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Abstract

We develop the first exact decomposition approaches for a multi-level operating room plan-
ning and scheduling problem that integrates case mix planning, master surgical scheduling,
and surgery sequencing in the presence of multiple surgical specialties. Our approaches con-
sist of novel uni-level and bi-level branch-and-check algorithms that solve the problem using a
hybridization of integer programming and constraint programming. We demonstrate that our
approaches outperform an existing time-indexed integer programming model, yielding signifi-
cant improvements on solution quality. Our methods are competitive with an existing genetic
algorithm while providing provable bounds on solution quality. We conduct an investigation
into the impact of time discretization on our algorithms, illustrating that our decompositions,
unlike the previously proposed integer programming approach, are much less sensitive to time
discretization and produce more accurate solutions as a result. Finally, we introduce and in-
vestigate benchmark instances with a more diverse case mix. Overall, we conclude that our
decompositions are the most appropriate approaches for this multi-level operating room plan-
ning and scheduling problem.
Keywords: Multi-specialty operating room scheduling, logic-based Benders decomposition,
branch-and-check, multi-level decomposition, hybrid IP/CP

1 Introduction

Operating rooms (ORs) play a substantial role in hospital profitability. Their effective utilization

leads to cost reductions in surgical service delivery, shortening surgical patient wait times, and

increasing patient admissions (Roshanaei et al., 2017b). According to a report, improving OR

throughput by one additional procedure per day can generate from $4-7 million in additional annual
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revenue for an average-sized institution (HFMA, 2005). In Canada, for example, many ORs have low

utilization, typically around 70% of nominal capacity due, in part, to inefficient scheduling systems,

lack of downstream units for post-operative patient care, and the presence of significant uncertainty

in surgical duration estimation (Wang et al., 2016). Producing high-utilization OR schedules is

difficult due to the combinatorial nature of the optimization problem, which involves numerous

resources (e.g., ORs, surgeons, nurses, anesthesiologists, and surgical equipment) and complex

problem constraints (e.g., OR and surgeon capacities, surgery sequencing) (Denton et al., 2010).

The problem is further complicated when the number of resources and patients to be scheduled

increases, yielding substantial optimality gaps for solutions constructed with mathematical models

and decomposition techniques (Hashemi Doulabi et al., 2016; Marques et al., 2012). In this study,

we solve the multi-level OR planning and scheduling (MLORPS) problem (Marques et al., 2012)

that integrates case mix planning, master surgical scheduling, and surgical case scheduling using

branch-and-check (B&C) decomposition algorithms.

OR planning and scheduling includes decision-making for: i) case mix planning, at the strategic

level, involving the distribution of OR times among surgical specialties (Adan et al., 2009; Vissers

et al., 2005); ii) master surgical scheduling, at the tactical level, concerning the distribution of allot-

ted OR times to surgeons within a given specialty (Banditori et al., 2013; Roshanaei et al., 2017b;

Tanfani and Testi, 2010); and iii) surgical case scheduling, at the operational level (Hashemi Doulabi

et al., 2016; Roshanaei et al., 2017a). Surgical case scheduling consists of advance scheduling, where

the surgery date is determined, and allocation scheduling, where surgeries are allocated to ORs and

their sequence is determined. At the master surgical scheduling level, the assigned OR time for each

specialty is allocated to surgeons in various ways (Guerriero and Guido, 2011): block scheduling,

in which an OR block, usually 8-10 hours in duration, is fully reserved for a surgeon; modified

block scheduling, in which half a block is reserved for a surgeon and the remaining hours can be

shared among other surgeons; and open scheduling, in which surgeons share a number of ORs and

can move among them within a day (Batun et al., 2011; Hashemi Doulabi et al., 2016; Roshanaei

et al., 2017b). The increased flexibility of open scheduling results in increased patient admission

(Fei et al., 2009), but the scheduling problems are harder to solve (Hashemi Doulabi et al., 2016).

This strategy has recently received significant attention within the OR scheduling literature (Batun

et al., 2011; Fei et al., 2010; Hashemi Doulabi et al., 2016; Marques et al., 2012, 2014; Roshanaei

et al., 2017b; Vijayakumar et al., 2013). In this paper, we focus exclusively on the scheduling of

ORs and surgeons.

Research in OR scheduling has seen considerable activity in the last decade (Guerriero and

Guido, 2011; Samudra et al., 2016; Van Riet and Demeulemeester, 2015; Zhu et al., 2018), where

decision-making can be approached using heuristics (Aringhieri et al., 2015; Castro and Marques,

2015; Fei et al., 2010; Jebali et al., 2006), or exact techniques such as mathematical programming

(Hashemi Doulabi et al., 2016; Marques et al., 2012; Pham and Klinkert, 2008; Roshanaei et al.,

2017a; Silva et al., 2015; Vijayakumar et al., 2013) and problem-specific decompositions (Batun

et al., 2011; Hashemi Doulabi et al., 2016; Riise et al., 2016; Roshanaei et al., 2017a,b). Mathe-

matical programming is the most common approach to solving OR scheduling problems, however,
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recent studies have demonstrated the effectiveness of constraint programming (CP) and CP-based

decomposition techniques (Hashemi Doulabi et al., 2016; Wang et al., 2015).

Case mix planning, master surgical scheduling, and surgical case scheduling have all been pre-

viously formulated using mathematical modelling, however, the simultaneous optimization of these

decisions in a single mathematical model is beyond the capability of existing optimization solvers

for realistically-sized problems. To handle the intractability of OR scheduling problems, a wide

variety of exact techniques have been developed, including branch-and-price (Belien and Demeule-

meester, 2008; Cardoen et al., 2009; Fei et al., 2008), branch-and-price-and-cut (Hashemi Doulabi

et al., 2016), Lagrangian relaxation (Augusto et al., 2010; Perdomo et al., 2006), and logic-based

Benders decomposition (LBBD) (Riise et al., 2016; Roshanaei et al., 2017a, 2019, 2017b). The

MLORPS problem studied in this work has been previously formulated as an IP (Marques et al.,

2012) and solved with CPLEX. Various heuristic algorithms have also been developed to solve the

problem, including a genetic algorithm (GA) (Marques et al., 2014), and an approximate two-stage

decomposition based on generalized disjunctive programming (GDP) (Castro and Marques, 2015).

Previous work demonstrated that the GDP approach finds solutions 3% better than those of the

IP model solved with CPLEX in one hour of runtime, and 0.40% better than the GA solutions. Bi-

objective function design for MLORPS using a heuristic approach has also been studied (Marques

and Captivo, 2015). Previous exact decompositions for the single-specialty variant of the problem

resulted in large optimality gaps (Hashemi Doulabi et al., 2016) for problem sizes that are much

smaller than those in this study. To the best of our knowledge, no exact decomposition technique

has been proposed for this multi-specialty problem.

The MLORPS problem we solve represents one of the largest integrated OR planning and

scheduling problems under open scheduling, with instances exceeding 1000 patients. Recognizing

the shortcomings of the IP model for problems of this size, we propose the use of exact branch-and-

check (B&C) decomposition methods. Logic-based Benders decomposition (LBBD) (Hooker, 1994;

Hooker and Ottosson, 2003) and B&C (Thorsteinsson, 2001) are decomposition algorithms that

have been applied successfully to a variety of scheduling problems, including single and multi-stage

parallel machine scheduling (Harjunkoski and Grossmann, 2002; Tran et al., 2016), multi-factory

planning and scheduling (Hooker, 2007), home hospice care scheduling (Heching et al., 2019),

job availability intervals (Gedik et al., 2016), vehicle routing (Booth et al., 2016), OR scheduling

(Riise et al., 2016; Roshanaei et al., 2017a, 2019, 2017b), integrated process planning and scheduling

(Barzanji et al., 2019), and multi-period interdiction networks (Enayaty-Ahangar et al., 2018). The

B&C algorithm, specifically, is closely related to both classical Benders decomposition and LBBD.

Classical Benders decomposition partitions a mixed-integer program into a master problem (MP),

involving only integer variables, and one or more subproblems (SPs) involving only continuous

variables. LBBD generalizes classical Benders decomposition by allowing the SPs to take on any

form. While both classical and logic-based Benders approaches solve the MP to optimality and

then solve the SPs given the fixed MP-optimal solution, B&C solves the SPs during the MP search

for each incumbent solution and can thus guarantee a bound for each incumbent solution if verified

with SPs. A variant of B&C (OPT15) (Beck, 2010) only solves SPs when the optimality gap of
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MP integer solutions is equal to or less than 15%, resulting in significant computational savings.

It has been previously shown that operating room scheduling problems are amenable to allocation-

sequencing (Castro and Marques, 2015; Jebali et al., 2006; Riise et al., 2016; Roshanaei et al., 2017b);

allocation-packing (Roshanaei et al., 2017a); and/or allocation-packing-balancing (Roshanaei et al.,

2019) decompositions. We develop uni-level and bi-level B&C approaches to solve the MLORPS

problem as initially formulated by Marques et al. (2012). The uni-level B&C approach decomposes

the problem into an MP, consisting of case mix selection, OR-to-specialty allocation, surgery-to-OR

allocation, and a set of SPs, where surgeries are sequenced. In the bi-level B&C approach, the MP

is relaxed to only include case mix selection and relaxed OR-to-specialty allocation, which we call

the relaxed MP (RMP). The primary SPs allocate surgeries to ORs and ensure that surgeries can be

packed within the RMP-determined number of ORs. The secondary SPs sequence surgeries in ORs

allocated to each surgical specialty in each day. We model the MP, RMP, and primary SPs using

IP and the secondary SPs using CP. We compare the performance of our decomposition methods

to those of the IP model solved via CPLEX (Marques et al., 2012) and a GA (Marques et al., 2014)

using the same dataset over two objective functions: i) maximizing the scheduled surgical time and

ii) maximizing the number of scheduled surgeries. A direct comparison to the approximate GDP

decomposition (Castro and Marques, 2015) is not possible as a different dataset was used that is

not accessible to us.

The contributions of this paper are as follows:

• We develop the first exact decomposition algorithms for the multi-level operating room plan-

ning and scheduling (MLORPS) problem, specifying associated master problems, subprob-

lems, and logic-based Benders cuts. We prove the validity of our Benders cuts and the global

convergence of our approaches.

• We model and solve surgery sequencing subproblems with constraint programming (CP),

leveraging its ability to rapidly determine feasible solutions to these hard scheduling problems.

• We demonstrate that our uni-level decompositions provide, on average, 10 times smaller

optimality gaps than the integer programming (IP) model solved with CPLEX (Marques

et al., 2012) within a 30 minute runtime. Similarly, our decomposition methods are able to

find feasible solutions competitive with a genetic algorithm (GA) (Marques et al., 2014) in

less runtime while providing provable bounds on solution quality.

• We show that, in addition to outperforming the existing IP model on time-discretized prob-

lems, our decomposition methods are capable of solving MLORPS effectively with non-

discretized surgical/OR times. Furthermore, we show that arbitrary discretization of surgical

times and OR availability times, as implemented in previous approaches in the literature,

leads to an inaccurate estimation of OR utilization.

• We validate the performance of our approaches on both existing benchmarks and newly

introduced benchmark data with a more diverse case mix, demonstrating the performance

achieved is similar to that of the existing benchmark.
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The remainder of the paper is structured as follows. In Section 2, we formalize the problem and

provide the mathematical model. In Section 3, we present our uni-level and bi-level decomposition

approaches. In Sections 4, we provide a description of the data used for our experiments. In Section

5, we present various experimental analyses, including a comparison to previous methods used to

solve MLORPS. In Section 6, we discuss the results and Section 7 concludes the paper. Proofs of

the Benders cuts are provided in the Appendix.

2 Problem Definition

The MLORPS problem, as presented in Marques et al. (2012), is defined as follows: Given a set of

patients, a set of surgical specialties, a set of homogeneous ORs, and a set of surgeons, develop a

schedule for a fixed planning horizon that maximizes OR utilization (or, alternatively, the number

of scheduled surgeries) while adhering to OR availability, surgeon availability, and patient priorities.

