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Abstract
We introduce Scheduling MTL (SMTL) an extension of Met-
ric Temporal Logic that supports the specification of com-
plex scheduling problems with repeated and conditional oc-
currences of activities, and rich temporal relationships among
them. We define the syntax and semantics of SMTL, and ex-
plore natural restrictions of the language to gain tractabil-
ity. We also provide an algorithm for finding a schedule to a
problem specified as an SMTL formula, and establish a novel
equivalence between a fragment of MTL and simple temporal
networks, a widely-used formalism in AI temporal planning.

1 Introduction
The need and opportunity for fully automated and mixed-
initiative scheduling has exploded as automation plays an
increasing role in business practices, and as sophisticated
calendaring tools become broadly adopted. The availability
of computer-interpretable scheduling constraints and partial
schedules enables a broad array of new scheduling problems
including sports team and facilities scheduling, car pooling,
and other personal and commercial applications. With these
new problems come new challenges in the specification of
scheduling problems and the verification of their solutions.

Increasingly, there is a desire to express richer problems
involving repeated patterns of occurrence of various activ-
ities, some conditional, some quantity bounded. For exam-
ple, in nurse rostering, a typical scheduling constraint might
be to always schedule nurses four days on followed by two
days off. There is also a desire to characterize activities and
resources in terms of properties that support implicit group-
ings of activities, the specification of constraints by refer-
ring to unnamed activities and resources, and lifted reason-
ing about groups rather than named individuals (e.g. always
schedule at least one Mandarin-speaking nurse on each ro-
tation). While specialized approaches to some such patterns
exist (Pesant 2004), no formal language exists to specify the
diversity of rich scheduling patterns manifest in modern ap-
plications. Instead, in many academic publications, the for-
mal problem definition is itself an optimization model, con-
flating specification, modeling, and solving.

With notable exceptions such as constraint-based schedul-
ing, a major focus of scheduling research has been on the
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study of specific scheduling problems, and the development
of efficient problem-specific solutions. This focus means
that the task of verifying a specification or proposed solu-
tion with respect to a set of properties is not easily achieved.

In this paper, we augment Metric Temporal Logic (MTL)
(Koymans 1990) to express the complicated patterns in real-
world scheduling applications, while also supporting auto-
mated reasoning with a view to querying or verifying prop-
erties of problem specifications and solutions. We call the
resulting language Scheduling MTL (SMTL). To trade off ex-
pressiveness for tractability, we explore novel restrictions to
SMTL that are conducive to scheduling, and also identify an
approach for finding satisfying schedules under these restric-
tions. We then demonstrate that these restrictions are rich
enough to represent shop scheduling and temporal network
problems, key problems in the Operations Research (OR)
and Artificial Intelligence (AI) communities. As part of this
analysis, we prove a novel equivalence between a tractable
fragment of SMTL and simple temporal networks, a widely-
used formalism in AI planning and scheduling.

2 SMTL: A Language for Scheduling
We define a language for specifying a scheduling problem
as a logical formula that is satisfiable if and only if the cor-
responding scheduling problem has a solution.
Definition 2.1 (Scheduling Problem). A scheduling prob-
lem is a tuple 〈A, I,D,R, C, T C〉 where A is a set of ac-
tivities, I is the set of all activity instances associated with
A, D is a function from activities to their durations, R is a
relation defining activity resource requirements, C is a func-
tion from resources to maximum capacities, and T C is a set
of temporal constraints between activities.

A solution to a scheduling problem, a schedule, is an as-
signment of start and end times to a set of activity instances
{a1 . . . ak} ⊆ I such that D, R, C and T C are all satis-
fied. Notationally, activities,A, are denoted using upper case
while activity instances, ai, are denoted using lower case.

To specify a scheduling problem as a logical formula, we
use a language based on Metric Temporal Logic (MTL) — an
extension of Linear Temporal Logic (LTL) in which modal-
ities of LTL are augmented with timing constraints.
Definition 2.2. Let D be a domain (Z or R), and I be an
interval in D∪{−∞,∞}. A Metric Temporal Logic formula



is a well-formed formula in the following grammar:
φ ::= p | ¬φ | φ ∧ φ | φ UIφ

where p is an atomic proposition (Koymans 1990).

The MTL operator “until” ( U) augmented with a time inter-
val (φ UIψ) states that φ is true from now until some point
within I time units, when ψ becomes true. As in LTL, fur-
ther modalities such as “always” (2) and “eventually” (3)
can also be defined in terms these operators (cf. Section 2.2).

We now introduce our own augmentation of MTL and fol-
low with an intuitive explanation.

Definition 2.3. Let A be a set of constant symbols denot-
ing activities. A Scheduling MTL (SMTL) formula is a MTL
formula such that the set of atomic predicates consists of
propositions of the form {start(A), end(A),P(A)} for some
activity A or property P from a set of properties P . Ad-
ditionally, well-formed formulae include those of the form
∀x.φ; if φ is in the scope of a quantified variable x, atomic
predicates also include start(x), end(x), and P(x) (we omit
a formal treatment of the syntax of quantified variables).

