
Linear and Integer Programming-based Heuristics
for Cost-optimal Numeric Planning

Chiara Piacentini†, Margarita P. Castro†, Andre A. Cire‡ and J. Christopher Beck†
†Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada, ON M5S 3G8

‡Department of Management, University of Toronto Scarborough, Toronto, Canada, ON M1C 1A4

Abstract

Linear programming has been successfully used to compute
admissible heuristics for cost-optimal classical planning. Al-
though one of the strengths of linear programming is the abil-
ity to express and reason about numeric variables and con-
straints, their use in numeric planning is limited. In this work,
we extend linear programming-based heuristics for classi-
cal planning to support numeric state variables. In partic-
ular, we propose a model for the interval relaxation, cou-
pled with landmarks and state equation constraints. We con-
sider both linear programming models and their harder-to-
solve, yet more informative, integer programming versions.
Our experimental analysis shows that considering an NP-
Hard heuristic often pays off and that A∗ search using our
integer programming heuristics establishes a new state of the
art in cost-optimal numeric planning.

1 Introduction
Cost-optimal planning is the problem of selecting a
minimal-cost sequence of actions to achieve a set of goals.
Several works (e.g. (Karpas and Domshlak 2009; Pom-
merening, Röger, and Helmert 2013)) focus on its classi-
cal version, in which states are represented by propositional
variables. This classical representation limits the expressive
power of the formalism, as problems with unbounded do-
main variables cannot be expressed. The encoding of vari-
ables with discrete and finite domains is possible, but arith-
metic operations require at least a number of propositions
that is quadratic in the variables’ domain.

Numeric planning is an extension of classical planning in
which state variables can assume numeric values and con-
ditions can be represented as numeric expressions over such
variables. Its higher expressive power makes numeric plan-
ning more attractive for real-world applications. However,
this expressivity comes at a price: numeric planning prob-
lems are, in the general case, undecidable, while classical
planning is in P-SPACE (Helmert 2002).

Integer and linear programming (IP and LP, respectively)
are optimization techniques for problems that can be formu-
lated over a set of integer or continuous variables subject to
linear constraints and a linear objective function. A number
of works in classical planning use LP models to calculate

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

heuristic values. Given the ability of LP to reason with nu-
meric constraints, its use in numeric planning has shown to
be promising. For example, the planner LPRPG integrates
LP models with Relaxed Planning Graphs (RPG) to cal-
culate upper and lower bounds of numeric resources when
applying actions (Coles et al. 2008). The hybrid landmark
heuristic (Scala et al. 2017) exploits LP models to com-
pute the minimal number of actions required to achieve nu-
meric conditions identified as landmarks. The result of the
LP model is then used as an admissible estimate to solve
cost-optimal numeric planning problems.

In this paper, we explore the use of IP and LP mod-
els to calculate admissible heuristics for numeric planning
problems, where actions modify numeric state variables by
adding constant quantities. We adapt the IP model of the
delete relaxation in classical planning (Imai and Fukunaga
2015) to the interval relaxation for numeric planning. In ad-
dition, we extend this model to include constraints from the
classical operator counting framework (Pommerening et al.
2015). We experiment with both IP models and their LP re-
laxations on a set of benchmark domains. In contrast to clas-
sical planning, we find that our IP heuristics are preferable to
their LP counterparts as they outperform the state-of-the-art
numeric planners.

2 Notation and Preliminaries
We consider numeric planning with instantaneous actions,
corresponding to a fragment of planning expressible with
PDDL2.1, level 2 (Fox and Long 2003).

A numeric planning task is a 5-tuple Π =
〈Vp, Vn, A, I,G〉, where Vp is the set of propositional
variables, Vn is the set numeric variables, A is the set of
action operators, I is the initial state, and G is a set of goal
conditions. Propositional variables vp ∈ VP assume binary
domains {true, false}, while numeric variables vn ∈ Vn
have numeric domains Q. A state s is a mapping of all the
variables to a value in their respective domains. We denote
s(v) to be the value of a variable v in state s. In particular, I
represents the initial state of the planning task and so I(v)
is the value of v in the initial state.

In numeric planning, conditions can be of two types:
propositional or numeric. A propositional condition corre-
sponds to a variable vp ∈ Vp being true. A numeric condi-
tion c is defined as c : ξ � 0, where � ∈ {≤, <,=} and ξ is



an arithmetic expression over Vn and Q.
Each action a ∈ A is defined by a 3-tuple a =

〈pre, eff , cost〉, where pre is the set of preconditions, eff
the set of effects, and cost ≥ 0 is the action cost. Precondi-
tions are defined as 〈prep, pren〉, propositional and numeric
conditions, respectively. The effects of an action a ∈ A cor-
respond to a 3-tuple eff = 〈add, del, num〉, where add and
del are subsets of Vp representing added and deleted propo-
sitions, and num is the set of numeric effect. A numeric
effect is the assignment of a numeric variable vn ◦ ξ with
◦ ∈ {=,+=,−=, ∗=, /=} and ξ a numeric expression. We
assume that each action has at most one numeric effect on
each numeric variable.

Action a ∈ A is applicable in a state s iff all its precon-
ditions are satisfied in s. Formally, vp ∈ prep(a) is satis-
fied if s(vp) = true; (c : ξ � 0) ∈ pren(a) is satisfied if
s(ξ)�0, where s(ξ) is the evaluation of ξ in s. Given a state
s and an applicable action a, the successor state s′ = a(s)
is obtained as follows. For each vp ∈ Vp, s′(vp) = true if
vp ∈ add(a), s′(vp) = false if vp ∈ del(a)/add(a), and
s′(vp) = s(vp) otherwise. For each vn ∈ Vn, s′(vn) ◦ s(ξ)
if (vn ◦ ξ) ∈ num(a), and s′(vn) = s(vn) otherwise.

