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We investigate using Constraint Programming (CP) and Domain-Independent Dynamic Programming9

(DIDP) to solve the master problem in Logic-based Benders Decomposition (LBBD) models, in10

particular addressing the challenge of feasibility cut formulation. For CP, we exploit key variable11

manipulation, constraint-based expressions, and global constraints to construct three combinatorial12

cut encodings. For the state-based DIDP model, we propose two cut encoding approaches: using13

additional preconditions of state transitions or adding state constraints. Each of these approaches14

can be modeled using integer numeric variables or set variables, resulting in four novel encodings.15

We apply the three CP variants and four DIDP variants to simple assembly line balancing problems16

with sequence-dependent setup times type-1 (SUALBP-1). Experimental results show all approaches17

outperform a mixed-integer programming (MIP) based master problem and the state-of-the-art18

monolithic MIP model, with the three CP variants being superior to all of the DIDP approaches.19
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1 Introduction25

Logic-Based Benders Decomposition (LBBD) is one of the most powerful and convenient26

patterns of problem decomposition for solving combinatorial optimization problems [15].27

While the most common combination within the Constraint Programming (CP) literature uses28

Mixed Integer Programming (MIP) for master problems and CP for subproblems [14], LBBD29

is compatible with various modeling and solving techniques. For example, subproblems have30

been modeled and solved with Satisfiability Modulo Theories (SMT) [22], Binary Decision31

Diagrams [11], and problem-specific algorithms [10, 29]. However, work investigating modeling32

and solution methods other than MIP for master problems in LBBD is sporadic [8]. In this33

paper, we explore the modeling and solving LBBD master problems with methods different34

from MIP.35

As a constraint-based formalism, CP can readily accept cuts encoded as linear constraints.36

However, linear constraints tend to propagate weakly, resulting in poor master problem37

performance. The encoding methods proposed in this paper are more combinatorial and38

focus on key decision variables in the global constraints of the master problem CP model.39

As CP is competitive with MIP across a number of optimization problems [21], when the40

master problem is of the form that is better solved with CP, a CP-based master problem may41

outperform a corresponding MIP master problem if a good cut formulation can be achieved.42
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34:2 Solving LBBD Master Problems with CP and DIDP

Domain-Independent Dynamic Programming (DIDP) is a recent exact framework to43

model and solve combinatorial optimization problems [19, 20]. Its success on well-known44

problems motivates us to investigate using DIDP for master problems in the LBBD framework.45

Since a DIDP model is defined as a state-transition system, encoding Benders cuts in DIDP46

differs fundamentally from the constraint-based encoding in MIP and CP.47

As a case study, we use assembly line balancing problems with sequence-dependent setup48

times type-1 (SUALBP-1) [9]. The natural decomposition for this problem is to solve the49

Simple Assembly Line Balancing Problem type-1 (SALBP-1) as the master problem and to50

solve a traveling salesman problem with precedence constraints as a subproblem. Previous51

work shows that both CP and DIDP can outperform MIP for SALBP-1 [21], thus this choice52

allows us to test whether cuts can be formulated to maintain this advantage.53

Our contributions are summarized as follows.54

1. We formulate three alternative representations of feasibility cuts for SUALBP-1 for a55

CP-based master problem.56

2. We propose four approaches to encode Benders feasibility cuts in a DIDP model of LBBD57

master problems based on using integer or set variables to encode preconditions or state58

constraints. We apply these approaches to SUALBP-1 and develop four feasibility cut59

encodings for a DIDP-based master problem.60

3. We obtain superior results for SUALBP-1 in solving master problems with CP and DIDP61

rather than MIP, with CP outperforming DIDP. We provide statistical analysis and62

insights on our seven novel cut formulations.63

This paper is organized as follows. The background is covered in Section 2. The three64

novel CP feasibility cut formulations for SUALBP-1 are introduced in Section 3. The four65

encoding methods of Benders feasibility cuts in DIDP and their instantiations for SUALBP-166

are presented in Section 4. The experimental results are presented in Section 5. We discuss67

the proposed approaches and results in Section 6, followed by our conclusions.68

2 Background69

2.1 Logic-Based Benders Decomposition70

Logic-Based Benders Decomposition (LBBD) applies to problems that can be formulated as71

min
x,y

{f(x, y)|C(x, y), x ∈ Dx, y ∈ Dy} (1)72

where x and y are decision variables in the domains Dx and Dy, while f(x, y) and C(x, y)73

represent the objective function and a set of constraints for these variables, respectively [13].74

The variables are divided into two groups and, once some of the variables are fixed by solving75

a master problem and setting x = x, the remaining subproblem is defined, often in the form76

of multiple independent subproblems. The subproblem (SP) has the form77

SP (x) = min
y

{f(x, y)|C(x, y), y ∈ Dy}. (2)78

LBBD analyzes the SP solution to infer a function Bx(x) that provides a lower bound on79

f(x, y) for any given x ∈ Dx. The bound is sharp for x = x, i.e., Bx(x) = SP (x) [15].80

Each iteration of LBBD begins by solving a Master Problem (MP):81

MP (X) = min
x,β

{β|β ≥ Bx(x), ∀x ∈ X, x ∈ Dx} (3)82
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where the inequalities β ≥ Bx(x) are Benders cuts obtained from the subproblem solutions83

given x = x. X is the set of master problem solutions and is usually empty initially.84

Defining ϕ∗ as the optimal value of the original problem (1), the optimal MP value MP (X)85

is a lower bound on ϕ∗. If x is an optimal MP solution, the corresponding subproblem is86

then solved to obtain SP (x) as an upper bound on ϕ∗, and a Benders cut β ≥ Bx(x) for the87

master problem, with x added to X. The process repeats until the lower and upper bounds88

converge, i.e., until MP (X) = minx∈X SP (x). The convergence is guaranteed after a finite89

number of iterations, if Dx is finite [13].90

In general, there are two LBBD variants, distinguished by subproblem types. When91

a subproblem is an optimization problem, we deduce a lower bound on ϕ∗ in the form of92

a Benders optimality cut [31]. When a subproblem is a feasibility problem, a set of MP93

solutions are pruned by the corresponding Benders feasibility cut [1] according to the SP94

solution associated with x. In this work, we focus on encoding Benders feasibility cuts.95