In the original problem definition, although ORs are homogeneous, they cannot be shared among

specialties and each OR must be allocated to a single specialty on each day. Each surgery has a

surgical time, where induction time, surgery time, and wake-up time are aggregated into a single

value. There is also a mandatory cleaning time that takes place after each surgery. Surgeons are

assigned to surgeries a priori and a surgeon may participate in surgeries from multiple specialties.

In Marques et al. (2012), time is discretized into time slots of 15 minutes. In this work, in addition

to studying the discretized variant, we investigate solving the non-discretized problem. Time slots

during which surgeons are unavailable are also considered. Deadlines for surgeries are determined

by patient priority classification: i) deferred urgency (surgery must be performed in ≤ 72 hours),

ii) high priority (surgery must be completed within a fortnight), iii) priority (surgery must be

completed within two months), and iv) normal priority (within a year).

An IP formulation, based on the one presented in Marques et al. (2012), is used to define

and solve the problem. With some adjustments to the original presentation, intended for clarity

throughout this work, the notation for all parameters and variables in this model is summarized in

Table 1. The problem is modeled following two assumptions often made in the literature: i) surgical

times are deterministic and known a priori (Fei et al., 2009; Hashemi Doulabi et al., 2016; Jebali

et al., 2006; Riise et al., 2016; Roshanaei et al., 2017a,b), and ii) ORs are homogeneous (Castro and

Marques, 2015; Marques et al., 2014; Roshanaei et al., 2017a). While this work both presents, and

compares against, deterministic algorithms for MLORPS, there is recent work on the incorporation

of surgical duration stochasticity into OR scheduling problems (Guerriero and Guido, 2011; Rath

et al., 2017; Samudra et al., 2016; Shylo et al., 2013; Van Riet and Demeulemeester, 2015; Zhu et al.,

2018). The IP model is based on an open scheduling strategy, allowing surgeons to change ORs

within a day to perform their assigned surgeries and assumes that surgeons are always available

during OR availability times. Surgeons are not required to stay in the OR during cleaning time.

This model integrates case mix planning, OR-to-specialty allocation, and patient-to-OR allocation

with patient sequencing.
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Table 1: IP model notation

Sets:

J Set of surgical specialties, j ∈ J
S Set of surgeons, s ∈ S
P Set of patients, p ∈ P
P1 Set of mandatory patients that must be operated on in the first day of the week

P2 Set of mandatory patients that must be operated on sometime during the week

Sj Set of surgeons associated with specialty j

Pj Set of patients associated with specialty j

sp Surgeon assigned to patient p, sp ∈ S
D Set of days in the planning horizon, d ∈ D
R Set of ORs in the surgical suite of each hospital, r ∈ R
L Set of time slots representing the available time of ORs, t ∈ L
Lp A subset of time slots for which surgery p can start without going into overtime

Parameters:

Tp Total surgical duration of patient p

E Fixed cleaning time after each surgery

Asd Maximum availability time of surgeon s on day d

As Maximum availability time of surgeon s in each week

Variables:

xpdrt 1 if the surgery of patient p starts in slot t of OR r on day d, 0 otherwise

yjdr 1 if specialty j is allocated to OR r on day d, 0 otherwise

2.1 Constraints

Following Marques et al. (2012), the constraints required to formulate the IP-MLORPS are detailed

by Constraints (1)-(11). Constraint (1) ensures that the set of deferred urgency patients, P1, are

scheduled on the first day of the planning horizon, while Constraint (2) ensures that the set of

high priority patients, P2, are scheduled in the current planning horizon. Constraint (3) models

the set of priority and normal priority patients, P \ {P1 ∪ P2}, as optional in the current planning

horizon. Constraint (4) ensures that no two surgeries interfere temporally in an OR. Constraint

(5) ensures that each OR is only allocated to a single specialty on each day. Constraint (6) ensures

that the maximum availability of each OR is not exceeded for each day. Constraint (7) ensures that

surgeries involving the same surgeon do not temporally interfere. Constraints (8) and (9) ensure

the daily and weekly availability times of each surgeon are respected. Finally, Constraints (10) and

(11) identify the binary domain of the decision variables.
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maximize Objective functions in Section 2.2 (IP-MLORPS)

subject to
∑

r∈R

∑

t∈Lp
xp1rt = 1 ∀p ∈ P1 (1)

∑

d∈D

∑

r∈R

∑

t∈Lp
xpdrt = 1 ∀p ∈ P2 (2)

∑

d∈D

∑

r∈R

∑

t∈Lp
xpdrt ≤ 1 ∀p ∈ P \ {P1 ∪ P2} (3)

∑

p∈P

∑

t′∈Lp:t′∈[t−Tp+1−E,t]

xpdrt′ ≤ 1 ∀d ∈ D; r ∈ R; t ∈ L (4)

∑

j∈J
yjdr ≤ 1 ∀d ∈ D; r ∈ R (5)

∑

p∈Pj

∑

t∈Lp
xpdrt ≤ |L|yjdr ∀j ∈ J ; d ∈ D; r ∈ R (6)

∑

p∈P:sp=s

∑

r∈R

∑

t′∈Lp:t′∈[t−Tp+1,t]

xpdrt′ ≤ 1 ∀s ∈ S; d ∈ D; t ∈ L (7)

∑

p∈P:sp=s

∑

r∈R

∑

t∈Lp
Tpxpdrt ≤ Asd ∀s ∈ S; d ∈ D (8)

∑

p∈P:sp=s

∑

d∈D

∑

r∈R

∑

t∈Lp
Tpxpdrt ≤ As ∀s ∈ S (9)

xpdrt ∈ {0, 1} ∀p ∈ P; d ∈ D; r ∈ R; t ∈ Lp (10)

yjdr ∈ {0, 1} ∀j ∈ J ; d ∈ D; r ∈ R (11)

2.2 Objective functions

With the problem constraints defined in Section 2.1, two objective functions have been considered

for the IP-MLORPS model in the literature, aimed at maximizing: i) scheduled surgical time

(Marques et al., 2012), and ii) the number of scheduled surgeries (Marques et al., 2014). The first

objective is formulated as follows:

∑

p∈P

∑

d∈D

∑

r∈R

∑

t∈Lp
Tpxpdrt (12)

effectively summing all of the surgical time scheduled across the patients, days, and ORs in the

planning horizon. By removing the coefficient Tp, we can formulate the second objective, namely

the number of scheduled surgeries:

∑

p∈P

∑

d∈D

∑

r∈R

∑

t∈Lp
xpdrt (13)

We note that while various objective functions can be designed and tested for the constraints in

the IP-MLORPS model, we study these two objective functions to be consistent with the literature
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Figure 1: High-level branch-and-check (B&C) components for MLORPS, including the master
problem (MP), sub problems (SPs), and Benders cuts.

and for comparison purposes. To motivate and present our decomposition methods, we use only

the scheduled surgical time maximization objective function.

3 Proposed Decomposition Approaches

In this section, we detail the general algorithmic procedure for our decomposition methods and

present our uni-level and bi-level approaches to the MLORPS problem.

3.1 Background

MLORPS is an NP-hard problem (Marques, 2010) and the IP-MLORPS formulation has O(|P| ×
|D| × |R| × |L|) binary variables and O(|S| × |D| × |L|) constraints (assuming |S| >> |J | and

|L| >> |R|). The time-indexed nature of the formulation, with a constraint posted for each t ∈ L,

poses challenges for modern solvers, as we demonstrate in later sections of the paper: memory usage

grows dramatically and performance deteriorates quickly as the size of the problem increases. To

mitigate this, we investigate the use of row-generation techniques, specifically branch-and-check

(B&C) (Thorsteinsson, 2001), as an alternative to the existing time-indexed formulation.

In B&C, as illustrated in Figure 1, the global problem (i.e., IP-MLORPS) is relaxed by either

omitting constraints and/or redefining decision variables to form a master problem (MP) that is

expressed as a mathematical program. In the context of our MLORPS problem, the MP relaxes

surgery sequencing constraints and simply assigns ORs to specialties and surgeries to ORs subject

to OR capacities and surgeon availability. The MP is solved using a branch-and-bound solver and,

whenever a feasible solution is found, it is verified (“checked”) against the subproblems (SPs). The

purpose of the SPs is to enforce the problem components that were relaxed in the formation of the

MP. For our problem, the SPs verify whether the surgeries assigned to a set of ORs on a given day

can be feasibly sequenced given surgeon and OR availability. If the SP finds that the MP solution

violates its constraints, it returns a cut to the MP indicating that the solution is not globally

feasible. If the MP-feasible solution is also feasible with respect to all SPs, then it is globally valid
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Figure 2: Uni-level branch-and-check (B&C) algorithm detail. Parameter α represents the accept-
able optimality gap of the decision maker.

and the MP search continues until terminated by the runtime limit, or optimality is proven. As

formal definitions of the B&C procedure can be found in previous works (Thorsteinsson, 2001; Tran

et al., 2016), we provide a conceptual understanding of the algorithm and insight for how it is used

to solve the MLORPS problem.

3.2 Uni-level Branch-and-Check

In the uni-level B&C, the MP optimizes the assignment of decision variables, xpdr, which simul-

taneously determine the case mix and case-to-OR allocation. Variables yjdr determine which ORs

should be allocated to each specialty on each day. The sequencing SPs (SSPs) look to feasibly

sequence the surgeries allocated to each day, subject to surgeon and OR availability. The uni-level

B&C approach converges to optimality when the MP lower bound is equal to its upper bound,

where the upper bound is given by the best MP-feasible solution that has also passed all of the SP

checks.

3.2.1 Master Problem

The uni-level MP removes index t from xpdrt, as well as the constraints that enforce feasible sequenc-

ing among the time slots of each OR and surgeon (Constraints (4) and (7)). Unlike the IP-MLORPS

model, wherein surgical and cleaning times of each surgery are expressed as a pre-specified number

of discrete time slots, the uni-level MP can use continuous surgical and cleaning times, leading to

a more accurate representation. The MP model is detailed as follows, with objective function and

Constraints (14)-(24).

maximize
∑

p∈P

∑

d∈D

∑

r∈R
Tpxpdr (MP)

subject to
∑

r∈R
xp1r = 1 ∀p ∈ P1 (14)

∑

d∈D

∑

r∈R
xpdr = 1 ∀p ∈ P2 (15)
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∑

d∈D

∑

r∈R
xpdr ≤ 1 ∀p ∈ P \ {P1 ∪ P2} (16)

∑

j∈J
yjdr ≤ 1 ∀d ∈ D; r ∈ R (17)

∑

p∈Pj

(Tp + E)xpdr ≤ (B + E)yjdr ∀j ∈ J ; d ∈ D; r ∈ R (18)

∑

p∈P:sp=s

∑

r∈R
Tpxpdr ≤ Asd ∀s ∈ S; d ∈ D (19)

∑

p∈P:sp=s

∑

d∈D

∑

r∈R
Tpxpdr ≤ As ∀s ∈ S (20)

∑

p∈P

∑

r∈R
xpdr ≥

∑

p∈P

∑

r∈R
xpd′r ∀d = 2, . . . , |D| − 1; d < d′ ≤ |D| (21)

∑

d∈D

∑

r∈R
xpdr ≥

∑

d∈D

∑

r∈R
xp′dr ∀p ∈ (P : sp = s′p, Tp = T ′p); p < p′ ≤ |P| (22)

xpdr ∈ {0, 1} ∀p ∈ P; d ∈ D; r ∈ R (23)

yjdr ∈ {0, 1} ∀j ∈ J ; d ∈ D; r ∈ R (24)

While most of the constraints remain similar to the IP-MLORPS model, Constraint (18) ensures

that the time required for each surgery includes both the surgical time (Tp) and cleaning time

(E). Due to symmetric OR (720 minutes: 690 minutes for surgery allocation and 30 minutes for

the cleaning time of the last surgery) and surgeon (360 minutes) availability in the model, the

MP may interchange the set of patients among days leading to different solutions with the same

objective function value. Constraint (21) breaks this symmetry by ensuring the number of scheduled

surgeries per day is ordered. Deferred priority patients, P1, are not considered in the symmetry-

breaking constraint because they must be operated on on the first day of the week, which removes

symmetry. Similarly, Constraint (22) breaks the symmetry among ORs on each day. Because two

or more surgeries with equivalent duration assigned to the same surgeon are effectively the same,

this constraint pre-orders the use of these surgeries to remove symmetrical solutions with the same

objective function.

