function of Fischer et al.’s DP model, which makes
it inaccurate for solving QTSP instances. We introduce an
exact DP model for QTSP using the Bellman equation (6a)-
(6b) (Bellman 1957).

compute V (N \ {0}, 0, 0, 0) (6a)
V (U, i, j, f) =

min
k∈U

V (U \ {k}, 0, k, k) if j = 0,

min
k∈U

(cijk + V (U \ {k}, j, k, f)) if j ̸= 0 ∧ U ̸= ∅,

cj,0,f + ci,j,0 if j ̸= 0 ∧ U = ∅.
(6b)

The Bellman equation has four state variables {U, i, j, f} to
represent QTSP: U is the set of unvisited customers, i is the
previous customer visited, j is the current customer, and f
is the first customer visited after 0. The first line of the equa-
tion (6b) defines V (U, i, j, f) as the optimal cost of the tour
that starts from 0 and visits all customers in U . The second
and third line of the equation (6b) define V (U, i, j, f) as the
optimal cost of the path ⟨i, j, σ(1), . . . , σ(|U |), 0, f⟩, σ be-
ing an optimal sequencing of U . The computation of objec-
tive (6a) gives us the optimal solution to the QTSP problem.
Initially, there is no previous customer nor first visited cus-
tomer and so we use j = f = 0 to represent that they are
not decided. We include a detailed proof of the correctness
of the Bellman equations in the appendix (Chen et al. 2025).

We implement the DP model using domain-independent
dynamic programming (DIDP), a model-and-solve frame-
work for solving DP problems (Kuroiwa and Beck 2023a,
2024). DIDP includes multiple general-purpose solvers for
the DP models formulated in the Dynamic Programming
Description Language (DyPDL), a solver-independent for-
malism for DP problems. Kuroiwa and Beck (2023b) show
that the complete anytime beam search (CABS) algorithm
for DIDP is the state-of-the-art model-based approach for a
number of standard benchmark combinatorial optimization
problems including TSP with time windows (TSPTW). We
introduce two DyPDL models for Bellman equation (6a)-
(6b) with different dual bound functions and use CABS to
solve the models.

A DyPDL model is defined as a 7-tuple
⟨V, S0,K, T ,B, C, η⟩, where each element is defined
as follows:

V is the set of state variables, where each state is defined
uniquely by the values of the state variables.

S0 is the target state, which is the input state of the recur-
sive function whose value is the optimal objective value.

K is the set of constant values in the model that do not
change with respect to states.

T is the set of transitions that transform a state to another
state and have associated costs.

B is the set of base case conditions, where each base case
condition is a conjunction of conditions on the state vari-
ables. A state that satisfies at least one base case condi-
tion is a termination of the recursive function.

C is the set of the state constraints that must be satisfied by
all states.

η is a dual bound function that maps a state to a lower/upper
bound on its optimal cost in a minimization/maximiza-
tion problem.

The DyPDL model has the same state variables as the
original DP model V = {U, i, j, f}. Objective (6a) states
that the objective is to compute the optimal cost for the tar-
get state S0 = (N \{0}, 0, 0, 0). The first two lines of equa-
tion (6b) define the two sets of transitions in T . The first
set of transitions decides the first customer to visit after 0.
These transitions have 0 cost since they form a state of only
two visited customers and therefore cannot directly add to
the tour cost, which depends on triples of consecutive cus-
tomers. The second set of transitions decides the next cus-
tomer k ∈ U to visit at any state after the first customer
has been determined. These transitions increment the cost by
cijk, which is the cost of traveling to k, given the previous
customer i and the current customer j. All transitions up-
date the state variables appropriately. The third line of equa-
tion (6b) shows the base case conditions in this model: all
customers are visited, and the current customer is not 0. The
base state cost includes the cost of edge pairs ending in 0 and
f . The constant values in this model are the costs of visiting
any three customers in order, i.e., cijk∀i, j, k ∈ N . There
are no state constraints in this model.

We propose two dual bound functions, η1 and η2, that
lead to two different DyPDL models: DIDP-1 and DIDP-2.