2.2 Domain-Independent Dynamic Programming96

A DIDP model is described by Dynamic Programming Description Language (DyPDL), a97

solver-independent formalism to define a dynamic programming (DP) model [20]. In DyPDL,98

a problem is represented by states and transitions between states. A solution of the problem99

corresponds to a sequence of transitions satisfying particular conditions.100

A DyPDL model is a tuple ⟨V, S0, T , B, C, h⟩, where V is the set of state variables, S0
101

is a state called the target state, T is the set of transitions, B is the set of base cases, C is102

the set of state constraints, and h is the set of dual bounds. A state variable is either an103

element, set, or numeric variable. A numeric state variable v may have a preference such as104

less (more), i.e., a state having smaller (larger) v dominates another state if the other state105

variables have the same value in the two states. Such a variable is called a resource variable.106

Given a set of state variables V = {v1, ..., vn}, a state is a tuple of values S = (d1, ..., dn)107

where di ∈ Dvi
for i = 1, ..., n, i.e., a state is a complete assignment to state variables. We108

denote the value di of variable vi in state S by S[vi]. Intuitively, the target state is the start109

of the state transition system and a base state is a goal, i.e., the end of the state transition110

system. State constraints are relations on state variables that must be satisfied by all states.111

A transition τ is a 4-tuple ⟨effτ , costτ , preτ , forcedτ ⟩ where effτ is the set of effects,112

costτ is the cost, preτ is the set of preconditions, and forcedτ ∈ {⊤, ⊥}, where ⊤ represents113

true and ⊥ represents false. The preconditions of a transition define when we can use it114

while the effects of a transition define what the state variables become if the transition115

fires. For detailed DIDP models of various optimization problems, please see existing DIDP116

papers [20, 21].117

2.3 SUALBP-1118

The Simple Assembly Line Balancing Problem (SALBP) is a well-studied production planning119

problem [5]. As setup operations such as tool changes, curing, or cooling processes are often120

required between consecutive tasks in real production lines [18], SUALBP incorporates setup121

times into SALBP [2], as shown in Fig. 1.122

2.3.1 Problem Definition123

SUALBP-1 consists of n assembly tasks, partially ordered with precedence constraints,124

that require processing on m ordered assembly stations. The tasks on a machine must all125

CP 2024
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Figure 1 Example of SUALBP-1.

sequentially execute within the cycle time c. In SUALBP-1, the cycle time c is fixed and126

the objective is to minimize the number of stations m. Though all stations can perform all127

assembly tasks, if a task is assigned to station j, all its successors as defined by the precedence128

constraints must be assigned to the same or subsequent stations (i.e., j, j + 1, j + 2, ..., m).129

Tasks assigned to the same station must also be sequenced to satisfy the precedence constraints,130

if any. The deterministic processing time of a task is provided a priori. However, the setup131

before a task (forward setup) is dependent upon the previous task in the processing sequence132

of the station it is assigned to. There is also a sequence-dependent setup (backward setup)133

from the last task on a machine to the first task on the same machine to model the setup134

required between the end of a cycle and the start of the next one.135

The setups are not symmetric, i.e., the setup time from task i to j might be different from136

that from task j to i. Nevertheless, the setups satisfy the triangle inequality. The decisions137

to be made for SUALBP-1 are (i) the assignment of tasks to stations; and (ii) the sequence138

of the tasks assigned to each station. We use the notation proposed by Esmaeilbeigi et al. [9],139

as shown in the Table 1 for SUALBP-1. To obtain all the parameters in the table, we adapt140

the preprocessing techniques in the literature [20, 9, 31].141

SUALBP-1 has been solved with a number of approaches including MIP [9] and heurist-142

ics [25]. The state-of-the-art MIP model is the Second Station-Based Formulation (SSBF) [9]143

defined in Appendix A. The model uses two-indexed binary variables to encode task assign-144

ment, three-indexed binary variables to represent the precedence relations of pairs of tasks145

on a station, and auxiliary variables to help express the objective and constraints.146

There is no existing LBBD approach specifically designed for SUALBP-1. The closest147

work is an LBBD algorithm for mixed-model assembly line balancing problem with sequence-148

dependent setups [1] that can be adapted (with significant simplification) to SUALBP-1. We149

Table 1 Notation and definition for SUALBP-1 [9].

Notation Definition
i, j ∈ V index and set of tasks
k ∈ K index and set of stations
ti execution time for task i ∈ V

Pi (P ∗
i ) set of direct (all) predecessors of task i ∈ V

Si (S∗
i ) set of direct (all) successors of task i ∈ V

c the cycle time
m (m) upper (lower) bound on the number of stations
τij (µij) forward (backward) setup times from task i ∈ V to task j

τ i (µ
i
) the smallest forward (backward) setup time from any task to task i ∈ V

ti a lower bound of the time contribution by task i, i.e., ti = ti + min(τ i, µ
i
)
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discuss this model in Section 5.150

In our parallel work currently under review [30], new state-of-the-art results are found151

with a monolithic DIDP model. Since our focus is on cut encoding in LBBD, we return to152

these results in the discussion.153

3 CP-LBBD for SUALBP-1154

In this section, we present three LBBD formulations for SUALBP-1 with CP master problems155

and Benders feasibility cuts.156

3.1 CP Master Problem157

SUALBP-1 fixes the cycle time (maximum station time) and seeks to minimize the number158

of stations used. In the LBBD framework, we decompose the problem to an assignment159

master problem and a scheduling subproblem for each station.160

In all our approaches, the master problem assigns tasks to stations, minimizing the161

number of stations used, and ensuring that the precedence constraints between tasks and the162

cycle time limit are not violated. Without any Benders cuts, this master problem is identical163

to the Simple Assembly Line Balancing Problem type-1 (SALBP-1) [4].164

For SALBP-1, Kuroiwa and Beck [20] improved the CP model proposed by Bukchin165

and Raviv [6] by using Pack global constraint. Our models differ from theirs in two ways:166

(1) ti is replaced by ti for task i to model a subproblem relaxation in the master problem167

and (2) three different combinatorial formulations of Benders feasibility cuts are used, one168

formulation in each model.169

We define Ei as a lower bound on the number of stations required to schedule task i, Li170

as a lower bound on the number of stations between the station of task i and the last station,171

inclusive, and dij as a lower bound on the number of stations between the stations of tasks i172

and j, inclusive:173

Ei =
⌈ ti +

∑
j∈P ∗

i
tj

c

⌉
, Li =

⌊ ti − 1 +
∑

j∈S∗
i

tj

c

⌋
, dij =

⌈ ti + tj − 1 +
∑

v∈S∗
i

∩P ∗
j

tv

c

⌉
.174

Let z be an integer decision variable representing the number of stations, xi be an integer175

decision variable for the station that task i is assigned to, and yk be an integer decision176

variable for the sum of the lower bound time contribution of tasks scheduled in station k.177