3.2.2 Subproblem

Notation for the uni-level SP is shown in Table 2. Each MP incumbent solution i provides the

following output to specialty j on day d: a set of (i) patients, P̂(i)
jd , (ii) surgeons, Ŝ(i)

jd , and (iii)

ORs, R̂(i)
jd . Specialties that share surgeons in the incumbent are grouped together recursively and

an SSP is constructed for the specialty group (e.g., if specialties A and B share a surgeon, and

specialties B and C share a surgeon, the generated specialty group is {A,B,C}). Specialties whose

surgeons exclusively work for it form an SSP on their own. The set J̃ (i)
d denotes the specialty

groups for incumbent i on day d. An SSP, formulated as a CP, is then solved for each specialty

group, Ĵ (i)
d ∈ J̃ (i)

d , that has been assigned more than one OR in the incumbent solution.
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Table 2: Uni-level SP notation

Sets:

P̂(i)
jd All patients p from specialty j scheduled on day d by the MP for incumbent i

R̂(i)
jd All ORs r assigned to specialty j on day d by the MP for incumbent i

Ĵ (i)
d Specialty group (formed for incumbent i on day d) such that each specialty, j ∈ Ĵ (i)

d ,
shares at least one surgeon with another specialty in the group

J̃ (i)
d Set of specialty groups Ĵ (i)

d on day d for incumbent i

Ŝ(i)

Ĵ d
All surgeons s from specialty group Ĵ (i)

d operating on day d by the MP for incumbent i

P̂(i)

Ĵ sd
All patients from

⋃
j∈Ĵ (i)

d

P̂(i)
jd treated by surgeon s on day d by the MP for incumbent i

Parameters:
B The maximum availability time for each OR block
E Fixed cleaning time after each surgery

Variables:
ap Interval variable for patient p’s case, defined by a time interval and duration, Tp
āpr Optional interval variable for patient p’s case in room r, and includes cleaning

time, defined by an interval and duration Tp + E

minimize
a,ā

0 (SSP)

subject to
∑

r∈R̂(i)
jd

PresenceOf(āpr) = 1 ∀j ∈ Ĵ (i)
d ; p ∈ P̂(i)

jd (25)

NoOverlap
({
āpr : p ∈ P̂(i)

jd

})
∀j ∈ Ĵ (i)

d ; r ∈ R̂(i)
jd (26)

NoOverlap
({
ap : p ∈ P̂(i)

Ĵ sd

})
∀s ∈ Ŝ(i)

Ĵ d
(27)

StartAtStart(ap, āpr, 0) ∀j ∈ Ĵ (i)
d ; p ∈ P̂(i)

jd ; r ∈ R̂(i)
jd (28)

PresenceOf(āpr) ∈ {0, 1} ∀j ∈ Ĵ (i)
d ; p ∈ P̂(i)

jd ; r ∈ R̂(i)
jd (29)

0 ≤ Start(ap) ≤ B − Tp ∀j ∈ Ĵ (i)
d ; p ∈ P̂(i)

jd (30)

The objective function represents the feasibility objective of the problem. The SSP makes use of

both interval variables and optional interval variables, rich variable types available within CP. An

interval variable (Laborie, 2009) is a decision variable whose possible values are convex intervals:

{⊥} ∪ {(f, g) | f, g ∈ Z, f ≤ g}, where f and g are the start and end values of the interval and

⊥ is a special value that indicates the variable is not present in the solution. Interval variable

ap, ∀p ∈ P̂(i)
jd , is also defined by a processing time, Tp. Each patient/OR pair (p, r) has an optional

interval variable with processing time Tp +E. Constraint (25) ensures that each surgery is assigned

to one OR by ensuring that only one āpr variable is present, i.e., equal to 1. Constraint (26) uses
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the NoOverlap global constraint (Baptiste et al., 2001) to ensure that the surgeries assigned to a

particular room do not overlap, while accounting for cleaning time. Constraint (27) uses similar

reasoning to ensure that interval variables associated with each surgeon do not interfere temporally,

excluding cleaning time. Constraint (28) uses the constraint StartAtStart to ensure the two types

of interval variables are synchronized with respect to the start time. Constraint (30) defines the

domain for the start time of each interval variable. To strengthen constraint propagation within

the CP solver, we fix the assignment of the largest surgery in a particular SSP to the first OR and

break symmetries among identical surgeries. Such decisions do not eliminate the SSP optimum,

but reduce the assignment and start time domains on the remaining interval variables.

If an SSP is feasible, the current assignment of patients to ORs and allocation of ORs to

specialties on day d is globally valid. If, however, the SSP model is infeasible, we must then

introduce a Benders cut to the MP. We let J̄ (i)
d ⊆ J̃ (i)

d denote the set of specialty groups whose

SSPs are infeasible.

3.2.3 Cuts

We add a Benders cut for each specialty group whose MP allocation for incumbent i results in an

infeasible SSP. The Benders cut associated with each infeasible SSP is as follows:




∣∣∣∣∣∣∣

⋃

j∈Ĵ (i)
d

P̂(i)
jd

∣∣∣∣∣∣∣
−
∑

j∈Ĵ (i)
d

∑

p∈P̂(i)
jd

∑

r∈R̂(i)
jd

xpdr


+



∑

j∈Ĵ (i)
d

∑

r∈R
yjdr −

∣∣∣∣∣∣∣

⋃

j∈Ĵ (i)
d

R̂(i)
jd

∣∣∣∣∣∣∣


 ≥ 1 ∀Ĵ (i)

d ∈ J̄ (i)
d

(31)

Inequality (31) is a valid Benders cut (Theorem 1) that breaks the SSP infeasibility by ensuring

at least one patient is removed from
⋃

j∈Ĵ (i)
d

P̂(i)
jd (MP patient allocation) and/or at least one more

OR is added to
⋃

j∈Ĵ (i)
d

R̂(i)
jd (MP OR allocation). If

∣∣∣
⋃

j∈Ĵ (i)
d

R̂(i)
jd

∣∣∣ = |R| in the infeasible SSP, the

MP can only break the SSP infeasibility by reducing the number of patients.

Each valid Benders cut must satisfy two properties (Chu and Xia, 2004): i) It must eliminate

the current MP solution, and ii) It must not remove any other globally feasible integer solutions.

We use an approach similar to (Roshanaei et al., 2017a,b) to prove the validity of this cut.

Theorem 1. Inequality (31) is a valid Benders cut. The proof is provided in Appendix (1).

3.3 Bi-level Branch-and-Check

The structure of the MP, due to the assumption of identical ORs, makes another level of decom-

position possible (Figure 3). The decision whether to select a patient for operation in the current

planning horizon (case mix selection) does not necessitate specific patient-to-OR allocation and can

be done by only determining the date of surgery for each patient instead. Since patient surgical

loads (Tp + E) for each OR and patient-to-specialty allocation are known a priori, we can later

determine the minimum number of ORs required to accommodate P̂(i)
jd as an independent bin (OR)
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Figure 3: Bi-level branch-and-check (B&C) algorithm detail. Parameter α represents the acceptable
optimality gap of the decision maker.

packing optimization problem (Fazel-Zarandi and Beck, 2012; Roshanaei et al., 2017a). Therefore,

we can decompose the MP into a relaxed MP (RMP), where the case mix of patients is determined,

and a relaxed packing subproblem (PSP) that determines a lower bound on the number of ORs

for each specialty on each day. The feasible assignment of allocated patients to ORs and time slots

within each OR is done in the PSP and SSP, respectively. If an RMP incumbent i passes all PSP

checks, the incumbent is given to the SSP to ensure feasible surgery sequencing. The RMP incum-

bent solution i is globally valid if it is feasible with respect to all PSPs and SSPs. The bi-level B&C

approach converges to optimality if the gap of the RMP incumbent i is ≤ α (optimality tolerance);

otherwise, the search continues for the next incumbent with a lower optimality gap.

The rationale behind the additional level of decomposition is to reduce the number of indices

in the assignment binary variables from three indices to two (xpdr → xpd), reducing the difficulty

of solving the RMP. The bi-level B&C resembles the real-world OR scheduling decision making

process more closely than the uni-level B&C in that, in the real world, the patient is first selected for

surgery (case mix planning) and the date of surgery is later determined (advance scheduling). Then,

surgery-to-OR allocation is determined (first stage of allocation scheduling), and finally, surgeries

are assigned to a starting time slot within ORs (second stage of allocation scheduling). Since

patient-to-surgeon assignments are known a priori, optimizing xpd and later xpr determines how

much a surgeon should work in that day (master surgical scheduling). The drawback of removing

index r is that PSPs are frequently solved for each RMP incumbent solution, which represents a

trade-off between the computational effort the RMP expends branching on index r compared to

the time required to solve PSPs.
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3.3.1 Relaxed Master Problem

The RMP removes index r from the assignment variable xpdr in MP and uses a two-indexed as-

signment variable xpd to only assign patients to days. The RMP also removes index r from the

OR allocation decision variable yjdr and uses a two-indexed decision variable yjd. Determination of

patient-to-day assignments for each specialty on each day allows the RMP to ascertain the number

of required ORs for that specialty by dividing the total surgical load (Tp +E) by the OR availabil-

ity time on each day (B + E) (Fazel-Zarandi and Beck, 2012). The RMP is detailed by objective

function and Constraints (32) through (42).

maximize
x,y

∑

p∈P

∑

d∈D
Tpxpd (RMP)

subject to
∑

d∈D
xpd = 1 ∀p ∈ P2 (32)

∑

d∈D
xpd ≤ 1 ∀p ∈ P \ {P1 ∪ P2} (33)

∑
p∈Pj

(Tp + E)xpd

B + E
≤ yjd ≤ |R| ∀j ∈ J ; d ∈ D (34)

∑

j∈J
yjd ≤ |R| ∀d ∈ D (35)

∑

p∈Ps

Tpxpd ≤ Asd ∀s ∈ S; d ∈ D (36)

∑

p∈P:sp=s

∑

d∈D
Tpxpd ≤ As ∀s ∈ S (37)

∑

p∈P
xpd ≥

∑

p∈P
xpd′ ∀d = 2, . . . , |D| − 1; d < d′ ≤ |D| (38)

∑

d∈D
xpd ≥

∑

p∈D
xp′d ∀p ∈ (P : sp = sp′ , Tp = T

′
p); p < p′ ≤ |P| (39)

xp1 = 1 ∀p ∈ P1 (40)

xpd ∈ {0, 1} ∀p ∈ P; d ∈ D (41)

yjd ∈ Z+ ∀j ∈ J ; d ∈ D (42)

The RMP incorporates a bin-packing relaxation tailored for multiple surgical specialties (Con-

straints (34) and (35)), which is a relaxation of Constraints (17) and (18) of the MP. Instead of

considering the individual capacity of each OR, Constraint (34) aggregates the individual capac-

ity of each OR and assigns patients to the aggregated capacity of ORs. The division of assigned

surgical load to each specialty by the availability time of each OR (B) results in a lower bound on

the number of ORs for each specialty. Constraint (35) ensures that the number of ORs allocated

to different specialties on each day does not exceed the maximum number of ORs (|R|) in that

day. Constraints (36) and (37) ensure that no surgeon’s workload exceeds his/her maximum daily

and weekly availability times, respectively. We also include a set of symmetry-breaking constraints,
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similar to those within the MP, represented by Constraints (38) and (39). Constraint (40) ensures

all patients p ∈ P1 are operated on the first day of the week.