Similar to action preconditions, goal conditions can be ei-
ther propositional (Gp) or numeric (Gn). Propositional goal
conditions are of the form vp ∈ Gp ⊆ Vp and numeric goal
conditions are c : ξ � 0. We call C the set of numeric con-
ditions that appear as preconditions of actions or as goals;
therefore a goal condition is c ∈ Gn ⊆ C.

A sequential plan πs is a sequence of applicable ac-
tions a0, . . . , an, such that all the propositional and numeric
conditions are satisfied in sG = πs(I), where πs(I) :=
an(an−1(. . . (a0(I)))). A cost-optimal plan is a sequential
plan π̂s such that cost(π̂s) =

∑
a∈π̂s cost(a) ≤ cost(πs)

for any sequential plan πs of Π.
A partial order plan πp = π0, . . . , πn is a sequence of

plan-steps πi, where πi is a set of actions applied at time
step i. A partial order plan is valid if every sequential plan
derived by sequencing the actions in the plan-steps is valid.
Similarly, a cost-optimal partial order plan is a plan π̂p such
that cost(π̂p) =

∑
πi∈π̂p

∑
a∈πi

cost(a) ≤ cost(πp) for
any partial order plan πp of Π.

This work considers the restricted form of numeric plan-
ning, where planning tasks only have simple numeric condi-
tions (Scala, Haslum, and Thiébaux 2016). Specifically, nu-
meric effects of an action a assume the form v+= kav , with
kav ∈ Q, and all the numeric conditions are linear expres-
sions of the numeric variables, i.e., c :

∑
v∈Vn

wcvv+wc0�0,
where wcv and wc0 are in Q.

2.1 Delete and Interval Relaxations
The delete relaxation is a well-known relaxation of classi-
cal planning tasks which ignores the delete effects of the
actions. Similarly, numeric planning defines the interval re-
laxation (Hoffmann 2003) which accumulates the values of
the numeric variables as intervals.

Formally, given a planning task Π = 〈Vp, Vn, A, I,G〉, its
interval relaxed task is defined as Π+ = 〈Vp, V +

n , A
+, I, G〉.

Numeric variables vn ∈ V +
n take interval values vn =

[vminn , vmaxn ] representing the range of possible values of

the variable. Numeric expressions are defined recursively
(Aldinger, Mattmüller, and Göbelbecker 2015) and action
effects augment the range of the intervals. States satisfy nu-
meric conditions if ∀vn ∈ V +

n there exist a value vn ∈
[vminn , vmaxn ] for which the conditions are true. Lastly, ac-
tions ignore delete effects, i.e., del(a) = ∅ for each a ∈ A+.

3 Related Work
Since the introduction of numeric state variables in the PDDL
language, few works have addressed cost-optimal numeric
planning with simple conditions. The first set of admissible
heuristics (Scala, Haslum, and Thiébaux 2016) extends the
classical planning sub-goaling heuristic hmax (Geffner and
Haslum 2000) to consider numeric effects and conditions.
Follow-on work extends the concept of landmarks to con-
sider numeric conditions (Scala et al. 2017) and proposes
an AND/OR graph landmark extraction algorithm based on
a classical planning approach (Keyder, Richter, and Helmert
2010). The work uses the extracted landmarks together with
an LP model to compute admissible heuristic estimations.

In contrast to cost-optimal numeric planning, a larger
body of work deals with satisficing numeric planning. Ear-
lier works focus on valid plan extraction with respect to the
interval relaxation with the aim of getting informative in-
admissible heuristics (Hoffmann 2003; Coles et al. 2008;
2013). Later, a random-walk approach was proposed for
consumer-only numeric planning problems (Nakhost, Hoff-
mann, and Müller 2012). A recent work transforms a nu-
meric task into a classical one via abstractions and a plan
in the abstract space is used to guide the search in the nu-
meric state space (Illanes and McIlraith 2017). Most of these
works are valid for problems beyond simple numeric condi-
tions, as they consider linear or polynomial effects of ac-
tions. The only heuristic dealing with more general numeric
effects is the one proposed by Scala et al. (2016).

The use of mathematical programming is widely studied
in classical planning. Bylander (1997) represents classical
planning problems as IP models, which can be linearly re-
laxed to calculate admissible heuristics. LP models are also
used to combine abstraction-based heuristics and to derive
the minimal cost set of actions that achieves landmark con-
ditions (Katz and Domshlak 2010; Pommerening, Röger,
and Helmert 2013). Recently, network-flow heuristics are
based on LP models that balance the number of actions
that add and delete propositions (van den Briel et al. 2007;
Bonet 2013). As shown by Imai and Fukunaga (2015), the
delete relaxation task can be compactly encoded into an IP
model, and its linear relaxation can be used as an admissi-
ble heuristic, achieving comparable performance with state-
of-the-art heuristics in cost-optimal classical planning. All
these heuristics are unified in the operator counting frame-
work (Pommerening et al. 2015).

4 An IP Model for the Interval Relaxation
This section presents an IP model for the interval relaxation,
obtained by extending the IP model for the delete relaxation
(Imai and Fukunaga 2015) to consider numeric state vari-
ables. Our model reifies numeric conditions into boolean



variables, thus many of the constraints for classical plan-
ning tasks can be adopted to the numeric case. However,
unlike the classical case, actions are not idempotent oper-
ators, meaning that their application does not always result
in the satisfaction of determined conditions. Instead, actions
can potentially achieve a numeric condition, depending on
the values of the variables appearing in the condition. Scala,
Haslum, and Thiébaux (2016) introduce the concept of pos-
sible achiever to identify actions that can potentially make a
numeric condition true.
Definition 4.1. Given a numeric planning task Π, an ac-
tion a is a possible achiever of a numeric condition c
in state s if there exists an integer number m such that∑
v∈V w

c
v(kv,am+ s(v)) + wc0 � 0.