Then the CP model for the master problem, CP-MP, is as follows:178

min z (4a)179

s.t. Pack({yk|k ∈ K}, {xi|i ∈ V }, {ti|i ∈ V }), (4b)180

0 ≤ yk ≤ c, ∀k ∈ K, (4c)181

Ei − 1 ≤ xi ≤ z − 1 − Li, ∀i ∈ V, (4d)182

xi + dij ≤ xj , ∀j ∈ V, ∀i ∈ P ∗
j ,∄v ∈ S∗

i ∩ P ∗
j : dij ≤ div + dvj . (4e)183

The Pack global constraint [27] ensures that for tasks ‘packed’ onto stations, yk =
∑

i∈V,xi=k ti.184

Constraints (4c) and (4d) state the domains of yk and xi. Constraint (4b) and (4c) together185

ensure that the total task time on each station does not exceed the cycle time. Constraint186

(4e) is an enhanced version of the precedence constraint using dij .187

CP 2024
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3.2 CP Formulations for Benders Feasibility Cuts188

For SUALBP-1, we develop three combinatorial CP formulations for Benders feasibility cuts189

by using key variable manipulation, a Count_Different expression, and a Pack constraint.190

Let J be the set of subproblems leading to Benders cuts. Consider subproblem j ∈ J191

corresponding to station k, let Ij be the set of tasks assigned to the station that cannot all be192

scheduled within the cycle time, then the j-th Benders feasibility cut based on manipulation193

of the key decision variables, i.e., the station assignment specified by xi, is as follows:194 ∑
i∈Ij

(xi = k) ≤ |Ij | − 1, ∀k ∈ K. (5)195

Chu and Xia defined a valid Benders cut as a logical expression having two properties [7]:196

Property 1: The cut must exclude the current MP solution if it is not globally feasible.197

Property 2: The cut must not remove any globally feasible solutions.198

Property 1 ensures finite convergence if the MP variables have finite domains. Property 2199

assures optimality since the cut never removes globally feasible solutions.200

▶ Proposition 1. Cut (5) is valid.201

Proof. As xi = k specifies the station assignment and there are |Ij | tasks in Ij , the cut202

prevents the tasks in Ij from being all assigned to the same station and satisfies Property 1.203

Since the solutions removed by this encoding are all infeasible globally with the set of tasks204

Ij assigned to any station, Property 2 is satisfied. ◀205

The constraint-based expression Count_Different takes a list of (more than one) variables206

as input and returns the number of distinct values of these variables [17]. The j-th cut based207

on Count_Different is as follows:208

Count_Different({xi|i ∈ Ij}) ≥ 2. (6)209

▶ Proposition 2. Cut (6) is valid.210

Proof. This constraint guarantees that the number of distinct values in {xi|i ∈ Ij} is at211

least 2 and implies (5). Thus, Properties 1 and 2 are satisfied. ◀212

The j-th cut based on the global constraint Pack is as follows:213

Pack({wk|k ∈ K}, {xi|i ∈ Ij}, {1i|i ∈ Ij}), (7)214

where 0 ≤ wk ≤ |Ij | − 1 and 1i = 1, ∀i ∈ Ij .215

▶ Proposition 3. Cut (7) is valid.216

Proof. Since 1i has unit length and wk ≤ |Ij |−1, this cut assures that no more than |Ij |−1217

tasks in Ij are assigned to any station and satisfies Property 1. Similar to the proof for218

Proposition 1, Property 2 is satisfied. ◀219

The CP-LBBD models with cut (5), (6), and (7) are referred to as CP-LBBDa, CP-LBBDc,220

and CP-LBBDp, corresponding to ‘assignment’, ‘count’, and ‘pack’, respectively.221

4 DIDP-LBBD for SUALBP-1222

In this section, we present the DIDP model for the master problem for SUALBP-1, four223

general encoding methods for Benders feasibility cuts, and their instantiation to the Benders224

cuts for SUALBP-1.225
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4.1 Master Problem226

As stated in Section 3.1, the master problem is equivalent to the SALBP-1. Our DIDP227

formulations for the master problem (with Benders cuts) of SUALBP-1 are inspired by an228

existing DIDP model for SALBP-1 [20], which is defined as follows.229

State variables.230

U : set variable for unscheduled tasks. In the target state (i.e., the initial state), U = V .231

r: integer resource variable for the remaining time (cycle time minus used time) of the232

current station. In the target state, r = 0. A larger r is better.233

Base case. A base case is a set of conditions to terminate the recursion. The base case of the234

DIDP model is U = ∅.235

Transitions.236

Assigni = ⟨U → U\{i} ∧ r → r − ti, 0, i ∈ U ∧ ti ≤ r ∧ U ∩ P ∗
i = ∅, ⊥⟩: assign task237

i to the current station.238

Open = ⟨r → c, 1, (i /∈ U ∨ r < ti ∨ U ∩ P ∗
i ̸= ∅) | ∀i ∈ V, ⊥⟩: open a new station.239

Note that we use ti instead of ti in the master problem to estimate the setup times that240

are exactly calculated in the subproblems.241

Theoretically, the transition Open can be used at any state. However, a state with a242

closed station that can accommodate an unscheduled task is dominated by an otherwise243

identical one that schedules such a task. Thus, a dominance rule, stating that a station244

can only be opened if no task can be assigned to the current station, is encoded in the245

preconditions for transition Open. This dominance rule plays an important role in the246

efficiency of the DIDP model [20] but presents a complication for our cut formulations (see247

Section 4.3.2).248

Recursive function. We use f(U, r) to represent the cost of a state. Let U1 = {i ∈ U | r ≥249

ti ∧ U ∩ P ∗
i = ∅} be the set of tasks with all their predecessors scheduled that can fit on the250

current station. The recursive function of the DIDP model is as follows:251

compute f(V, 0) (8a)252

f(U, r) =


0 if U = ∅, (i)
1 + f(U, c) else if U1 = ∅, (ii)
mini∈U1 f(U\{i}, r − ti) else, (iii)

(8b)253

f(U, r) ≤ f(U, r
′
), if r ≥ r

′
, (8c)254

f(U, r) ≥ max


⌈

∑
i∈U

ti−r

c ⌉, (i)∑
i∈U w2

i + ⌈
∑

i∈U w
′2
i − l2⌉, (ii)

