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Abstract We address a novel integrated maintenance

and production scheduling problem in a multi-machine

and multi-period production system, considering main-

tenance as a long-term decision. Deterioration of ma-

chines over time decreases production capacity. Since

maintenance activities improve machine conditions, in-

creasing production capacity, but also take time that

cannot be used for production, the challenge is to as-

sign maintenance to periods and to schedule mainte-

nance and production activities within each period to

minimize the combined cost of maintenance and lost

production over the planning horizon. Motivated by

logic-based Benders decomposition, we design an inte-

grated two-stage algorithm to solve the problem. The

first stage assigns maintenance to machines and time

periods, abstracting the scheduling problem, while the

second stage creates a schedule for the current time pe-

riod. The first stage is then re-solved using feedback

from the schedule. This iteration between maintenance

planning and scheduling continues until the solution

costs in two stages converge. The integrated approach

models the interdependencies between maintenance and

scheduling decisions in highly coupled processes such

as wafer fabrication in the semiconductor manufactur-

ing. Our results demonstrate that the benefit of inte-

grated decision making increases when maintenance is

less expensive relative to lost production cost and that
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a longer horizon for maintenance planning is beneficial

when maintenance cost increases.
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1 Introduction

Production scheduling addresses the problem of allocat-

ing the available production capacity to competing cus-

tomer orders to optimize the performance of the system.

In many manufacturing systems, the production capac-

ity decreases over time as machines deteriorate. For ex-

ample, a dull drill bit, a contaminated cooling system or

a worn-out crankshaft sensor in manufacturing slow the
operations, increasing the number of orders that cannot

be delivered by their due dates. However, maintenance

improves machine conditions, restoring the production

capacity, while using potential production time that

could be otherwise allocated to processing the customer

orders. Therefore, scheduling maintenance to minimize

the disruption of the production process is a challeng-

ing problem. In this paper, we explore how information

about machine conditions and operational information

including workloads and due dates can be integrated to

simultaneously schedule maintenance and production

activities, increasing the number of orders satisfied by

their due dates.

Maintenance planning and production scheduling

are often viewed as separate and sequential decisions

in contexts such as wafer fabrication in the semicon-

ductor manufacturing (Yao et al., 2004). In this pro-

cess, wafer lots (production jobs) flow through the sys-

tem, requiring several operations to be performed by

various cluster tools (machines) (Kumar and Kumar,
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2001). The flow of the wafers in a fab froms a reen-

trant line; a manufacturing configuration between clas-

sical flowshop and jobshop (Uzsoy et al., 1992; Kumar

and Kumar, 2001; Mönch et al., 2011). In the fabrica-

tion process, on the higher level, the preventive main-

tenance frequency is first planned mainly based on the

state of tools, such as their age (Yao et al., 2004) and

provided as inputs to the scheduling system. Knowing

the information about which tools are under preventive

maintenance and the maintenance duration, scheduling

decisions then find the optimal allocation of the avail-

able tools to competing wafer lots over time. The goal

is to increase the capability of meeting due dates for

optimal customer satisfaction; one of the most impor-

tant objectives in the semiconductor market (Mönch

et al., 2011). However, this division ignores the depen-

dency between maintenance planning and scheduling

(Yao et al., 2004): it may be globally optimal to sched-

ule maintenance earlier or later. As an example, if the

fab process is heavily loaded, there is an opportunity

for significant financial gains by delaying maintenance

(Yao et al., 2004). Therefore, incorporating the opera-

tional state of the process such as workloads and due

dates into maintenance decisions leads to a better allo-

cation of resources to maintenance and wafer lots.

There are two areas in the scheduling literature that

study the dependency between maintenance planning

and production scheduling. The first addresses the lim-

ited availabilities of machines due to maintenance re-

quirements (Ma et al., 2010) and the second area mod-

els the effect of maintenance on processing times by

considering maintenance as a rate modifying activity

(Lee and Leon, 2001). However, there is no decision

regarding planning maintenance since the time win-

dows for maintenance are typically given (e.g., Kuo

and Yang (2008); Mosheiov and Sidney (2010); Kellerer

et al. (2013)). To address the interdependency between

maintenance and scheduling decisions in highly coupled

processes such as wafer fabrication (Yao et al., 2004), in

this paper, we consider a flowshop system with multiple

machines over multiple time periods where maintenance

concepts are modeled as defined in the maintenance re-

search literature (McCall, 1965; Cho and Parlar, 1991;

Dekker et al., 1997; Wang, 2002; Nicolai and Dekker,

2008). We explicitly model the effect of machine condi-

tions on processing times and consider maintenance as

a long-term decision.

Motivated by logic-based Benders decomposition ap-

proach (Hooker, 2005, 2007), we design an integrated

two-stage algorithm where the maintenance and schedul-

ing decisions are tackled in different, coupled stages.

The first stage finds the optimal maintenance plan, ab-

stracting the production scheduling problem. It has a

long-term view over the time periods where information

about the customer orders is available and seeks to min-

imize the sum of maintenance and a lower bound on the

lost production costs. The maintenance plan determines

the assignment of maintenance activities to machines

and time periods. The second stage has a short-term

view over the current period, finding the optimal sched-

ule of maintenance and production activities given the

specified maintenance plan. The real lost production

cost is then communicated via a constraint to the first

stage so that the maintenance plan can be revised if it

is no longer optimal. The decision stages iterate until

the optimal solution is found, i.e., the relaxation of lost

production cost in the first stage solution is equal to

the actual lost production cost.

We experimentally compare the performance of this

integrated algorithm with three other approaches: hier-

archical decision making where there is no feedback be-

tween decision stages, a short-term model where main-

tenance planning and scheduling are done together for

each period, and a heuristic model. Our empirical re-

sults demonstrate that the integrated and long-term

decision making results in higher solution quality. It

is further shown that the benefit of integrated decision

making increases as the ratio of maintenance cost to

lost production cost decreases while planning mainte-

nance for multiple periods is beneficial when the ratio

increases.

The following section provides an overview of the

relevant literature. We then formally define our prob-

lem, describe the proposed solution approaches, present

our experiments and discuss the results. Finally, we end

with conclusion and directions for future work.

2 Literature Review

In this section, we review the literature on integrat-

ing maintenance and production scheduling problems

and provide necessary background on logic-based Ben-

ders decomposition, an inspiration for our integrated

approach.

2.1 Integrated Maintenance Planning and Production

Scheduling

The problem of maintenance planning and production

scheduling has been studied in the scheduling litera-

ture from two perspectives. The first deals only with

the fact that a machine undergoing maintenance is un-

available for production jobs (Schmidt, 2000; Lee, 2004;

Ma et al., 2010; Hadidi et al., 2012a). The second per-

spective models different processing times for a produc-
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tion job depending on whether it is scheduled before or

after maintenance (Lee and Leon, 2001). Both perspec-

tives typically consider single machine problems and fo-

cus on analyzing the computational complexity of the

problems and/or deriving the properties of the optimal

schedules. The derived properties are used to develop

polynomial time approximation algorithms or efficient

heuristics, or are modeled as extra constraints to reduce

the computational effort.