As a consequence, unlike classical planning, actions can
appear multiple times in an optimal relaxed plan.

4.1 IP Model
Consider a planning task Π = 〈Vp, Vn, A, I,G〉 and its in-
terval relaxation Π+. We define model IP (Π+) as follows.

Let M and B be large constants, while variable ma ∈
{0, ...,M}, ∀a ∈ A represents the number of times an ac-
tion a appears in a plan; ua ∈ {0, 1}, ∀a ∈ A indicates
if action a appears at least once in the plan; up ∈ {0, 1},
∀p ∈ Vp represents whether proposition p is achieved in the
plan; uc ∈ {0, 1}, ∀c ∈ C indicates whether a numeric con-
dition c is satisfied in the last state; ea,p ∈ {0, 1}, ∀a ∈
A,∀p ∈ add(a) indicates that action a is the first achiever
of proposition p; ma,c ∈ {0, ...,M}, ∀a ∈ A,∀c ∈ C repre-
sents the number of times action a is required to satisfy con-
dition c; ea,c ∈ {0, 1}, ∀a ∈ A,∀c ∈ C indicates if action
a is used to achieve condition c; tp, tc and ta ∈ {0, ..., |A|},
represent the time step at which p ∈ Vp, c ∈ C, and a ∈ A
are first added to the plan, respectively.

min
∑
a∈A

costama

s.t. ux = 1 ∀x ∈ Gp ∪Gn (1)
ux ≥ ua ∀a ∈ A,∀x ∈ pre(a) (2)
ua ≥ ea,x ∀a ∈ A,∀x ∈ C ∪ add(a) (3)

I(p) +
∑

a∈A s.t. p∈add(a)

ea,p = up ∀p ∈ VP (4)

∑
v∈Vn

wcv

 ∑
a∈A s.t. kv,a·wc

v≤0

ma,ckv,a + I(v)

+

wc0 +Buc �B ∀c ∈ C (5)
ma,c −Mea,c ≤ 0 ∀a ∈ A,∀c ∈ C (6)
ma ≥ ma,c ∀a ∈ A,∀c ∈ C (7)
tx ≤ ta ∀a ∈ A,∀x ∈ pre(a) (8)
ta + 1 ≤ tx + (|A|+ 1)(1− ea,x)

∀a ∈ A,∀x ∈ C ∪ add(a) (9)

Constraint (1) ensures that all goal conditions are achieved
by a plan, while constraint (2) indicates that an action is
applicable only if its preconditions are satisfied. Constraint

(3) enforces the inclusion of actions that achieve a condi-
tion (propositional or numeric). Constraint (4) indicates that
propositions achieved by the plan are either true in the ini-
tial state or added by some action. Constraint (5) enforces
condition c : ξ � 0 to be true only if variable uc is equal
to 1. Numeric expression ξ is given by the aggregate effects
of the actions that contribute to the change of values of the
variables in ξ and B is an upper bound on ξ. Constraint (6)
sets the first achievers of all the numeric conditions. Con-
straint (7) sets variables ma to the number of times action a
is used. The last two constraints model sequencing require-
ment: constraint (8) indicates that an action cannot occur be-
fore its preconditions are satisfied and constraint (9) forces
a condition to be true after its first achievers are applied.

Constraints (5), (6), and (9) represent logical implication
using the so-called big-M constraints, a well known ap-
proach in IP to model y = 1 ⇒ Ax ≤ b, for a binary
variable y and any variable x. This can be equivalently writ-
ten as Ax ≤ b + M(1 − y), which becomes redundant if
y = 0 and M is sufficiently large. The value of M can im-
pact the IP solver efficiency, as large M values can result
in poor linear relaxations. It is therefore desirable to set M
as the minimal upper bound of expression Ax − b. In con-
straint (9), this value is |A|+ 1 since variables ta and tx are
bound by the number of actions in the problem. However, it
is not always possible to compute upper bounds for numeric
conditions and for the number of times actions are applied
(ma), which are needed for constraints (5) and (6). In such
cases we use arbitrarily large values for M and B to repre-
sent infinity.

4.2 Relation between IP Model and Delete
Relaxation

We now show that plans of Π+ respect constraints in
IP (Π+), and any feasible solution S of IP (Π+) is equiva-
lent to a partial order plan π of Π+.

Definition 4.2. Given an interval relaxed planning task Π+,
we define a mappingM from a plan π of Π+ to a solution
S of IP (Π+) as follows:
• ∀a ∈ A, ua = 1 if a appears at least once in π, 0 other-

wise; ma is equal to the number of times a is in π; ta is
the time-step at which a first appears in π or |A| if a /∈ π.

• ∀p ∈ Vp, if p is in the goal state π(I) then up = 1 and
tp = mina∈π|p∈prep(a) ta; otherwise up = 0 and tp =
|A|.

• ∀c ∈ C, if there exists an action a ∈ π s.t. c ∈ pren(a) or
c ∈ Gn, uc = 1 and tc = mina∈π|c∈pren(a) ta; otherwise
uc = 0 and tc = |A|.

• ∀a ∈ A,∀p ∈ Vp, ea,p = 1 if a ∈ π is the first action that
adds p, 0 otherwise.

• ∀c ∈ C, ∀a ∈ A, if c appears in some preconditions of
an action in π, ma,c is the number of times an action a
appears in the plan π before the first time c is required and
ea,c = 1 if ma,c > 0; ma,c = 0 and ea,c = 0 otherwise.

Proposition 4.1. Given an interval relaxed planning task
Π+ and a plan π of Π+, a solution S = M(π) satisfies
all the constraints of IP (Π+).