The dual bound function η1 is a maximization of three lower
bounds on the optimal cost of the state V (U, i, j, f), i.e.,

η1(U, i, j, f) =

max


∑

k∈U∪{f,0} minl∈N\{k},m∈N\{k,l} clmk,∑
k∈U∪{j,0} minl∈N\{k},m∈N\{k,l} clkm,∑
k∈U∪{i,j} minl∈N\{k},m∈N\{k,l} cklm,

≤ V (U, i, j, f). (7)

In the first lower bound, we underestimate the cost of visit-
ing an unvisited customer k as the minimum cost for trav-
eling to k from any pair of customers. The summation of
the estimated cost of visiting each unvisited customer is a
lower bound on the total cost to visit all unvisited customers
in a sequence. In addition to the set of unvisited customers,
the lower bound also considers the cost to visit f and 0 since
their costs are not included in the recursive function until the
tour cycle is finished. Similarly, the second lower bound un-
derestimates the cost of visiting a customer when the current
customer is k, and the third line underestimates the cost of
visiting a customer when k is the previous customer. These
lower bounds are not required for the correctness of the DP
model; we add them to solve the DP model more efficiently
using the DIDP paradigm.

Our second dual bound strengthens the first dual bound
function by using the set of unvisited customers U more dy-
namically in its calculations. The dual bound function η2 is
defined as,

η2(U, i, j, f) =

max



∑
k∈U∪{f,0} max

e∈N\Uin

min
l∈N\{k,e},

m∈N\{k,l,e}

clmk,∑
k∈U∪{j,0} max

e∈N\Umid

min
l∈N\{k,e},

m∈N\{k,l,e}

clkm,∑
k∈U∪{i,j} max

e∈N\Uout

min
l∈N\{k,e},

m∈N\{k,l,e}

cklm,

≤ V (U, i, j, f), (8)

where Uin = U ∪ {i, j, 0}, Umid = U ∪ {i, j, f, 0}, and
Uout = U ∪ {j, f, 0}. Different from η1, each minimization
term in the first line of η2 underestimates the cost to visit a
customer k by taking the minimum of the traveling costs to
k from any pair of customers, excluding a previously visited
customer e ∈ N \ Uin. Since any customer e ∈ N \ Uin

cannot be visited in the two steps before k, the cost terms
cemk and clek can be soundly excluded from the first lower
bound of η1. Hence,

max
e∈N\Uin

min
l∈N\{k,e},

m∈N\{k,l,e}

clmk,

is a lower bound on the cost of visiting k. Notice each of
these lower bounds is stronger then the ones used in η1. This
can be established for the first lower bound from the follow-

ing inequality.

∀k ∈ N, ∀e ∈ Uin, Uin ⊆ N, max
e′∈N\Uin

min
l∈N\{k,e′},

m∈N\{k,l,e′}

clmk

≥ min
l∈N\{k,e},

m∈N\{k,l,e}

clmk

≥ min
l∈N\{k},

m∈N\{k,l}

clmk. (9)

The second and third lower bounds in η2 are constructed
following the same idea and they are also stronger than the
corresponding lower bounds in η1, with a similar argument.
Thus, η2 is a stronger dual bound than η1 in all states. How-
ever, the additional maximization increases the computa-
tional complexity of η2 to O(n2) in comparison to the O(n)
complexity of η1 as U is iterated over at each state. We an-
alyze the model with each dual bounds experimentally to
determine their efficiency and evaluate whether the trade-off
computational cost of η2 is justified.

Experimental Evaluation
We compare all the approaches on the set of standard in-
stances with customer counts of 5, 10, 15, . . . , 200 created
by Stanĕk et al. (2019). To test the scalability of our ap-
proaches, we also generate larger instances with customer
counts of 250, 300, 350, and 400 that have the same met-
ric space and cost formulation as the standard instances.
For a given number of customers, the benchmark contains
10 randomly generated maps, where the customer locations
are distributed uniformly at random on a 500 × 500 grid.
The benchmark has two problem instances for each map:
an Angle-TSP instance and an AngleDistance-TSP instance,
which differ in their definition of the cost functions as fol-
lows.

