
Compiling Optimal Numeric Planning to Mixed Integer Linear Programming

Chiara Piacentini†, Margarita P. Castro†, Andre A. Cire‡ and J. Christopher Beck†
†Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada, ON M5S 3G8

‡Department of Management, University of Toronto Scarborough, Toronto, Canada, ON M1C 1A4

Abstract

Compilation techniques in planning reformulate a problem
into an alternative encoding for which efficient, off-the-shelf
solvers are available. In this work, we present a novel mixed-
integer linear programming (MILP) compilation for cost-
optimal numeric planning with instantaneous actions. While
recent works on the problem are restricted to actions that
modify variables present in simple numeric conditions, our
MILP formulation, in addition, handles linear conditions and
linear action effects on numeric state variables. Such prob-
lems are particularly challenging due to the state-dependency
of the action effects. Experiments show that our approach, in
addition to being the state of the art for the more general prob-
lem class, is competitive with heuristic search-based planners
on domains with only simple numeric conditions.

1 Introduction
While heuristic search is the most widely used approach
for classical planning, there are several techniques based on
compilation to other approaches such as Boolean Satisfia-
bility (SAT) (Rintanen 2012), Constraint Satisfaction (Vidal
2011), and Integer Programming (IP) (Vossen et al. 1999;
Kautz and Walser 1999; van den Briel, Vossen, and Kamb-
hampati 2005). Compilation techniques have been proven
particularly useful for extensions of classical planning, such
as SAT Modulo Theory (SMT) approaches to numeric and
hybrid planning (Scala et al. 2016b; Cashmore et al. 2016).

This work considers cost-optimal numeric planning with
instantaneous actions. Numeric planning is an extension
of classical planning where state variables can assume nu-
meric values, action preconditions can be numeric expres-
sions over variables, and action effects can modify the values
of such variables. We propose a mixed-integer linear pro-
gramming (MILP) compilation procedure for cost-optimal
numeric planning. Our model builds on the IP model for
classical planning proposed by Vossen et al. (1999) and gen-
eralizes the work by Kautz and Walser (1999) to consider a
richer form of numeric preconditions and effects.

To our knowledge, none of the admissible heuristics for
numeric planning address linear effects on numeric vari-
ables due to their state-dependency. The empirical evalu-
ation shows that our MILP model outperforms heuristic-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

based planners that naively ignore state-dependent effects,
while remaining competitive to the state of the art in do-
mains with simple numeric conditions.

2 Notation and Preliminaries
We consider a fragment of numeric planning expressible
with PDDL2.1, level 2 (Fox and Long 2003).

A numeric planning task is a tuple Π = 〈Vp, Vn, A, I,G〉,
where Vp and Vn are the sets of propositional and numeric
variables, with domains {true, false} and Q, respectively.A
is the set of actions, I the initial state, and G the set of goal
conditions. A state s is a mapping of each variable to a value
in its domain, where s(v) indicates the value of v in s.

Conditions can be propositional or numeric. The former
correspond to vp ∈ Vp being true, while the latter are of the
form c : ξ�0, where � ∈ {≥, >,=} and ξ =

∑
v∈Vn

wc
vv+

wc
0 is a linear expression over Vn with wc

v, w
c
0 ∈ Q. C is the

set of all numeric conditions. Goals are propositional, Gp,
or numeric, Gn, conditions.

An action a ∈ A is a tuple 〈pre(a), eff (a), cost(a)〉:
pre(a) and eff (a) are sets of preconditions and effects, and
cost(a) > 0 is the action cost. Preconditions can be proposi-
tional, prep(a), or numeric, pren(a). Effects are defined as
eff (a) = 〈add(a), del(a), num(a)〉, with add(a), del(a) ⊆
prep(a) as the added and deleted propositions, and num(a)
the set of numeric effects. Numeric effects are assignments
v := ξ, where ξ =

∑
w∈Vn

kv,aw w + kv,a is a linear expres-
sion over Vn with kv,aw , kv,a ∈ Q. Each action has at most
one numeric effect on each numeric state variable.

