
Packing by Scheduling: Using Constraint
Programming to Solve a Complex 2D Cutting

Stock Problem

Yiqing L. Luo and J. Christopher Beck

Department of Mechanical and Industrial Engineering
University of Toronto, Toronto, Ontario M5S 3G8, Canada

{louisluo, jcb}@mie.utoronto.ca

Abstract. We investigate the novel Two-stage Cutting Stock Problem
with Flexible Length and Flexible Demand (2SCSP-FF): orders for rect-
angular items must be cut from rectangular stocks using guillotine cuts
with the objective to minimize waste. Motivated by our industrial part-
ner and different from problems in the literature, the 2SCSP-FF allows
both the length of individual items and the total area of orders to vary
within customer-specified intervals. We develop constraint programming
(CP) and mixed-integer programming models, with the most successful
coming from the adaptation of CP scheduling techniques. Numerical re-
sults show that this CP model has orders of magnitude smaller memory
requirements and is the only model-based approach investigated that can
solve industrial instances.

Keywords: Cutting Stock Problem · Guillotine Cuts · Constraint Pro-
gramming · Mixed-Integer Linear Programming · Optimization.

1 Introduction

As scheduling is one of the most successful application areas of Constraint Pro-
gramming (CP) [17, 19], we are interested in investigating whether CP scheduling
approaches can be adapted to other combinatorial problems that share similar
substructure. In this paper, we explore this idea for a complex, novel packing
problem from the rolled-metal industry: the Two-stage Cutting Stock Problem
with Flexible Length and Flexible Demand (2SCSP-FF), a generalization of
the classic Two-stage Two-Dimensional Cutting Stock Problem with Guillotine
Constraints (2SCSP). While the literature on 2SCSP is rich, our problem consid-
ers flexibility in item dimensions and total fulfillment, two characteristics that
are commonplace in this industry [34], but have received limited attention in
the literature. We approach these complications from a scheduling perspective,
drawing inspiration from batch scheduling and the single resource transforma-
tion, a recently proposed CP modelling technique to handle the choice of alter-
native resources [3]. We conduct experiments over both generated and real-life

2 Luo and Beck

Fig. 1. A visualization of 2SCSP-FF. Each order is represented by its total quantity
(left) and the partitions assigned to it (middle), as illustrated by the double-arrow.
Dashed lines and the dotted fills indicate flexibility in the associated parameter. Orange
and blue lines represent the first and second stage cuts, respectively.

instances and demonstrate our approach’s computational advantages over alter-
native modelling approaches in CP, mixed integer programming (MIP), and a
custom greedy heuristic.

Our contributions are as follows:

1. We introduce the novel 2SCSP-FF problem.
2. We adapt the single resource CP model to the 2SCSP-FF. This compact

formulation increases the size of the instances that can be solved within
memory and time limits by an order of magnitude.

3. We propose and experiment with alternative MIP and CP models and a
two-stage heuristic.

2 Problem Definition

The 2SCSP-FF (Figure 1) is a novel generalization of the Two-stage Two-
Dimensional Cutting Stock Problem with Guillotine Constraints (2SCSP). Given
a set of orders for rectangular items and a set of larger stock rectangles, the clas-
sic Two-Dimensional Cutting Stock Problem (2DCSP) fulfills orders by cutting
items from stocks. A more constrained variant, the 2SCSP only allows stocks to
be processed using guillotine cuts, a cut that runs from one edge of the object
to another. All cuts must also be executed in two stages, each consisting of a set
of parallel guillotine cuts performed on a rectangle obtained from the previous
stage. Without loss of generality, we let the direction of the first stage cuts be
widthwise and that of the second stage ones lengthwise. The rectangles produced
in the first stage are referred to as levels, following the literature [7], and those
produced in the second stage as partitions. On top of 2SCSP, the 2SCSP-FF has
the following characteristics arising from our application:

– Flexible Length: The length of an item is flexible within some integer in-
terval. If a level contains items from different orders, its length must lie in

Packing By Scheduling: 2SCSP-FF 3

the intersection of the item-length intervals. In our application, items are
subsequently rolled into cylindrical coils used as feedstock for downstream
processing. The maximum length requirement ensures a maximum coil diam-
eter to enable mounting it on a downstream machine. The minimum length
requirement comes from the desire to limit the number of coils.

– Flexible Demand: Consistent with real-world manufacturing practices,
each order can tolerate a percentage deviation from the total area demanded.
For example, an order may request items totalling 10000±15% units of area.

– Maximum Partition Count per Level: To reflect the limitations of an
industrial cutter, the maximum number of partitions on each level is fixed.

– Limited Stocks with Variable Widths: Stock rectangles of various widths
are available in limited quantities.

– Cost Minimization: The goal is to minimize cost: a weighted difference
between the area of the stocks used and the area of the orders fulfilled.

Formally, we are given a set of stock rectangles K, whose types are character-
ized by setH. Each rectangle k ∈ K has widthWk and length L. Stock rectangles
with identical dimensions belong to the same type, Kh, K =

⋃
h∈H Kh. We are

also given a set of orders, N , where each order i ∈ N has a required area in-
terval of [qmin

i , qmax
i]. Each item belonging to order i should have a fixed width

wi and a length within the interval [ρmin
i , ρmax

i]. Due to the flexible length, the
total number of items belonging to order i must be within an integer inter-

val [nmin
i , nmax

i] = [⌈ qmin
i

ρmax
i

⌉, ⌊ qmax
i

ρmin
i

⌋]. For order i, we denote its set of necessary

items as Ai = {1, . . . , nmin
i }, its set of possible, but not necessary items as

Bi = {nmin
i + 1, . . . , nmax

i }, and all possible items as Ci = Ai

⋃
Bi. Lastly, we

let α and β be the weights associated with the area of stocks used and the area
of orders fulfilled, respectively, and seek to minimize this weighted difference.