A problem of the first category can be defined as

follows. A set of jobs J = {Ji|i = 1, ..., n} and a set of

machines M = {Mj |j = 1, ...,m} are given. Machine

Mj is not available for processing the jobs within Sj
time intervals [Bsj , F

s
j ], s = 1, ..., Sj where Bsj and F sj

denote the start time and the finish time of the s-th

unavailability interval (Ma et al., 2010). The goal of

the problem is to pack the jobs into the gaps created

between unavailability intervals, optimizing an opera-

tional performance measure such as finishing all the

jobs as soon as possible. In different problem varia-

tions, jobs may be resumable (i.e., the job continues its

processing after the unavailability period) (Lee, 1996),

non-resumable (i.e., it is re-started if interrupted by the

unavailability period) (Lee, 1996), or semi-resumable

(i.e., the disrupted job has to re-do part of its process-

ing when the machine becomes available again) (Lee,

1999). One or several unavailability intervals (mainte-

nance periods) might be considered where their start

and end times are either known or decision variables.

A number of different combinations of the unavailabil-

ity intervals and job characteristics have been studied

(Lee, 1996; Liao and Chen, 2003; Akturk et al., 2004;

Chen, 2006; Ji et al., 2007; Kovacs and Beck, 2007; Xu
et al., 2010; Yu et al., 2014). While the majority of this

literature deals with deterministic problems where lim-

ited availabilities of machines only result from planned

maintenance, a number of authors have studied a sin-

gle machine scheduling problem assuming that the ma-

chine is not continuously available due to both planned

maintenance and random machine breakdowns (Cas-

sady and Kutanoglu, 2003, 2005; Kuo and Chang, 2007;

Hadidi et al., 2011, 2012b).

The problem of integrated maintenance planning

and production scheduling of the first category has also

been extended to flowshop setting that is similar to

the manufacturing configuration of the fabrication pro-

cess in the semiconductor industry (Allaoui and Artiba,

2004). Different computationally efficient solution ap-

proaches are developed to find a good schedule. Some

examples of the solution approaches are meta-heuristic

algorithms including genetic algorithm, tabu search (Ag-

goune, 2004; Ruiz et al., 2007), and variable neighbor-

hood search (Naderi et al., 2009); a heuristic algorithm

combining dispatching rules, simulated annealing, and

simulation (Allaoui and Artiba, 2004); and a branch-

and-bound algorithm (Allaoui and Artiba, 2006). A de-

tailed review of this literature can be found in Naderi

et al. (2009).

The above scheduling problems do not model any

correlation between machine conditions and process-

ing times, ignoring the effect of maintenance on ma-

chine deterioration and restoration processes (Rustogi

and Strusevich, 2012; Kellerer et al., 2013). Lee and

Leon (2001) were the first to introduce such mainte-

nance considerations into the scheduling literature, ini-

tiating the study of the second category of problems.

More specifically, the authors defined maintenance as

a rate-modifying activity that changes the processing

times of production jobs scheduled after maintenance to

λjpj where 0 < λj < 1 and pj represents the processing

time of job j before maintenance. In the work of Lee and

Leon and many subsequent models (e.g., Mosheiov and

Sarig (2009); Mosheiov and Sidney (2010)) only a single

rate-modifying activity is considered and the process-

ing time of a job does not depend on its position in the

schedule or its start time, only whether it comes before

or after maintenance. However, recent work has studied

the problem of dividing the jobs into groups where the

number of groups indicates the number of maintenance

activities and the processing time of each job depends

both on its assigned group and its position within the

group (Kuo and Yang, 2008; Yang and Yang, 2010; Lo-

dree and Geiger, 2010; Rustogi and Strusevich, 2012;

Kellerer et al., 2013; Kim and Ozturkoglu, 2013). The

focus of such work is the development of polynomial-

time algorithms for single machine problems.

In the scheduling literature, unlike the broader main-

tenance literature (Dekker et al., 1996; Wang, 2002;

Nicolai and Dekker, 2008; Pintelon and Parodi-Herz,

2008), maintenance is considered as a short-term de-

cision when reasoning about it in combination with

production scheduling. That is, the problem is defined

over a fixed horizon where maintenance and machine

deterioration act on the same time-scale as the pro-

duction jobs. In practice, a machine does not deterio-

rate as fast as the production jobs are processed and so

maintenance decisions are naturally made over longer

time horizons than detailed scheduling decisions (Cas-

sady and Kutanoglu, 2005; Budai et al., 2006; Grigoriev

et al., 2006; Aghezzaf and Najid, 2008).

In this paper, we study a scheduling problem where

maintenance is considered as a long-term decision and

where there is an explicit model representing the de-

terioration processes of machines and their effects on

the processing times. This perspective on the problem

takes into account common conceptualizations of main-
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tenance as they appear in the maintenance literature

(McCall, 1965; Dekker et al., 1997; Wang, 2002; Pin-

telon and Parodi-Herz, 2008) and introduce them to the

scheduling literature. Furthermore, we study the prob-

lem in a multi-machine flowshop environment rather

than a single-machine problem.

2.2 Logic-based Benders Decomposition

Our integrated two-stage approach is motivated by logic-

based Benders decomposition. The classical Benders

decomposition (Benders, 1962; Geoffrion and Graves,

1974) is a mathematical programming approach for solv-

ing large-scale mixed integer programming models. It

partitions the problem into a mixed integer master prob-

lem (MP), which is a relaxation of the global model, and

a set of linear sub-problems (SPs). Solving a problem

by classical Benders involves iteratively solving the MP

to optimality and using the solution to generate the

sub-problems. The linear programming dual of the SPs

is then solved to derive the tightest bound on the global

cost function. If this bound is less than or equal to the

current MP solution (assuming a minimization prob-

lem), the MP solution and the SP solutions constitute

a globally optimal solution. Otherwise, a constraint, a

Benders cut, is added to the MP to express the violated

bound and another iteration is performed.

Logic-based Benders decomposition (Hooker and Yan,

1995; Hooker and Ottosson, 2003) was developed ex-

cluding the necessity that the MP must be a mixed

integer model and the SPs linear. Therefore, the infer-

ence duals (Hooker, 2005) of the SPs are solved rather

than the linear duals to find the tightest bound on the

global cost function from the original constraints and

the current MP solution. Although logic-based Ben-

ders decomposition has more flexibility in modeling the

problems, there is no standard procedure to derive the

Benders cuts, it is problem-specific and requires cre-

ative effort. Nonetheless it has been successfully applied

to a number of combinatorial optimization problems,

often reporting computational results that are several

orders of magnitude better than the previous state of

the art (Hooker, 2005, 2007; Beck, 2010; Fazel-Zarandi

and Beck, 2011; Aramon Bajestani and Beck, 2013).

The formal representation of logic-based Benders

decomposition can be found in Hooker (2007).