3.3.2 Subproblems

Unlike the uni-level B&C that includes only one type of subproblem (sequencing), the bi-level

B&C has two types of subproblems: packing and sequencing. The RMP assigns a set of patients

(P̂(i)
jd ) and ORs (R̂(i)

jd ) from a set of specialties on each day. The PSP is then an integer program

responsible for allocating patients to ORs and determining whether P̂(i)
jd is feasibly packable given

|R̂(i)
jd | for each specialty j ∈ Ĵ (i)

d . A PSP is solved for each specialty group, Ĵ (i)
d ∈ J̃ (i)

d , that has

been allocated more than one OR. The PSP model is detailed by objective function and Constraints

(43)-(45):

minimize
x

0 (PSP)

subject to
∑

r∈R̂(i)
jd

xpr = 1 ∀j ∈ Ĵ (i)
d ; p ∈ P̂(i)

jd (43)

∑

p∈P̂(i)
jd

(Tp + E)xpr ≤ B + E ∀j ∈ Ĵ (i)
d ; r ∈ R̂(i)

jd (44)

xpr ∈ {0, 1} ∀j ∈ Ĵ (i)
d ; p ∈ P̂(i)

jd ; r ∈ R̂(i)
jd (45)

Constraint (43) ensures that each patient is assigned to exactly one OR, while Constraint (44)

ensures that no OR is over-capacitated.

Secondary Subproblem (Sequencing). Once the RMP incumbent passes all of the PSP

checks, the solution is fed into the SSPs for surgery sequencing. Optimality is proven in a similar

fashion to the uni-level approach, when the lower bound of the RMP is equal to the value of the

best incumbent solution that has passed all of the PSP and SSP checks.

3.3.3 Cuts

We add a Benders cut for specialty groups whose RMP allocation in incumbent i is infeasible with

respect to the PSPs; we denote this set of specialty groups K̄(i)
d . We use the same Benders cut

for both the PSP and SSP in the bi-level B&C methods. As described in Section 3.3, the RMP

provides input to the PSP and then to the SSP. We first assume the PSP does not exist and the

RMP provides an incumbent directly to the SSP. If the incumbent is infeasible with respect to the

SSP, the following Benders cut is added to the RMP:




∣∣∣∣∣∣∣

⋃

j∈Ĵ (i)
d

P̂(i)
jd

∣∣∣∣∣∣∣
−
∑

j∈Ĵ (i)
d

∑

p∈P̂(i)
jd

xpd


+



∑

j∈Ĵ (i)
d

yjd −

∣∣∣∣∣∣∣

⋃

j∈Ĵ (i)
d

R̂(i)
jd

∣∣∣∣∣∣∣


 ≥ 1 ∀Ĵ (i)

d ∈ K̄(i)
d (46)
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To break the SSP infeasibility, this cut ensures the RMP opens at least one new OR and/or

removes at least one patient from
⋃

j∈Ĵ (i)
d

P̂(i)
jd . The value of variable yjd does not change in the

future iteration if
∣∣∣
⋃

j∈Ĵ (i)
d

R̂(i)
jd

∣∣∣ = |R| and the cut is hence reduced to the following no-good cut

that can break the SSP infeasibility by only removing at least one patient from the P̂(i)
jd , i.e.,(∣∣∣

⋃
j∈Ĵ (i)

d

P̂(i)
jd

∣∣∣−
∑

j∈Ĵ (i)
d

∑
p∈P̂(i)

jd

xpd

)
≥ 1.

Theorem 2. Inequality (46) is a valid Benders cut. The proof is similar to that for Theorem 1.

We now assume the PSP exists and the RMP provides incumbents to the PSP and then from

the PSP to the SSP. Evidently, the RMP and the SSP can jointly define a complete algorithm

on their own (similar to the uni-level approach). However, the role of the PSP is to refine the

RMP incumbents with respect to the packing constraints, yielding RMP solutions that are more

likely to satisfy the SSP constraints. The inclusion of the PSP in the bi-level method necessitates

deriving a Benders cut for each infeasible PSP. This cut (Inequality 46), when derived from the SSP,

communicates more information to the RMP regarding the correction of P̂(i)
jd and R̂(i)

jd compared to

when it is derived from the PSP because the SSP includes all the constraints of the IP-MLORPS

for each specialty on each day and can therefore provide more accurate feedback on the current

RMP solution.

3.4 Existing Decompositions for MLORPS

A previously proposed decomposition for MLORPS (Castro and Marques, 2015) is based on Gener-

alized Disjunctive Programming (GDP) and, similar to our uni-level B&C, decomposes the problem

into a planning phase and a sequencing phase in which the surgery-to-day and surgery-to-OR as-

signments are checked for sequence feasibility. Upon detecting an infeasible assignment of surgeries,

at least one low-priority patient is heuristically removed to ensure feasibility. Information from the

sequencing phase is never communicated back to the planning phase, yielding an approximate uni-

directional decomposition. The Benders cuts used in our B&C approaches remedy the approximate

nature of the GDP decomposition by iteratively allowing the MP to find another allocation of pa-

tients to different days and ORs. The allocation or removal of patients determined by the MP is not

conducted heuristically and the algorithm is guaranteed to converge to global optimality. The other

advantage of our B&C approaches are their relative simplicity, making them more accessible for

real-world implementation: the GDP reformulation incorporates 12 types of binary variables and

six types of continuous variables, whereas our decompositions use slight variations of the variables

from the original IP formulation.

4 Data

We consider two benchmark datasets for our empirical investigation. The first consists of instances

from Marques et al. (2012) and subsequent works from the same author, while the second bench-
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mark is new and generated in accordance to a multi-specialty variation of the case mix planning

classification scheme proposed in Leeftink and Hans (2018).

4.1 Existing Benchmark

The existing benchmark uses data from Marques et al. (2012) consisting of instances with 250, 300,

500, and 1000 conventional patients drawn from the surgical wait list of a Portuguese hospital.

In addition to these conventional patients, each instance also includes a number of ambulatory

patients (275 on average). These instances have horizons of 4-5 days, five surgical specialties, six

ORs per day, and both outpatients (12.5% of the total surgeries) and inpatients (87.5%). The

availability time of each OR is 11.5 hours (46 time slots of 15 minutes) per day, and surgeon daily

and weekly availability times are homogeneous and restricted to 6 hours (24 time slots) and 25

hours (100 time slots), respectively. Cleaning time is 30 minutes for all surgeries (two time slots).

For modeling purposes, OR availability times are extended to 12 hours (48 time slots) to account

for the cleaning time of the last surgery of the day, however, the nominal OR time is used when

calculating utilization. We refer the reader to Table 2 of Castro and Marques (2015) for a complete

list of parameters and their values.

In a later work, Marques et al. (2014) added new instances of 2000 conventional patients, plus

additional ambulatory patients, to the aforementioned dataset. The instances provided to us, and

investigated in this work, do not include these larger instances. As such, we cannot compare our

proposed decomposition methods with any of the results reported on these larger 2000 conventional

patient instances including the results for the GDP technique presented in Castro and Marques

(2015) and some of the GA results presented in Marques et al. (2014). We note that the GA results

reported in this work are taken directly from Marques et al. (2014), while both the full IP model

and B&C approaches are solved using CPLEX and on the same computing platform.

4.2 New Benchmark

We create the second dataset in accordance with a recently proposed case mix planning classifica-

tion scheme (Leeftink and Hans, 2018). The proposed methodology attempts to classify surgery

scheduling instances according to the diversity of their underlying case mixes, measured along two

axes: (i) scheduling flexibility (the ratio of mean surgery duration to OR capacity) and (ii) the co-

efficient of variation (the ratio of mean surgery duration to surgery duration standard deviation).

Experiments on this new benchmark are intended to validate our approaches for instances with

more diverse case mixes.

The generator proposed in Leeftink and Hans (2018) could not be directly applied to our problem

due to the presence of predetermined surgeon-to-patient, surgeon-to-specialty, and patient priority

assignments in the MLORPS problem. As such, we adopt a convenient instance generation approach

that follows the methodology proposed in Leeftink and Hans (2018) closely. To construct our new

benchmark, we take all the instances with 1000 conventional patients from the existing benchmark

set and classify the case mix diversity of each of the five surgical specialties. To do this, we fit
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Figure 4: Case-mix plots for original and scaled surgical specialties. Each point represents the case
mix diversity of the surgeries in a specialty. The vertical dashed line represents the ratio of daily
surgeon availability to daily OR capacity.

a 3-parameter log-normal distribution to the surgical duration data of each specialty. We then

use the parameter values from the fit to derive values for the surgical flexibility and coefficient of

variation for each specialty.

The case mix diversities of each of the original five surgical specialties are illustrated in Figure

4. The original specialties have a fairly diverse coefficient of variation, but less diverse scheduling

flexibility. To improve the diversity of our instance case mix, we generate new synthetic specialties

by positively scaling the duration of the existing surgeries. Fifteen new specialties are generated by

scaling the surgical durations of the original five specialties by two, three, and four times respectively

(as illustrated by the additional points in Figure 4). We then construct our new benchmark by

randomly selecting subsets of size 250, 300, 500, 700, 1000, 1500, 2000, and 3000 patients from the

augmented case mix data set. For each subset size, we generate ten unique instances for a total of

80 new instances.

To help ensure the feasibility of the newly generated instances, we do not scale nor duplicate

any of the deferred urgency patients nor the high priority patients. We also avoid using higher

coefficients for the scaling of surgeries, as the scaled values exceed the daily availability of each

surgeon, which is 360 minutes in the original data of Marques et al. (2012). Any surgeries whose

scaled value exceeds the daily availability of surgeons was rounded down to 360 minutes. The

dashed line in Figure 4 represents the ratio of daily surgeon availability to daily OR capacity. The

case mix of each surgical specialty lies to the left of this line as only surgeries with duration less

than the daily surgeon availability can be feasibly processed.
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5 Experimental Analysis

In this section, we experimentally validate our decomposition methods and compare them with the

existing IP model (Marques et al., 2012) and GA (Marques et al., 2014) from the literature. We

also explore the impact of discretization on our approaches, and provide results for our methods

on the new benchmark set with more diverse case mixes.

5.1 Setup

Similar to Marques et al. (2014), we use two objective functions to compare the IP, the GA (Marques

et al., 2014), and our B&C methods: i) scheduled surgical time maximization and ii) number of

scheduled surgeries maximization. We consider a 30 minute time limit to compare the IP model

with our B&C techniques, and two minutes to compare the GA with our B&C methods. All

experiments are implemented in C++ on an 8-core machine with an Intel Core i7-6700 processor

at 3.40GHz and 16GB of RAM running Red Hat Enterprise Linux, Release 6.8. We use IBM

ILOG CPLEX Optimization Studio v12.6.3 for all experiments (CP Optimizer for the CP SSPs

and CPLEX for the IP, RMP, MP, and PSP). We set the symmetry-breaking parameter within

CPLEX to its maximum value, and leave the remainder of the parameters at their defaults. To

implement the B&C methods, we utilize lazy constraint callbacks within the CPLEX solver, which

are activated at each integer feasible solution to the MP and RMP, where the solution process is

then directed to the associated SPs. Built-in CPLEX functions are used to evaluate solution quality

and bound information throughout the search. The B&C decompositions are run single-threaded

while we allow the full IP model to use all eight threads.

5.2 Existing Benchmark Instances

We compare our decomposition methods with the existing methods in the literature, namely the

IP-MLORPS model solved with CPLEX (Marques et al., 2012) and the genetic algorithm (Marques

et al., 2014). As the papers that presented these methods do so by discretizing surgical time into

15-minute time slots, we also discretize time in the same fashion. For these experiments we use the

existing benchmark dataset.