Since all stocks share the same length, a stock k can take on at most j̄ =
⌊ L
mini∈N ρmin

i
⌋ levels; we denote the set of possible numbers of levels of any stock

as J = {0, . . . , j̄}. There must also be no more than η partitions on each level.
We let P = {1, . . . , η} be the set of partitions on a given level, and Pi = {l ∈ P |
l ≤ nmax

i } be the set of partitions on a given level assuming they are all assigned
to order i. A partition of a stock that is assigned to an order becomes an item.

The 2SCSP-FF can easily be reduced to the 2SCSP if the quantity demanded
of each order and the length of each item are fixed. As the 2SCSP is NP-hard
[7], the 2SCSP-FF problem is at least NP-hard.

3 Literature Review

The 2SCSP was formalized by Gilmore and Gomory [9], who proposed a dy-
namic program and the well-known exponential-sized model solved via column
generation. Since then, MIP has been the dominant approach in model-based
studies. Limited to a single stock rectangle, Lodi and Monaci [22] proposed a
compact formulation that restricts levelwise assignments for each item to reduce
symmetry. Silva et al. [29] proposed a pseudo-polynomial formulation based on

4 Luo and Beck

the idea of cuts and residual plates for a 2SCSP with identical stocks. Furini et
al. [7] extended both of these models to include different stock sizes while also
proposing a branch-and-price algorithm based on Gilmore and Gomory’s model.
Macedo et al. [24] developed an arc flow formulation based on item positioning.

Dincbas and Simonis proposed the first CP-based approach [6] to the 2SCSP,
generating stock patterns using a combination of backtrack search and a finite
domain model. Later, Beldiceanu and Contejean introduced diffn [1, 2], a global
constraint with an option to enforce guillotine cuts; however, no experimental
results related to guillotine cuts were provided. Since then, CP has largely been
investigated in other packing contexts. For the two-dimensional optimal rect-
angle packing problem, Korf [15, 16] considered solving a constraint satisfaction
problem using the absolute positions of items. Moffitt and Pollack [26] studied
the same satisfaction problem from a relative placement perspective, focusing on
the pairwise relationships between items. For the same problem, Clautiaux et al.
[5] considered a scheduling approach, representing the width and length of items
as two interval variables. This was improved by Mesyagutov et al. [25], who in-
tegrated linear-programming-based pruning rules to propagate the constraints.
Simonis and O’Sullivan investigated CP search strategies to pack squares into
rectangles using the Cumulative global constraint [30, 31]. For 1D packing,
Shaw [28] proposed a global constraint Pack. For a comprehensive review of 2D
packing problems, we refer the reader to surveys by Lodi et al. [21], Wäscher et
al. [33] and Iori et al. [12].

While the 2SCSP has been widely studied, we could find only one work
addressing item flexibility in the 2D setting. Lee et al. [20] considered a variant
of the 2SCSP with flexible width and length and proposed a multi-stage heuristic
to iteratively pack items and adjust level dimensions. They also proposed a non-
linear model but did not investigate its performance.

CP techniques have been widely adopted in scheduling [17, 19]. In relation
to our main approach, we discuss the literature on two types of problem: batch
scheduling and vehicle routing. Batch scheduling arises when a set of jobs with
common characteristics need to be processed together. Tang and Beck [32] pro-
posed a CP formulation using interval variables for a multi-stage tool layup line
problem. Ham and Cakici [10] used interval variables and state functions to
represent a flexible job shop scheduling problem with parallel batch processing
machines. Vehicle Routing Problems (VRP) optimize the routes of vehicles while
some criteria associated with each route are satisfied. A number of CP models
for VRP [4, 8, 13] represent the problem from a scheduling perspective with the
trip-to-vehicle assignments modelled with some form of the Alternative con-
straint. Recently, Booth and Beck [3] introduced the single resource model, where
multiple resources are unified into a single resource on an expanded time horizon.
They show that their formulation yields computation advantage over traditional
modelling constructs in a capacity- and time-constrained routing problem.

Packing By Scheduling: 2SCSP-FF 5

Fig. 2. Illustration of the CPSR model. The length of the stock rectangles are concate-
nated along the horizontal axis. Here, a level is a vertical strip. The smaller rectangles
and the dashed lines represent items and guillotine cuts, respectively.

4 The Single Resource CP Formulation

In this section, we present our main contribution: the Single Resource CP model,
CPSR. Our model poses the 2SCSP-FF as a scheduling problem composed of
three main components: a unified domain of stock length, a state function for
guillotine cuts, and cumulative functions tracking widthwise resources.

Unified Lengthwise Domain Our model adapts the single resource transformation
[3], a CP modelling technique that unifies alternative resources into a single
horizon, to the 2SCSP-FF. CPSR concatenates the stock rectangles so that the
total length of the stocks is analogous to a temporal horizon on which items
belonging to all orders need to be allocated (Figure 2a). For each possible item
p ∈ Ci belonging to order i, we introduce an optional interval variable xip. In CP
scheduling, an optional interval variable is a variable whose domain is a subset
of {⊥}

⋃
{[s, ϵ)|s, ϵ ∈ Z, s ≤ ϵ}, where s and ϵ are the start and end times of the

interval, and ⊥ is a special value indicating absence. In our case, the start time
of xip represents an item’s leftmost lengthwise coordinate, and the duration of
xip its length, which we further restrict to be within [ρmin

i , ρmax
i]. For necessary

items (i.e., in set Ai), we remove {⊥} from the domain of xip for all p ∈ Ai and
simply declare them as interval variables.