Proof. We can show that π satisfies constraints (1)-(4) and
(8)-(9) using the same arguments as Imai and Fukunaga
(2015) (Proposition 1). If condition c : ξ�0 never appears as
a precondition of any action in π or is not part of the goals,
then uc = 0 and constraint (5) is satisfied if B is an upper
bound of the expression ξ. Whenever c is a precondition of
an action in π or a goal condition, uc = 1 and constraint
(5) becomes

∑
v∈V w

c
vv+wc0 � 0, where v is the maximum

(minimum) value of the interval of variable v ∈ Vn if wcv is
a positive (negative) value, at time-step tc. Since c is valid in
the interval relaxation, the constraint is also satisfied. Con-
straints (6) and (7) are satisfied by definition.

Definition 4.3. Given an interval relaxed planning task Π+,
we define a mapping M̃ from a solution S of IP (Π+) to
a partial order plan π of Π+ by sorting in ascending order
of ta all actions a for which ua = 1 and inserting them ma

times at plan-step ta.
Proposition 4.2. Given a feasible solution S of IP (Π+), a
plan π = M̃(S) is a feasible plan for Π+.

Proof. We need to prove that (i) the sequence of actions
produces the goal conditions, (ii) every actions in plan-step
πi is applicable in the state πi−1(. . . (π0(I))), and (iii) the
ordering of actions at the same plan-step does not matter.
The propositional part of conditions (i) and (ii) holds due to
Proposition 2 by Imai and Fukunaga (2015).

We prove the numeric part of condition (i) by contradic-
tion. Consider a goal condition c ∈ Gn such that there is
no combination of actions in π that satisfies c. Since S is
a solution of IP (Π+), uc = 1 and since the c is not sat-
isfied in the initial state, there exist one or more actions aj
for which maj ,c ≥ 1. Given constraints (3), (6) and (7) we
get eaj ,c = 1 and uaj = 1. Thus aj ∈ π, contradicting the
hypothesis.

We prove condition (ii) by induction. For the base case,
assume that there exists an action in the first plan-step a ∈
π0 and condition c ∈ pren(a) such that c is not satisfied in
the initial state. Since ua = 1, constraint (2) forces uc = 1.
Then, given constraint (5), there exists a combination of ac-
tions, aj , that makes condition c true, so eaj ,c = 1 due to
constraint (6). We have taj < ta given (8)-(9), but a is in the
first plan-step, contradicting the initial hypothesis. Hence,
we prove the base case. Now consider that condition (ii)
holds for π0, . . . , πi−1. Let a ∈ πi and c ∈ pren(a) such
that c is not satisfied in πi−1(. . . (π0(I))). Then, there must
exist an action a∗ /∈ (π0, . . . , πi−1) such that ua∗ = 1 and
ta∗ < tai . Then, c must be satisfied in πi−1(. . . (π0(I))).

Condition (iii) is trivially satisfied in the interval relax-
ation because once an action is applicable, it remains appli-
cable for the rest of the plan.

Given an optimal solution Ŝ of IP (Π+), a plan π =

M̃(Ŝ) is an optimal plan for Π+.

5 Additional Constraints
In this section we present two classes of additional con-
straints that enhance the model. The first class corresponds
to valid inequalities, i.e., a set of redundant constraints for

the IP model that can provide tighter LP relaxations. The
second class of constraints provides complementary infor-
mation to the interval relaxation. In both cases, optimal so-
lutions obtained when using these constraints correspond to
lower bounds on the original planning task.

5.1 Valid Inequalities
Landmark Constraints In classical planning, a fact land-
mark is a proposition that is achieved at least once in every
feasible plan. Similarly, action landmarks are those actions
that must be present in every feasible solution of the plan-
ning task. Scala et al. (2017) extend the concept of fact land-
marks to include numeric conditions and propose an algo-
rithm to identify them. In the literature, algorithms to extract
landmarks are based on Planning Graph propagation (Zhu
and Givan 2003) or AND/OR Graphs (Keyder, Richter, and
Helmert 2010). We compute numeric landmarks by extend-
ing the polynomial algorithm proposed by Imai and Fuku-
naga (2015). The algorithm extracts fact landmarks for each
proposition p ∈ Vp and numeric condition c ∈ C. The set
of fact landmarks of the planning task (FL) is the union of
the fact landmarks of the goal conditions. Actions landmarks
(AL) are actions that are the sole achievers of a fact land-
mark. Although the algorithm is not complete, it generates
sound landmarks. The exact relation between this algorithm
and the one presented by Scala et al. (2017) is a subject of
future investigation.

Given a set of fact (FL) and action (AL) landmarks, the
following constraints can be added to IP (Π+):

uf = 1 ∀f ∈ FL (10)
ua = 1 ∀a ∈ AL (11)

Relevance Analysis The model can be enhanced via
backchaining relevance analysis. We extend the definition
of relevant actions (Imai and Fukunaga 2015) to numeric
planning using the concept of possible achiever in Defini-
tion 4.1. Given an action a with some numeric effects, we
call ADD(a) the union of propositions p ∈ add(a) and the
set of numeric conditions for which a is a possible achiever.
Let FADD(a) ⊆ ADD(a) be the set of propositions and nu-
meric conditions for which action a is a possible achiever
and no f ∈ FADD(a) is a fact landmark of a.
Definition 5.1. Given a planning task Π, an action a is rel-
evant if: (i) FADD(a) ∩G 6= ∅, or (ii) there exists a relevant
action a′ satisfying FADD(a) ∩ pre(a′) 6= ∅.
Definition 5.2. Given a planning task Π, a condition x ∈
Vp ∪C is relevant if: (i) x ∈ G, or (ii) there exists a relevant
action a, such that x ∈ pre(a).