Action a ∈ A is applicable in a state s iff s(vp) = true
∀vp ∈ prep(a) and s(ξ) � 0 for all c : ξ � 0 ∈ pren(a),
where s(ξ) is the evaluation of ξ in s. Given a state s and an
applicable action a, the successor state s′ = a(s) is: ∀vp ∈
Vp, s′(vp) = true if vp ∈ add(a), s′(vp) = false if vp ∈
del(a)\add(a), and s′(vp) = s(vp) otherwise. Each vn ∈
Vn takes value s′(vn) := s(ξ) if (vn := ξ) ∈ num(a), and
s′(vn) = s(vn) otherwise.

A plan π is a sequence of applicable actions a0, . . . , an,
such that all goals are satisfied in the final state. A cost-
optimal plan, π̂, is a plan with minimum cost.

3 Related Work
Recent work on cost-optimal numeric planning has extended
admissible heuristics for classical planning to handle actions

with constant effects on numeric variables and linear condi-
tions, known as simple numeric conditions (Scala, Haslum,
and Thiébaux 2016). Admissible heuristics for these prob-
lems are the sub-goaling heuristic ĥrmax (Scala, Haslum,
and Thiébaux 2016), cost-optimal partitioning based on
landmarks hlma+ (Scala et al. 2017), and delete relax-
ation and network flow heuristics (Piacentini et al. 2018a).
While non-admissible heuristics (Hoffmann 2003; Coles et
al. 2008; Scala et al. 2016a; Illanes and McIlraith 2017) and
SMT compilations (Scala et al. 2016b) for linear effects have
been proposed, none have considered the optimal setting.

In classical planning, two IP models (Vossen et al. 1999)
have been used to find feasible plans: a state-base model,
which encodes proposition values in each state using binary
variables, and a state-change model, which uses four vari-
ables to represent the change of value of each proposition in
every state. van den Briel, Vossen, and Kambhampati (2005)
extended the latter model to SAS+ planning (Bäckström and
Nebel 1995). Here we extend the state-change model.

State-change IP Model for Classical Planning. Consider
Π = 〈Vp, Vn, A, I,G〉 with Vn = ∅ and T ∈ Z+. Let T =

{0, ..., T − 1} and T̃ = T ∪ {T} be sets of time-steps. For
each p ∈ Vp, let pnd(p) = {a ∈ A : p ∈ prep(a), p 6∈
del(a)} be the set of actions that require and do not delete
p, anp(p) = {a ∈ A : p 6∈ prep(a), p ∈ add(a)} the set
of actions that add and do not require p, and pd(p) = {a ∈
A : p ∈ prep(a), p ∈ del(a)\add(a)} the set of actions that
require and delete p.

Variable ua,t ∈ {0, 1}, ∀a ∈ A,∀t ∈ T indicates whether
a is applied at time-step t. Consider variables uap,t, u

pa
p,t, u

pd
p,t

and ump,t ∈ {0, 1},∀p ∈ Vp,∀t ∈ T̃ . Variable uap,t indicates
whether p is added at time-step t but not required before,
while upap,t indicates whether p is required and not deleted by
any action at time-step t. Variable updp,t = 1 if p is deleted and
not added at time-step t but is required before, and ump,t = 1
if p is true at time-step t and is not required nor deleted.

The state-change model SC(Π, T) (Vossen et al. 1999) is
shown in Figure 1. Constraints (1) and (2) represent the ini-
tial state and goal conditions, respectively. Constraints (3)-
(5) update the value of the state change variables. It should
be noted that only one action at each time-step with a neg-
ative effect on the same proposition is allowed (5). Con-
straints (6)-(7) enforce actions preconditions and effects.
Constraints (8)-(10) avoid the simultaneous application of
conflicting actions. Constraint (11) propagates the value of
the state change variables from one time-step to the next.