To avoid an item spanning multiple stocks in the unified horizon, we insert a
dummy unit of forbidden space between adjacent stocks to create an infeasible
region (Figure 2a, hatched). The horizon is thus augmented from L|K| to (L+

6 Luo and Beck

1)|K|, and no items can be placed in the infeasible region F̄ =
⋃

k∈K [Lk, (L +
1)(k)]. We denote the augmented horizon as H = [0, L|K| + (|K| − 1)] and use
ForbidExtent to exclude F̄ from the domain of the item variables xip.

Guillotine State Function We draw inspiration from batch scheduling to model
guillotine cuts: we treat each level in a stock rectangle as a batch so that the
level’s lengthwise endpoints coincide with the corresponding endpoints of the
items. We first introduce a state function, g, a variable whose domain is a set of
non-overlapping intervals (Figure 2b). Then, we associate the items with a level
using an AlwaysConstant constraint, which coerces their interval variables to
align with an interval in g. Thus, items can only be on the same level if they
belong to the same interval in the state function.

Cumulative Resource Function Expressions The width of stocks and a level’s par-
tition count limit are interpreted as widthwise resources. Typical of CP schedul-
ing, we use cumulative functions and pulses: the former are expressions that
represent the sum of individual contributions of intervals over time, while the
latter are expressions that indicate each interval’s contribution. We let Ω, a
cumulative function, be the net widthwise capacity over the horizon. In Ω, we
generate a pulse with magnitude Wk for each stock rectangle k and a pulse with
magnitude −wi for every item belonging to order i (Figure 2c). As long as Ω is
non-negative, the widthwise capacity is satisfied. A similar construct is used to
express the limit on the number of partitions on each level (Figure 2d), where a
positive pulse with unit magnitude is generated for each item. We constrain the
total cumulative function of these unit pulses, Γ , to be within η.

Overall, our decision variables are as follows:

– xip := (interval) lengthwise interval of item p belonging to order i.
– ck := (interval) lengthwise interval representing stock k.
– g := (state function) guillotine state function.

CPSR is defined in Model 1, using the syntax of IBM’s CP Optimizer [11].
Objective (1a) defines our cost, the weighted difference between the areas of
stocks used and orders fulfilled. Expressions PresenceOf and SizeOf are used
to access the presence and the duration of an interval variable. If the variable
is not present, both expressions evaluate to 0. Constraints (1b) and (1c) define
the widthwise usage of each stock. The last two parameters in the AlwaysIn
constraint respectively dictate the minimum and maximum values that the cu-
mulative function Ω can take on over the horizon H. Constraints (1d) and (1e)
define the restriction on the number of partitions on each level. Constraint (1f)
defines the guillotine cut restrictions. The last two parameters in AlwaysCon-
stant ensure that the start and end times of the variables xip are aligned with
those of the intervals within the state function g. Constraints (1g) and (1h) en-
sure that the total quantity of the order fulfilled is within the demand tolerance.
Constraint (1i) ensures that no partition is assigned across two stock rectangles.
The remaining constraints declare the decision variables.

Packing By Scheduling: 2SCSP-FF 7

min α
∑
k∈K

LWkPresenceOf(ck) (CPSR) (1a)

−β
∑
i∈N

∑
p∈Ci

wiPresenceOf(xip)SizeOf(xip)

s.t. Ω =
∑
k∈K

Pulse(ck,Wk)−
∑
i∈N

∑
p∈Ci

Pulse(xip, wi) (1b)

AlwaysIn(Ω,H, 0,max
k∈K

Wk) (1c)

Γ =
∑
i∈N

∑
p∈Ci

Pulse(xip, 1) (1d)

AlwaysIn(Γ,H, 0, η) (1e)

AlwaysConstant(g, xip, T rue, True) ∀i ∈ N, p ∈ Ci (1f)∑
p∈Ci

SizeOf(xip) ≥ qmin
i /wi ∀i ∈ N (1g)∑

p∈Ci

SizeOf(xip) ≤ qmax
i /wi ∀i ∈ N (1h)

ForbidExtent(xip, F̄) ∀i ∈ N, p ∈ Ci (1i)

xip : IntervalVar(H, [ρmin
i , ρmax

i]) ∀i ∈ N, p ∈ Ai (1j)

xip : OptIntervalVar(H, [ρmin
i , ρmax

i]) ∀i ∈ N, p ∈ Bi(1k)

ck : IntervalVar([(L+ 1)(k − 1), (L+ 1)k − 1], L)∀k ∈ K (1l)

g : StateFunction() (1m)

5 Alternative Approaches

We also propose integer-based CP and MIP models and a two-stage heuristic.