• Angle-TSP instances use the turning angle as the cost.
Specifically, suppose the vehicle visits location i, j, and k
in order, then the cost is the turning angle αijk between
the vectors i⃗j and j⃗k, multiplied by 1000, and rounded
to 12 decimal places.

• AngleDistance-TSP instances have a cost function that
combines the turning angle with the Euclidean distances
between the points in a weighted sum. Let dij represent
the Euclidean distance between i and j, and ρ ∈ R+

0 be
a weighting parameter, then the cost of visiting locations
i, j, k in order is.

cijk = 100

(
ρ · αijk +

dij + djk
2

)
.

Notice as ρ → ∞, the instance is similar to Angle-TSP
instances, and as ρ → 0, the instance is similar to the
standard TSP instances. In this benchmark, ρ is set to 40
for all instances.

In our experiments, we compare the six novel exact ap-
proaches introduced in this work (MIQP, MILP, two CP,
and two DIDP models), Oswin et al. (2017) branch and cut
(B&C) algorithm, and the hybrid genetic algorithm (HGA)

of Pham et al. (2023). All approaches are given a time limit
of 1800 seconds and memory limit of 8GB for solving in-
stances with less than or equal to 200 customers. For the in-
stances with more than 200 customers, we employ the same
time limit but increase the memory limit to 16GB. The ex-
periments are executed on an Intel Xeon Gold 6148 core
at 2.4GHz using GNU Parallel (Tange 2011). We imple-
ment the MILP and MIQP models in Gurobi 11.0.3 (2024),
and the CP models in CP Optimizer 22.1.1.0 (Laborie et al.
2018) and Or-Tools CP-SAT 9.10.4067 (Perron and Furnon
2024). CP-SAT shows similar performance differences be-
tween the two CP models as the CP Optimizer. However, CP
Optimizer significantly outperforms CP-SAT. Consequently,
we only discuss CP Optimizer results and include CP-SAT’s
results in the appendix (Chen et al. 2025).

We implement our DIDP models in DIDPPy
0.8.0 (Kuroiwa, Chen, and Beck 2024) and solve them
using complete anytime beam search (CABS). CABS is an
anytime algorithm based on beam search, introduced by
Zhang (1998) and implemented in DIDP by Kuroiwa and
Beck (2023b). The CABS algorithm implements an iterative
beam search with increasing beam width, starting with a
beam width of 1 and doubling it after each iteration. With a
sufficiently large beam width, no nodes are discarded due
to the limit and thus the algorithm terminates with proven
optimality as the entire search space is traversed. Note that
primal solutions found from earlier iterations are used to
soundly prune nodes with equal or greater dual bound.
We chose CABS because, as noted above, Kuroiwa and
Beck (2023b) showed it was the best performing of the
anytime state-based search methods implemented in the
DIDP framework across a number of benchmark problems.

Following the best approach of Oswin et al. (2017), we
implemented the B&C algorithm with cuts added only on
integral solutions. We also use Gurobi 11.0.3 for the B&C
implementation, employing the callback feature to lazily add
subtour elimination cuts. The callback function for cut gen-
eration is implemented in Python. The Python algorithm
does not cause any noticeable overhead, since we observe
the time spent on the callback function is always less than
10 seconds.

We use the original implementation of Pham et al. (2023)
for HGA, with the same hyper-parameter settings as the au-
thors used in their experiments.

Results
Figure 1 shows the results of all exact solvers on the bench-
mark instances. It shows the number of instances (out of
440) in which a solver could prove the optimal solution
(opt), find a feasible solution (fs) without proving optimal-
ity, or find no solution (ns). For the latter two categories,
the results are split depending on the reason for termination:
time-out (to) or memory-out (mo). Recall that DIDP-1 and
DIDP-2 represent the DIDP model with the dual bound func-
tion η1 (7) and η2 (8). CP-AD represents the CP model with
all-different constraint and CP-CIR represents the one with
circuit constraint.