4 MILP Model of Numeric Planning Tasks
We extend SC(Π, T) to SCN (Π, T). All constraints of
SC(Π, T) are included in SCN (Π, T). For modeling pur-
poses, we partition the set of actions affecting a numeric
variable v ∈ Vn into: se(v) = {a ∈ A : (v := v + kv,a) ∈
num(a)} the set of actions that change v via constant ef-
fects, and le(v) = {a ∈ A : (v := ξ) ∈ num(a), a /∈
se(v)} the set of actions that change v via linear effects.

min
∑

a∈A,t∈T

costaua,t (SC(Π, T))

s.t. ua
p,0 = I(p) ∀p ∈ Vp (1)

ua
p,T + upa

p,T + um
p,T ≥ 1 ∀p ∈ Gp (2)∑

a∈pnd(p)

ua,t ≥ upa
p,t+1 ∀p ∈ Vp,∀t ∈ T (3)

∑
a∈anp(p)

ua,t ≥ ua
p,t+1 ∀p ∈ Vp, ∀t ∈ T (4)

∑
a∈pd(p)

ua,t = upd
p,t+1 ∀p ∈ Vp, ∀t ∈ T (5)

ua,t ≤ upa
p,t+1 ∀p ∈ Vp,∀a ∈ pnd(p),∀t ∈ T (6)

ua,t ≤ ua
p,t+1 ∀p ∈ Vp,∀a ∈ anp(p), ∀t ∈ T (7)

ua
p,t + um

p,t + upd
p,t ≤ 1 ∀p ∈ Vp, ∀t ∈ T̃ (8)

upa
p,t + um

p,t + upd
p,t ≤ 1 ∀p ∈ Vp, ∀t ∈ T̃ (9)

ua,t + ua′,t ≤ 1 ∀a, a′ ∈ Ã s.t. a 6= a′∧
del(a) ∩ (add(a′) ∪ pre(a′)) 6= ∅∀t ∈ T̃

(10)

upa
p,t+1 + um

p,1 + upd
p,t+1 ≤ ua

p,t + upa
p,t + um

p,t

∀p ∈ Vp∀t ∈ T
(11)

Figure 1: The state-change model for classical planning
(Vossen et al. 1999).

Given an action a ∈ A, we call nmutex(a) (numeric mu-
tex of a) the set of mutex actions of a due to an interference
of some numeric variables.

Definition 4.1. Given actions a, a′ ∈ A, a′ is numeric mu-
tex to a if there exists a variable v ∈ Vn such that (v := ξ) ∈
num(a) and either: (i) v is used in one of the numeric ef-
fects of a′, i.e., ∃v′ ∈ Vn such that (v′ := ξ′) ∈ num(a′)
and v ∈ ξ′, or (ii) v is part of a precondition of a′, i.e.,
∃ (c :

∑
v∈Vn

wc
vv + wc

0 � 0) ∈ pren(a′) with wc
v 6= 0.

Our definition of mutex is more restrictive than that al-
lowed by PDDL2.1 (Fox and Long 2003). Nonetheless,
since optimal plans minimize the total action cost, the model
does not rule out any solutions, provided that the maximum
time horizon is increased adequately. This is because there
will be a corresponding solution with the same set of actions
and some extra time-steps.