5.1 Integer-based CP Formulations

Counting-based CP Model Due to the two-stage cuts, partitions assigned
to the same order on a level must be identical; hence, we can count them. For a
given level j from stock k, we use an integer variable xijk to denote the number
of partitions assigned to order i. We use an integer variable yjk to represent the
length of level j on stock k. As the position of the lengthwise cut is not restricted
to be integral, we magnify the domain using a precision parameter P equal to
some power of ten, so that yjk represents the first log10 P decimal places of the
actual length. More formally, our decision variables are as follows:

– xijk := (integer) # of partitions on level j of stock k assigned to order i
– yjk := (integer) length of level j of stock k magnified by P

8 Luo and Beck

min α
∑
k∈K

LWkck − β
∑
i∈N

∑
j∈J

∑
k∈K

wixijkyjk/P (CPCO) (2a)

s.t.
∑
i∈N

xijkwi ≤ Wksjk ∀j ∈ J, k ∈ K (2b)

yjk/P ≤ ρmax
i + (xijk == 0)max

n∈N
(ρmax

n) ∀i ∈ N, j ∈ J, k ∈ K (2c)

yjk/P ≥ ρmin
i (xijk ≥ 1) ∀i ∈ N, j ∈ J, k ∈ K (2d)∑

j∈J

∑
k∈K

yjkxijk/P ≥ qmin
i /wi ∀i ∈ N (2e)∑

j∈J

∑
k∈K

yjkxijk/P ≤ qmax
i /wi ∀i ∈ N (2f)∑

j∈J

yjk/P ≤ Lck ∀k ∈ K (2g)

sjk = Any([xijk > 0,∀i ∈ N]) ∀j ∈ J, k ∈ K (2h)

ck = Any([sjk = 1,∀j ∈ J]) ∀k ∈ M (2i)

xijk ∈ {0, ..., η} ∀i ∈ N, j ∈ J, k ∈ K (2j)

yjk ∈ {0,min
i∈N

ρmin
i P, . . . ,max

i∈N
ρmax
i P} ∀j ∈ J, k ∈ K (2k)

Model 2 formalizes CPCO. Objective (2a) describes the cost. Since yjk is
magnified, we divide it by P to recover its actual length. Constraint (2b) restricts
the width of the stocks. Constraints (2c) and (2d) restrict the length of a level
by the tightest interval determined by the allotted orders. Constraints (2e) and
(2f) ensure that partitions of each order fulfilled satisfy the total quantity range
demanded. Constraint (2g) restricts the length of the stocks in use. Constraints
(2h) and (2i) describe if a level and a stock is used, respectively.

Stock-based CP Model Extending the standard integer-based CP model for
one-dimensional bin packing [14], the stock-based CP model, CPST , takes ad-
vantage of the limited number of possible partitions on a level, matching each
partition to some order. Specifically, we define integer variables xjkl representing
the index of the order to which the lth partition of the jth level on the kth stock is
assigned. As not all partitions are always needed, we define a dummy order that
serves as a placeholder. Formally, the dummy order, indexed by D = |N | + 1,
has width wD = 0 and length interval [ρmin

D , ρmax
D] = [0,max

i∈N
(ρmax

i)]. We use

N = N
⋃
{D} to denote the set of original orders plus the dummy order; w to

denote the set of widths of original orders union the dummy width wD; ρmin

and ρmax to denote the lengthwise bounds of orders union the dummy bounds
ρmin
D and ρmax

D . Similar to CPCO, we let yjk be the length of level j on stock k
and magnify its domain using P.

Packing By Scheduling: 2SCSP-FF 9

minimize
∑
k∈K

LWkck −
∑
j∈J

∑
k∈K

∑
l∈P

wxjkl
yjk/P (CPST) (3a)

s.t.
∑
l∈P

wxjkl
≤ Wksjk ∀j ∈ J, k ∈ K (3b)

yjk/P ≤ ρmax
xjkl

∀j ∈ J, k ∈ K, l ∈ P (3c)

yjk/P ≥ ρmin
xjkl

∀j ∈ J, k ∈ K, l ∈ P (3d)∑
j∈J

∑
k∈K

∑
l∈P

(xjkl == i)yjk/P ≥ qmin
i /wi ∀i ∈ N (3e)∑

j∈J

∑
k∈K

∑
l∈P

(xjkl == i)yjk/P ≤ qmax
i /wi ∀i ∈ N (3f)

sjk = Any([xjkl ̸= D,∀l ∈ P]) ∀j ∈ J, k ∈ K (3g)

xjkl ∈ N ∀j ∈ J, k ∈ K, l ∈ P (3h)

(2g), (2i), (2k)

Model 3 formalizes CPST . Objective (3a) minimizes the cost. Constraint (3b)
ensures that the widthwise capacity is satisfied on each stock. In particular, w
is indexed by xjkl using the Element constraint. Constraints (3c) and (3d)
constrain the length of a level by the items assigned on it. Constraints (3e) and
(3f) satisfy the total area of each order. Constraint (3g) instantiates intermediate
parameters indicating level usage.

Modelling Considerations

Symmetry-breaking: The problem has a number of inherent symmetries due to
the homogenous items, levels, and stock rectangles. Hence, we augment CPCO

and CPST with the following symmetry-breaking constraints:

yjk ≥ y(j+1)k ∀j ∈ J ′, k ∈ K (4a)

ck ≥ ck+1 ∀k ∈ K ′
h, h ∈ H (4b)

These constraints break the symmetry between the lengths of consecutive lev-
els on the same stock and the presence of homogeneous stocks, respectively. We
use a prime to indicate an ordered set without its last element: J ′ = J \{|J |}. For
CPST , we also specify a lexicographic ordering of the order indices on consecutive
levels of the same stock via Lexicographic([xjkl,∀l ∈ P], [x(j+1)kl,∀l ∈ P]).