Once the relevant facts and actions are identified, the fol-
lowing constraints can be added to IP (Π+) without pruning
any optimal solutions (Imai and Fukunaga 2015):

ux = 0 ∀x ∈ Vp ∪ C s.t. x is not relevant (12)
ua = 0 ∀a ∈ A s.t. a is not relevant (13)

Dominance Analysis Further variable pruning can be ob-
tained using dominated actions. Dominated actions of a clas-
sical delete free task can be easily identified as the actions



whose add effects are a subset of another action’s add ef-
fects. We extend the definition of dominance for numeric
planning, adding a further condition for numeric effects.

Definition 5.3. Given an interval relaxed planning task Π+,
an action a ∈ A is said to be dominated by an action a′ ∈ A,
if (i) FADD(a) ⊆ FADD(a′), (ii) ∀f ∈ pre(a′), f is a fact
landmark for a or f ∈ I , (iii) cost(a) ≥ cost(a′), and (iv)
∀(v += kv,a) ∈ num(a), there exists a (v += kv,a′) ∈
num(a′) such that kv,a · kv,a′ ≥ 0 and |kv,a| ≤ |kv,a′ |.

Condition (iv) indicates that an action is dominated by
another if for every positive increase (decrease) of a variable
of the dominated action, the dominating action positively in-
creases (decreases) the same variables by a larger quantity.

Proposition 5.1. Consider an interval relaxed planning task
Π+ and an action a ∈ A. If there exists an action a′ that
dominates a and a plan π that contains a, then there is a plan
π∗ such that a /∈ π∗ and cost(π∗) ≤ cost(π).

Proof. Following the arguments of Proposition 4 by Imai
and Fukunaga, we can construct π∗ by replacing a with a′
in π. Given that a′ dominates a, condition (ii) in Definition
5.3 guarantees that if a is applicable in a state, then a′ is
also applicable. In addition, conditions (i) and (iv) guarantee
that all propositional and numeric conditions achieved by a
are also achieved by a′. Lastly, cost(π∗) ≤ cost(π) follows
from condition (iii).

We can identify dominated actions (Adom) in polynomial
time with respect to the number of actions. Starting with
Adom = ∅, we iterate over all the actions a in A/Adom
and add to Adom all the actions a′ dominated by a, such
that a 6= a′. The following constraint ensures that actions in
Adom are not part of any solution.

ua = 0 ∀a ∈ Adom (14)

Inverse Actions Pruning We also consider inverse action
pruning (Imai and Fukunaga 2015) for actions with only
propositional effects.

Definition 5.4. Given an interval relaxed planning task Π+,
an action a1 ∈ A is said to be inverse of action a2 ∈ A
if (i) add(a1) ⊆ prep(a2), (ii) add(a2) ⊂ prep(a1),
(iii) num(a1) = ∅, num(a2) = ∅.

Constraint (15) is valid for IP (Π+), where inv(a, p) is
the set of inverse actions of a which have p as an add effect.

up −
∑

a′∈inv(a,p)

ea′,p ≥ ua ∀a ∈ A,∀p ∈ prep(a) (15)

5.2 Strengthening Constraints
A Simple Strengthening Constraint Model IP (Π+)
represents the interval relaxed planning task Π+. Since
we are interested in strong admissible heuristics, we can
strengthen some of the constraints to improve the estima-
tion. Specifically, we modify constraint (5) to partially in-
clude negative effects.

Constraint (5) models the satisfaction of a numeric con-
dition in the interval relaxation. A condition

∑
v∈Vn

kvv +

k0� 0 is satisfied if its variables assume their minimum val-
ues when kv ≥ 0 and their maximum values when kv < 0.
This is modeled in constraint (5) by considering only the
increasing effects on the variables appearing with negative
coefficients, and the decreasing effects on the variables with
positive coefficients. To strengthen the constraint, we can re-
place (5) with the following constraint:

∑
v∈V

wcv

[∑
a∈A

ma,ckv,a + I(v)

]
+wc0 +Buc�B, ∀c ∈ C

(5′)
Constraint (5′) considers the net effect of all the actions that
are possible achievers of the numeric condition. The new
model, IP (Π+) with constraint (5′), computes plans with
greater or equal cost, while still providing a lower bound to
the original planning task Π. This can be trivially proved
by observing that IP (Π+) with constraint (5′) corresponds
to the interval relaxation of a planning task where we aug-
ment the set of numeric state variables with an additional
variable for each numeric condition c : ξ � 0, equivalent
to ξ. We call the extended interval relaxed planning task
Π′+ = 〈Vp, V ′+n , A+, I, G〉.

When considering constraint (5′) in conjunction with
dominance analysis, Definition 5.3 has to include the addi-
tional variables introduced in Π′+ in order to guarantee the
validity of Proposition 5.1.

State Equation Constraints Model IP (Π+) can be cou-
pled with constraints from the network flow model (van den
Briel et al. 2007; Bonet 2013). In classical planning, this
set of constraints restricts the number of times a proposition
is deleted by considering the number of times it is added
in the plan. Since such constraints take into account the
delete effects of actions, the optimal solution of the result-
ing model does not represent the optimal relaxed plan of the
planning task. Nevertheless, the optimal solution remains a
lower bound on the original planning task (Pommerening et
al. 2015).

In the propositional case, the state equation constraint
takes the form (Imai and Fukunaga 2015):

gp +
∑

a|p∈predel(a)

ma ≤ I(p) +
∑

a|p∈add(a)

ma (16)

where gp is a parameter equal to 1 if p ∈ Gp, and 0 otherwise
and predel(a) = prep(a) ∩ del(a).