The plot highlights two significant findings: DIDP’s
strong performance in finding feasible solutions to QTSP in-

Angle-TSP AngleDistance-TSP
DIDP-1 DIDP-2 MILP B&C MIQP CP-AD CP-CIR DIDP-1 DIDP-2 MILP B&C MIQP CP-AD CP-CIR

ns-mo 0 0 100 70 70 230 140 0 0 100 70 64 230 140
ns-to 0 34 30 116 180 13 0 0 40 1 32 128 10 0
fs-mo 4 0 0 0 0 0 0 0 0 0 0 0 0 0
fs-to 406 378 229 172 170 177 280 384 354 205 202 226 180 280
opt 30 28 81 82 20 20 20 56 46 134 136 22 20 20

0%

20%

40%

60%

80%

100%
DIDP-1 DIDP-1DIDP-1 DIDP-1DIDP-1 DIDP-1DIDP-1 DIDP-1DIDP-1 DIDP-1DIDP-2 DIDP-2DIDP-2 DIDP-2DIDP-2 DIDP-2DIDP-2 DIDP-2DIDP-2 DIDP-2MILP MILPMILP MILPMILP MILPMILP MILPMILP MILPB&C B&CB&C B&CB&C B&CB&C B&CB&C B&CMIQP MIQPMIQP MIQPMIQP MIQPMIQP MIQPMIQP MIQPCP-AD CP-ADCP-AD CP-ADCP-AD CP-ADCP-AD CP-ADCP-AD CP-ADCP-CIR CP-CIRCP-CIR CP-CIRCP-CIR CP-CIRCP-CIR CP-CIRCP-CIR CP-CIR

Figure 1: The performance profiles of the exact approaches DIDP-1, DIDP-2, MILP, B&C, MIQP, CP-AD, and CP-CIR. The
table captures the number and the bar graph shows the percentage of the 440 instances with each solution status: opt when the
instance is solved to optimality, fs-{to, mo} when a feasible solution is found, but the algorithm terminates because of time-out
(to) or memory-out (mo) before proving optimality, and ns-{to, mo} when no solutions are found within time or memory limit.

DIDP-1 DIDP-2
Class # exp. exp. time # exp. exp. time
Ang-5 40.5 1.32E-5 39.8 3.05E-5
Ang-10 3.63E4 2.73E-6 1.95E4 7.19E-5
AngD-5 37.4 1.58E-5 35.2 3.15E-5
AngD-10 2908.3 4.91E-6 1353.8 1.00E-4
AngD-15 5.33E4 4.00E-6 1.70E4 3.34E-4
AngD-20 1.15E6 5.66E-6 1.63E5 9.11E-4
AngD-25 1.99E7 7.89E-6 5.32E5 2.45E-3

Table 1: The average number of states expanded (# exp.) and
the average node expansion time (exp. time) in seconds per
node, over 10 instances in each class (Problem type-size),
where Ang and AngD stand for Angle and AngleDistance,
respectively. Only the sizes where both DIDP models solve
all instances to optimality are included.

stances and the MILP and B&C approaches’ performance in
proving optimality. We observe that the DIDP-1 model finds
feasible solutions for all problems and the DIDP-2 model
finds feasible solutions for all except some of the large in-
stances. This points to the strength of the CABS algorithm,
which behaves similarly to greedy depth-first search (DFS)
at the beginning of the search, allowing the solver to find
feasible solutions quickly. The DIDP-2 model fails to find
any feasible solution for large instances. In fact, for all in-
stances over 250 customers, DIDP-2 is unable to even com-
plete a single iteration of CABS (i.e., with width equal to
1) within the time limit due to the additional computational
complexity of the dual bound function η2. The impact of the
more expensive but stronger dual bound can be seen in Ta-
ble 1, where the DIDP-2 model always spends more time on
each state expansion. We also observe that the stronger dual
bound η2 allows the DIDP-2 model to prove optimality with

fewer state expansions. However, the reduced search space
does not pay off due to the increase in expansion time and
we observe an increase in the total runtime.