Item-based CP Model: Using Pack [28], we can also construct an integer-based
CP model that decides on the level that an item is assigned to. Two such struc-
tures exist in 2SCSP-FF: the packing of items into levels and that of levels into
stocks. While the former can be represented by Pack, the latter cannot due
to the lengthwise flexibility and is represented by constraints that decompose
Pack. The model is omitted due to poor computational performance.

10 Luo and Beck

5.2 Mixed-Integer Formulation

We also introduce a mixed-integer program, MIP , that uses binary variables to
assign partitions on each level to orders. Formulating a strong MIP model is
challenging, as determining the area of each order requires information related
to two independent decisions: the order-to-level assignment and the level length
given order assignments. In MIP , we linearize this relationship at the expense of
introducing new variables, each one packing an item of an order into a level of a
stock. While it is tempting to decompose them into independent orders-to-levels
and levels-to-stocks decisions similar to the compact formulation in Furini et al.
[7], representing both the area of each order and the variable length of each level
using linear constraints is nontrivial. Here, we do not investigate this further.

More formally, our decision variables are as follows:

– xijkl := (binary) 1 if the lth partition from the jth level of the kth stock is
assigned to the ith order, else 0.

– yjk := (continuous) the length of the jth level on the kth stock.
– aijkl := (continuous) the area occupied by the lth partition of the jth level

on the kth stock belonging to order i.
– ck := (binary) 1 if the kth stock is used, else 0.

MIP is defined in Model 5. Objective (5a) describes the cost. Constraint (5b)
restricts the stocks’ width. Constraint (5c) limits the number of lengthwise cuts.
Constraint (5d) ensures that the lengthwise capacity of each stock is satisfied.
Constraints (5e) and (5f) assert that the level’s length must respect the mini-
mum and maximum length of items assigned to it. Constraints (5g) and (5h)
ensure that the quantity of each order assigned across all stocks is satisfactory.
Constraints (5i), (5j), and (5k) define the area of each partition on a level.

min α
∑
k∈K

LWkck − β
∑

i∈N,j∈J,k∈K,l∈Pi

aijkl (MIP) (5a)

s.t.
∑

i∈N,l∈Pi

wixijkl ≤ Wkck ∀j ∈ J, k ∈ K (5b)∑
i∈N,l∈Pi

xijkl ≤ ηck ∀j ∈ J, k ∈ K (5c)∑
j∈J

yjk ≤ Lck ∀k ∈ K (5d)

yjk ≥ ρmin
i xijkl ∀i ∈ N, j ∈ J, k ∈ K, l ∈ Pi (5e)

yjk ≤ ρmax
i xijkl +max

i′∈N
(ρmax

i′)(1− xijkl) ∀i ∈ N, j ∈ J, k ∈ K, l ∈ Pi (5f)∑
l∈Pi,j∈J,k∈K

aijkl ≥ qmin
i ∀i ∈ N (5g)∑

l∈Pi,j∈J,k∈K

aijkl ≤ qmax
i ∀i ∈ N (5h)

aijkl ≤ wiyjk ∀i ∈ N (5i)

Packing By Scheduling: 2SCSP-FF 11

aijkl ≥ wiyjk − ρmax
i wi(1− xijkl) ∀i ∈ N (5j)

aijkl ≤ ρmax
i wixijkl ∀i ∈ N, j ∈ J, k ∈ K, l ∈ Pi (5k)

xijkl ∈ {0, 1} ∀i ∈ N, j ∈ J, k ∈ K, l ∈ Pi (5l)

yjk ∈ R+ ∀j ∈ J, k ∈ K (5m)

aijkl ∈ R+ ∀i ∈ N, j ∈ J, k ∈ K, l ∈ Pi (5n)

ck ∈ {0, 1} ∀k ∈ K (5o)

Modelling Considerations

Symmetry-breaking: We can again add symmetry-breaking constraints (4a) and
(4b) to MIP similar to CPCO and CPST . Furthermore, we add constraints (6a)
and (6b) to break the symmetry between partitions on the same level belonging
to the same order and the length of the first level of identical stocks, respectively.

xijkl ≥ xijk(l+1) ∀i ∈ N, j ∈ J, k ∈ K, l ∈ P ′
i (6a)

y0k ≥ y0(k+1) ∀k ∈ K ′
h, h ∈ H (6b)

One-hot Encoded Formulation: In order to retain linearity, MIP treats the as-
signment of different partitions on the same level to an order as individual deci-
sions. Alternatively, we can one-hot encode the number of partitions assigned to
the level so that each binary variable xijkl takes the value 1 if and only if there
are l partitions (with identical dimensions) on level j of stock k assigned to order
i. This formulation underperforms MIP in our experiments and is omitted.

5.3 First-fit Based Heuristic

In addition to the mathematical models, we develop a two-stage first-fit-based
heuristic, FFMH . The first stage sorts the orders’ items in a lexicographically
decreasing order based on their width and length interval size and packs each
one into a level. The intuition is that orders with less lengthwise flexibility and
larger width should be packed into a level first, as they can be more difficult to
pack into a partial solution. A new level or stock is opened if an item cannot fit
into the previous level or stock. Packing an item into a stock’s level only narrows
its length interval: another decision is required to obtain its exact length and
thereafter each order’s total area. For simplicity, we pack items of an order until
the sum of the average possible area of each item is not less than the middle of
the required area interval for that order. In the second stage, given the complete
item-to-level assignment, we solve a linear program (Model 7) to determine each
level’s length, while minimizing cost.1

1 The form of this two-stage heuristic suggests that a classical Benders decomposition
approach may be worth investigation in future work.