4.1 MILP Formulation
Consider parameters mc,t ∈ Q, ∀c ∈ C,∀t ∈ T̃ ,
Mstep

v,t ,mstep
v,t ,M

a
v,t,m

a
v,t ∈ Q, ∀v ∈ Vn,∀t ∈ T̃ . Let

yv,t ∈ Q ∀v ∈ Vn,∀t ∈ T̃ represent the value of the
numeric variable v at time-step t. The constraints model-
ing numeric effects and conditions are given in Figure 2.
Constraint (12) sets the variables to their initial state values,
while constraint (13) enforces the numeric goal conditions.
Constraint (14) ensures the satisfaction of numeric precondi-
tions. Constraints (15)-(18) update the values of the numeric
variables according to the action effects. Constraint (19) en-
forces the mutex action relation.

yv,0 = I(v) ∀v ∈ Vn (12)∑
v∈Vn

wc
vyv,T + wc

0 � 0 ∀c ∈ Gn (13)

∑
v∈V

wc
vyv,t + wc

0 �mc,t(1− ua,t)

∀a ∈ A,∀c ∈ pren(a), ∀t ∈ T
(14)

yv,t+1 ≤ yv,t +
∑

a∈se(v)

kv,aua,t + Mstep
v,t+1

∑
a∈le(v)

ua,t

∀v ∈ Vn,∀t ∈ T
(15)

yv,t+1 ≥ yv,t +
∑

a∈se(v)

kv,aua,t + mstep
v,t+1

∑
a∈le(v)

ua,t

∀v ∈ Vn,∀t ∈ T
(16)

yv,t+1 −
∑

w∈Vn

kv,a
w yw,t ≤ kv,a + Ma

v,t+1(1− ua,t)

∀v ∈ Vn,∀a ∈ le(v), ∀t ∈ T
(17)

yv,t+1 −
∑

w∈Vn

kv,a
w yw,t ≥ kv,a + ma

v,t+1(1− ua,t)

∀v ∈ Vn,∀a ∈ le(v), ∀t ∈ T
(18)

ua,t + ua′,t ≤ 1 ∀a ∈ A,∀a′ ∈ nmutex(a)∀t ∈ T (19)

Figure 2: Constraints for numeric effects and conditions.

The model considers two ways to update the values of
a numeric variable. Constraints (15)-(16) update v ∈ Vn
when using actions with constant effects, and also propa-
gate the value of v from time-step t to t + 1, if no action
affecting v is applied. When a variable is modified via linear
effects, constraints (17)-(18) force the terms containingMa

v,t
(and ma

v,t) to 0, updating the variable accordingly, while
constraints (15)-(16) become redundant. Although constant
effects could be encoded with constraints (17)-(18), con-
straints (15)-(16) provide a tighter linear (LP) relaxation.1

4.2 Big-M Values
Big-M constraints are an MILP technique to express logical
implications. E.g., y = 1 ⇒ a>x ≤ b, with binary variable
y, can be expressed as a>x + My ≤ b + M , provided that
M ≥ a>x − b. Smaller M values (which are still upper
bounds on a>x− b) compute tighter LP relaxations.

We use big-M constraints to model numeric preconditions
and effects (14)-(18). Given a time-step t we compute Mv,t

and mv,t propagating the bounds of v ∈ Vn as shown in
Figure 3. The bounds are calculated starting from the values
of the variables in the initial state and iteratively adding the
maximum (minimum) effects that can be obtained by apply-
ing all the actions.

4.3 Correctness of the Encoding
To show the correctness of our model, we provide a mapping
of any feasible plan π of a numeric planning problem Π to a

1The complete proofs of this claim and the following proposi-
tions can be found in the technical report (Piacentini et al. 2018b).

mc,t =
∑

v∈Vn:wc
v<0

wc
vMv,t +

∑
v∈Vn:wc

v>0

wc
vmv,t + wc

0

Mstep
v,t = Mv,t −mv,t−1

mstep
v,t = mv,t −Mv,t−1

Ma
v,t = Mv,t −

∑
w∈Vn:
kv,a
w <0

kv,a
w Mv,t−1 +

∑
w∈Vn:
kv,a
w >0

kv,a
w mv,t−1 − kv,a

ma
v,t = mv,t −

∑
w∈Vn:
kv,a
w >0

kv,a
w Mv,t−1 +

∑
w∈Vn:
kv,a
w <0

kv,a
w mv,t−1 − kv,a

where:
Mv,0 =mv,0 = I(v),

Mv,t = max

Mv,t−1 +
∑

a∈se(v):kv,a>0

kv,a, max
a∈le(v)