A similar constraint can be written for variables uc, but
the extension to numeric state variables is not trivial as we
generally do not know the target value of the numeric state
variables. We can use, instead, the lower and upper bound in-
formation whenever it can be determined (Coles et al. 2008).
We can calculate an upper bound of a numeric state variable
v ∈ Vn if ∀a ∈ A: (i) a has an effect v+= kv,a , kv,a ≥ 0;
(ii) a has a precondition of the type v ≤ wa. Then, the upper
bound of v is ubv = maxa∈A(wa + kv,a)1. The resulting

1The calculation of the lower bound lbv of a numeric state vari-
able v is analogous.



numeric state equation constraints are:∑
v∈V

wcv

[∑
a∈A

makv,a + I(v)

]
+ wc0 � 0 ∀c ∈ Gn (17)

I(v) +
∑
a∈A

ka,vma ≤ ubv ∀v ∈ Vn, s.t. ubv exists (18)

I(v) +
∑
a∈A

ka,vma ≥ lbv ∀v ∈ Vn, s.t. lbv exists (19)

The state equation constraints are not compatible with the
dominated action constraint (14), because dominated actions
are identified considering the interval relaxation and they
do not consider negative effects, which are accounted for in
constraints (16)-(19).

6 LP and IP-based Models as Heuristics
The IP model defined in the previous sections can be used
to calculate admissible heuristic values for heuristic search
algorithms. In every expanded state s, fact and action land-
marks are extracted, and relevant and dominated actions
are identified by relevance and dominance analyses, respec-
tively. An IP or LP model is then solved for the task defined
by Π′+ = 〈Vp, V ′+n , A+, s,G〉.

We observe that the constraint set defined by (1)-(19) can
be categorized as operator counting constraints (Pommeren-
ing et al. 2015), as the only common variables are ma.

We define different heuristics by taking various constraint
sets. In our analysis, we consider the combinations of con-
straints reported in Table 1. It should be noted that all the
models use constraint (5′) instead of (5). While omitted in
Table 1 for clarity, elsewhere we use subscripts hIP or hLP
to indicate if we solve the IP model or its LP relaxation.

Constraints (1)-(7) (8)-(9) (10)-(11) (12)-(13), (15) (14) (16)-(19)
hir 3 3
hl 3 3 3
he 3 3 3 3 3
hc 3 3 3 3 3
hc,tr 3 3 3 3

Table 1: Constraints used in different heuristic variations.

7 Empirical Evaluation
In this section we empirically evaluate the performance
of our heuristics. In particular, we present: (i) the per-
formance difference between heuristics derived by our IP
model and their relaxed LP versions; (ii) the impact of valid
and strengthening constraints; and (iii) a comparison against
the state-of-the-art cost-optimal numeric planners.

7.1 Experimental Setup
We consider the set of eight benchmark domains used by
Scala et al. (2017):
• Counters: a set of integer variables X1, ..., Xn can be in-

creased or decreased by actions. The goal is to achieve
Xi < Xi+1 for i ∈ {1, ..., n} variables (Francès and
Geffner 2015);

• Gardening: an agent needs to water plants located on a
grid. To do so, the agent needs to reach a tap and carry wa-
ter, subject to a capacity constraint (Francès and Geffner
2015);

• Sailing: boats can navigate in an unbounded grid space
to rescue people. In order for a boat to rescue a person,
it has to reach a region defined by a set of inequalities
(Scala, Haslum, and Thiébaux 2016);

• Farmland: people can be transported between farms and
need to be allocated to given locations (Scala, Haslum,
and Thiébaux 2016);

• Rover, Satellite, Depots, Zeno Travel: these IPC do-
mains are characterized by resources (energy, fuel, loads)
that are produced and consumed, and actions are con-
strained by these quantities. The Zeno Travel domain has
an action (refuel) whose effect is not a constant in-
crease or decrease of the numeric state variable represent-
ing fuel, rather it is an assignment of the variable to a
maximum value. This domain does not fall in the sim-
ple numeric condition case, since action refuel is the
only achiever of all the numeric conditions, but the heuris-
tics proposed by Scala, Haslum, and Thiébaux (2016) and
Scala et al. (2017) can be adapted to consider this case,
preserving admissibility. Although our model can also be
adapted, we chose to modify the effect of action refuel
to be a constant increase of the numeric state variable
fuel, instead.
Previous works in cost-optimal numeric planning exper-

imented only with problems with unary action costs. Since
the original IPC domains Rover, Satellite and Depots have
non-uniform action costs, for them, we present results for
both variants.

We implement the heuristic evaluation in the planner
LPRPG (Coles et al. 2008), modified to handle cost-optimal
planning by using an A∗ algorithm, where ties are broken
preferring states with lower heuristic value. The LP and IP
models are solved using CPLEX v12.7. We run all the ex-
periments on a Xeon 3.5GHz processor machine running OS
Sierra. Every problem is limited to 4 GB and 30 minutes.

7.2 Evaluation of Heuristics
The following analysis considers the set of heuristics shown
in Table 1, considering both their IP and LP variants.

Figure 1a shows the cumulative number of problem
solved as a function of the execution time, for each heuris-
tic variation. The figure omits the results for hlIP and heIP ,
which give the same heuristic values as hirIP . As shown in
the figure, the IP heuristics give a better overall coverage
than their respective LP version.

Adding landmark, relevance, dominance and inverse ac-
tions constraints slightly improves the coverage of the LP-
based heuristics, as their value is closer to the IP optimal
one. This is also highlighted in Figure 1b, that shows a box
plot of the mean ratio of the heuristic values of every state
expanded using hIP and the respective hLP for every prob-
lem. The box plot shows that dominance and relevance con-
straints marginally reduce the integrality gap when coupled
with landmark constraints. The difference between IP and



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0.1  1  10  100  1000

#
 p

ro
b
le

m
s
 s

o
lv

e
d

time (s)

hIP
ir

hLP
ir

hLP
l

hLP
e

hIP
c

hLP
c

hIP
c,tr

hLP
c,tr

(a) Cumulative number of problem solved
as function of execution time.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

h
ir

h
l

h
e

h
L

p
/h

IP

heuristics

(b) Boxplot hLP /hIP for different heuris-
tic versions.