12 Luo and Beck

max
∑

i∈N,j∈J,k∈K

wiΦijkyjk (7a)

s.t.
∑
j∈J

yjk ≤ L ∀k ∈ K (7b)

yjk ≥ Φind
ijk ρ

min
i ∀i ∈ N, j ∈ J, k ∈ K (7c)

yjk ≤ Φind
ijk ρ

max
i + (1− Φind

ijk)max
i′∈N

(ρmax
i′)∀i ∈ N, j ∈ J, k ∈ K (7d)∑

j∈J,k∈K

wiΦijkyjk ≥ qmin
i ∀i ∈ N (7e)∑

j∈J,k∈K

wiΦijkyjk ≤ qmax
i ∀i ∈ N (7f)

yjk ∈ R+ ∀j ∈ J, k ∈ K (7g)

The only variables in Model 7 are the continuous variables yjk describing
the length of the jth level on the kth stock. The parameter Φijk is the number
of partitions on the jth level of the kth stock that belongs to order i, and the
parameter Φind

ijk is a 0-1 indicator for Φijk > 0. We simplify the cost minimiza-
tion objective to maximize total fulfillment (7a) because the number of stocks
used is fixed given the item-to-level assignment. Constraint (7b) constrains the
stock length. Constraints (7c) and (7d) satisfy the length specifications of the
partitions. Constraints (7e) and (7f) ensure the total fulfillment of each order to
be within tolerance limits. Constraint (7g) declares the variable domain.

6 Numerical Results

We conduct our analysis on a combination of 50 generated problem instances
and 4 real-life instances provided by our industry partner (Table 1).

For the generated instances, we draw from distributions provided by our
industrial collaborator (Table 2), generating 10 instances for each parameter
combination in the set {(|N |, |K|)} ∈ {(4, 8), (8, 16), (16, 32), (32, 64), (64, 128)}.
For 5 out of these 10 instances, we halve the total area tolerances to provide
variability. In the rare case that, for some order i, ρmax

i ≤ ρmin
i is generated, we

swap the two values.

|N | |K| Wk wi ρmin
i ρmax

i qmin
i qmax

i

19 42 48 22.2 112.9 180.2 1.3e5 1.7e5
21 172 45.2 16.3 56.6 94.6 9.7e4 1.3e5
47 149 43.3 10.4 68.2 134.1 1.6e5 2.1e5
149 636 44.6 13.3 74.4 134.4 2.5e5 3.4e5

Table 1. Mean of the parameter combinations from the four industrial instances.

Packing By Scheduling: 2SCSP-FF 13

Parameter Distribution

∀ order i ∈ N

qi Exponential(λ=5.608e-0.5)
qmax
i Constant, 0.85 qi
qmin
i Constant, 1.15 qi
wi Integer Uniform(a=1, b=20)

ρmax
i Integer Uniform(a=70, b=115)
ρmin
i Integer Uniform(a=85, b=130)

∀ stock k ∈ K

Wk Integer Uniform(a=36, b=50) with 50% chance of duplicating previous stock
L Constant, 400

Table 2. Data distributions for each parameter.

Fig. 3. Comparison of the number of variables, the number of constraints, and the
model memory before search over instance sizes. Note the scales of the y-axes.

All experiments are implemented in Python 3.8, and computations were per-
formed on individual nodes of the SciNet Niagara cluster [23, 27]. We use CPLEX
and CP Optimizer from the CPLEX Optimization Studio version 20.1.0 via the
DOcplex library. Each model is given 16 GB of RAM and runs that exceed this
size are aborted. All experiments are single-threaded with default search and
inference settings. A one-hour time limit is used.

For the CP integer-based models, we set P, the magnifying parameter, to 1,
as increasing it led to poor performance. We set α and β, the objective weights,
to 0.3 and 0.7, respectively, to reflect the industrial use case.

Model Size Comparison. Figure 3 compares the mean model sizes based on the
number of variables, the number of constraints, and the model memory (before
search). The memory usage of MIP is not accessible from the solver. A data
point is omitted if the corresponding model fails to initialize in memory within
the one hour time limit. The CPSR formulation is significantly smaller than the
other models across all three measures, especially as the instances scale up. For

14 Luo and Beck

Fig. 4. (Left) Number of generated and industrial instances with a feasible solution
by each model. (Right) The average run time required to find a feasible solution for a
given model at an instance size.

Fig. 5. % optimality gap for generated and industrial instances. Instances that are not
solved by an approach are not included in that approach’s measure.

the largest industrial instances, no other models could be loaded before timing
out. For the largest generated instances, (64, 128), the CPCO model requires
about 800MB of memory, while CPSR only needs 20MB.

Feasibility Analysis. Figure 4 reports the number of instances for which a feasible
solution was found and the average time to feasibility or termination. Only CPSR

and FFMH found a feasible solution to all instances. In particular, CPSR reached
feasibility the fastest amongst all methods, requiring less than 100 seconds for
the largest industrial instance, while FFMH , the second fastest, needed almost
the entire one-hour run time. Notably, MIP failed to find feasible solutions for
generated and industrial instances with |N | ≥ 32 and |N | ≥ 21, respectively.

Solution Quality Figure 5 displays the optimality gap of each approach calcu-
lated from Equation (8). Here, z(n; i) is the objective value of approach n for
instance i, and lb(i) is the best lower bound of instance i across all approaches.
For a given solution approach, we omit any unsolved instances from the vi-
sualization; hence, CPSR is penalized for finding solutions to harder instances
compared to approaches that did not do so.