CABS also shows an advantage in memory usage, as it
only reaches the memory limit on a small number of Angle-
TSP instances while solving DIDP-1. When CABS exhausts
memory in DIDP-1, it is because it progresses quickly and
reaches high beam widths that consume a large amount of
memory. The weaker dual bound prevents it from pruning
sub-optimal nodes. DIDP-2 does not experience the same
memory-out issue because it has a slower state expansion
and stronger pruning but runs out of time before running out
of memory. This result suggests that improvements in prov-
ing optimality require stronger and/or more efficient dual
bounds than η1 and η2.

The LP-based approaches, MILP and B&C, show a sig-
nificant advantage in proving optimality. MILP and B&C
solve instances up to 75 customers optimally, while DIDP
only does so on instances up to size 30. This result itself is
interesting as it shows that the MILP model with the sub-
tour elimination constraints introduced by Desrochers and
Laporte (1991) matches the performance of the state-of-the-
art B&C algorithm in proving optimality. At the same time,
the MILP model finds feasible solutions for more instances.
While MILP’s close performance to B&C is unexpected, it
is not entirely surprising that Desrochers and Laporte’s con-
straints have not been previously explored for QTSP, given
B&C is generally considered a superior model for classic
TSP (Laporte 1992; Fischer et al. 2014). The B&C approach
holds a slight advantage in terms of memory consumption,
but this does not translate into more solutions being found.

Both our CP models reach the memory limit without find-
ing a feasible solution for a large number of instances. In
most of these instances, the CP solver terminated before the

(a) Average primal gap for Angle-TSP instances. (b) Average primal gap for AngleDistance-TSP instances.

(c) Average optimality gap for Angle-TSP instances. (d) Average optimality gap for AngleDistance-TSP instances.

Figure 2: The plots of average primal gap and optimality gap found by each solver.

search could even start, indicating significant preprocessing
effort in both time and memory. In CP-AD, this behavior is
somewhat unexpected as the only constraint is all-different,
and it is not hard to satisfy. It appears that the representation
of the cost via the element expressions results in significant
preprocessing that exceeds the memory limits.

Turning to a comparison of solution quality, Figures
2a and 2b show the primal gap found by each solver in
the Angle-TSP and AngleDistance-TSP instances, averaged
over ten instances for each problem size. The primal gap is
defined as

|Primal Bound − Best Known Solution|
Primal Bound

,

where the Primal Bound is the cost of the best solution
found by each solver and the Best Known Solution is ei-
ther a known optimal solution provided in the benchmark
or the best solution across all six solvers in our experi-
ments. The benchmark provides optimal solutions up to in-
stance size 75 for Angle-TSP and up to instance size 100
for AngleDistance-TSP. The primal gap is a measurement
for the solution quality: a smaller primal gap means a better
feasible solution.

From Figure 2a and 2b, we see that the HGA metaheuris-
tic always finds best feasible solutions. Recall that HGA is
customized for QTSP (Pham et al. 2023), enabling quick im-
provements of the primal bounds. Furthermore, HGA does

not manage any lower bound information nor provide any
guarantee on solution quality, allowing better scalability in
the memory usage compared to the exact approaches.

Considering the exact approaches only, we observe the
DIDP-1 model finds the best feasible solutions for the large
instances of both problem type: for 80 or more customers
for Angle-TSP and 145 or more for AngleDistance-TSP in-
stances. However, the more expensive dual bound reduces
the performance of DIDP-2: the solver is unable to explore
as many states as DIDP-1 within the time limit, resulting in
a larger primal gap. At the extreme, as DIDP-2 did not com-
plete even a single iteration of CABS for larger instances, no
feasible solutions are found.