 1

 10

 100

 1000

 1  10  100  1000

ti
m

e
 h

IP
c
,t

r

time hIP
c

farmland
counters

gardening
sailing

sailing-1-20
rover

rover-1
satellite

satellite-1
depots

depots-1
zeno-travel

(c) Runtime comparison of hc,tr
IP and hc

IP

on the benchmark problems.

Figure 1: Experimental Evaluation of hIP and hLP .

Domain # coverage time # states expanded
ĥrmax hlma+ hlma+IP hcIP hc,trIP hc,trLP VBS ĥrmax hlma+ hlma+IP hcIP hc,trIP hc,trLP ĥrmax hlma+ hlma+IP hcIP hc,trIP hc,trLP

Counters 15 6 7 6 12 13 13 13 2.5 2.3 15.0 0.3 0.3 0.2 12664.7 7052.2 7052.2 10.3 10.3 10.3
Gardening 63 63 63 63 63 63 63 63 3.5 4.8 51.7 6.1 5.3 52.8 34442.3 19845.7 19845.7 178.5 178.5 6693.8

Sailing 25 14 5 5 22 22 5 22 1.3 2.6 10.8 32.1 29.7 44.9 12549.0 3431.4 1252.4 1252.4 1252.4 3432.6
Sailing (1-20) 20 12 20 19 12 12 9 20 5.2 8.5 39.1 169.0 152.2 254.6 78409.1 8855.8 3671.0 3974.2 3974.2 8855.8

Farmland 30 30 30 28 30 30 30 30 7.8 19.1 238.4 18.3 13.4 225.0 27929.2 27949.3 14319.8 417.7 417.7 7252.8
Rover 20 4 5 3 5 4 4 6 15.6 9.6 41.7 7.5 5.6 4.3 40430.3 6175.0 6175.0 51.7 51.7 48.3
Depots 20 2 4 2 3 3 4 5 1.1 3.3 5.5 37.0 63.4 49.6 1957.5 752.0 752.0 46.5 482.5 475.0
Satellite 20 1 1 1 3 1 1 3 0.7 2.0 6.5 13.4 38.7 35.3 1525.0 1965.0 1965.0 126.0 731.0 676.0

Zeno Travel 20 6 7 6 8 8 7 8 17.7 30.7 86.9 14.9 12.9 17.2 35595.0 18414.7 18638.2 79.8 87.3 148.3
Rover-1 20 4 4 4 7 6 4 8 1.4 1.2 3.2 1.8 1.4 2.2 3078.2 296.0 296.0 10.2 10.2 18.0
Depots-1 20 2 4 3 5 5 4 5 1.1 3.2 5.4 3.9 2.9 4.2 1957.5 752.0 752.0 17.0 17.0 36.0
Satellite-1 20 2 3 3 3 3 3 3 75.6 1.7 4.1 11.8 19.1 29.2 387929.5 522.5 522.5 35.5 73.0 101.5

Total 293 146 153 143 173 170 147 186 6.3 9.0 84.9 21.5 19.4 95.2 37623.5 17620.2 14277.9 504.1 516.3 5532.2

Table 2: Coverage, average execution time and average number of expanded nodes by domain. With “-1” we identify the domain
variants with unary action costs. VBS indicates the number of problems that are solved by at least one heuristic.

LP heuristics varies with the domain. For Counters we ob-
serve that the LP relaxation produces the same values of the
IP solution, while solving it in significantly less time. Sailing
shows the opposite behavior: all the numeric state variables
are unbounded and the presence of the big-M constraints
makes the LP relaxation very poor.

Not surprisingly, adding state equation constraints leads
to a more informative heuristic value, which is also reflected
in the total number of problems solved. Similar to classical
planning (Imai and Fukunaga 2015), sequencing constraints
(8)-(9) make the problems slower to solve without resulting
in a much more accurate heuristic value for most of the do-
mains (Figure 1c). The graph shows that hc,trIP finds solutions
faster than hcIP in most of the instances. However, there are
some instances where hc,trIP performs worse than hcIP .

Overall, the heuristic with best coverage is hcIP , which
obtains a total coverage of 173 problems solved (Table 2).

7.3 Comparison with State of the Art
We now compare the coverage of our heuristics with the
state of the art in cost-optimal numeric planning. The two
other admissible heuristics for the fragment of numeric
planning that we consider are ĥrmax (Scala, Haslum, and
Thiébaux 2016) and hlma+ (Scala et al. 2017). In addition
we consider a variation of the original hlma+, where the
cost-partitioning problem is solved as IP, hlma+IP .

Table 2 reports the total coverage, the average execution
time, and the average number of nodes expanded by domain
for ĥrmax, hlma+, hlma+IP , our two our best IP heuristics,
hcIP and hc,trIP , and our best LP heuristic hc,trLP .

From the table, we can observe that for the IPC do-
mains, the coverage is much lower than Counters, Garden-
ing, Farmland and Sailing. This is caused by the proposi-
tional structure of these domains, for which adding the inte-
grality constraints results in an excessive time overhead, that
is not compensated by increased informativeness. The num-
ber of states expanded by hc,trLP and hcIP are similar for the
IPC domains, while the difference is greater for Gardening,
Farmland and Sailing. The major benefit of integrality con-
straints is gained when the the big-M constraints are more
influential. This is also reflected in hlma+, that does not use
big-M constraints and, consequently, the IP model does not
improve on the LP version.