% OptGap(n; i) = 100
z(n; i)− lb(i)

lb(i)
(8)

Packing By Scheduling: 2SCSP-FF 15

MIP demonstrated the strongest performance for generated instances with
|N | ≤ 16. It proved optimality for three generated instances, the only ones
proven optimal across all models. For larger instances (|N | ≥ 32), MIP scaled
poorly, failing to find a feasible solution within the time limit. Both CPCO

and CPST struggle to find competitive solutions to the generated instances past
N = 4, eventually encountering loading time issues for larger instances. Notably,
CPCO found similar solutions to MIP for the smallest generated instances, but
could not prove optimality due to a weaker lower bound. CPSR consistently
outperformed MIP and the other CP models for all but the smaller instances. A
similar trend is observed on the industrial instances, where CPSR was the only
model-based approach that found a feasible solution to more than one instance.
For both sets of instances, CPSR consistently found better solutions than the
heuristic in less time. We also observe that the optimality gaps of the larger
instances that only CPSR can solve are of the same order of magnitude as the
gaps of the smaller ones. The lower bounds of these large instances are generated
by CPSR, but their values are non-trivial, a rare feat for typical CP approaches.
We note that CP Optimizer computes the lower bound using an automatic LP-
based relaxation of the scheduling constraints [18], a feature not available in
some other CP solvers.

7 Discussion and Conclusion

In this paper, we create a CP scheduling approach for a novel packing prob-
lem: the Two-stage Cutting Stock Problem with Flexible Length and Flexible
Demand (2SCSP-FF). Using optional intervals, state functions, and cumulative
functions, our model, CPSR, has significant computational and performance ad-
vantages over two alternative CP models, a MIP model, and a two-stage heuristic
on large generated and industrial instances.

The memory efficiency of CPSR can be attributed to the compact represen-
tation of the complicated substructures. To represent the guillotine cuts, CPSR

is the only model that does not enumerate over the set of levels J , instead us-
ing just a state function and a AlwaysConstant constraint. Similarly, CPSR

restricts the widthwise capacities and the partition counts without levelwise con-
straints. By using the fewest variables and constraints, the CPSR model has at
least an order-of-magnitude savings in its memory usage. As the instances scale
up, this advantage increases.

Accordingly, only CPSR found a feasible solution to more than one industrial-
scale instance. The short time-to-feasibility, however, differs from the results
for routing problems [3], where the model struggled to find feasible solutions
quickly. We suspect that this disparity is due to the looser constraints on interval
variables for our problem compared to the routing formulation.

Overall, our success here suggests that the flexibility of CP scheduling tools
provides a promising approach to attacking complex real-world problems beyond
traditional scheduling ones.

16 Luo and Beck

Acknowledgements. We thank anonymous reviewers for their valuable feedback.
This research was partially supported by Visual Thinking International Ltd (Vi-
sual8) and the Natural Sciences and Engineering Research Council of Canada.

References

1. Beldiceanu, N., Carlsson, M., Flener, P., Pearson, J.: On the reification of global
constraints. Constraints 18, 1–6 (2012)

2. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Mathematical
and Computer Modelling 20(12), 97–123 (1994)

3. Booth, K.E.C., Beck, J.C.: A constraint programming approach to electric vehicle
routing with time windows. In: Integration of Constraint Programming, Artificial
Intelligence, and Operations Research - 16th International Conference, CPAIOR
2019. Lecture Notes in Computer Science, vol. 11494, pp. 129–145. Springer (2019)

4. Cappart, Q., Schaus, P.: Rescheduling railway traffic on real time situations using
time-interval variables. In: Integration of AI and OR Techniques in Constraint
Programming - 14th International Conference, CPAIOR 2017. Lecture Notes in
Computer Science, vol. 10335, pp. 312–327. Springer (2017)

5. Clautiaux, F., Jouglet, A., Carlier, J., Moukrim, A.: A new constraint programming
approach for the orthogonal packing problem. Computers & Operations Research
35(3), 944–959 (2008), part Special Issue: New Trends in Locational Analysis

6. Dincbas, M., Simonis, H., Hentenryck, P.V.: Solving a cutting-stock problem with
the constraint logic programming language CHIP. Mathematical and Computer
Modelling 16, 95–105 (1992)

7. Furini, F., Malaguti, E.: Models for the two-dimensional two-stage cutting stock
problem with multiple stock size. Computers & Operations Research 40(8), 1953–
1962 (2013)

8. Gedik, R., Kirac, E., Milburn, A.B., Rainwater, C.: A constraint programming
approach for the team orienteering problem with time windows. Computers &
Industrial Engineering 107, 178–195 (2017)

9. Gilmore, P.C., Gomory, R.E.: Multistage cutting stock problems of two and more
dimensions. Operations Research 13(1), 94–120 (1965)

10. Ham, A.M., Cakici, E.: Flexible job shop scheduling problem with parallel batch
processing machines: MIP and CP approaches. Computers & Industrial Engineer-
ing 102, 160–165 (2016)

11. IBM: CP optimizer user manual, https://www.ibm.com/docs/en/icos/20.1.0?
topic=optimizer-cp-users-manual

12. Iori, M., de Lima, V.L., Martello, S., Miyazawa, F.K., Monaci, M.: Exact solution
techniques for two-dimensional cutting and packing. European Journal of Opera-
tional Research 289(2), 399–415 (2021)

13. Kinable, J., van Hoeve, W., Smith, S.F.: Optimization models for a real-world snow
plow routing problem. In: Integration of AI and OR Techniques in Constraint
Programming - 13th International Conference, CPAIOR 2016. Lecture Notes in
Computer Science, vol. 9676, pp. 229–245. Springer (2016)