5.2.1 IP Model

We compare our decomposition methods against IP-MLORPS solved with CPLEX. We use a 30-

minute time limit for these experiments. When maximizing scheduled surgical times (in discretized

time slots), the uni-level and bi-level B&C approaches without symmetry-breaking constraints both

outperformed the full IP model in 100% (28 of 28) and 96% (27 of 28) of instances, yielding average

optimality gaps of 1.20% and 1.21%, respectively, while the average optimality gap of the full

IP model was 14.91% (Table 3). The inclusion of symmetry-breaking constraints in the uni-level

approach did not improve the average optimality gap, whereas it decreased the average optimality

gap in the bi-level B&C from 1.21% to 0.92%. The uni-level approach outperformed the bi-level in
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terms of the number of instances solved, however, the bi-level often performed better with respect to

optimality gap for instances it was able to find a solution (i.e., the bi-level without SB performed

better than the uni-level without SB in 20 out of 28 instances in terms of the optimality gap).

The integer feasible solutions of the decomposition methods exhibit little difference, indicating the

bi-level approach generates a stronger dual bound.

When maximizing the number of scheduled surgeries, the uni-level and bi-level B&C approaches

without symmetry-breaking constraints outperformed the full IP model in 100% (28 of 28) and

82% (23 of 28) of instances, respectively, yielding average optimality gaps of 1.07% and 2.69%,

respectively, while the average optimality gap of the IP model was 13.42% (Table 4). The uni-level

approach outperformed the bi-level in terms of both the average optimality gap and number of

instances solved. Symmetry-breaking constraints degraded the bi-level, solving nine fewer instances.

Overall, the uni-level B&C without symmetry-breaking constraints is the best-performing method

when maximizing the number of scheduled surgeries, outperforming the IP model with respect

to both the solution quality and optimality gap and the bi-level method with respect to solution

quality, average gap, and solvability after 30 minutes. We show in Section 5.3 that the IP model’s

performance depends heavily on time discretization, which is: i) less accurate for measuring OR

utilization, and ii) not required for the decomposition methods.

5.2.2 Genetic Algorithm

We also compare to the performance of the GA, summarizing the results for both objective func-

tions. For this set of experiments, we document the performance of our decompositions at two

different time points: i) when a solution is found that is equal to or better than the solution found

by the GA, and ii) when the decomposition algorithm has reached the runtime limit (two minutes).

The former illustrates how often our B&C approaches are able to obtain solutions equal to or better

than the GA given the same runtime. The latter assesses the solution quality of the algorithms

given the fixed runtime limit of two minutes.

When maximizing scheduled surgical times (in discretized time slots), as shown in Table 5,

the uni-level algorithm with and without symmetry-breaking constraints finds solutions equal to

or better than the GA in 86% (24 of 28) of instances under both conditions in significantly less

time (often 10 times less). The bi-level approach with and without symmetry-breaking constraints

yields solutions equal to or better than the GA in 75% (21 of 28) and 71% (20 of 28) of instances,

respectively, also in less time. Given a fixed runtime of two minutes, the uni-level B&C approach,

with and without symmetry-breaking constraints, finds solutions equal to or better than the GA

in 100% (28 of 28) and 96% (27 of 28) of instances, respectively. The bi-level approach, with

and without symmetry-breaking constraints, yields solutions equal to or better than the GA in

86% (24 of 28) and 75% (21 of 28) of instances, respectively. On average, three out of four of our

decomposition algorithms outperform the GA in terms of objective function value and computation

time for each instance. The inclusion of symmetry-breaking constraints consistently improved the

performance of the decomposition methods. Overall, our best decomposition, the uni-level with
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Table 3: IP and decomposition approaches when maximizing scheduled surgical times (in discretized
time slots). All results reported after 30 minutes of runtime. Average optimality gap is reported
across instances that produced a feasible solution. A dash indicates no feasible solution was found.
The superscript indicates the number of instances where the decompositions outperformed the IP
model. symmetry-breaking is denoted by ‘SB’ and bold values indicate improvement over IP.

Instance
IP

Uni-level B&C Bi-level B&C

Without SB With SB Without SB With SB

Sol Gap Sol Gap Sol Gap Sol Gap Sol Gap

I1-250 970 12.38 1088 1.71 1088 1.71 — — 1092 0.27

I1-300 1006 10.98 1116 1.23 1114 1.39 1118 0.26 1117 0.36

I1-500 793 32.48 1156 1.54 1153 1.82 1158 0.52 1155 0.76

I1-1000 1081 9.72 1178 1.58 1176 1.79 1176 0.78 1176 0.78

I2-250 1038 7.43 1092 2.61 1096 2.25 1074 3.94 1072 4.02

I2-300 878 22.66 1110 2.23 1113 1.94 1096 3.01 1089 3.57

I2-500 1090 7.58 1155 2.02 1158 1.76 1112 5.07 1121 4.28

I2-1000 735 38.73 1175 2.05 1175 2.04 1150 3.18 — —

I3-250 877 20.11 1090 0.69 1090 0.69 1091 0.18 1091 0.18

I3-300 1038 7.58 1110 1.15 1117 0.53 1117 0.42 1117 0.42

I3-500 1044 10.46 1152 1.18 1153 0.99 1159 0.43 1159 0.43

I3-1000 729 39.02 1184 0.94 1184 0.84 1178 1.32 1181 1.07

I4-250 989 11.47 1107 0.86 1110 0.56 1110 0.32 1110 0.32

I4-300 1023 9.64 1125 0.51 1126 0.43 1126 0.30 1125 0.39

I4-500 1050 10.09 1150 1.52 1160 0.61 1162 0.32 1162 0.32

I4-1000 1043 13.14 1190 0.86 1188 1.05 1189 0.76 1187 0.95

I5-250 882 20.58 1102 0.74 1103 0.60 1104 0.34 1104 0.34

I5-300 956 15.14 1118 0.71 1113 1.12 1119 0.34 1119 0.34

I5-500 978 16.04 1159 0.41 1151 1.10 1160 0.28 1159 0.37

I5-1000 1032 13.87 1189 0.64 1190 0.55 1188 0.61 1187 0.72

I6-250 1044 7.55 1118 0.93 1114 1.28 1120 0.12 1120 0.12

I6-300 924 18.99 1129 0.97 1127 1.13 1130 0.22 1130 0.31

I6-500 1053 10.51 1166 0.81 1167 0.70 1171 0.00 1171 0.00

I6-1000 1101 8.29 1183 1.38 1183 1.34 1109 7.06 1174 1.56

I7-250 906 1.83 909 1.27 910 1.16 914 0.44 914 0.47

I7-300 899 2.99 915 0.96 911 1.40 916 0.43 916 0.58

I7-500 872 8.20 938 0.87 933 1.40 935 0.94 938 0.61

I7-1000 678 29.95 951 1.35 949 1.56 950 1.16 948 1.37

Avg. 953.9 14.91 1109.1 1.20(28) 1109.0 1.20(28) 1104.9 1.21(27) 1105.0 0.92(27)
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Table 4: IP and decomposition approaches when maximizing number of scheduled surgeries. All
results reported after 30 minutes of runtime. Average optimality gap is reported across instances
that produced a feasible solution. A dash indicates no feasible solution was found. The superscript
indicates the number of instances where the decompositions outperformed the IP model. Symmetry-
breaking is denoted by ‘SB’ and bold values indicate improvement over IP.

Instance
IP

Uni-level B&C Bi-level B&C

Without SB With SB Without SB With SB

Sol Gap Sol Gap Sol Gap Sol Gap Sol Gap

I1-250 237 18.65 282 0.59 282 0.59 282 2.05 282 2.05

I1-300 248 15.01 282 0.73 282 0.73 — — 281 2.45

I1-500 251 14.28 285 0.81 284 1.15 282 2.69 — —

I1-1000 251 16.67 293 1.98 295 1.07 — — 296 0.60

I2-250 251 13.39 282 0.90 282 0.90 281 2.75 278 3.78

I2-300 257 11.81 285 0.78 284 1.13 284 2.41 281 3.44

I2-500 254 13.19 287 1.37 289 0.64 284 2.94 281 3.96

I2-1000 264 12.18 290 3.44 — — 293 2.33 — —

I3-250 245 16.61 285 0.44 285 0.44 280 4.07 282 3.36

I3-300 276 6.19 285 0.95 285 0.76 — — — —

I3-500 249 16.05 288 1.66 289 1.13 283 4.00 286 2.99

I3-1000 253 16.94 300 0.92 301 0.59 297 1.92 — —

I4-250 257 13.64 288 0.78 287 1.13 265 10.05 288 2.24

I4-300 282 5.37 288 1.04 288 1.77 288 2.37 279 5.42

I4-500 250 16.83 294 1.21 293 1.58 293 1.55 294 1.21

I4-1000 258 16.40 305 0.00 301 1.51 301 1.51 — —

I5-250 282 5.11 287 0.87 287 0.63 — — — —

I5-300 269 9.61 288 1.18 288 0.91 288 2.08 286 2.92

I5-500 248 17.33 291 2.02 292 1.68 291 2.02 293 1.35

I5-1000 251 18.45 304 0.00 301 1.25 300 1.57 — —

I6-250 249 15.65 287 0.62 287 0.62 287 2.05 285 3.00

I6-300 267 9.61 287 0.96 287 0.97 287 2.33 — —

I6-500 239 19.47 290 1.97 292 0.55 288 2.37 — —

I6-1000 249 18.25 301 0.81 300 1.06 — — — —

I7-250 234 3.54 236 1.11 236 1.13 236 2.88 — —

I7-300 237 2.63 238 0.80 238 0.57 238 2.06 — —

I7-500 201 17.83 241 1.25 241 1.15 240 1.88 240 1.88

I7-1000 215 14.95 251 0.71 252 0.00 247 1.98 — —

Avg. 250.9 13.42 282.9 1.07(28) 282.5 0.95(27) 278.9 2.69(23) 282.1 2.71(14)
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Table 5: GA and decompositions when maximizing scheduled surgical times (in discretized time
slots). Decompositions: Runtime and quality of the first solution of equal or better quality than the
GA (Time and Sol1, respectively), and quality of the best solution found in two minutes (Sol2). A
dash indicates no such solution was found in the allotted time limit. The superscript indicates the
number of instances that the decompositions outperformed the GA. Symmetry-breaking is denoted
by ‘SB’, bold values indicate an improvement over the GA, and italic numbers are the GA solutions
which are better than decompositions.

Instance
GA

Uni-level B&C Bi-level B&C
Without SB With SB Without SB With SB

Time Sol Time Sol1 Sol2 Time Sol1 Sol2 Time Sol1 Sol2 Time Sol1 Sol2

I1-250 50.6 1075 3.6 1075 1080 4.8 1076 1081 — — — 1.2 1083 1091
I1-300 51.5 1093 5.6 1093 1109 1.9 1100 1107 0.4 1096 1118 0.5 1100 1117
I1-500 61.8 1123 3.0 1137 1140 2.5 1131 1144 1.1 1149 1155 25.6 1146 1151
I1-1000 81.5 1138 3.4 1155 1167 5.3 1156 1156 — — 1132 — — 1136

I2-250 51.8 1083 1.5 1089 1092 1.8 1090 1096 — — — — — 1072
I2-300 56.8 1092 14.9 1100 1103 23.3 1099 1107 — — — — — 1089
I2-500 62.4 1116 1.3 1140 1149 23.9 1140 1148 — — — 95.7 1121 1121
I2-1000 97.7 1129 2.7 1161 1161 34.1 1156 1156 — — 1092 — — —

I3-250 56.3 1081 33.8 1081 1089 114.8 1086 1086 2.8 1088 1090 1.7 1081 1090
I3-300 62.3 1098 4.3 1104 1105 2.2 1101 1107 0.6 1099 1117 1.0 1099 1117
I3-500 72.0 1126 1.9 1126 1133 1.8 1130 1151 2.6 1144 1155 0.3 1142 1157
I3-1000 113.1 1141 2.7 1168 1168 4.3 1169 1175 10.4 1162 1176 112.0 1151 1177

I4-250 69.0 1094 112.2 1097 1104 1.5 1094 1102 0.5 1101 1110 0.4 1097 1110
I4-300 65.4 1109 45.5 1111 1115 58.5 1109 1122 49.0 1110 1126 1.5 1111 1120
I4-500 70.4 1130 3.2 1144 1145 5.6 1144 1144 0.2 1147 1160 0.6 1144 1159
I4-1000 116.3 1152 5.2 1176 1176 4.8 1166 1166 8.7 1163 1174 7.9 1159 1179