3 Problem Definition

We consider a multi-machine flowshop production en-

vironment, producing multiple products over a finite

planning horizon. There are K discrete time periods,

each T time units long. Machines deteriorate as they are

used for production. To model each machine deteriora-

tion process, we assume that the speed of a machine de-

creases as the number of time periods since preventive

maintenance increases. A machine, m ∈ {1, 2, ...,M}, is

in state sm ∈ {0, 1, ...,Sm}, if its most recent preventive

maintenance was sm time periods ago. In state sm, ma-

chine m operates at speed νmsm . Without loss of general-

ity, it is assumed that the speed of machine m in state

sm = 0 is νm0 = 1 and νm0 > νm1 > ... > νmSm = 0. In

the semiconductor manufacturing, one of the commonly

used tool parameters is the throughput rate, i.e., the

number of wafers produced per time unit by each tool

(Ramı́ez-Hernández and Fernández-Gaucherand, 2003),

that can be seen as equivalent to the speed used here.

Performing a preventive maintenance job, p, at any

point on machine m takes tmp units of time, costs τmp
and changes the machine’s speed to νm0 . In other words,

preventive maintenance makes the machine as good as

new such that it operates at the highest speed. Since the

complex machines such as cluster tools in the semicon-

ductor manufacturing require highly skilled technicians

for maintenance (Yao et al., 2004), we assume the num-

ber of machines that can be maintained in each period

is limited to C. The initial state of machine m at the be-

ginning of the planning horizon is known and denoted

as αm.

At the beginning of each time period, the set of

production jobs is known for the next L periods where

L < K. The set of production jobs at time period

k ∈ {1, 2, ...,K} is denoted as Jk. The production jobs

are not carried over time periods: job j in time period

k, j ∈ Jk, can only be processed during time period k.

Furthermore, job j has to be processed on all machines

in sequence, requires processing time pjm on machine

m, and has the due date dj . The processing time of job

j on machine m is
njm
νmsm

where njm is the processing time

of job j at sm = 0, the best state of the machine. The

due date dj corresponds to the latest possible comple-

tion time of job j and is a time point within the k-th

period. If a job is not finished by its due date, it is lost

at cost hk.

The goal of the problem is to allocate preventive

maintenance to machines and time periods over the

planning horizon and to assign start times to both pro-

duction jobs and preventive maintenance activities, if

any, within each time period such that the total cost of

lost jobs and performing maintenance is minimized.

4 Problem Formulatiom

We use the following decision variables to formulate the

problem.
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ymk ymk = 1 if machine m at time period k is
maintained, and ymk = 0, otherwise.

uj uj = 1 if job j is lost and uj = 0, otherwise.
Nm(k) The state of machine m in period k before

performing maintenance.
stjm The start time of job j on machine m.
pjm The processing time of job j on machine m.
stpm The start time of preventive maintenance job p

on machine m.
xjim xjim = 1 if job j is processed before job

i on machine m.
bjm bjm = 1 if job j is processed before preventive

maintenance on machine m.

The objective function (1) minimizes the sum of

lost production and maintenance cost over the planning

horizon.

min

K∑
k=1

∑
j∈Jk

hkuj +

K∑
k=1

M∑
m=1

τmp ymk (1)

The problem is subject to maintenance planning

and maintenance/production scheduling constraints which

are defined below.

Maintenance planning constraints: Since in any time

period, there is a limit on the number of machines that

can be maintained denoted as C, Constraints (2) enforce

the maintenance capacity limit in each time period.

M∑
m=1

ymk ≤ C, ∀k (2)

Maintenance/production scheduling constraints: The de-

tailed descriptions of the maintenance/production schedul-

ing constraints in period k are provided below:

– In Constraints (3), Nm(k) defines the state of machine

m at time period k before performing maintenance.

Defining the dummy variable ym0 = 1 and the indicator

function I(x) being equal to 1 if x is true and to 0 oth-

erwise, we have: (i) if machine m is not maintained in

any of the previous periods, I(max{l|yml = 1, 0 ≤ l <

k} = 0) equals 1 and machine m’s state is k − 1 + αm,

or (ii) if the most recent maintenance on machine m is

in period l > 0, I(max{l|yml = 1, 0 ≤ l < k} > 0) is

equal to 1 and machine m is in state k − l.

Nm(k) = (k − 1 + αm)

× I(max{l|yml = 1, 0 ≤ l < k} = 0)

+ (k −max{l|yml = 1, 0 ≤ l < k})
× I(max{l|yml = 1, 0 ≤ l < k} > 0), ∀m (3)

– Constraints (4) denote the processing times of jobs in

time period k. If job j is scheduled before maintenance

on machine m (bjm = 1), the state of the machine is

Nm(k) and if scheduled after maintenance, the machine

is in state 0.

pjm =
njm

νmNm(k)

bjm +
njm

νm0
(1− bjm), ∀j ∈ Jk, ∀m (4)

– Constraints (5) enforce the precedence constraints:

the job should be finished on an upstream machine be-

fore its processing starts on downstream machines.

stjm + pjm ≤ stj(m+1), ∀j ∈ Jk, ∀m (m 6= M) (5)

– Constraints (6) ensure that maintenance activities

on machines requiring maintenance at time period k

(ymk = 1) are scheduled within the length of the time

period where B is a big value.

stpm + tmp + B(ymk − 1) ≤ T, ∀m (6)

– Constraints (7), (8), and (9) define the relationships

between the binary decision variables bjm and the main-

tenance decisions. Respectively, the constraints guar-

antee that: if a job is processed before maintenance

(bjm = 1), then its processing is finished before mainte-

nance is started; if a job is processed after maintenance

(bjm = 0), then maintenance is performed before pro-

cessing the job is started; if a machine does not require

maintenance (ymk = 0), all jobs are processed before

maintenance (bjm = 1).

stjm + pjm ≤ stpm + B(1− bjm), ∀j ∈ Jk, ∀m (7)

stpm + tmp ≤ stjm + Bbjm, ∀j ∈ Jk, ∀m (8)

1− bjm ≤ ymk, ∀j ∈ Jk, ∀m (9)

– Since M is the last machine, Constraints (10) define

whether job j in time period k is lost or not. If a job is

not finished before or at its due date, it is then lost.

stjM + pjM ≤ dj + Buj , ∀j ∈ Jk (10)

– Constraints (11) and (12) are disjunctive constraints

ensuring that all jobs on a machine form a total or-

dering, meaning that no two jobs execute at the same

time.

stjm + pjm ≤ stim + B(1− xjim), ∀j, i ∈ Jk (j > i),

∀m (11)

stim + pim ≤ stjm + Bxjim, ∀j, i ∈ Jk (j > i),

∀m (12)
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Since the number of production jobs is only known

for the next L periods, we use a rolling horizon approach

to make the decisions at the beginning of each period.

Without loss of generality, the current period is con-

sidered as the first period and the future periods where

the number of production jobs are known are numbered

from 2 to L. Defining maintenance assignment decisions

as Y = {ymk|∀m, ∀k} and the scheduling decisions as

S = {stjm|j ∈ Jk, ∀m, ∀k}, the optimization problem

for making the current time period decisions is shown in

Model 1. The schedule is executed for the current time

period, the decision horizon is then extended, and the

same procedure repeats until the end of the planning

horizon.

min
Y,S

L∑
k=1

∑
j∈Jk

hkuj +

L∑
k=1

M∑
m=1

τmp ymk

s.t. Constraints (2) to (12)

ymk, uj , xjim, bjm ∈ {0, 1}, ∀j, i ∈ Jk, ∀m,
∀k ∈ {1, . . . , L}

stjm, pjm, stpm ∈ Z+ ∪ {0}, ∀j ∈ Jk, ∀m,
∀k ∈ {1, . . . , L}

Model 1: The non-linear mixed integer programming model.