14. Kong, V.L.: IBMDecisionOptimization: Docplex-Examples/Trimloss.py. https:

//github.com/IBMDecisionOptimization/docplex- examples/blob/master/

examples/cp/basic/trimloss.py (2020)
15. Korf, R.E.: Optimal rectangle packing: Initial results. In: Proceedings of the Thir-

teenth International Conference on Automated Planning and Scheduling (ICAPS
2003). pp. 287–295. AAAI (2003)

Packing By Scheduling: 2SCSP-FF 17

16. Korf, R.E.: Optimal rectangle packing: New results. In: Proceedings of the Four-
teenth International Conference on Automated Planning and Scheduling (ICAPS
2004). pp. 142–149. AAAI (2004)

17. Ku, W., Beck, J.C.: Mixed integer programming models for job shop scheduling:
A computational analysis. Computers & Operations Research 73, 165–173 (2016)

18. Laborie, P., Rogerie, J.: Temporal linear relaxation in IBM ILOG CP optimizer.
Journal of Scheduling 19(4), 391–400 (2016)

19. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P.: IBM ILOG CP optimizer for scheduling
- 20+ years of scheduling with constraints at IBM/ILOG. Constraints 23(2), 210–
250 (2018)

20. Lee, J., Kim, B.I., Johnson, A.L.: A two-dimensional bin packing problem with
size changeable items for the production of wind turbine flanges in the open die
forging industry. IIE Transactions 45, 1332 – 1344 (2013)

21. Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: A survey.
European Journal of Operational Research 141(2), 241–252 (2002)

22. Lodi, A., Monaci, M.: Integer linear programming models for 2-staged two-
dimensional knapsack problems. Mathematical Programming 94(2-3), 257–278
(2003)

23. Loken, C., Gruner, D., Groer, L., Peltier, R., Bunn, N., Craig, M., Henriques, T.,
Dempsey, J., Yu, C.H., Chen, J., Dursi, L.J., Chong, J., Northrup, S., Pinto, J.,
Knecht, N., Zon, R.V.: SciNet: Lessons learned from building a power-efficient top-
20 system and data centre. Journal of Physics: Conference Series 256, 012026 (nov
2010)

24. Macedo, R., Alves, C., de Carvalho, J.M.V.: Arc-flow model for the two-
dimensional guillotine cutting stock problem. Computers & Operations Research
37(6), 991–1001 (2010)

25. Mesyagutov, M., Scheithauer, G., Belov, G.: LP bounds in various constraint pro-
gramming approaches for orthogonal packing. Computers & Operations Research
39(10), 2425–2438 (Oct 2012)

26. Moffitt, M.D., Pollack, M.E.: Optimal rectangle packing: A meta-csp approach.
In: Proceedings of the Sixteenth International Conference on Automated Planning
and Scheduling, (ICAPS 2006). pp. 93–102. AAAI (2006)

27. Ponce, M., van Zon, R., Northrup, S., Gruner, D., Chen, J., Ertinaz, F., Fedoseev,
A., Groer, L., Mao, F., Mundim, B.C., Nolta, M., Pinto, J., Saldarriaga, M.,
Slavnic, V., Spence, E., Yu, C., Peltier, W.R.: Deploying a top-100 supercom-
puter for large parallel workloads: the niagara supercomputer. In: Proceedings of
the Practice and Experience in Advanced Research Computing on Rise of the Ma-
chines (learning), PEARC 2019, Chicago, IL, USA, July 28 - August 01, 2019. pp.
34:1–34:8. ACM (2019)

28. Shaw, P.: A constraint for bin packing. In: Principles and Practice of Constraint
Programming – CP 2004. pp. 648–662. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2004)

29. Silva, E., Alvelos, F., Valério de Carvalho, J.: An integer programming model for
two- and three-stage two-dimensional cutting stock problems. European Journal
of Operational Research 205(3), 699–708 (2010)

30. Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Stuckey,
P.J. (ed.) Principles and Practice of Constraint Programming, 14th Interna-
tional Conference, CP 2008, Sydney, Australia, September 14-18, 2008. Proceed-
ings. Lecture Notes in Computer Science, vol. 5202, pp. 52–66. Springer (2008),
https://doi.org/10.1007/978-3-540-85958-1_4

18 Luo and Beck

31. Simonis, H., O’Sullivan, B.: Almost square packing. In: Achterberg, T., Beck, J.C.
(eds.) Integration of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems - 8th International Conference, CPAIOR 2011,
Berlin, Germany, May 23-27, 2011. Proceedings. Lecture Notes in Computer Sci-
ence, vol. 6697, pp. 196–209. Springer (2011), https://doi.org/10.1007/978-3-
642-21311-3_19

32. Tang, T.Y., Beck, J.C.: CP and hybrid models for two-stage batching and schedul-
ing. In: Integration of Constraint Programming, Artificial Intelligence, and Oper-
ations Research - 17th International Conference, CPAIOR 2020. Lecture Notes in
Computer Science, vol. 12296, pp. 431–446. Springer (2020)

33. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and
packing problems. European Journal of Operational Research 183(3), 1109–1130
(2007)

34. Yang, D., Bambach, M., Cao, J., Duflou, J., Groche, P., Kuboki, T., Sterzing, A.,
Tekkaya, A., Lee, C.: Flexibility in metal forming. CIRP Annals 67(2), 743–765
(2018)