I5-250 60.2 1097 — — 1091 117.6 1098 1098 1.5 1101 1104 1.5 1100 1104
I5-300 68.6 1108 110.1 1108 1116 115.3 1108 1108 20.6 1109 1115 3.0 1117 1119
I5-500 75.8 1133 2.3 1136 1158 2.9 1134 1151 0.5 1146 1160 0.5 1149 1158
I5-1000 109.2 1153 2.2 1160 1180 55.9 1167 1167 7.5 1167 1184 2.1 1175 1187

I6-250 50.0 1101 10.6 1103 1109 8.1 1101 1110 1.0 1102 1117 0.5 1102 1120
I6-300 46.8 1110 77.0 1120 1126 63.6 1116 1126 0.4 1112 1129 0.4 1113 1127
I6-500 71.6 1133 3.7 1140 1162 3.5 1138 1151 1.2 1147 1169 0.8 1151 1169
I6-1000 106.9 1141 4.8 1161 1163 3.5 1160 1175 — — 1034 113.3 1150 1153

I7-250 35.5 894 0.5 896 907 1.6 896 910 0.2 900 914 0.2 895 913
I7-300 38.6 896 1.3 896 913 0.7 901 911 0.9 908 916 0.4 902 916
I7-500 47.4 907 1.4 923 938 1.0 920 933 6.8 912 935 2.0 928 933
I7-1000 73.4 917 1.2 923 948 1.9 932 941 110.0 937 939 108.7 937 942

Avg. 68.7 1084.6 17.0 1093.4(24) 1101.7(27) 23.8 1093.5(24) 1101.0(28) 10.8 1085.7(20) 1096.7(21) 20.1 1089.7(21) 1101.0(24)

SB, finds feasible solutions of the same quality of the GA at least six times faster when averaged

over the solved instances.

When maximizing the number of scheduled surgeries, as illustrated in Table 6, the uni-level

B&C approach, with and without symmetry-breaking constraints, finds solutions equal to or better

than the GA in 82% (23 of 28) and 93% (26 of 28) of instances, respectively, in significantly

less time than the GA. Conversely, the bi-level approach, with and without symmetry-breaking

constraints, both only yield solutions equal to or better than the GA in 36% (10 of 28) of instances,

respectively. The inclusion of symmetry-breaking constraints negatively impacted the uni-and bi-

level decomposition methods, resulting in fewer instances being solved overall. When looking at

runtime to a comparable solution to the GA (Sol1), the uni-level decomposition without SB finds

solutions six times faster when averaged over solved instances. For the two minute runtime (Sol2),

the uni-level B&C approaches with and without symmetry-breaking constraints found solutions
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equal to or better than the GA in 96% (27 of 28) of instances under both conditions, and the

bi-level B&C approaches yield solutions equal to or better than the GA in only 43% (12 of 28) and

61% (17 of 28) of instances, respectively. There is no instance that the bi-level B&C approaches

can solve that at least one of the uni-level methods cannot.

Overall, the experiments demonstrate that our exact decomposition approaches are competitive

with an approximate GA metaheuristic, while providing provable bounds on solution quality and,

often, finding solutions of equivalent quality to those found by the GA in less runtime.

5.3 Impact of Surgical Time Discretization

The experiments in the previous sections, following those of Marques et al. (2012), have discretized

time into 15-minute slots (surgery durations, surgeon and OR availability). In the original problem

instances, the surgical times are divided by 15 and rounded up to the nearest integer (e.g., a 256-

minute procedure results in 18 time slots). This discretization may lead to sub-optimal solutions

compared to the use of the exact surgical durations. To investigate the impact of time discretization,

we re-run the experiments based the original (non-discretized) surgical times.1 Before doing so, we

examine the impact of different time slot sizes on the performance of the IP-MLORPS model solved

with CPLEX (Table 7). It is evident that the model cannot be used for time slot discretization

of less than 10 minutes for even the smallest instance. Furthermore, when the original surgical

times are used without discretization, CPLEX is unable to formulate the model. As the size of the

time slots is increased the performance improves, until CPLEX is eventually able to solve the root

node relaxation for the formulation based on 5-minute time slots. This issue becomes even more

apparent for problem instances larger than the instance assessed in Table 7, indicating the need for

a technique that scales more effectively for non-discretized data.

Table 8 illustrates the computational results of the various methods when maximizing non-

discretized scheduled surgical time. The uni-level approaches solve all instances of the problem,

but the bi-level approaches, with and without symmetry-breaking constraints, could solve only 96%

(27 out of 28) and 86% (24 out of 28) instances of the problem, respectively. In general, the average

optimality gap of all B&C approaches using non-discretized surgical times appears to be similar

to the discretized experiments. The IP-MLORPS model was unable to solve even the smallest

problems, largely due to memory issues as detailed in Table 7.

When maximizing the number of scheduled surgeries with exact data, as detailed in Table

9, the uni-level B&C approaches, with and without symmetry-breaking constraints, were able to

solve 100% (28 out of 28) of instances, whereas the bi-level B&C approaches with and without

symmetry-breaking constraints only solved 35% (10 out of 28) and 64% (18 out of 28) of the

problem, respectively. The optimality gaps of the uni-level approach are in the same range as

for the discretized experiments. Similarly, the IP-MLORPS model was unable to solve any of the

problems.

We can conclude from the obtained results in Tables 8 and 9 that the uni-level B&C approaches

1‘Non-discretized’ means the durations are expressed in their original integer minute format.
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Table 6: GA and decompositions when maximizing the number of scheduled surgeries. Decompo-
sitions: Runtime and quality of the first solution of equal or better quality than the GA (Time and
Sol1, respectively), and quality of the best solution found in two minutes (Sol2). A dash indicates
no such solution was found in the allotted time limit. The superscript indicates the number of
instances that decompositions outperformed the GA. Symmetry-breaking is denoted by ‘SB’, bold
values indicate an improvement over the GA, and italic numbers are the GA solutions which are
better than decompositions.

Instance
GA

Uni-level B&C Bi-level B&C

Without SB With SB Without SB With SB

Time Sol Time Sol1 Sol2 Time Sol1 Sol2 Time Sol1 Sol2 Time Sol1 Sol2

I1-250 38.0 242 1.3 269 282 2.3 251 282 6.4 281 282 11.9 282 282

I1-300 38.2 255 1.2 270 281 4.1 273 281 — — — 19.9 281 281

I1-500 28.8 270 15.8 282 284 16.2 280 284 66.5 280 280 — — —

I1-1000 36.4 287 42.0 289 290 81.6 289 289 — — — 2.1 291 294

I2-250 43.6 235 4.2 259 282 25.2 267 281 — — — — — —

I2-300 33.1 246 1.0 263 284 10.2 258 284 — — — 5.3 279 281

I2-500 33.0 269 2.9 273 287 3.1 274 286 — — — 118.9 278 278

I2-1000 30.7 285 — — — — — — — — — — — —

I3-250 32.9 248 1.2 272 285 1.7 283 284 112.1 262 263 26.6 263 267

I3-300 48.2 252 1.1 258 285 4.5 277 285 — — — — — —

I3-500 32.1 271 2.3 281 288 7.0 284 289 110.1 274 283 22.7 284 286

I3-1000 34.3 287 6.5 287 298 63.9 291 296 — — 262 — — —

I4-250 31.7 245 0.9 253 288 3.9 280 287 112.2 263 265 118.5 284 —

I4-300 31.4 254 1.4 280 288 6.5 282 288 19.1 287 288 110.6 276 279

I4-500 44.8 272 2.1 276 294 8.6 286 293 23.6 291 292 9.5 293 294

I4-1000 37.4 290 24.1 300 301 74.0 296 299 53.5 301 301 — — —

I5-250 38.1 248 1.6 261 287 5.7 274 287 — — — — — —

I5-300 26.6 259 1.9 268 288 5.7 278 288 — — — — — —

I5-500 42.2 275 3.0 276 290 4.9 275 292 0.7 279 291 2.2 291 292

I5-1000 35.4 289 6.1 295 299 75.5 296 296 82.9 298 299 — — —

I6-250 42.7 240 3.1 248 287 6.0 279 286 14.8 283 287 13.4 285 285

I6-300 34.7 251 1.9 266 287 7.9 265 287 35.6 282 287 — — —

I6-500 34.5 266 2.8 278 290 2.9 281 292 21.8 286 288 — — —

I6-1000 36.5 283 5.8 290 299 7.4 295 295 — — — — — —

I7-250 44.3 205 0.8 227 236 1.7 225 236 21.6 233 236 — — —

I7-300 37.8 213 1.4 213 238 2.4 231 237 18.1 236 238 — — —

I7-500 35.7 226 1.3 234 241 3.5 236 241 12.2 238 240 29.5 236 240

I7-1000 31.5 239 18.6 247 251 4.5 244 244 28.9 246 246 — — —

Avg. 36.2 257.2 5.8 267.2(26) 281.9(27) 16.3 272.2(23) 281.1(27) 43.5 271.8(10) 273.8(17) 37.8 278.7(10) 279.9(12)
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Table 7: The impact of time discretization on the performance of IP-MLORPS implemented in
CPLEX. Runtimes are expressed in seconds and the experiment has been done for the smallest
instance of the problem (I-250). ‘O.O.M:’ indicates out of memory

Time discretization Formulate model Presolve (first pass) Presolve incumbent Root node relaxation

1-minute O.O.M — — —

2-minute 84.2 O.O.M — —

3-minute 11.1 139.9 O.O.M —

4-minute 6.7 68.5 82.7 O.O.M

5-minute 4.8 37.2 47.7 783.3

10-minute 1.7 10.7 13.5 58.1

15-minute 1.1 6.3 7.9 25.9

are the most effective for solving MLORPS with exact surgical duration data. Interestingly, using

exact data, instead of the discretized time slots, often gave a boost to the performance of the

uni-level B&C approach. A possible reason for this could be the natural symmetry-breaking that

occurs when using the exact data. The process of discretizing time into time slots often results in

procedures with unequal original durations being treated as the same duration (e.g., procedures

with durations of 18 and 20, after discretization, both have a duration of two time slots), which

increases the symmetry in the problem.

Using non-discretized data also has significant implications on the objective function values.

Figure 5 illustrates the average objective value of the uni-level decomposition with symmetry-

breaking for both time discretized (i.e., 15 minute time slots) and non-discretized experiments. It

is clear from the figure that as the number of patients considered for optimization increases, both

objective functions obtain better values. This finding is independent of the way time is discretized.

However, time discretization has a mixed impact on the values of the objective functions. For

instance, discretization results in an overestimation when maximizing scheduled surgical times

(discussed also in Castro and Marques (2015)), but leads to an underestimation when maximizing

the number of scheduled surgeries. The solutions obtained from the discretized data are not,

therefore, the true optimal values for the objective functions.

Consider an example instance consisting of four surgeries of the same surgical specialty with

surgical durations of 196, 211, 166, and 19 minutes, a single OR (with associated availability of

690 minutes, or 46 discretized time slots), a single surgeon, and a mandatory cleaning time of 30

minutes after each surgery (two time slots). Converting these surgeries to discretized time slots of

15 minutes yields: 14, 15, 12, and 2 time slots, respectively. Maximizing scheduled surgical times

will result in the first three procedures being scheduled, as there is not enough available time for all

four, with an associated utilization of 89.1% (41/46 time slots used, where cleaning time is not part

of the utilization calculation).2 The same objective with non-discretized data allows the scheduling

of all the surgeries and yields an OR utilization of 85.8% (592/690). This example illustrates

how the discretized experiments can show higher scheduled surgical times while scheduling fewer

2If time slots are scaled back into minutes before calculating utilization, via multiplication by 15, the same
conclusion holds.
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Table 8: Decompositions when maximizing scheduled surgical times (in minutes). A runtime of
30 minutes is used. IP did not find any integer solution. The average optimality gap is for solved
instances. Superscript: The total number of best integer feasible solutions found and the total
number of instances with lowest optimality gap achieved by each B&C method. SB: symmetry-
breaking. —: No integer feasible solution found. Bold: Best objective function value and optimality
gap in each instance.