ā(v)

mv,t = min

mv,t−1 +
∑

a∈se(v):kv,a<0

kv,a, min
a∈le(v)

a(v)

ā(v) =

∑
w∈Vn:k

v,a
w >0

kv,a
w Mw,t−1 +

∑
w∈Vn:k

v,a
w <0

kv,a
w mw,t−1

a(v) =
∑

w∈Vn:k
v,a
w >0

kv,a
w mw,t−1 +

∑
w∈Vn:k

v,a
w <0

kv,a
w Mw,t−1

Figure 3: Calculating the big-M constants.

feasible solution of SCN (Π,|π| + 1) and inversely given a
feasible solution of the SCN model, we provide a mapping
to a valid plan π of Π.

Definition 4.2. Given a numeric planning task Π, we define
a mappingM from a plan π of length |π| of Π to a solution
S of SCN (Π,|π|+ 1) as follows:
• ∀a ∈ A, ∀t ∈ T : ua,t = 1 if a appears at time-step t of
π, 0 otherwise;

• ∀p ∈ Vp, ∀t ∈ T : the values updp,t, u
pa
p,t, u

a
p,t and ump,t are

assigned according to their definitions.
• ∀v ∈ Vn: yv,0 = I(v) and yv,t = at−1(...(a0(I(v)))),
∀t ∈ T̃\{0}.

Proposition 4.1. Given a numeric planning task Π and a
plan π, a solution S = M(π) satisfies all the constraints of
SCN (Π, |π|+ 1).

Definition 4.3. Given a numeric planning task Π, we de-
fine a mapping M̃ from a solution S of SCN (Π, T) to a
sequential plan π of Π by taking the sequence of the actions
a ∈ A for which ua,t = 1 in ascending order of t ∈ T . If
for a time-step tmore than one action has ua,t = 1, then any
arbitrary ordering of the actions can be chosen.

Proposition 4.2. Given a feasible solution S of
SCN (Π, T), a plan M̃(S) is a feasible plan for Π.

The proofs of these propositions are based on showing
that the constraints of SCN (Π, T) correctly capture the se-
mantics of numeric planning (Piacentini et al. 2018b).

4.4 Valid Inequalities
While SCN (Π, T) is sufficient to model the problem, we
can add valid (redundant) constraints to tighten the model.

Landmark Constraints. Consider FL the set of fact land-
marks, i.e., the set of propositions that have to be achieved
at least once in every feasible plan, and AL the set of action
landmarks, i.e., actions that must be present in every feasible
plan. Then, constraints (20) and (21) are valid.∑

t∈T̃

ua
p,t + upa

p,t + um
p,t ≥ 1 ∀p ∈ FL (20)

∑
t∈T

ua,t ≥ 1 ∀a ∈ AL (21)

Landmarks are extracted using an extension of the algo-
rithm proposed by Imai and Fukunaga (2015).

Relevance Analysis. Irrelevant actions are actions that
never contribute to achieving a goal condition or a precon-
dition of another relevant action. Given a set of irrelevant
actions, constraint (22) is valid (Imai and Fukunaga 2015).

ua,t = 0 ∀a ∈ A s.t. a is irrelevant, ∀t ∈ T (22)