⌈
∑

i∈U w3
i − l3⌉. (iii)

(8d)255

The term (8a) is to compute the cost of the target state. Equation (8b) is the main256

recursion of the DIDP model. Specifically, (8b-i) refers to the base case, while (8b-ii)257

Table 2 Numeric constants for calculating a knapsack-based dual bound.

ti (0, c/2) c/2 (c/2, c] ti (0, c/3) c/3 (c/3, c/2) 2c/3 (2c/3, c]

w2
i 0 0 1 w3

i 0 1/3 1/2 2/3 1
w

′2
i 0 1/2 0

CP 2024



34:8 Solving LBBD Master Problems with CP and DIDP

corresponds to opening a new station and (8b-iii) refers to assigning task i to the current258

station. Inequality (8c) formulates state domination due to the resource variable: if other259

variables are equal, a state with a larger remaining time dominates. (8d-i), (8d-ii), and (8d-iii)260

are valid dual bounds proposed by Scholl and Klein [26] with numeric constants w2, w
′2, w3

261

indexed by a task i and depending on ti, as shown in Table 2.262

4.2 Feasibility Cut Encoding in DIDP-LBBD263

Let x be the decision variables in the master problem and let x be the optimal solution264

of the latest MP iteration. Let Ij be the set of MP variable indices that appear in the265

j-th subproblem, then the Benders feasibility cut obtained from this subproblem is of the266

following form:267 ∑
i∈Ij

(xi = xi) ≤ |Ij | − 1. (9)268

This form is often formulated as a linear constraint in the MIP master problem and we call269

it the j-th cut.270

In DIDP, however, a cut of form (9) cannot be directly represented with state variables.271

Thus, instead of adding only a constraint to the DIDP model, we add a new state variable272

for each cut, with relevant transitions updating the variable value. New preconditions or273

state constraints are also added.274

4.2.1 Counting-based Encoding275

Our first two encoding methods are based on integer numeric variables in DIDP. Let gj be276

an integer numeric variable that counts the active variable-value pairs in the left-hand side277

(LHS) of the cut (9), i.e., gj =
∑

i∈Ij (xi = xi). In the target state, the value of gj is 0. Let278

F j be the function that updates the value of gj according to transitions. If the effects effτ279

of transition τ imply that xi = xi for some i ∈ Ij and xk ̸= xk for some k ∈ Ij , we have280

F j(τ) = |Uj
τ | − |Dj

τ |, where U j
τ (Dj

τ ) is the set of the variable indices of the variable-value281

pairs that are changed from inactive (active) to active (inactive) by transition τ with respect282

to the j-th cut, with i ∈ U j
τ and k ∈ Dj

τ . Let S be the state where the preconditions of283

transition τ are satisfied, and let S′ = S[[τ ]] be the state reachable from S by τ , we have284

S′[gj ] = S[gj ] + F j(τ).285

In practice, the implementation of F depends on the problem and we define the encoding286

for SUALBP-1 later in Section 4.3. With the LHS of cut (9) modeled, we use preconditions287

or state constraints to model the right-hand side (RHS).288

Precondition-based Encoding. Our first method for modeling the RHS of (9) is based on289

preconditions. Specifically, for the cut with the form (9), we add a precondition for each290

transition in the DIDP model that can modify the LHS variables as follows:291

S[gj ] + F j(τ) ≤ |Ij | − 1, (10)292

where τ is the transition. If the precondition is violated, the transition τ is not permitted.293

State Constraint-based Encoding. Our second method for modeling the RHS of (9) is based294

on state constraints that need to be satisfied by all states. The state constraint for the j-th295

cut is as follows:296

S[gj ] ≤ |Ij | − 1, (11)297

where S is any state. A state constraint is evaluated after a state is created but a precondition298

would prevent the state from being created.299
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4.2.2 Set-based Encoding300

Our second two encoding methods are based on set variables in DIDP. Let Ωj be a set301

variable that keeps track of the active variable-value pairs in the LHS of the cut (9). More302

specifically, the set variable Ωj contains an element ei iff xi = xi is satisfied in a state. In303

the target state, Ωj = ∅. Let Oj be the function that updates the value of Ωj according304

to transitions. If the effects effτ of transition τ imply that xi = xi for some i ∈ Ij and305

xk ̸= xk for some k ∈ Ij , let U j
τ be the set containing all such i and Dj

τ be the set containing306

all such k, we have Oj(τ) = (S[Ωj ] ∪ Uj
τ )\Dj

τ . Let S be a state and S′ = S[[τ ]] be the state307

reachable from S by τ , we have S′[Ωj ] = Oj(τ). Similar to the counting-based encoding, we308

use preconditions or state constraints to model the RHS.309

Precondition-based Encoding. For the cut (9), we add a precondition for each transition that310

can modify Oj(τ) in the DIDP model as follows:311

Ij ⊈ Oj(τ), (12)312

where τ is the transition. Oj(τ) gives the value of Ωj after the transition and may contain313

items that are not in Ij . The precondition prevents Ωj from including all the items in Ij .314

State Constraint-based Encoding. The state constraint for the j-th cut is as follows:315

Ij ⊈ S[Ωj ], (13)316

where S is any state.317

4.2.3 Weakness of the DIDP Encoding318

There is a fundamental weakness in the aforementioned DIDP encodings compared to319

constraint-based models: adding a cut expands the search space. All four DIDP encoding320

methods rely on adding a new state variable to the MP to keep track of the changes to the321

LHS of (9) caused by transitions. After adding a new state variable corresponding to the322

j-th cut, the original state space size is multiplied by the cardinality of the Ij . We return to323

this point in Section 6.324

4.3 Encoding DIDP-LBBD Cuts for SUALBP-1325

The formulations above can be used for any cut of the form (9). Here we formally present326

four cut formulations for SUALBP-1.327

4.3.1 Counting-based Precondition Encoding328

For cut j ∈ J , recall that Ij is the set of tasks assigned to the station that cannot be329

scheduled within the cycle time. Define function F j such that F j(i) = 1 if i ∈ Ij and 0330

otherwise. In order to encode this cut, we add a new state variable gj with its value being 0331

at the target state. We then modify the recursive formulation (8b) as follows.332

f(U, r, {gj | ∀j ∈ J}) =
0 if U = ∅, (i)
1 + f(U, c, {0 | ∀j ∈ J}) else if U2 = ∅, (ii)
mini∈U2 f(U\{i}, r − ti, {gj + F j(i) | ∀j ∈ J}) else. (iii)