Instance

Uni-level B&C Bi-level B&C

Without SB With SB Without SB With SB

Sol Gap Sol Gap Sol Gap Sol Gap

I1-250 15945 1.91 15809 2.74 15228 6.00 — —

I1-300 16354 1.83 16357 1.81 — — 16436 0.79

I1-500 14626 16.14 17142 1.66 16354 5.50 17177 0.82

I1-1000 17460 1.89 17464 1.91 16329 7.43 16509 6.44

I2-250 16244 1.58 16173 2.00 16343 0.55 16288 0.95

I2-300 16441 1.79 16273 2.77 16441 1.37 16520 0.73

I2-500 17221 1.60 17181 1.83 17205 0.99 17162 1.27

I2-1000 17529 1.61 17513 1.74 16640 5.74 — —

I3-250 16002 0.59 15881 1.35 14268 11.34 15944 0.81

I3-300 16245 1.84 16234 1.90 16440 0.61 16420 0.65

I3-500 17022 1.32 16944 1.77 16917 1.92 17130 0.68

I3-1000 17598 0.80 17599 0.80 16895 4.69 16595 6.39

I4-250 16052 2.18 16256 0.95 16261 0.52 16235 0.72

I4-300 16443 1.28 16477 1.15 16288 2.13 16524 0.71

I4-500 17085 1.09 17022 1.43 17136 0.71 17126 0.77

I4-1000 17596 1.32 17654 0.93 16829 5.51 16834 5.49

I5-250 16191 0.83 16153 1.06 16232 0.28 16206 0.46

I5-300 16424 0.90 16431 0.82 15985 3.46 16211 2.11

I5-500 17038 1.19 16969 1.59 17081 0.87 17068 0.96

I5-1000 17604 1.04 17613 1.01 16735 5.86 16488 7.26

I6-250 16286 1.82 16379 1.26 16376 0.78 16393 0.66

I6-300 16519 1.65 16579 1.30 16468 1.52 16537 1.13

I6-500 17128 1.63 17188 1.28 17205 0.78 17035 1.75

I6-1000 17546 1.62 17560 1.54 16249 8.31 — —

I7-250 13360 1.48 13341 1.62 13497 0.44 13490 0.49

I7-300 13434 1.51 13477 1.19 13532 0.62 13546 0.52

I7-500 13885 0.95 13875 1.03 13235 5.55 12964 7.50

I7-1000 14193 0.89 14193 0.89 13634 4.70 — —

Avg. 16266.8(6) 1.94(7) 16347.8(8) 1.48(6) 15992.7(8) 3.27(9) 16201.6(7) 2.09(8)
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Table 9: Decompositions when maximizing number of scheduled surgeries (in non-discretized min-
utes). A runtime of 30 minutes is used. IP did not find any integer solution. The average optimality
gap is for solved instances. Superscript: The total number of best integer feasible solutions found
and the total number of instances with lowest optimality gap achieved by each B&C method. SB:
symmetry-breaking. —: No integer feasible solution found. Bold: Best objective function value
and optimality gap in each instance.

Instance

Uni-level B&C Bi-level B&C

Without SB With SB Without SB With SB

Sol Gap Sol Gap Sol Gap Sol Gap

I1-250 302 1.67 302 1.47 — — 299 4.27

I1-300 306 0.76 305 1.86 — — — —

I1-500 306 3.26 309 0.91 — — — —

I1-1000 319 3.41 322 2.20 — — 319 3.71

I2-250 302 2.43 303 1.22 300 3.78 302 3.08

I2-300 305 1.52 306 1.82 300 4.71 306 2.81

I2-500 310 1.80 311 1.35 — — — —

I2-1000 320 3.42 322 2.75 — — — —

I3-250 306 0.91 306 0.87 — — 306 3.13

I3-300 307 2.72 307 1.20 — — 304 4.22

I3-500 313 2.50 312 1.82 — — 310 4.15

I3-1000 323 3.39 323 3.39 304 9.06 320 4.29

I4-250 310 0.90 310 0.69 — — 309 3.10

I4-300 311 0.80 309 1.44 — — 309 3.37

I4-500 317 3.11 316 3.32 — — — —

I4-1000 326 3.69 331 1.95 243 28.19 — —

I5-250 309 1.16 309 1.20 — — 310 2.61

I5-300 311 1.99 312 0.63 — — 310 2.95

I5-500 316 1.14 315 3.03 — — 315 3.36

I5-1000 328 2.14 331 1.86 329 2.30 — —

I6-250 308 1.29 307 2.47 305 3.31 308 2.40

I6-300 309 1.29 310 0.86 — — — —

I6-500 313 2.84 314 1.59 314 2.72 308 4.58

I6-1000 325 2.53 323 2.77 312 6.43 — —

I7-250 254 1.78 255 1.54 252 4.81 254 4.05

I7-300 257 1.29 257 1.35 — — 256 3.81

I7-500 262 0.92 261 1.34 — — 259 4.37

I7-1000 273 1.99 272 2.21 268 4.36 — —

Avg. 305.3(15) 2.02(12) 305.7(18) 1.75(17) 292.7(1) 6.97(0) 300.2(4) 3.57(0)
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Figure 5: Impact of surgical time discretization on the objective function values. The average
value is taken for solved trials using the uni-level approach with symmetry-breaking. For the
maximization of scheduled surgical times, discretized results are scaled by 15 to convert them to
values in minutes. The vertical line on top of each bar represents the standard deviation.

surgeries than the non-discretized variant, reflecting the results in Figure 5. It also indicates that

the utilization conclusions of discretized experiments must be interpreted with care, and that our

uni-level decomposition, with good performance on non-discretized data, provides a more accurate

model of the utilization of hospital OR resources.

5.4 New Benchmark Instances

In this section, we extend our performance evaluation to validate our approaches on more diverse

case mix benchmark instances (see Section 4.2). To do so, we only appraise the performance of the

uni-level B&C with symmetry-breaking constraints, which outperformed the other algorithms for

both objective functions in the non-discretized experiments.

Our newly-generated benchmark consists of 80 non-discretized instances of varying sizes, in-

cluding those larger than in Marques et al. (2012). The uni-level B&C method is able to find

integer feasible solutions for all of problem instances on both objective functions (Tables 10 and

11). Given that the time-indexed IP model solved with CPLEX struggles to find any solutions

for non-discretized data, as shown in the previous section, the results are not included. The av-

erage optimality gap is slightly higher overall than those reported for the original benchmark set

for both objective functions. As our instance generation scheme does not place any requirements

on the number of deferred urgency nor high priority patients, the increased presence of optional

surgeries (the dominating class of surgeries in the data set) may result in deteriorated relaxation

strength. Additionally, the presence of more surgical specialties in the new data set could lead to

more fragmented subproblems. The standard deviation is relatively consistent across the instance

sizes. Interestingly, the performance improves on both objective functions as we increase the size

of the problem; as the pool of available surgeries grows, solutions with higher objective function
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Table 10: The performance of the uni-level B&C with symmetry-breaking constraints when max-
imizing scheduled surgical times on the newly generated non-discretized dataset. A runtime of 30
minutes is used. Standard deviation, min, and max are reported for the optimality gaps of the
associated instance size.

Instance Size # Feasible Avg. Gap Std. Dev. Min Max

250 10 3.18 0.49 2.51 4.05
300 10 2.92 0.24 2.53 3.27
500 10 2.84 0.30 2.33 3.29
700 10 2.70 0.26 2.17 2.97
1000 10 2.04 0.31 1.44 2.41
1500 10 1.77 0.35 1.38 2.60
2000 10 1.42 0.26 1.14 1.80
3000 10 1.32 0.35 0.87 1.84

Average 10 2.27 0.32 1.80 2.78

values are more likely. As the objective function value increases, with a proptionally increasing

bound, the optimality gap will trend smaller.

Given the uni-level B&C’s average optimality gaps of 2.27% and 3.45% on non-discretized data,

comparable to the results obtained for the non-discretized original benchmark with poor case-mix

diversity, we can conclude that the approach is suitable for solving instances with more diverse case

mixes as well.

Table 11: The performance of the uni-level B&C with symmetry-breaking constraints when max-
imizing number of scheduled surgeries on the newly generated non-discretized dataset. A runtime
of 30 minutes is used. Standard deviation, min, and max are reported for the optimality gaps of
the associated instance size.

Instance Size # Feasible Avg. Gap Std. Dev. Min Max

250 10 5.70 1.16 3.65 7.22
300 10 5.84 0.96 4.31 7.40
500 10 4.22 0.54 3.39 5.07
700 10 3.23 0.38 2.66 3.98
1000 10 2.36 0.27 1.90 2.77
1500 10 2.40 0.39 1.75 2.85
2000 10 2.02 0.57 1.12 2.75
3000 10 1.81 0.48 0.98 2.50

Average 10 3.45 0.59 2.47 4.32

6 Discussion

We divide our discussion into two sections: methodology and application.

This is the author’s version of an article that has been accepted for publication in the International Journal of
Production Economics. Changes were made to this version by the publisher prior to publication. The final version of

record is available at: https://doi.org/10.1016/j.ijpe.2019.07.006

https://doi.org/10.1016/j.ijpe.2019.07.006


6.1 Methodology

The uni-level approaches demonstrated the strongest performance among the tested methods.

While the uni-level B&C method was able to find solutions to nearly all the instances for both

objective functions, the bi-level approach exhibited predominantly poor performance, particularly

on the exact (non-discretized) variant of MLORPS.

The poor performance of the bi-level B&C approach for MLORPS is in contrast to the existing

literature that reports significant computational savings obtained by a bi-level LBBD compared

to a uni-level LBBD for a real-world OR scheduling problem (Riise et al., 2016). For a stochastic

facility location/fleet management problem, Fazel-Zarandi et al. (2013) demonstrated that the poor

performance of their bi-level LBBD was likely attributable to the amount of information that was

pushed out of the MP compared to uni-level LBBD. Unlike Fazel-Zarandi et al. (2013), we postulate

that the poor performance of our bi-level approach is due to the existence of a large number of

symmetrical solutions. Beck (2010) proposed a variant of B&C, coined OPT15, that limits SP

checking to incumbents with optimality gap of ≤ 15%, but this approach is not expected to help

our decomposition approaches because they converge to ≤ 15% optimality gap extremely fast in

almost all cases, although future work could investigate a tighter threshold for our problem.

Metaheuristics, including the GA compared against in this paper, are commonly perceived to be

ideal solution candidates for solving large-scale deterministic and stochastic problems. Nevertheless,

we showed that our B&C approaches can outperform the GA using the discretized data. The quality

of GA solutions are usually assessed against the bounds or integer solutions of the mathematical

models developed for the same problem. We showed that for the non-discretized data, the IP

model could not even be constructed for the smallest size of the problem given a 30-minute runtime.

Therefore, to calculate the optimality gap of the GA solutions and to assess the GA quality of integer

solutions, one can compare them with the best bound and the best integer solution obtained by

our proposed decompositions on each instance, respectively. Our decompositions do not suffer from

this weakness and can provide bounds via the LP relaxations attained within the MP search.

6.2 Application

When maximizing the scheduled surgical time, surgeries with longer duration are favored. The

maximum utilization schedule has one surgery in each OR whose surgical time spans the daily

availability time of each OR (a case that rarely occurs in reality). Alternatively, when maximizing

the number of scheduled surgeries, shorter surgeries are preferred, resulting in a large total cleaning

time and poor OR utilization. Maximization of scheduled surgical times is suitable for keeping

resources in ORs highly occupied, whereas maximizing the number of scheduled surgeries shortens

wait lists.