5 Iterative Time Horizon Allocation
Model SCN (Π, T) assumes a time horizon T . An initial T
can be estimated from an admissible heuristic in the initial
state, either using the heuristic value or, when the heuris-
tic calculates a relaxed plan, from the relaxed plan length.
We then solve the MILP model, and iteratively increase the
value of T by one, until a solution is found. Let π∗T be the op-
timal plan for the smallest T that admits a feasible solution.
Plan π∗T is not necessarily optimal for the planning task Π, as
there might be lower cost solutions with a longer horizon. If
the cost of π∗T is equal to the admissible heuristic of the ini-
tial state or is less than T ·mina∈A cost(a), then the solution
is optimal. Otherwise, to guarantee optimality, we solve the
MILP with time-horizon T̂ = cost(π∗T)/mina∈A cost(a),
with the following additional constraints.∑

a∈A

ua,t ≤ 1 ∀t ∈ T (23)

∑
a∈A

ua,t+1 ≤
∑
a∈A

ua,t ∀a ∈ A,∀t ∈ T (24)

Constraint (23) forces a plan to be sequential, while con-
straint (24) eliminates symmetries caused by time-steps
without any actions. Optimality can be guaranteed only
when the problem does not have zero-cost actions.

6 Empirical Evaluation
We evaluate SCN (Π, T) with the iterative time horizon al-
location (CSC) on domains featuring linear effects and sim-
ple numeric conditions. In both cases, we start with a T
equal to the number of time-steps of the relaxed plan calcu-
lated by hcIP in the initial state (Piacentini et al. 2018a). In
domains with linear effects, hcIP ignores the numeric condi-
tions. We run every instance with 30 minutes time and 4 GB
memory limits. All models are solved using CPLEX 12.7.

Domain # hblind hc,propIP CSC VBS
C T C T C T

Counters-le 15 6 13.6 6 117.0 7 0.5 7
Sailing-le 25 1 0.3 1 4.0 4 0.1 4
Rover-le 20 3 229.1 4 0.8 4 1.3 4

Total 60 10 76.9 11 70.8 15 0.7 15

Table 1: Coverage (C) and average execution time in seconds
(T) of domains with linear and simple effects. VBS is the
number of problems solved by at least one method.

Domain # ĥrmax hlma+ hcIP CSC VBS
C T C T C T C T

Counters 15 6 2.5 7 2.3 12 0.3 15 0.0 15
Gardening 63 63 3.5 63 4.8 63 6.1 63 11.1 63

Sailing 25 14 1.3 5 2.6 22 32.1 21 1.4 23
Sailing (1-20) 20 12 24.6 20 18.7 12 454.4 19 9.3 20

Farmland 30 30 11.1 30 27.0 30 22.6 30 11.0 30
Rover 20 4 1.4 4 1.2 7 1.8 4 2.7 7
Depots 20 2 0.4 4 0.7 5 0.7 1 4.0 5
Satellite 20 2 75.6 3 1.7 3 11.8 4 197.0 4

Zeno Travel 20 6 7.0 7 12.9 8 13.9 5 144.5 8
Total 233 139 8.3 143 11.2 162 53.0 162 17.8 175

Table 2: Coverage (C) and average execution time in seconds
(T) of domains with simple condition effects only. VBS is
the number of problems solved by at least one method.

Simple-condition domains are taken from the literature
(Scala et al. 2017), while we develop three domains with
linear effects by modifying counters, sailing and rovers.

In domains with linear effects, we compare our compila-
tion with an A* search using two simple admissible heuris-
tics: a goal sensitive heuristic (hblind), that returns 0 if the
state is a goal state, 1 otherwise, and the hcIP heuristic that
ignores numeric conditions (hc,propIP) (Imai and Fukunaga
2015). Table 1 reports the coverage of the problems solved
and the average execution time.CSC solves only 15 of 60 in-
stances and any instance solved by another approach is also
solved by CSC . Clearly, these state-of-the-art results leave
much room for improvement.

For domains with simple conditions, we compare against
three heuristics: ĥrmax (Scala, Haslum, and Thiébaux
2016), hlma+ (Scala et al. 2017), and hcIP (Piacentini et al.
2018a). Table 2 reports the coverage and the average exe-
cution time. The results show that CSC achieves the same
coverage as the best heuristic-search planner while solving
four instances in the simple condition domains that none of
heuristic-search planners could solve.