(14)333

where U2 = {i ∈ U | r ≥ ti ∧ U ∩ P ∗
i = ∅ ∧ (∀j ∈ J , gj + F j(i) ≤ |Ij | − 1)}.334
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▶ Proposition 4. The counting-based precondition encoding is valid.335

Proof. For any cut j ∈ J , gj counts the number of variable-value pairs that appear in the336

current station. With transition Open, the current station changes to the next station and337

gj = 0, as shown in (14-ii). As shown in (14-iii), with transition Assigni for any i, since338

F j is non-negative and gj + F j(i) ≤ |Ij | − 1 is the precondition stated in U2, we have339

S[gj ] ≤ |Ij | − 1 at any state S of the DIDP model. This guarantees that the same set of340

tasks are never assigned to the same station and satisfies Property 1. Since the solutions341

removed by this encoding are the solutions with the set of tasks Ij assigned to any station,342

they are all infeasible globally as the task processing times and setup times are independent343

of stations, and thus Property 2 is satisfied. ◀344

4.3.2 Counting-based State Constraint Encoding345

We keep the modified effects and use state constraints instead of preconditions to enforce the346

logic of feasibility cuts. The recursive formulation (8b) becomes:347

f(U, r, {gj | ∀j ∈ J}) =
0 if U = ∅, (i)
1 + f(U, c, {0 | ∀j ∈ J}) else if U2 = ∅, (ii)
mini∈U1 f(U\{i}, r − ti, {gj + F j(i) | ∀j ∈ J}) else if U1 ̸= ∅. (iii)

(15)348

In (15-iii), there is no precondition preventing a task assignment that violates Benders cut.349

Instead, state constraints are added to prune the resulting states as follows:350

gj ≤ |Ij | − 1, ∀j ∈ J . (16)351

However, as noted, there is an interaction between the cut and the dominance rule associated352

with the preconditions of transition Open: if we maintain the original precondition on Open353

(i.e., U1 = ∅), then a state where only tasks that violate the cut can be scheduled will result354

in a dead-end. The transitions satisfying (15-iii) will fire and the resulting states will all355

violate the state constraints. Thus, no state is reachable from the current state. However,356

a new station should be opened in the state when no tasks can be scheduled. To ensure357

the correctness of the model, either we remove the dominance and allow Open at any time,358

or we maintain it by allowing Open when no tasks, including those violating cuts, can be359

scheduled (the new preconditions become U2 = ∅). We select the latter option to maintain360

the efficiency of the proposed DIDP model.361

▶ Proposition 5. The counting-based state constraint encoding is valid.362

Proof. Similar to the proof for Proposition 4, we have S[gj ] ≤ |Ij | − 1 at any state S of the363

DIDP model. Property 1 and Property 2 are hence satisfied. ◀364

4.3.3 Set-based Precondition Encoding365

To encode this cut, we add a new state variable Ωj with its value being ∅ at the target state.366

We then modify the recursive formulation (8b) in the DIDP model of the master problem to367

address all the Benders feasibility cuts:368

f(U, r, {Ωj | ∀j ∈ J}) =
0 if U = ∅, (i)
1 + f(U, c, {∅ | ∀j ∈ J}) else if U3 = ∅, (ii)
mini∈U3 f(U\{i}, r − ti, {Ωj ∪ {i} | ∀j ∈ J}) else. (iii)

(17)369



J. Zhang & J.C. Beck 34:11

where U3 = {i ∈ U | r ≥ ti ∧ U ∩ P ∗
i = ∅ ∧ (∀j ∈ J , Ij ⊈ Ωj ∪ {i})}.370

▶ Proposition 6. The set-based precondition encoding is valid.371

Proof. For any cut j ∈ J , Ωj keeps track of the variable-value pairs that appear in the372

current station. With transition Open, the current station changes to the next station and373

Ωj = ∅, as shown in (17-ii). As shown in (17-iii), with transition Assigni for any i, since the374

effects never remove any element from Ωj and Ij ⊈ Ωj ∪ {i} is the precondition stated in U3,375

we have Ij ⊈ S[Ωj ] at any state S of the DIDP model. This guarantees that the same set of376

tasks would never appear in the same station and satisfies Property 1. Similar to the proof377

for Proposition 4, Property 2 is satisfied. ◀378

4.3.4 Set-based State Constraint Encoding379

The recursive formulation (8b) becomes:380

f(U, r, {Ωj | ∀j ∈ J}) =
0 if U = ∅, (i)
1 + f(U, c, {∅ | ∀j ∈ J}) else if U3 = ∅, (ii)
mini∈U1 f(U\{i}, r − ti, {Ωj ∪ {i} | ∀j ∈ J}) else if U1 ̸= ∅. (iii)

(18)381

The added state constraint is:382

Ij ⊈ Ωj , ∀j ∈ J . (19)383

Similar to (15), we maintain the dominance specified by the preconditions of the transition384

Open by inserting the case violating state constraints (19) into the preconditions (the new385

preconditions become U3 = ∅).386

▶ Proposition 7. The set-based state constraint encoding is valid.387

Proof. Similar to the proof for Proposition 6, Property 1 and Property 2 are satisfied. ◀388

The DIDP-LBBD models with recursive formulation (14), (15), (17), and (18) re-389

placing (8b) are referred as DIDP-LBBDcP re, DIDP-LBBDcCon, DIDP-LBBDsP re, and390

DIDP-LBBDsCon, respectively, where ‘c’ and ‘s’ correspond to ‘count’ and ‘set’ and ‘Pre’391

and ‘Con’ map to ‘precondition’ and ‘constraint’.392

5 Experimental Evaluation393

In this section, we compare the performance of our CP-LBBD, DIDP-LBBD, and MIP-LBBD394

models against the state-of-the-art MIP model [9] (see Appendix A) on the 788 instances of395

the SBF2 data set [25].1396

5.1 MIP-LBBD Master Problem397

We use a MIP-LBBD model as the baseline LBBD approach. For the master problem, instead398

of a simplified MIP formulation proposed by Akpinar et. al [1] we use the state-of-the-art399

NF4 MIP formulation [23] for SALBP-1 and replace ti by ti to express the subproblem400