We showed that the performance of our uni-level B&C is not sensitive to the way data is

discretized, whereas the IP model is extremely sensitive to the data discretization. To achieve a

trade-off between computational tractability and accurate objective values, the exact techniques in

OR scheduling have been applied to one-minute (Riise et al., 2016; Roshanaei et al., 2017a,b), five-
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minute (Hashemi Doulabi et al., 2016), and 15-minute (Marques et al., 2012; Vijayakumar et al.,

2013) time slot discretization. We demonstrated that our B&C approaches are both efficient and

accurate, indicating future time discretization for OR scheduling is unnecessary. However, we also

note that OR scheduling with discretized surgical durations (assuming the discretization rounds

the exact value up) may actually result in more robust schedules due to the added duration slack.

Following the work of Davenport et al. (2014), we plan to study slack-based techniques for creating

robust OR schedules.

The choice of objective function has other clinical implications on downstream units (e.g., post-

anesthesia care unit, intensive care unit, ward unit, step-down unit). Insufficient downstream

beds may cause up to 18% elective patient cancellations (Wang et al., 2016). Since MLORPS

does not consider downstream capacities, it might overestimate the number of surgeries that can

be scheduled. OR schedules constructed to maximize scheduled surgical times are likely to yield

under-utilized downstream beds, whereas OR schedules maximizing the volume of surgeries are more

susceptible to surgery cancellations due to downstream capacity limits. An additional factor that is

of clinical importance is the way OR times are distributed among specialties. In the vast majority

of OR scheduling applications, ORs are either exclusively reserved for a surgeon (block scheduling)

or for surgeons of a certain specialty (open scheduling). This constraint has been incorporated

into almost all the mathematical models focusing OR allocation to multiple specialties (Castro and

Marques, 2015; Marques et al., 2012, 2014). Relaxing this constraint and scheduling surgeries of

multiple specialties within an OR has been shown to result in long turnover times (up two twice as

large) (Marques et al., 2012).

7 Conclusions and future work

We developed novel uni-level and bi-level branch-and-check (B&C) methods for multi-level operat-

ing room planning and scheduling. We compared our B&C methods with CPLEX on an existing

IP model and a genetic algorithm with surgical times discretized into 15-minute time slots. Given

a two minute runtime limit, the B&C methods outperform the GA in terms of computational time

and solution quality. The uni-level approach demonstrated the strongest overall performance among

B&C methods and found solutions better than the GA in 86% and 93% of instances on objective

functions of scheduled surgical times maximization and number of surgeries maximization, respec-

tively, providing significant computational savings. When compared to CPLEX on an existing

IP model with a 30-minute runtime, uni-level B&C improved the optimality gap of the IP model

by at least 10 times. Our decomposition methods, using the same 30-minute runtime, performed

equally well on non-discretized surgical times, whereas the IP model exceeded available memory,

even for the smallest instance. We demonstrated that the use of discretized data in MLORPS

overestimates OR utilization and underestimates the number of surgeries that can be scheduled.

Therefore, the solutions obtained from discretized data are not true optima with respect to both

objective functions. To further evaluate the applicability of our B&C methods, we generated a new

dataset consisting of up to 3000 patients and 20 surgical specialties, and showed that the average
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optimality gaps of our best B&C method are 2.27% and 3.45% when we maximize the scheduled

surgical times and the number of scheduled surgeries, respectively.

As part of our future work, we plan to expand the problem definition to include other ele-

ments, such as multiple hospitals, multiple stages (pre-operative and post-operative in addition to

intra-operative) of an operating theatre, and the sharing of OR resources among surgical specialties.

Each of these new elements is accompanied with modeling and algorithmic challenges, likely requir-

ing more complex decompositions (e.g., sequence dependent cleaning times for specialties sharing

ORs) and algorithmic improvements, such as Benders cut propagation (Roshanaei et al., 2017a) or

proliferation (Heching et al., 2019). We also plan on investigating the application of our methods

to stochastic problem variants that involve some level of uncertainty; as noted briefly before, the

notion of adding slack to surgical durations is one option here (Davenport et al., 2014).
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A Proof of Theorem 1

Proof. We first show that Inequality (31) rules out the MP incumbent i (x̂
(i)
pdr and ŷ

(i)
jdr) from the

feasible set (Property 1). Let
⋃

j∈Ĵ (i)
d

P̂(i)
jd and

⋃
j∈Ĵ (i)

d

R̂(i)
jd be the current sets of patients and ORs,

respectively, assigned to specialties j ∈ Ĵ (i)
d , leading to an infeasible SSP. We denote by J̄ (i)

d the

set of infeasible Ĵ (i)
d . By definition, P̂(i)

jd = {p ∈ Pj , d ∈ D, r ∈ R | xpdr = 1} and R̂(i)
jd = {j ∈

J , d ∈ D; r ∈ R | yjdr = 1 for MP incumbent i} 6= ∅. To show that Inequality (31) rules out the

current MP solution, we instantiate it with
⋃
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(47)

indicating that the current MP solution does not satisfy Inequality (47) and it is therefore eliminated

from the MP feasible region.

We now demonstrate that future feasible solutions satisfy Inequality (31) (Property 2). Consider

a hypothetical future solution (x̃pdr, ỹjdr), leading to a new set of patients and ORs allocated to

specialties j ∈ Ĵ (i)
d on day d, denoted by

⋃
j∈Ĵ (i)

d

P̃(i)
jd and

⋃
j∈Ĵ (i)

d

R̃(i)
jd , respectively. We first assume

that the hypothetical future solution keeps the same selection of ORs determined by the MP at

iteration i (i.e.,
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jd . We expand the first part of Inequality (47) (for each Ĵ (i)
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d ) as follows:
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≥ 1. (48)

a is by definition 0, but b can be ≥ 1 (feasible future solution) or < 1 (infeasible future solution).

Therefore, to show that the future feasible solution satisfies Inequality (48), we just have to show

b ≥ 1. There exist four possible scenarios between
⋃

j∈Ĵ (i)
d

P̂(i)
jd and

⋃
j∈Ĵ (i)

d

P̃(i)
jd , the first three of

which satisfy Inequality (48):
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j∈Ĵ (i)

d

P̂(i)
jd \

⋃
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j∈Ĵ (i)
d

P̃(i)
jd shares some patients with

⋃
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⋃
j∈Ĵ (i)

d

P̂(i)
jd (i.e.,

⋃
j∈Ĵ (i)

d

P̂(i)
jd ⊂

⋃
j∈J̃ (i)

d

P̃(i)
jd and

⋃
j∈Ĵ (i)

d

P̂(i)
jd \

⋃
j∈Ĵ (i)

d

P̃(i)
jd = ∅), yielding b = 0 < 1. Therefore,

⋃
j∈Ĵ (i)

d

P̃(i)
jd is infeasible,

which is intuitive because
⋃

j∈Ĵ (i)
d

P̃(i)
jd has more patients than

⋃
j∈Ĵ (i)

d

P̂(i)
jd , while

⋃
j∈Ĵ (i)

d

P̂(i)
jd

is already infeasible. Therefore,
⋃

j∈Ĵ (i)
d

P̃(i)
jd does not satisfy Inequality (48).

Unlike Scenarios 1-3, Scenario 4 results in a future solution that is a superset of the current MP

solution, which does not satisfy Inequality (48).

We repeat the same procedure for ORs. We alternatively assume that the set of patients in the

hypothetical future solution,
⋃

j∈Ĵ (i)
d

P̃(i)
jd , is identical to

⋃
j∈Ĵ (i)

d

P̂(i)
jd , but the set of ORs allocated

to specialty j on day d will change. By keeping the same set of patients in the future solution,

Inequality (31) is reduced to (for each Ĵ (i)
d ∈ J̄ (i)

d ):

∑

j∈Ĵ (i)
d

∑

r∈R
yjdr −

∣∣∣∣∣∣∣

⋃

j∈Ĵ (i)
d

R̂(i)
jd

∣∣∣∣∣∣∣
≥ 1. (49)

We first show that the future MP solution, ỹjdr, that allocates the same number of ORs to the

infeasible specialty groups J̄ (i)
d (

∣∣∣
⋃

j∈Ĵ (i)
d

R̂(i)
jd

∣∣∣) does not satisfy:

∑

j∈Ĵ (i)
d

∑

r∈R
yjdr −

∣∣∣∣∣∣∣

⋃

j∈Ĵ (i)
d

R̂(i)
jd

∣∣∣∣∣∣∣
� (<)1. (50)

Cut (49) is satisfied by those MP solutions that increase
∣∣∣
⋃

j∈Ĵ (i)
d

R̂(i)
jd

∣∣∣ by one least one OR.

To show that Inequality (31) satisfies all feasible future solutions due to simultaneous changes
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in
⋃

j∈Ĵ (i)
d

P̂(i)
jd and

∣∣∣
⋃

j∈Ĵ (i)
d

R̂(i)
jd

∣∣∣, we reformulate Inequality (31) as




∣∣∣∣∣∣∣

⋃

j∈Ĵ (i)
d

P̂(i)
jd

⋂ ⋃

j∈Ĵ (i)
d

P̃(i)
jd

∣∣∣∣∣∣∣
−
∑

j∈Ĵ (i)
d

∑

p∈P̂(i)
jd ∩P̃jd

∑

r∈R̂(i)
jd

x̃pdr


+




∣∣∣∣∣∣∣

⋃

j∈Ĵ (i)
d

P̂(i)
jd \

⋃

j∈Ĵ (i)
d

P̃(i)
jd

∣∣∣∣∣∣∣
−
∑

j∈Ĵ (i)
d

∑

p∈P̂(i)
jd \P̃jd

∑

r∈R̂(i)
jd

x̃pdr


+



∑

j∈Ĵ (i)
d

∑

r∈R
ỹjdr −

∣∣∣∣∣∣∣

⋃

j∈Ĵ (i)
d

R̂(i)
jd

∣∣∣∣∣∣∣


 ≥ 1, ∀Ĵ (i)

d ∈ J̄ (i)
d (51)

For all the feasible scenarios, Inequality (51) will take a value ≥ 1, and thus no feasible solutions

are ruled out. For the sake of completeness, we show the following infeasible future solutions⋃
j∈Ĵ (i)

d

P̂(i)
jd ⊆

⋃
j∈Ĵ (i)

d

P̃(i)
jd while

∣∣∣
⋃

j∈Ĵ (i)
d

R̂(i)
jd

∣∣∣ =
∣∣∣
⋃

j∈Ĵ (i)
d

R̃(i)
jd

∣∣∣ and
⋃

j∈Ĵ (i)
d

P̂(i)
jd =

⋃
j∈Ĵ (i)

d

P̃(i)
jd

while
∣∣∣
⋃

j∈Ĵ (i)
d

R̂(i)
jd

∣∣∣ ≥
∣∣∣
⋃

j∈Ĵ (i)
d

R̃(i)
jd

∣∣∣ do not satisfy Inequality (51):




=0︷ ︸︸ ︷∣∣∣∣∣∣∣

⋃

j∈Ĵ (i)
d

P̂(i)
jd

⋂ ⋃

j∈Ĵ (i)
d

P̃(i)
jd

∣∣∣∣∣∣∣
−
∑

j∈Ĵ (i)
d

∑

p∈P̂(i)
jd ∩P̃jd

∑

r∈R̂(i)
jd

x̃pdr




+




=0︷ ︸︸ ︷∣∣∣∣∣∣∣

⋃

j∈Ĵ (i)
d

P̂(i)
jd \

⋃

j∈Ĵ (i)
d

P̃(i)
jd

∣∣∣∣∣∣∣
−
∑

j∈Ĵ (i)
d

∑

p∈P̂(i)
jd \P̃jd

∑

r∈R̂(i)
jd

x̃pdr




+




=0︷ ︸︸ ︷

∑

j∈Ĵ (i)
d

∑

r∈R
ỹjdr −

∣∣∣∣∣∣∣

⋃

j∈Ĵ (i)
d

R̂(i)
jd

∣∣∣∣∣∣∣






� 1, ∀Ĵ (i)

d ∈ J̄ (i)
d (52)

B Proof of Theorem 2

Proof. The proof is similar to Theorem 1.
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