The optimization problem in Model 1 is a non-linear

mixed integer programming model since Constraints

(3), defining the state of machines at each period, and

Constraints (4), denoting the processing times of the

jobs, are non-linear.

5 Solution Approaches

To solve the optimization problem (Model 1) at the

beginning of each period, we design a two-stage de-

composed but coupled approach, Integrated, where each

stage is modeled as a mixed integer linear program

(MILP).

In this section, the Integrated approach and three

alternative approaches, Non-integrated, Short-term, and

Heuristic are presented.

5.1 The Integrated Approach

There are two different decisions in the problem: (i)

assigning maintenance to machines and time periods

and (ii) scheduling the production jobs and mainte-

nance activities, if any, in each period. Therefore, sim-

ilar to a logic-based Benders decomposition (LBBD),

the global problem (Model 1) can be decomposed into

a maintenance planning problem (MPP) and L pro-

duction scheduling problems (PSP). The MPP is the

master problem assigning maintenance to machines and

time periods and each PSP defines one sub-problem,

finding the schedule of a period. However, solving the

problem using the logic-based Benders decomposition

framework is computationally expensive, though both

MPP and PSPs are mixed integer linear models (see

Section 7.1). Therefore, as illustrated in Figures 1 and

2, we adjust the LBBD such that only one PSP problem

is solved at each iteration.

In the Integrated algorithm, the MPP is solved in

the first stage to determine the assignment of mainte-

nance to machines and time periods, minimizing the

sum of maintenance and lost production costs over the

L time periods where the production jobs are known. In

the MPP, the PSPs and the production capacity are re-

laxed, discarding the scheduling combinatorics. There-

fore, the lost production cost in the first stage is a lower

bound on the actual lost production cost.

The PSP in the second stage creates a production

and maintenance schedule for the first period, minimiz-

ing the actual lost production cost of the first period

given the maintenance plan specified by the MPP. If

the achieved lost production cost is equal to the lower

bound computed on the lost cost of the first period in

the MPP, the computed schedule is executed. Other-

wise, a constraint expressing a new bound on the lost

production cost of the first period, called a cut, is added

to the MPP and the MPP is re-solved. The iteration be-

tween MPP and PSP continues until the lower bound

on the lost production cost of the first period in the

MPP is equal to the cost calculated in the PSP. The

finite convergence of the Integrated approach is demon-

strated below in Section 5.1.3.

The decision horizon then rolls over one time period,

the initial state of each machine (αm) is updated, the

customer orders become known for time period L + 1

and the solution procedure repeats.

In the balance of this section, we present our opti-

mization models for both MPP and PSP, the cut, and

the relaxation of the PSPs in the MPP. We have proved

a number of structural properties about the PSP but

our early experimentation showed that none of them

had significant impact on the performance of the solver

(Aramon Bajestani and Beck, 2012).

5.1.1 The Maintenance Planning Problem (MPP)

To model the MPP as a MILP, we change the main-

tenance binary decision variable from ymk to ymlk that

equals 1 if machine m at time period k is most recently
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Fig. 1: The schematic representation of the logic-based Benders
decomposition approach.
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Fig. 2: The schematic representation of the Integrated approach.

maintained in time period l where l ≤ k. We further

define the new variable Λk as the lost cost decision vari-

able of time period k. To abstract production schedul-

ing problems in the MPP and to find a lower bound on

the lost cost decision variables, we assume that mainte-

nance is performed at the beginning of the period with

negligible time and define the following notation where

0 is a dummy period. Let Nm
lk denote the state of ma-

chine m in period k after performing the most recent

maintenance in period l.

Nm
lk =


0 k = l

k − 1 + αm k > l, l = 0

k − l k > l, l > 0

To explain the notation defined above, we distinguish

three cases:

1. k = l: Machine m is maintained at period k, i.e.,

ymkk = 1. Maintenance makes machine m as good as

new, setting its state to the best value, 0.

2. k > l, l = 0: Machine m at time period k has not

been maintained in any of the previous periods, i.e.,

ym0k = 1. Machine m’s state is equal to k − 1 + αm.

3. k > l, l > 0: Machine m at time period k is pre-

viously maintained at time period l, l > 0, i.e.,

ymlk = 1. Machine m is then at state k − l.
The MILP model for MPP in the first time period

is shown in Model 2.

The MPP objective function (13) minimizes the to-

tal cost composed of the lower bound on the lost cost

of L periods and maintenance cost. Constraints (14)

and (15) ensure the feasibility of the maintenance plan

where the former defines the previous maintenance pe-

riod on machine m at time period k and the latter guar-

antees that if time period l, l < k, is the previous main-

tenance period on machine m before the k-th period,

then l is also the previous maintenance period before

period k− 1. Constraints (16) enforce the maintenance

capacity limit in each time period. Constraints (17) are

the relaxations of PSPs, calculating the lower bound on

the lost cost at period k where |Jk| is the number of

production jobs at time period k. In a flowshop system,

the upper bound on total number of products produced

is equal to the minimum number of products produced

over all machines. The upper bound on the number of

finished jobs on machine m given that it was last main-

tained in period l, i.e., ymlk = 1, equals
νmNm

lk
×T

min
j∈Jk

(njm) where

the numerator is the upper bound on the total available

processing time and the denominator is the minimum

processing time required by a job on machine m in pe-

riod k. The cuts are explained in Section 5.1.3.

The non-linear Constraints (17) are replaced by the

following two constraints where δk is a dummy decision

variable.

Λk ≥ hk(|Jk| − δk), ∀k ∈ {1, . . . , L}

δk ≤
k∑
l=0

νmNmlk
× T

min
j∈Jk

(njm)
ymlk , ∀m, ∀k ∈ {1, . . . , L}

5.1.2 The Production Scheduling Problem (PSP)

After the maintenance assignment decisions denoted as

ymhlk are found by the MPP in iteration h, the states

of machines are known. The PSP model for finding the

optimal maintenance and production schedule in the

first time period for a given maintenance plan by the

MPP is shown in Model 3 where in Constraints (4)

to (12): (i) k equals 1; (ii) ym1 changes to ymh11 , and

(iii) Nm(1) equals αm denoting the state of machine m

before performing maintenance at the first period.
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min

L∑
k=1

Λk +

L∑
k=1

M∑
m=1

τmp ymkk (13)

s.t.

k∑
l=0

ymlk = 1, ∀m, ∀k ∈ {1, . . . , L} (14)

ymlk − yml(k−1) ≤ 0, ∀m, ∀k ∈ {1, . . . , L}, ∀l ∈ {1, . . . , k − 1} (15)

M∑
m=1

ymkk ≤ C, ∀k ∈ {1, . . . , L} (16)

Λk ≥ hk(|Jk| −min
m

(

k∑
l=0

νmNm
lk
× T

min
j∈Jk

(njm)
ymlk)), ∀k ∈ {1, . . . , L} (17)

Cuts

ymlk ∈ {0, 1}, Λk ≥ 0, ∀m, ∀k ∈ {1, . . . , L}, ∀l ∈ {1, . . . , k}

Model 2: The MPP model.

min h1

|J1|∑
j=1

uj

s.t. Constraints (4) to (12)

uj , xjim, bjm ∈ {0, 1}, ∀j, i ∈ J1, ∀m
stjm, pjm, stpm ∈ Z+ ∪ {0}, ∀j ∈ J1, ∀m

Model 3: The PSP model.