The MILP model finds the best feasible solutions for the
smaller instances, but fails to find any feasible solutions for
the instances with size greater than 170. From Figure 1,
we observe that most of instances for which MILP cannot
find a solution exhibit a memory out. As with the CP mod-
els, the culprit appears to be the pre-solving stage: most of
the instances that reach the memory limit terminate before
search. While the B&C algorithm finds a feasible solution
on a smaller number of instances than MILP, it has a slightly
better memory usage than the MILP approach, allowing it to
find a few more feasible solutions for instances with size 180
to 190 which we see in Figure 2a and 2b.

Figures 2c and 2d show the average optimality gap in the

Angle-TSP and AngleDistance-TSP instances, respectively.
The optimality gap is calculated by

|Primal Bound − Dual Bound|
Primal Bound

,

where the Dual Bound is the best lower bound on the optimal
solution proved by the corresponding solver. Since HGA
does not compute any lower bound it does not provide an
optimality gap and we exclude its results.

From Figure 2c and 2d, we observe that the DIDP mod-
els provide the tightest range for the optimal solution costs
of the instances with more than 175 customers. Unlike
the other approaches, the DIDP models achieve a much
smaller optimality gap in AngleDistance-TSP instances than
the Angle-TSP instances. The difference is caused by the
larger cost range in Angle-TSP instances compared to the
AngleDistance-TSP instances. Recall the Angle-TSP cost
depends only on the angle between visit-triples, which can
take on any value in [0, 2π]. In contrast, the AngleDistance-
TSP cost includes both angle and distance, and the distance
distributes among the hundreds of uniformly distributed
nodes. Thus, in an Angle-TSP instance, the ratio between the
mean and the minimum of the cijk terms over all i, j, k ∈ N
is larger than the one for the corresponding AngleDistance-
TSP (see the appendix). Given that the dual bound functions
in our DIDP models rely on the smallest cost for visiting a
customer in any tour, a higher ratio between the mean and
the smallest cost results in a weaker dual bound.

For the small instances, the MILP model has the best per-
formance among all exact solvers. The performance degra-
dation of the MILP model as the problem size increases is
caused by its poor scalability on memory usage as discussed
above. We also observe that the MILP and B&C models ob-
tain some optimality gaps that are similar to their primal
gaps, indicating that the LP-based approaches find tight dual
bounds as also shown by the performance in proving opti-
mality (Figure 1). In contrast, both DIDP models have an
optimality gap that is much larger than the primal gap. In
fact, the MILP and B&C models can achieve a better opti-
mality gap with a worse primal solution in many instances
compared to the DIDP models.

The CP models find and prove the fewest optimal solu-
tions (Figure 1), and they are always outperformed by MILP
and DIDP-1 in both the primal gap and the optimality gap
measurements (Figure 2). By comparing the CP models to
each other, we observe the CP-CIR finds a better feasible
solution (Figure 2a and 2b), but delivers a worse optimal-
ity gap (Figure 2c and 2d) for all instances. In the log files
we observe that the search speed (branches per second) of
the solver while solving CP-CIR is much higher than while
solving CP-AD. Thus, the CP-CIR model provides a better
feasible solution by exploring more search space but the CP-
AD model spends more effort on computing the dual bound
for each branch.

Conclusion
Of the exact models we present for QTSP, DIDP-1 stands
out as the most scalable, finding feasible solutions for all
benchmark instances, even where other approaches run out

of memory. This result is somewhat surprising given the gen-
eral belief in the high memory consumption of dynamic pro-
gramming approaches. However, this contradiction can be
resolved by distinguishing between DP models and DP al-
gorithms. While DIDP solves DP models, its does not nec-
essarily solve such models with memory-intensive DP meth-
ods. Indeed by separating the model from the solver, DIDP
provides an opportunity for substantial further research in
solution techniques for DP models.

HGA, the state-of-the-art metaheuristic, is also highly
scalable and finds the best solutions with up to 15%
lower costs. DIDP-1 provides guarantees on solution qual-
ity, which HGA cannot, and surpasses all other methods in
terms of optimality gap on large instances. However, DIDP-
1 solves fewer instances to optimality and has a larger op-
timality gap on small and medium-sized instances than the
MILP approach. Furthermore, although DIDP-2 employs a
stronger dual bound and decreases the number of expan-
sions required to prove optimality, it introduces a substan-
tial computation time, indicating a need for more efficient
lower-bounding methods.