1 https://assembly-line-balancing.de/sualbsp/data-set-of-scholl-et-al-2013/
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relaxation. For the Benders cuts, linear constraints [1] are directly applied. As Ij is the401

set of MP variable indices that appear in the j-th subproblem, the corresponding Benders402

feasibility cut in the MIP form is as follows:403 ∑
i∈Ij

xik ≤ |Ij | − 1, ∀k ∈ K, (20)404

where xik is the decision variable used in the MP MIP formulation and xik = 1 if task i is405

assigned to station k and 0 otherwise.406

5.2 Solving the Subproblem407

In the LBBD framework for SUALBP-1, the MP solution assigns tasks to each station.408

Thus, each subproblem is a constraint satisfaction problem to find a schedule of the tasks,409

considering the precedence relation between tasks, the sequence-dependent setup times,410

and the cycle time. The task processing times are not included in the subproblem as they411

are constant after the task assignment is given; the sum of processing times is therefore412

subtracted from the cycle time when evaluating feasibility. The subproblem has the structure413

of the Travelling Salesman Problem (TSP) with precedence constraints. For this constrained414

TSP variant, our preliminary investigations showed that DIDP outperforms CP and MIP415

and we hence use DIDP as the sole subproblem solver. The state variables, base cases, and416

the recursive function are as follows.417

State variables. For station j, the DIDP model has the following state variables:418

U : set variable for unscheduled tasks. In the target state, U = Ij .419

s: element variable for the current task, with its value in Ij . In the target state, s = ds,420

where ds is a dummy task with setup times from and to any other tasks set to zero.421

f : element variable for the first task, with its value in Ij . In the target state, f = ds.422

Base cases. The base case of the DIDP model is: U = ∅ ∧ s = ds.423

Recursive function. We use V(U, s, f) to represent the cost of a state. Let P j∗
i be the set of424

predecessors of task i on station j. Let U4 = {i ∈ Ij | Ij ∩ P j∗
i = ∅}.425

compute V(Ij , ds, ds) (21a)426

V(U, s, f) =


0 if U = ∅ ∧ s = ds, (i)
µsf + V(U, ds, ds) else if U = ∅ ∧ s ̸= ds, (ii)
µsi + mini∈U4 V(U\{i}, i, f) else if U4 ̸= ∅ ∧ s ̸= ds, (iii)
mini∈U4 V(U\{i}, i, i) else, (iv)

(21b)427

V(U, s, f) ≥ max
{

µ
f

+
∑

i∈U τ i, if s = ds, (i)
0, else. (ii)

(21c)428

Case (21b-i) refers to the base case, while (21b-iv) corresponds to assigning the first task429

to the current empty station. Case (21b-iii) represents assigning the next task to the current430

station and adding the corresponding setup time. (21b-ii) represents closing the station and431

adding the setup time to the first task. (21c) is the dual bound [20].432

Although this DIDP model is designed for optimization problems, since some DIDP433

solvers support anytime solving [21], by setting a primal bound, the search can be stopped434

after a solution satisfying all the constraints and having a total cost no greater than the435

cycle time minus the total processing time is found.436
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Figure 2 Ratio of instances solved and proved optimal over time for SUALBP-1.

5.3 Experiment Setting437

We use the SBF2 data set proposed by Zohali et al. [31] and follow their clustering of the438

instances into four classes:439

Data set A: small (132 instances) with up to 25 tasks.440

Data set B: medium (140 instances) with 28 to 35 tasks.441

Data set C: large (188 instances) with 45 to 70 tasks.442

Data set D: extra-large (328 instances) with 75 to 111 tasks.443

Each class has four different settings according to a parameter α that specifies the ratio of444

the average setup time to the average task processing time: 0.25, 0.50, 0.75, and 1.00.445

For the DIDP models, we use the state-of-the-art solver based on CABS [21] in didp-rs446

v0.7.3.2 For the CP models, we use CP Optimizer 22.1.1 [17]. For the MIP models, we use447

Gurobi 11.0.1 [12]. All the experiments are implemented in Python 3.10.11. Each instance is448

run for 1800 seconds on a single thread on a Ubuntu 22.04.2 LTS machine with Intel Core i7449

CPU and 16 GB memory.450

5.4 Experiment Results451

The results on SUALBP-1 are shown in Fig. 2.3 Better performance is indicated by curves452

closer to the top left corner of the graph. First note that all of our proposed techniques453

outperform the current state of the art. CP-LBBDa achieves the best performance at the454

time limit with 69% of instances proved to optimality. CP-LBBDc performs best before 1500455

seconds. In particular, CP-LBBDc achieves 63% in 300 seconds while CP-LBBDa is two456

times slower to achieve that level. This performance difference indicates the speedup brought457

by the constraint-based expression Count_Different. CP-LBBDp, though trailing the other458

two CP-LBBD models significantly, performs better than DIDP-LBBD, MIP-LBBD, and459

MIP approaches. These results imply that direct manipulation of core decision variables xi460

2 https://didp.ai/
3 Disaggregated results for datasets A, B, C, and D are presented in Fig. 7-10 in Appendix B.
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Figure 3 Mean cumulative number of cuts
added over iterations. Figure 4 Mean MP runtime over iterations.

in the CP model is advantageous compared to global constraints, especially when using a461

global constraint requires extra variables such as wk in the Pack constraint.462

The DIDP-LBBD models find and prove optimal solutions for more instances in a shorter463

computation time than MIP-LBBD and MIP. In 60 seconds, all four DIDP-LBBD models find464

and prove optimality on 50% of the instances. MIP cannot achieve the same performance in465

1100 seconds. At 1800 seconds, DIDP-LBBD has found and proved optimality for around 60%466

of the problem instances compared to 57% and 54% for MIP-LBBD and MIP, respectively.467

Focusing on the LBBD models, the relative rankings are: CP-LBBD, DIDP-LBBD, and468

MIP-LBBD, which demonstrates the promise of CP-LBBD and DIDP-LBBD. Though the469

three CP-LBBD variants differ substantially in Fig. 2, there is no significant performance470

difference among the four DIDP-LBBD variants. Note that the subproblem solve time is471

very short, e.g., 0.001s.472

5.5 Algorithm Analysis473

For the SBF2 data set, 394 of the 788 instances are proved optimal by each of the eight474

LBBD models. The mean cumulative numbers of cuts added for the 394 instances are shown475

in Fig. 3.4 We can see that DIDP-LBBD models have significantly fewer iterations and cuts476

than CP-LBBD and MIP-LBBD. We believe that this difference is due to the existence of477

multiple optimal solutions of the master problem: different models find different optimal478

solutions and different Benders cuts, leading to different numbers of MP runs. While CP and479

DIDP models require many fewer iterations on average, we found no evidence that this is a480

systematic difference but rather the arbitrary impact of which optimal solutions are found.481

The mean MP runtimes of the 394 instances over iterations for all the eight LBBD models482

are shown in Fig. 4. CP-LBBD and MIP-LBBD have relatively consistent MP runtime483

across different iterations. For DIDP-LBBD models, although starting from small magnitude,484

the MP runtimes increase drastically as the iterations increase. As discussed in Section 4.2.3,485

with more state variables added to the DIDP model of the master problem, the state space486

of the model is enlarged and needs more search effort to find and prove optimality, hence487

the MPs become more time-consuming to solve. This performance degradation can partially488

4 The behaviors of DIDP-LBBDcP re and DIDP-LBBDcCon are exactly the same in terms of cuts added.
The behaviors of DIDP-LBBDsP re and DIDP-LBBDsCon are the same, too. Thus, their plots overlap.
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(a) CP-LBBDc and CP-LBBDa. (b) CP-LBBDp and CP-LBBDa.