If we relax the PSP by assuming there is no deteri-

oration and that |M | = 2, then the PSP problem corre-

sponds to a two machine flowshop with the objective of

minimizing the number of tardy jobs, an NP-complete

problem (Lenstra et al., 1977).

5.1.3 The MPP Cuts

As noted above, the MPP and PSP are iteratively solved

with each optimal MPP solution defining a PSP and

each PSP returning cuts if the lost production cost of

the first period from the MPP cannot be achieved. As-

sume that in iteration h, the first period lost production

cost in the MPP is less than the optimal lost produc-

tion cost in the PSP, represented as Λh1 . The cut after

iteration h is:

Λ1 ≥ Λh1 (1−
∑
m∈Qh

(1− ym11)−
∑
m/∈Qh

ym11) (18)

where Qh = {m|ymh11 = 1} denotes the set of machines

requiring maintenance in iteration h found in the MPP.

The cut is a no-good cut guaranteeing that if the

same set of machines are maintained (m ∈ Qh) and the

same set of machines are not maintained (m /∈ Qh) in

the current first period, the lost production cost of the

first period in the MPP (Λ1) should be greater than

or equal to Λh1 . As the MPP and the PSP find, respec-

tively, a lower bound and an upper bound on the lost

production cost of the first period in each iteration, it-

erating between stages terminates when the bounds are

equal. Furthermore, the finite number of possible main-

tenance plans guarantees the finite convergence of the

Integrated approach.

Changing the cut to Λ1 ≥ Λh1 (1−
∑
m/∈Qh y

m
11) would

make it stronger, but is unsound due to the non-monotonic

behavior of Qh: depending on the problem, maintain-

ing a subset of Qh can decrease or increase the lost

production cost making the stronger cut invalid (see

Example 1 below). The stronger cut is not valid un-

less we make further assumptions. For example, if we

assume that the maintenance duration of all machines

is less than the increase in the processing times of all

jobs, then maintaining fewer machines never decreases

the lost production cost, making the stronger cut valid.

However, we do not make such an assumption here.

Example 1: A facility with 3 machines (M1, M2, M3)

and 2 production jobs (J1, J2) is considered where the

length of the time period is 40, the due dates of pro-

duction jobs are 24 and 35, the processing time of each

production job on each of three machines is 10 and de-

creases to 5 if scheduled after maintenance. The dura-

tions of maintenance activities on machines (P1, P2,

P3) are 30, 5, and 15, respectively.

Assuming that the MPP at iteration h decides to

maintain machines 1, 2, and 3 (Qh = {1, 2, 3}), the op-

timal schedule is shown in Figure 3 where the number

of on-time jobs is one. If the subset {1, 2} is maintained

in the next iteration, none of the jobs is then on-time,

increasing the lost production cost. However, maintain-
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Fig. 3: The optimal schedules.

ing the subset {2, 3} makes both jobs on-time decreas-

ing the lost production cost.

5.1.4 Relaxation of the PSP in the MPP

As noted, Constraints (17) are the relaxation of the

PSPs in the MPP, expressing a lower bound on the

lost production cost. We tighten the lower bound for

the first time period by applying Moore’s algorithm on

the last machine. Moore’s algorithm finds the optimal

number of tardy jobs in a single machine problem when

all jobs are ready at time 0 with the computational

complexity of O(n log n) (Pinedo, 2002).

The last machine is considered as a single machine

where the due dates of the production jobs are changed

to d′j = dj − ∆ since all are not available at time 0.
∆ corresponds to the sum of the minimum processing

times of the jobs on the upstream machines denoted as∑M−1
m=1 min

j∈J1

(njm). Since ∆ is calculated assuming that

all previous machines are processing at their best states

and that there is no precedence constraint, then the fol-

lowing constraint, added to the MPP, is a lower bound

on the lost production cost of the first time period.

Λ1 ≥ h1U1yM11 + h1U
0yM01 (19)

U1 and U0 represent the value of Moore’s algorithm

when the last machine is maintained and is not, respec-

tively. Similarly, the processing times of the jobs on

the last machine are njM or
njM
νMαM

in Moore’s algorithm.

Note that, Moore’s algorithm to find U1 and U0 is just

applied before starting to iterate. We use both relax-

ations, i.e., Constraints (17) and (19), in our model.

5.2 The Non-integrated Approach

The Non-integrated approach (Figure 4) is the standard

hierarchical decision making procedure where there is

no iteration between the MPP and PSP. The MPP

(Model 2) solves the maintenance planning problem

over L periods minimizing the sum of maintenance and

a lower bound on the lost production costs. The PSP

(Model 3) then finds the optimal lost production cost

for the current time period given the maintenance ac-

tivities specified by the MPP. The schedule is executed,

the decision horizon then rolls over one time period up-

dating the machine states (αm), and the same proce-

dure repeats.
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Fig. 4: The schematic representation of the Non-integrated
approach.

5.3 The Short-term Approach

The Short-term approach has a reasoning horizon of

one time period (Figure 5) considering maintenance as

a short-term decision. The maintenance and produc-

tion scheduling problem (MPSP) determines which ma-

chines are maintained and finds the optimal schedule,
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minimizing the sum of maintenance and lost production

costs simultaneously. The computed schedule is then ex-

ecuted, the machine states (αm) are updated, and the

same procedure repeats for the next time period.

0 1 

MPSP 

... 0 1 

MPSP 

0 1 2 ... L L+1 K 
... 

Fig. 5: The schematic representation of the Short-term ap-
proach.

The MPSP model for the first period is shown in

Model 4, where k = 1 and Nm(1) = αm in Constraints

(2) and Constraints (4) to (12).

min h1

|J1|∑
j=1

uj +

M∑
m=1

τmp ym1

s.t. Constraints (2), (4) to (12)

ym1, uj , xjim, bjm ∈ {0, 1}, ∀j, i ∈ J1, ∀m
stjm, pjm, stpm ∈ Z+ ∪ {0}, ∀j ∈ J1, ∀m

Model 4: The MPSP model.

5.4 Heuristic Approaches

We investigate two heuristic approaches for the PSP

and the MPSP models inspired by Moore’s algorithm.

5.4.1 A Heuristic for the PSP

In the heuristic algorithm, the maintenance activities

are performed first on machines that have to be main-

tained, i.e., ∀m ∈ Q1. Q1 is the set of machines deter-

mined for maintenance in the first iteration of the MPP.