7 Conclusion
We presented a mixed integer linear programming compi-
lation for numeric planning problems with instantaneous
actions and linear numeric conditions and effects. Lin-
ear effects are particularly challenging due to their state-
dependent nature and admissible heuristics that account for
them have yet to be developed. Our experimental evalua-
tion showed that while our compilation can deal with these
problems, they still remain difficult to consistently solve in
a reasonable run-time. When considering domains with only
simple numeric conditions, our MILP model is competitive
with state-of-the-art heuristic search approaches.

Acknowledgements
We would like to thank the anonymous reviewers whose
feedback helped improve the paper. We gratefully acknowl-
edge funding from the Natural Sciences and Engineering
Research Council of Canada and CONICYT (Becas Chile).

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11:625–656.
Cashmore, M.; Fox, M.; Long, D.; and Magazzeni, D. 2016.
A Compilation of the Full PDDL + Language into SMT. In
ICAPS 2016, 79–87.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. A Hybrid
Telaxed Planning Graph-LP Heuristic for Numeric Planning
Domains. In ICAPS 2008, 52–59.
Fox, M., and Long, D. 2003. PDDL2. 1: An Extension to
PDDL for Expressing Temporal Planning Domains. JAIR
20:61–124.
Hoffmann, J. 2003. The Metric-FF planning system: Trans-
lating “ignoring delete lists” to numeric state variables. JAIR
20:291–341.
Illanes, L., and McIlraith, S. A. 2017. Numeric planning
via abstraction and policy guided search. In IJCAI 2017,
4338–4345.
Imai, T., and Fukunaga, A. 2015. On a practical, integer-
linear programming model for delete-free tasks and its use
as a heuristic for cost-optimal planning. JAIR 54:631–677.
Kautz, H., and Walser, J. P. 1999. State-space planning by
integer optimization. AAAI 1999 1:8.
Piacentini, C.; Castro, M.; Cire, A. A.; and Beck, J. C.
2018a. Linear and integer programming-based heuristics for
cost-optimal numeric planning. In AAAI 2018.
Piacentini, C.; Castro, M.; Cire, A. A.; and Beck, J. C.
2018b. Online Appendix to “Compiling Optimal Numeric
Planning to Mixed Integer Linear Programming”, published
at ICAPS2018. Technical Report 2018A, Toronto Intelligent
Decision Engineering Laboratory, University of Toronto.
tidel.mie.utoronto.ca/pubs/TechReport2018A.pdf.
Rintanen, J. 2012. Engineering efficient planners with SAT.
ECAI 2012 242:684–689.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2016a.
Interval-based relaxation for general numeric planning. In
ECAI, 655–663.
Scala, E.; Ramirez, M.; Haslum, P.; and Thiebaux, S. 2016b.
Numeric Planning with Disjunctive Global Constraints via
SMT. In ICAPS 2016, 276–284.
Scala, E.; Haslum, P.; Magazzeni, D.; and Thiebaux, S.
2017. Landmarks for numeric planning problems. In IJCAI
2017.
Scala, E.; Haslum, P.; and Thiébaux, S. 2016. Heuristics
for numeric planning via subgoaling. In IJCAI 2016, 3228–
3234.
van den Briel, M.; Vossen, T.; and Kambhampati, S. 2005.
Reviving integer programming approaches for AI planning:
A branch-and-cut framework. In ICAPS 2005, 310–319.

Vidal, V. 2011. CPT4: An Optimal Temporal Planner Lost
in a Planning Competition without Optimal Temporal Track.
In The 7th IPC: Description of Participant Planners of the
Deterministic Track. 25–28.
Vossen, T.; Ball, M. O.; Lotem, A.; and Nau, D. S. 1999. On
the use of integer programming models in AI planning. In
IJCAI 1999, 304–309.