Figure 5 Number of nodes of the MPs in CP-LBBD models for the SBF2 dataset.

(a) CP-LBBDc and CP-LBBDa. (b) CP-LBBDp and CP-LBBDa.

Figure 6 Runtime of the MPs in CP-LBBD models for the SBF2 dataset.

explain the worse results of DIDP-LBBD compared to CP-LBBD.489

In order to investigate the differences among the three CP-LBBD models, for all 788490

instances in the SBF2 dataset, we added the cuts generated by CP-LBBDa model at each491

MP iteration to all models, in the corresponding cut forms, with a time limit of 3600492

seconds. Thus for each MP iteration, the three models solve identical problems except for493

the differences in the form of the cuts.494

Fig. 5 and 6 show scatter plots for the number of nodes and the runtimes. All four495

graphs show a substantial cluster in the lower-left corner demonstrating broadly similar496

performance. However, both CP-LBBDc and, to a greater extent, CP-LBBDp exhibit a497

number of instances with a large number of nodes and large runtimes when CP-LBBDa has498

relatively small values of these measures.499

These graphs are consistent with the overall results of the CP models in Figure 2. In500

terms of the number of nodes generated, the graphs suggest that the difference comes less501

from a systematic performance difference among the models and more from a small number502
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of outliers with large node counts for CP-LBBDc and CP-LBBDp. In contrast, the runtime503

graphs for CP-LBBDp and, to a lesser extent, CP-LBBDc show vertical clusters of instances504

with relatively low CP-LBBDa runtimes implying that the higher computational effort of505

the global constraint based models does not pay off in terms of performance.506

A different perspective on the results in Fig. 5 and 6, is shown by the runtime vs. number507

of nodes of the MPs in three CP-LBBD models in Fig. 11 in Appendix C. Since the three508

models solve identical problems except for cut forms, the results reflect the runtime each of509

the three CP-LBBD models needs for exploring the same number of nodes and also coincide510

with the performance rankings of CP-LBBD models from a regression perspective.511

6 Discussion512

Global constraints in CP can increase domain propagation and the overall solving performance513

but have a limit, after which the improved propagation, if any, is not worth the effort514

required [24]. This dynamic may be observed by the worse results of CP-LBBDp compared515

to CP-LBBDa and CP-LBBDc. By contrast, CP-LBBDa and CP-LBBDc manipulate the516

main decision variables more directly while not inducing much larger constraint models.517

The validity of the proposed four DIDP cut encoding methods depends on the effective518

extraction of the useful information, i.e., the change of the variable-value pairs in the Benders519

cuts. Such information is often hidden in the transitions of DIDP models. Thus, it is difficult520

to create a cut encoding using the existing state variables. An important question is to521

understand if this state-space expansion is an inherent weakness for DIDP and, indeed,522

state-based models in general. There exists similar work examining the addition of trajectory523

constraints to AI planning problems which similarly expand the state space [16, 3].524

In a parallel work, a monolithic DIDP model for SUALBP-1 performs better than all the525

LBBD models presented here [30]. This is a surprising result as the state of the art for similar526

problems with sequence-dependent setup times is typically based on decomposition [31, 28].527

Further research is required to understand why DIDP models for SUALBP-1 do not follow528

this pattern. We speculate that the relaxation of the setup time in the MP hurts performance529

compared to the monolithic DIDP model because setup time can be directly accounted for530

in the transitions.531

7 Conclusions532

In this paper, we proposed novel logic-based Benders decomposition (LBBD) models with533

master problems modeled and solved with constraint programming (CP) and domain-534

independent dynamic programming (DIDP), using simple assembly line balancing problem535

with sequence-dependent setup times type-1 (SUALBP-1) as a testbed. We developed three536

CP-based master problem formulations with Benders feasibility cuts formulated as key variable537

manipulation, constraint-based expressions, and global constraints. In the state transition538

system of DIDP, we proposed four encoding methods for Benders feasibility cuts by exploiting539

the integer or set variables and preconditions or state constraints. Experimental results on540

SUALBP-1 show superior performance for the CP-LBBD models and good performance of541

the four DIDP-LBBD models, compared to MIP-LBBD and monolithic MIP models. This542

work demonstrates the promise of decomposition-based approaches employing CP and DIDP543

approaches.544
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A Monolithic MIP Model of SUALBP-1626

Table 3 Additional parameters for SUALBP-1 [9].

Notation Definition
E set of all precedence relations

Ei earliest station for task i ∈ V , e.g., Ei = ⌈
ti+

∑
j∈P ∗

i

tj

c
⌉

Li latest station for task i ∈ V , e.g., Li = m + 1 − ⌈
ti+

∑
j∈F ∗

i

tj

c
⌉

KD(KP ) set of definite (possible) stations, i.e., KD = {1, ..., m}, KP = {m + 1, ..., m}, and
K = KD ∪ KP

F Si set of stations to which task i ∈ V can be assigned, i.e., F Si = {Ei, Ei + 1, ..., Li}
F Tk set of tasks which can be assigned to station k ∈ K, i.e., F Tk = {i ∈ V |k ∈ F Si}
Ai set of tasks that cannot be assigned to the station to which task i is assigned, e.g.,

Ai = {j ∈ V |F Sj ∩ F Si = ∅}
F F

i (P F
i ) set of tasks which may directly follow (precede) task i in forward direction, i.e.,