Moore’s algorithm is then applied on the last machine,

M , as explained in Section 5.1.4 where

∆ =
∑
m∈Q1

m6=M

(tmp + min
j∈J1

(njm)) +
∑
m/∈Q1

m 6=M

min
j∈J1

(
njm
νmαm

)

d′j =

{
dj − (∆+ tMp ) if M ∈ Q1

dj −∆ if M /∈ Q1

The sequence found by Moore’s algorithm is used to

schedule the jobs on all machines.

5.4.2 A Heuristic for the MPSP

The heuristic is the same as one for the PSP with the

only difference that the decision on which machines re-

quire maintenance is also incorporated. Machines are

ordered in increasing order of their indices and the first

C machines in an initial state greater than or equal to
Sm
2 are maintained. Recall that Sm is the worst state

of machine m. The maintained machines then form set

Q1 and the Heuristic for the PSP is applied to find a

feasible schedule.

6 Computational Study

The next sub-section describes the problem instances

and the experimental details. We then compare the

performance of the solution approaches experimentally

and present insights into each algorithm’s performance

through a deeper analysis of the results.

6.1 Experimental Setup

The problem instances have M ∈ {3, 4, 5, 6} machines

and |J | ∈ {5, 10, 15} jobs in each time period. Note that

in our experimental study, the number of jobs at each

time period is equal, i.e., |Jk| = |J | in a given instance.

Twenty instances for each combination of parameters

are generated, resulting in 240 instances.

Machines Each machine has five states and is randomly

assigned to one of the deterioration processes shown

in Table 1. The deterioration process is classified into

three categories of slow, medium, or fast, defining the

speed of the machine in different states. The initial state

of each machine, αm, is drawn from the discrete uniform

distribution [0, 3] assuming that no machine is in the

worst state at the beginning of the planning horizon.

The maintenance cost for each machine, τmp , is gener-

ated from the discrete uniform distribution [50, 100].

Table 1: The speed of a machine at each state in different
deterioration processes.

Deterioration process
States

0 1 2 3 4
Slow 1 0.9 0.6 0.3 0
Medium 1 0.75 0.5 0.25 0
Fast 1 0.6 0.3 0.15 0

Time periods The length of time period, T , is set at

79, 152, and 224 in instances with 5, 10, and 15 jobs,

respectively. As with the maintenance cost, the lost pro-

duction cost per each job at time period k, hk, is gen-

erated from the discrete uniform distribution [50, 100].
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The maintenance capacity at each time period, C, is

equal to bM2 c.
Production jobs To generate the processing times of the

jobs at the best state of machines, i.e., njm, we assume

that they are uniformly distributed with mean µ and

variance σ2. Further we assume that νa denotes the av-

erage speed of a machine. The average processing time

of a job on a machine regardless of its state is then uni-

formly distributed with mean µ
νa

and variance σ2

ν2
a

. The

sum of the average processing times of all jobs has an

approximately normal distribution with mean |J | × µ
νa

and variance |J | × σ2

ν2
a

. Setting νa = 0.5, µ and σ2 are

found such that the probability that the sum of the av-

erage processing times of all jobs is less than eighty per-

cent of the length of the time period equals 0.75. In our

experiment, µ and σ2 equal 5.5 and 6.75 in all instances

and the length of the time periods are set based on the

number of jobs, as described above. njm is then drawn

from the discrete uniform distribution [1, 10]. The due

date of job j is generated from the discrete uniform

distribution [fd×
∑M
m=1 njm,max(T, fd×

∑M
m=1 njm)],

where fd = 1.5 and T is the length of each time period.

Maintenance Activities The maintenance duration on

machine m, tmp , is drawn from the discrete uniform dis-

tribution [0.05× T, 0.15× T ].

There are K = 24 time periods in the planning

horizon where the number of production jobs are al-

ways known for the next L = 4 periods. The CPU time

limit to find the maintenance and production schedule

at each time period is 900 seconds. As noted above, the

length of the time periods varies between 79, 152, and

224 time units. Since it is not uncommon in practice to

have one time unit correspond to 10 or 15 minutes, the

CPU time limit being less than 2% of the length of the

time period is compatible with the on-line execution

requirement. We execute the best feasible maintenance

and production schedule found by the time-limit if an

algorithm times out. In the case that no feasible solu-

tion is found before the time limit, the schedule found

by a heuristic is executed: Heuristic for the PSP is ex-

ecuted when the PSP times out and Heuristic for the

MPSP is executed when the MPSP times out.

All experiments were run on an AMD 270 CPU

with 1 MB cache per core, 4 GB of main memory, run-

ning Red Hat Enterprise Linux 4. The MILP solver is

CPLEX 12.3.

6.2 Computational Results

In this section, we discuss our results to compare the

performance of different algorithms on the total cost

of maintenance and lost production. The total cost is
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Fig. 6: The mean and the standard error of the normalized
total cost for different algorithms and different number of
jobs.

calculated over the first 21 time periods to reduce end-

of-horizon effects. The algorithms are Integrated, Non-

integrated, Short-term, and Heuristic. The Heuristic al-

gorithm refers to the Heuristic for the MPSP defined in

Section 5.4.2.

Figure 6 shows the mean and the standard error

of the normalized total cost for different algorithms

and different number of jobs. The number of jobs is

5, 10, and 15, each representing a different problem

set with 80 instances. The total cost of each instance

for each algorithm is normalized by dividing to the to-

tal cost achieved using the Heuristic algorithm. The

graph shows a lower mean and standard error for the

Integrated approach for all problem sets, indicating its

superiority over the other three approaches. Table 2

presents further data for each algorithm and each prob-

lem set: the mean and the standard error of the normal-

ized total cost, the number of instances for which the

best known solution is found, and the number of timed-

out instances. An instance is counted as a timed-out if

it reaches the time limit without finding the optimal

solution in at least one time period.

Integrated vs. Non-integrated The Integrated approach

outperforms the Non-integrated, achieving a lower nor-

malized total cost and finding the best known solutions

on 99% of the instances.

Integrated vs. Short-term The Integrated algorithm re-

sults in a lower normalized total cost on 73% of the

problem instances and a higher value on 27%. A closer

look to the results shows that for 89% of the instances

where Short-term outperforms Integrated, both algo-

rithms time out. If the Integrated approach times out,
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Table 2: The mean and the standard error (se) of the normal-
ized total cost, the number of instances for which the best
known solution is found (best), and the number of timed-out
instances for different algorithms.

J

5 10 15 {5,10,15}

Integrated

mean 0.69 0.49 0.57 0.58
se 0.07 0.10 0.11 0.09
best 73 79 22 174
timed-out 0 22 80 102

Non-integrated

mean 0.88 0.77 0.68 0.78
se 0.09 0.12 0.11 0.11
best 1 0 1 2
timed-out 0 2 79 81

Short-term

mean 0.90 0.75 0.58 0.74
se 0.21 0.51 0.34 0.35
best 6 2 57 65
timed-out 0 60 80 140

Heuristic

mean 1 1 1 1
se 0 0 0 0
best 0 0 0 0
timed-out 0 0 0 0

it executes the best feasible schedule found for that time

period. Therefore, the comparison between the perfor-

mance of the algorithms reduces to comparison between

different heuristics.