While the state-of-the-art B&C algorithm scales slightly
better in terms of memory consumption, a MILP model with
position-based subtour elimination constraints (Desrochers
and Laporte 1991) finds better feasible solutions while
matching B&C performance in proving optimality. This re-
sult suggests that lazily generating sub-tour elimination cuts
may not be required for QTSP.

Our CP models fall short of the B&C, MILP, and DIDP
approaches. The CP solver exceeds the memory limit during
preprocessing on many instances, even though both models
compactly represent QTSP using global constraints. The CP
solvers that we tested clearly experience scalability limita-
tions in managing the quadratic cost expression of QTSP.

Overall, our findings underscore the significance of com-
pact mathematical models of QTSP, which commercial and
open-source exact solvers can directly solve. However, fur-
ther improvements to these approaches are still necessary to
boost their performance. DIDP, in particular, would benefit
from more efficient dual bound calculations. Stronger dual
bounds could be specified in the DIDP model, but their for-
mulation is restricted to the expressions available in DyPDL.
Alternatively, and possibly ultimately, adapting automatic
abstraction-based heuristics studied in AI planning (Culber-
son and Schaeffer 1998; Helmert et al. 2014; Seipp and
Helmert 2018) and state abstractions in operations research
(Holte and Fan 2015; Baldacci, Mingozzi, and Roberti 2011)
will be an essential step in improving DIDP. The correspon-
dence between factored transition systems seen in AI Plan-
ning and those in DIDP is not, however, immediately appar-
ent.

Acknowledgement
Computations were performed on the Niagara supercom-
puter at the SciNet HPC Consortium. Scinet is funded by
ISED Canada; the Digital Research Alliance of Canada; On-
tario Research Fund:RE; and the University of Toronto. This
research was supported by the Natural Sciences and Engi-
neering Council of Canada.

References
Aggarwal, A.; Coppersmith, D.; Khanna, S.; Motwani, R.;
and Schieber, B. 2000. The Angular-Metric Traveling Sales-
man Problem. SIAM Journal on Computing, 29(3): 697–
711.
Applegate, D.; Bixby, R. E.; Chvătal, V.; and Cook, W. J.
2003. Concorde. https://www.math.uwaterloo.ca/tsp/
concorde/index.html. Accessed: 2024-10-29.
Baldacci, R.; Mingozzi, A.; and Roberti, R. 2011. New
Route Relaxation and Pricing Strategies for the Vehicle
Routing Problem. Operations Research, 59(5): 1269–1283.
Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.
Chen, Y.; Singh, A.; Kuroiwa, R.; and Beck, J. C. 2025. Ap-
pendix to New Exact Methods for Solving Quadratic Trav-
eling Salesman Problem. https://doi.org/10.5281/zenodo.
15306819. Accessed: 2025-04-29.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence, 14(3): 318–334.
Desrochers, M.; and Laporte, G. 1991. Improvements and
Extensions to the Miller-Tucker-Zemlin Subtour Elimina-
tion Constraints. Operations Research Letters, 10(1): 27–
36.
Fischer, A.; Fischer, F.; Jäger, G.; Keilwagen, J.; Molitor, P.;
and Grosse, I. 2014. Exact Algorithms and Heuristics for the
Quadratic Traveling Salesman Problem With an Application
in Bioinformatics. Discrete Applied Mathematics, 166: 97–
114.
Fischer, A.; Fischer, F.; Jäger, G.; Keilwagen, J.; Molitor, P.;
and Grosse, I. 2015. Computational Recognition of RNA
Splice Sites by Exact Algorithms for the Quadratic Travel-
ing Salesman Problem. Computation, 3(2): 285–298.
Gurobi Optimization, LLC. 2024. Gurobi Optimizer Refer-
ence Manual. https://www.gurobi.com. Accessed: 2024-10-
29.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. Journal of the ACM
(JACM), 61(3): 1–63.
Holte, R. C.; and Fan, G. 2015. State Space Abstraction in
Artificial Intelligence and Operations Research. In Work-
shops at the Twenty-Ninth AAAI Conference on Artificial In-
telligence, 55–60.
Hooker, J. N. 2012. Integrated Methods for Optimization.
Springer.
Jäger, G.; and Molitor, P. 2008. Algorithms and Experimen-
tal Study for the Traveling Salesman Problem of Second
Order. In International Conference on Combinatorial Op-
timization and Applications, 211–224. Berlin, Heidelberg:
Springer.
Kuroiwa, R.; and Beck, J. C. 2023a. Domain-Independent
Dynamic Programming: Generic State Space Search for
Combinatorial Optimization. In Proceedings of the Thirty-
Third International Conference on Automated Planning and
Scheduling (ICAPS), 236–244. Palo Alto, California USA:
AAAI Press.