The table shows that hcIP and hc,trIP are much more in-
formative than and outperform any other heuristics. This is
highlighted by the average number of states expanded by
hcIP and hc,trIP , which are almost two orders of magnitude
fewer than the existing heuristics. Our best LP heuristic hc,trLP

is also competitive with ĥrmax and hlma+.

8 Conclusion
In this paper, we consider cost-optimal numeric planning
with instantaneous actions, where numeric state variables
are subject to linear constraints and are modified by con-
stant increases and decreases. Given its success in classi-
cal planning, we use mathematical programming to formu-
late admissible heuristics, taking advantage of its ability to
solve problems with linear constraints. In particular, we ex-
tend the delete relaxation heuristic model (Imai and Fuku-
naga 2015) to the interval relaxation and subsequently add



landmark constraints and constraints implied by relevance
and dominance analyses. We consider additional constraints
inspired by state equation constraints. Our empirical evalua-
tion shows that, for our models, the gain in informativeness
of IP-based heuristics often compensates for the computa-
tional cost. The interval relaxation heuristic with state equa-
tion constraints establishes a new state of the art in cost-
optimal numeric planning.

We intend to further investigate the trade-off between in-
formativeness and speed of IP and LP based heuristics, in or-
der to identify the conditions, especially with respect to the
size of the problems, that make one favored over the other
and to determine if there is a middle ground between the
two. The extension of our heuristic to include other operator
counting constraints is also subject to future work, as well as
the generalization of the presented models to numeric plan-
ning with state-dependent effects.

Acknowledgements
We would like to thank the anonymous reviewers whose
valuable feedback helped improve the final paper. The au-
thors gratefully acknowledge funding from the Natural Sci-
ences and Engineering Research Council of Canada and
CONICYT (Becas Chile).

References
Aldinger, J.; Mattmüller, R.; and Göbelbecker, M. 2015.
Complexity of Interval Relaxed Numeric Planning. In Pro-
ceedings of Annual German Conference on AI 2015, 19–31.
Bonet, B. 2013. An Admissible Heuristic for SAS+ Plan-
ning Obtained from the State Equation. In Proceedings
of International Joint Conference on Artificial Intelligence
2013, 2268–2274.
Bylander, T. 1997. A Linear Programming Heuristic for
Optimal Planning. In Proceedings of AAAI Conference on
Artficial Intelligence 97.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. A hybrid
Relaxed Planning Graph-LP Heuristic for Numeric Planning
Domains. In Proceedings of International Conference on
Automated Planning and Scheduling 2008, 52–59.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2013. A Hy-
brid LP-RPG Heuristic for Modelling Numeric Resource
Flows in Planning. Journal of Artificial Intelligence Re-
search 46:343–412.
Fox, M., and Long, D. 2003. PDDL2. 1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research 20:61–124.
Francès, G., and Geffner, H. 2015. Modeling and Compu-
tation in Planning: Better Heuristics from More Expressive
Languages. In Proceedings of International Conference on
Automated Planning and Scheduling 2015, 70–78.
Geffner, H., and Haslum, P. 2000. Admissible Heuristics
for Optimal Planning. In Proceedings of International Con-
ference on Automated Planning and Scheduling 2000, 140–
149.
Helmert, M. 2002. Decidability and Undecidability Results
for Planning with Numerical State Variables. In Proceedings

of International Conference on Artificial Intelligence Plan-
ning and Scheduling 2002, 44–53.
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating “Ignoring Delete Lists” to Numeric State Variables.
Journal of Artificial Intelligence Research 20:291–341.
Illanes, L., and McIlraith, S. A. 2017. Numeric Planning
via Abstraction and Policy Guided Search. In Proceedings
of International Joint Conference on Artificial Intelligence
2017, 4338–4345.
Imai, T., and Fukunaga, A. 2015. On a Practical, Integer-
linear Programming Model for Delete-free Tasks and its use
as a Heuristic for Cost-optimal Planning. Journal of Artifi-
cial Intelligence Research 54:631–677.
Karpas, E., and Domshlak, C. 2009. Cost-optimal Plan-
ning with Landmarks. In Proceedings of International Joint
Conference on Artificial Intelligence 2009, 1728–1733.
Katz, M., and Domshlak, C. 2010. Optimal Admissible
Composition of Abstraction Heuristics. Artificial Intelli-
gence 174(12-13):767–798.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
Complete Landmarks for AND/OR Graphs. In Proceed-
ings of European Conference on Artificial Intelligence 2010,
335–340.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
Constrained Planning : A Monte Carlo Random Walk Ap-
proach. In Proceedings of International Conference on Au-
tomated Planning and Scheduling 2012, 181–189.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2015. Heuristics for Cost-Optimal Classical Planning Based
on Linear Programming. In Proceedings of International
Joint Conference on Artificial Intelligence 2015, 4303–
4309.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning. In
Proceedings of International Joint Conference on Artificial
Intelligence 2013, 2357–2364.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2016.
Interval-Based Relaxation for General Numeric Planning. In
Proceedings of European Conference on Artificial Intelli-
gence 2016, 655–663.
Scala, E.; Haslum, P.; Magazzeni, D.; and Thiebaux, S.
2017. Landmarks for Numeric Planning Problems. In Pro-
ceedings of International Joint Conference on Artificial In-
telligence 2017, 4384–4390.
Scala, E.; Haslum, P.; and Thiébaux, S. 2016. Heuristics
for Numeric Planning via Subgoaling. In Proceedings of In-
ternational Joint Conference on Artificial Intelligence 2016,
3228–3234.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-based Heuristic for Optimal Planning. In
Proceedings of International Conference on Principles and
Practice of Constraint Programming 2007, 651–665.
Zhu, L., and Givan, R. 2003. Landmark Extraction via Plan-
ning Graph Propagation. In Doctoral Consortium of Inter-
national Conference on Automated Planning and Schedul-
ing 2003, 156–160.