Integrated vs. Heuristic Although the Heuristic approach

is fast, the Integrated algorithm has a significant supe-

riority over it, decreasing the mean normalized cost by

42% and resulting in a lower normalized total cost for

all problem instances.

7 Discussion

The results in Table 2 provide evidence that solving

the production scheduling problem (PSP) of each pe-

riod to optimality can improve the performance of the

Integrated approach. As shown in Table 2, the PSP in

the Integrated approach times out at least in one time

period in all instances having 15 jobs and in instances

with 10 jobs and 6 machines. The existing literature on

the flowshop scheduling problem with the objective of

minimizing the number of tardy jobs (Gupta and Jr,

2006; Shabtay, 2012) can be investigated in the future

to tighten the relaxation of the PSP in the maintenance

planning problem, to design a stronger cut, and to de-

velop more efficient dominance properties in order to

decrease the run-time of the PSP.

Furthermore, the results in Table 2 show that the

Integrated, the Non-integrated, and the Short-term ap-

proaches outperform the Heuristic approach though they

are computationally more expensive and their imple-

mentation requires investment in data analysis and soft-

ware development. However, since the maintenance cost

of the cluster tools in the semiconductor manufacturing

has the largest share in the total cost, i.e., 80% of $2.5

billion (Ramı́ez-Hernández and Fernández-Gaucherand,

2003; Blau, 2003), the capital cost in software develop-

ment will trade off with savings that will be achieved

by considering the process interdependencies in plan-

ning and scheduling maintenance operations.

A more detailed analysis of our experimental re-

sults suggest that the superiority of the Integrated over

the Non-integrated and the Short-term decreases as the

maintenance becomes more expensive and more inex-

pensive, respectively.

In both Integrated and Non-integrated algorithms,

the maintenance decision is made primarily based on

long-term reasoning and both decide to do the same

amount of maintenance over the MPP horizon. How-

ever, having the same number of maintenance jobs does

not mean that the two approaches find the same sched-

ule. In particular, recall that the iterations of the Inte-

grated approach result in the total lost production cost

over the MPP horizon being composed of the actual lost

production cost in the first period plus a lower bound

from the later periods. This asymmetry results in the

Integrated approach preferring to schedule its mainte-

nance in the first period because that leads to reduced

lost production cost. The outcome therefore is that In-

tegrated adopts a schedule which is less expensive than

Non-integrated but which tends to schedule its main-

tenance in the first period. When maintenance cost is

high, the bias to perform maintenance earlier in each

MPP horizon tends to result in more frequent main-
tenance over the planning horizon. Therefore, a higher

maintenance cost over the 21 time periods results in a

higher total cost since the savings on the lost produc-

tion costs is insignificant compared to the maintenance

cost. Adjusting the Integrated approach to have a sym-

metric view over all periods such that the total lost

production cost consists of the actual lost costs of all

periods in the MPP horizon is likely to remove the bias

of the Integrated approach (see Section 7.1).

Turning to the comparison of Integrated and Short-

term, the primary difference is the long-term mainte-

nance reasoning done by the former. A limitation of

the Integrated compared to the Short-term is likely

to arise when maintenance is inexpensive. If mainte-

nance costs less than failing to satisfy a customer order,

then it is almost always best to do more maintenance.

Furthermore, the Short-term approach will be able to

find such solutions because maximizing maintenance is

worthwhile both in the long and short runs.
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To verify our interpretations, we define ρ =
τmp
hk

as

the ratio of maintenance cost to lost production cost

and use the 240 problem instances as defined in Sec-

tion 6.1 running two other experiments with the mod-

ification that the maintenance cost of each machine is

multiplied by 0.5 and 1.5, respectively: 0.5 ≤ ρ ≤ 2 in

the first experiment is changed to 0.25 ≤ ρ ≤ 1 and

0.75 ≤ ρ ≤ 3. Figure 7 illustrates the mean and the

standard error of normalized total cost for different al-

gorithms and different ρ values over all 240 problem

instances.
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Fig. 7: The mean and the standard error of the normalized
total cost for different algorithms and different ρ values.

Table 3 shows the difference between the means
of normalized total costs for different algorithms. As

the ρ values increase, i.e., performing maintenance be-

comes more expensive, the difference between the Non-

integrated and the Integrated approaches decreases while

the difference between the Short-term and the Inte-

grated increases, supporting our interpretations.

7.1 The Extended Integrated Approach

As already discussed, the Integrated approach has an

asymmetric view over the PSPs in the MPP horizon:

because the MPP lost cost value in the current period

converges to the actual lost cost but the same value is

represented only by a lower bound in later periods, the

Integrated approach has a bias to perform immediate

maintenance. The lost cost is essentially more expen-

sive in the current period than in subsequent periods.

Adjusting the Integrated approach to represent the ac-

tual lost production cost from all periods will remove

this bias while also allowing the MPP to reason with

more accurate lost cost information.

We can therefore use the logic-based Benders de-

composition representation of the problem shown in

Figure 1, called the Extended Integrated approach. The

extension is that for each MPP solution, a PSP for each

period within the known horizon is solved to find the

actual lost costs for each of the L time periods. While

this increases the number of PSPs, given a maintenance

plan, each PSP is independent and they can be solved

in parallel with multiple processors.

While the Extended Integrated approach is actually

a standard logic-based Benders decomposition, the ap-

proach has two critical weaknesses in our context.

1. Observe that the lost production cost of time pe-

riod k is dependent on both the set of maintained

machines in period k and the machine speeds, and

therefore the machine conditions, at the beginning

of the period. While the L PSPs can be solved inde-

pendently, a cut for a time period k, k > 1, cannot

simply refer to the maintenance decisions in period

k. In a subsequent iteration, a change in mainte-

nance decisions in an earlier period would change

the machine conditions at the beginning of period k

and, therefore, would change the lost cost impact of

the maintenance decisions in period k. A cut that

only includes the maintenance decisions for time pe-

riod k is therefore invalid. In fact, a valid cut for

period k in the Extended Integrated approach must

refer to the maintenance decisions for the first k pe-

riods and provide a bound on the sum of the lost

costs over the first k periods. Formally, the cuts af-

ter iteration h are:

k∑
i=1

Λi ≥(

k∑
i=1

Λhi )(1−
k∑
i=1

∑
m∈Qhi

(1− ymii )

−
k∑
i=1

∑
m/∈Qhi

ymii ),∀k ∈ {1, . . . , L} (20)

Qhk indicates the set of machines maintained in pe-

riod k in iteration h. The iterations between the

MPP and the PSPs continue until the total lost cost

over L time periods is equal to the one computed in

the MPP.

2. At each iteration of the MPP, the PSPs return cuts

until the convergence criterion is achieved. The max-

imum number of iterations therefore equals the max-

imum number of times that the PSPs might return

cuts to the MPP. Since the cuts in the Integrated

approach (Equations 18) involve only the lost pro-

duction cost variable for the first period, the maxi-
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Table 3: The difference between the means of normalized total costs for different algorithms and different ρ values.