Kuroiwa, R.; and Beck, J. C. 2023b. Solving Domain-
Independent Dynamic Programming Problems with anytime
heuristic search. In Proceedings of the Thirty-Third Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 245–253.
Kuroiwa, R.; and Beck, J. C. 2024. Domain-Independent
Dynamic Programming. arXiv:2401.13883 [cs.AI].
arXiv:2401.13883.
Kuroiwa, R.; Chen, Y.; and Beck, J. C. 2024. DIDP. https:
//didp.ai. Accessed: 2024-10-29.
Laborie, P.; Rogerie, J.; Shaw, P.; and Vilı́m, P. 2018. IBM
ILOG CP Optimizer for Scheduling: 20+ Years of Schedul-
ing With Constraints at IBM/ILOG. Constraints, 23: 210–
250.
Laporte, G. 1992. The Traveling Salesman Problem: An
Overview of Exact and Approximate Algorithms. European
Journal of Operational Research, 59(2): 231–247.
Medeiros, A. C.; and Urrutia, S. 2010. Discrete Optimiza-
tion Methods to Determine Trajectories for Dubins’ Vehi-
cles. Electronic Notes in Discrete Mathematics, 36: 17–24.
Oswin, A.; Fischer, A.; Fischer, F.; Meier, J. F.; Pferschy, U.;
Pilz, A.; and Staněk, R. 2017. Minimization and Maximiza-
tion Versions of the Quadratic Travelling Salesman Problem.
Optimization, 66(4): 521–546.
Perron, L.; and Furnon, V. 2024. OR-Tools. https://
developers.google.com/optimization. Accessed: 2024-10-
29.
Pferschy, U.; and Staněk, R. 2017. Generating Subtour
Elimination Constraints for the TSP From Pure Integer So-
lutions. Central European journal of operations research,
25: 231–260.
Pham, Q. A.; Lau, H. C.; Hà, M. H.; and Vu, L. 2023.
An Efficient Hybrid Genetic Algorithm for the Quadratic
Traveling Salesman Problem. In Proceedings of the Thirty-
Third International Conference on Automated Planning and
Scheduling (ICAPS), 343–351.
Savla, K.; Frazzoli, E.; and Bullo, F. 2008. Traveling Sales-
person Problems for the Dubins Vehicle. IEEE Transactions
on Automatic Control, 53(6): 1378–1391.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
Journal of Artificial Intelligence Research, 62: 535–577.
Staněk, R.; Greistorfer, P.; Ladner, K.; and Pferschy, U.
2019. Geometric and LP-based Heuristics for Angular Trav-
elling Salesman Problems in the Plane. Computers & Oper-
ations Research, 108: 97–111.
Tange, O. 2011. GNU Parallel - The Command-Line Power
Tool. The USENIX Magazine, 36: 42–47.
Vidal, T.; Crainic, T. G.; Gendreau, M.; Lahrichi, N.; and
Rei, W. 2012. A Hybrid Genetic Algorithm for Multide-
pot and Periodic Vehicle Routing Problems. Operations Re-
search, 60(3): 611–624.
Zhang, W. 1998. Complete Anytime Beam Search. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
425–430.