F F
i = {j ∈ V − (F ∗

i − Fi) − P ∗
i − Ai − {i}} and P F

i = {j ∈ V |i ∈ F F
j }

F B
i (P B

i ) set of tasks which may directly follow (precede) task i in backward direction, i.e.,
F B

i = {j ∈ V − F ∗
i − Ai} and P B

i = {j ∈ V |i ∈ F B
j }
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To present the monolithic MIP model of SUALBP-1, additional parameters are required,627

as shown in Table 3. Since the SSBF model can be adapted to both SUALBP-1 and628

SUALBP-2, we name it SSBF-1 [9]. The decision variables are:629

xik: binary variable with value 1, iff task i ∈ V is assigned to station k ∈ FSi.630

zi: integer variable for encoding the index of the station task i ∈ V is assigned to.631

uk: binary variable with value 1, iff any task is assigned to station k.632

gijk: binary variable = 1, iff task i is performed immediately before task j on station k.633

hijk: binary variable = 1, iff task i is the last and task j is the first task on station k.634

ri: integer variable representing the rank of task i in a sequence of all tasks. The sequence635

is composed of the task sequences on all the active stations.636

The SSBF-1 MIP model proposed by Esmaeilbeigi et al. [9] is as follows.637

min
∑

k∈KP

uk + m (22a)638

s.t.
∑

k∈F Si

xik = 1, ∀i ∈ V, (22b)639

∑
k∈F Si

k · xik = zi, ∀i ∈ V, (22c)640

∑
i∈F Tk∩F F

i

gijk +
∑

i∈F Tk∩F B
i

hijk = xik, ∀i ∈ V, ∀k ∈ FSi, (22d)641

∑
i∈F Tk∩P F

j

gijk +
∑

i∈F Tk∩P B
j

hijk = xjk, ∀j ∈ V, ∀k ∈ FSj , (22e)642

∑
i∈F Tk

∑
j∈(F Tk∩F B

i
)

hijk = 1, ∀k ∈ KD, (22f)643

∑
i∈F Tk

∑
j∈(F Tk∩F B

i
)

hijk = uk, ∀k ∈ KP, (22g)644

ri + 1 + (n − |F ∗
i | − |P ∗

j |) · (
∑

k∈(F Si∩F Sj)

gijk − 1) ≤ rj , ∀i ∈ V, ∀j ∈ F F
i , (22h)645

ri + 1 ≤ rj , ∀(i, j) ∈ E , (22i)646

zi ≤ zj , ∀(i, j) ∈ E , (22j)647 ∑
i∈F Tk

tixik +
∑

i∈F Tk

∑
j∈(F Tk∩F F

i
)

τijgijk +
∑

i∈F Tk∩P B
i

µijhijk ≤ c, ∀k ∈ KD, (22k)648

∑
i∈F Tk

tixik +
∑

i∈F Tk

∑
j∈(F Tk∩F F

i
)

τijgijk +
∑

i∈F Tk∩P B
i

µijhijk ≤ c · uk, ∀k ∈ KP, (22l)649

∑
i∈F Tk\{j}

xik ≤ (n − m + 1) · (1 − hjjk), ∀k ∈ K, ∀j ∈ FTk, (22m)650

uk+1 ≤ uk, ∀k ∈ KP\{m}. (22n)651

gijk ∈ {0, 1}, ∀k ∈ K, ∀i ∈ FTk, ∀j ∈ (FTk ∩ F F
i ), (22o)652

hijk ∈ {0, 1}, ∀k ∈ K, ∀i ∈ FTk, ∀j ∈ (FTk ∩ F B
i ), (22p)653

|P ∗
i | + 1 ≤ ri ≤ n − |F ∗

i |, ∀i ∈ V, (22q)654

xik ∈ {0, 1}, ∀i ∈ V, ∀k ∈ FSi, (22r)655

ri, zi ∈ Z+, ∀i ∈ V, (22s)656
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The objective (22a) minimizes the number of stations. Constraint (22b) ensures that a657

task is assigned to a station. Constraint (22c) links xik and zi. Constraints (22d) and (22e)658

assure that a task on station k is followed and preceded by exactly one other task in the659

cyclic sequence of this station. According to constraints (22f) and (22g), in each cycle exactly660

one of the relations is a backward setup. Constraints (22h) and (22i) establish the precedence661

relations among the tasks within each station. Note that the constraint (22h) is inactive if662

tasks i and j are assigned to different stations. We add the constraint (22j) to make sure663

that the precedence relations among the tasks of different stations are satisfied. Knapsack664

constraints (22k) and (22l) ensure that no station time exceeds the cycle time. Constraint665

(22m) guarantees that only task j is allocated to station k when hjjk = 1. Constraint (22n)666

guarantees that stations are used in the correct order and no empty station is in the middle667

of used stations. Constraints (22o) to (22s) specify the domain of the variables.668

Note that the decision variables ri and zi are set to continuous in [9]. However, doing669

so results in infeasible solutions being labeled as feasible for some problem instances. In670

addition to the MIP model, Esmaeilbeigi et al. [9] developed pre-processing techniques to671

reduce the number of variables and constraints. We implement all these techniques, as well.672

B Approach Performances for Separate Datasets673

The performance of each approach on datasets A, B, C, and D separately are presented in674

Fig. 7 - 10, respectively. As shown in Fig. 7, all approaches except MIP solve all problems675

in dataset A to proved optimality in a few seconds. For dataset B (Fig. 8), all approaches,676

including MIP, are competitive and behave similarly. For dataset C, MIP-LBBD has the677

worst performance while surprisingly it outperforms all DIDP-LBBD approaches and MIP678

for dataset D, as shown in Fig. 9 and 10. We can also see the performance degradation of679

DIDP-LBBD when solving larger problems.680

Figure 7 Ratio of instances solved and proved
optimal over time for dataset A.

Figure 8 Ratio of instances solved and proved
optimal over time for dataset B.

C Analysis of CP-LBBD681

In Section 5.5, for all 788 instances in the SBF2 dataset, we added the cuts generated by682

CP-LBBDa model at each MP iteration to all models, in the corresponding cut forms, with a683

time limit of 3600 seconds. The runtime over the number of nodes of the MPs in CP-LBBD684
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Figure 9 Ratio of instances solved and proved
optimal over time for dataset C.

Figure 10 Ratio of instances solved and
proved optimal over time for dataset D.

models for the SBF2 dataset is shown in Fig. 11. The regression lines demonstrate the685

performance rankings of the three CP-LBBD models in terms of the runtime required to686

explore the same number of nodes.687

Figure 11 Runtime vs. number of nodes of the MPs in CP-LBBD models for the SBF2 dataset.
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