ρ Non-integrated:Integrated Short-term:Integrated

0.25 ≤ ρ ≤ 1 0.27 0.02
0.5 ≤ ρ ≤ 2 0.19 0.16
0.75 ≤ ρ ≤ 3 0.14 0.22

mum number of iterations is
∑C
i=0

(
M
i

)
, enumerat-

ing all possible ways of assigning maintenance to i

machines and the first period considering the main-

tenance capacity limit of C. However, the cuts in

the Extended Integrated approach (Equations 20)

involve the lost production cost variables for all L

periods. The maximum number of iterations con-

sequently increases to (
∑C
i=0

(
M
i

)
)L. The Extended

Integrated approach will then be expected to have

an extremely high computational expense not be-

cause of the linear increase in the number of PSPs in

each MPP iteration (i.e., solving L− 1 more PSPs),

but because of the exponential increase in the num-

ber of iterations.

These weaknesses make the Extended Integrated

model unlikely to be successful. To confirm this analy-

sis, we ran it on the 240 problem instances of Section 6.1

where 0.5 ≤ ρ ≤ 2 and where the CPU time limit is

900 seconds for each period. As expected, it times out

on 198 problem instances and the mean of the normal-

ized total cost over all instances marginally increases to

0.59 compared to 0.58 for the Integrated approach in

Table 2.

7.2 Job-dependent Lost Production Cost

Although in the Integrated approach we assume that

the lost production cost, hk, is only dependent on the

time period, our solution approach can be adapted for

a problem where the lost production cost is dependent

on both the time period and the job, i.e., hkj . To cal-

culate a lower bound on the lost cost of all periods, we

replace hk in Equation (17) with minj∈Jk(hkj). Simi-

lar to Section 5.1.4, to tighten the lower bound on the

first period, we consider the last machine as a single

machine where the due dates of jobs are changed to

d′j = dj − ∆, but we use a dynamic programming to

minimize the weighted number of tardy jobs on the last

machine (Pinedo, 2002; Cai and Vairaktarakis, 2012).

Constraint (19) is therefore replaced with

Λ1 ≥ Ū1yM11 + Ū0yM01 , (21)

where Ū1 and Ū0 are the optimal values of dynamic pro-

gramming when the last machine is maintained and is

not, respectively. Similarly, the processing times of the

jobs on the last machine are pjM = njM or pjM =
njM
νMαM

in dynamic programming. To calculate Ū1 or Ū0, we

first assume the jobs are indexed in Earliest Due Date

(EDD) order and let Fj(t) be the minimum weighted

number of tardy jobs for the first j jobs such that the

processing time of the on-time jobs is at most t. Defin-

ing the initial conditions as:

Fj(t) =

{
∞ for t < 0, j = 1, 2, . . . , |J1|
0 for t ≥ 0, j = 0

,

we use the following recursive equations for j = 1, . . . , |J1|
and T =

∑|J1|
j=1 pjM .

Fj(t) =

{
min{Fj−1(t− pjM ), Fj−1(t) + hj1} 0 ≤ t ≤ dj
Fj(dj) dj < t ≤ T .

The optimal weighted number of tardy jobs is then

F|J1|(d|J1|). The dynamic programming algorithm is

pseudopolynomial with the computational complexity

of O(|J1|T ) (Pinedo, 2002).

To investigate the performance of the algorithms

with job-dependent lost production cost, we consider

the 80 problem instance of Section 6.1 with |J | = 5 jobs

and generate the lost production cost of each job at each

time period, hjk, from the discrete uniform distribu-

tion [50, 100]. Our results on the 80 problem instances

show that the Integrated approach decreases the total

cost on average by 31% and 29% compared with the

Non-integrated when the lost costs are job-dependent

and job-independent, respectively.1 Therefore, the su-

periority of the Integrated approach is preserved with

different lost production cost per job. However, when

the lost production cost is job-dependent, we expect

the lower bounds on the lost costs of the future periods

are weaker than the lower bounds with job-independent

lost cost. As a result, the tendency of the Integrated ap-

proach to perform more frequent maintenance is likely

to increases due to the asymmetrical representation of

the lost costs of the PSPs in the MPP horizon and the

superiority of the Integrated over the Non-integrated

decreases more as the maintenance cost becomes more

expensive.

1 We used CPLEX 12.6 as the MIP solver for these results.
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8 Conclusion & Future Work

In this paper, we address an integrated maintenance

planning and production scheduling problem that arises

in highly coupled processes such as wafer fab in the

semiconductor manufacturing: a multi-machine produc-

tion system where production capacity decreases as ma-

chines deteriorate and where each customer order has

specific processing requirements and due date. At the

beginning of each time period, two decisions are made:

which machines are to be maintained, if any, and when

each production and each maintenance activity should

be executed in order to minimize the total maintenance

and lost production costs over the planning horizon.

Our problem has two novel features: (i) a multi-

machine scheduling problem is studied and (ii) main-

tenance concepts are modeled as they appear in the

maintenance research literature: maintenance is consid-

ered as a long-term decision and there is an explicit

model representing the effect of machine deterioration

and restoration processes on processing times.

To precisely model the production capacity as a

function of both machine states and scheduling combi-

natorics including due dates and workloads, we propose

an integrated two-stage algorithm. In the first stage of

the algorithm, maintenance planning is done over time

periods where the customer orders are known. The pro-

duction scheduling problem and production capacity

are abstracted in the first stage and the objective is

to find a maintenance plan for each machine, minimiz-

ing the sum of maintenance cost and a lower bound on

lost production cost. The second stage then schedules

maintenance and production activities in the current
period, minimizing the actual lost production cost as-

suming the given maintenance plan. The iteration be-

tween two stages continues, with feedback, until the

lower bound and the actual lost production cost of the

current period converge.

The computational results demonstrate that the In-

tegrated approach yields lower total cost than three

other approaches tested: a Non-integrated approach, a

Short-term, integrated approach, and a Heuristic ap-

proach. The benefit for Integrated decision making over

Non-integrated, furthermore, increases for lower main-

tenance cost relative to lost production cost. Finally,

the benefit of long-term decision making in the Inte-

grated approach over a myopic, Short-term approach

increases with higher relative maintenance cost. These

observations suggest that at extreme low or high rela-

tive maintenance cost, Short-term and Non-Integrated

approaches should be adopted. However, for a broad

range of intermediate relative costs, Integrated provides

superior quality solutions.

Our investigation of the integrated maintenance plan-

ning and scheduling for long horizon and multi-machine

problems opens substantial scope for future work. In

particular, the investigation of real world maintenance

planning and scheduling problems is likely to inspire

a variety of problem definitions, formulations, and so-

lution approaches that may be complementary to and

improve upon the work presented here. The most in-

teresting extension is to model problem characteristics

such as customer orders, machine state, and the effect of

maintenance on machine state as stochastic variables,

requiring a combination of tools from stochastic mainte-

nance planning (Sloan, 2004, 2008; Nicolai and Dekker,

2008) and stochastic scheduling (Cai et al., 2003, 2004;

Beck and Wilson, 2007). For work in this direction,

see Aramon Bajestani et al. (Aramon Bajestani et al.,

2014).
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