For a repeating activity A, start(A) and end(A) corre-
spond to the start and end times of an instance of activity A.
Their truth values are dependent on the time of evaluation:
start(A) (resp. end(A)) is true at time t if some instance of
A starts (resp. ends) at that time (cf. Section 2.1).

Quantifiers and properties allow for the compact represen-
tation of constraints over instances of a repeating activity, or
all activities that share some attribute. A property P is de-
fined as the subset of A for which that property holds, rep-
resented by unary predicates, P(A). For example, in nurse
rostering, an activity might correspond to a particular nurse’s
shifts and a property could be used to characterize whether
the activity involves a “trainee” or “experienced” nurse. Us-
ing quantifiers, we can easily construct a constraint stating
that a new nurse can only be scheduled whenever a more
experienced nurse is also on shift. Properties are also useful
for specifying resource constraints, as one can represent re-
source capacity by limiting the number of activities with the
corresponding property that can occur at any time.

In addition to serving as an input to a scheduling algo-
rithm, an SMTL specification enables us to reason logically
about properties of the problem and to answer queries about
the schedules it entails, without necessarily calculating spe-
cific solutions. This is a critical and missing tool in schedul-
ing requirements engineering and verification.

2.1 Semantics
We now formally define the introduced notions. A schedule
T consists of a tuple (Instances, T ) and is the object we use
to evaluate an SMTL formula. Instances : A 7→ 2I is a
function that maps an activity to the set of instances of that
activity that actually occur. T is a function that assigns times
to the start and end of each instance of each activity, i.e.
T : {a | a ∈ {Instances(A) | A ∈ A}} 7→ D × D. Let
Ts(a) and Te(a) return the first and second values of T (a)
respectively. A formula φ is satisfied by a schedule T at a
time ti ∈ D, written as 〈T , ti〉 |= φ. Where > is true and ⊥
is false, the rest of the operators are defined as follows:

• 〈T , ti〉 |= start(A) (resp. end(A)) iff ∃x ∈ Instances(A)
such that Ts(x) = ti (resp. Te(x) = ti).

• 〈T , ti〉 |= start(a) (resp. end(a)) iff Ts(a) = ti (resp.
Te(a) = ti).

• 〈T , ti〉 |= P(A) iff A ∈ P .
• 〈T , ti〉 |= P(a) iff for some A ∈ A, a ∈ Instances(A)

and A ∈ P .
• 〈T , ti〉 |= φ UIψ iff ∃tj such that 〈T , tj〉 |= ψ, tj − ti ∈
I , and ∀tk such that ti ≤ tk ≤ tj (or tj ≤ tk ≤ ti),
〈T , tk〉 |= φ.

• 〈T , ti〉 |= ∀x.φ iff for every activity instance a ∈ I,
〈T , ti〉 |= φx=a, where φx=a is the formula φ with all
occurrences of x replaced with a.

¬, ∧, and other connectives follow a standard interpretation.
Definition 2.4. Given a scheduling problem S =
〈A, I,D,R, C, T C〉, where D,R, C, and T C are expressed
as SMTL formulae, then T is a schedule for S iff T |= φ for
all φ ∈ D ∪ R ∪ C ∪ T C, i.e., 〈T , 0〉 |= φ, where 0 is the
initial time point.

Though expressed in a different manner, our definition of
a schedule is semantically equivalent to the signal function
used to evaluate formulae in the continuous (as opposed to
pointwise) semantics of MTL (Ouaknine and Worrell 2008).

2.2 Further Syntax
To facilitate the encoding of scheduling problems, we also
define the following syntax in terms of the operators above.

Logical Operators: ∃,∨,⊃, and ≡ are defined as usual.
Modal Operators: The metric-valued “eventually” opera-
tor 3Iφ is defined as > UIφ, and the metric valued “al-
ways” operator 2Iφ is its dual ¬3I¬φ. We define 3φ and
2φ without the subscript to represent the LTL-style uncon-
strained definitions, 3[0,∞)φ and 2[0,∞)φ, and the past-LTL
operator “once” as 3(−∞,0].
Time Windows and Durations: Let φ→I ψ be equivalent
to 3(−∞,∞)(φ ∧ 3Iψ). This is semantically analogous to
the following simple temporal constraint: T |= φ →I ψ
iff ∃tj , tk such that 〈T, tj〉 |= φ, 〈T, tk〉 |= ψ, and tk −
tj ∈ I . In other words, ψ is true at some time within interval
I after φ is true. This operator is useful for defining time
windows and activity durations. For example, we can denote
that activity A has duration 7 with start(A)→[7,7] end(A).
Temporal Properties: Before(φ), After(φ), and
Between(φ, ψ) denote 3(0,∞)φ, 3(−∞,0)φ, and After(φ)
∧ Before(ψ), respectively. Currently(x), encoded as
Between(start(x), end(x)) denotes that instance x is
currently happening.

For example, we can denote that activity A must com-
plete before activity B with the formula 2(start(B) ⊃
After(end(A)). Alternately, we can denote that A and
B do not overlap in their occurrence with the formula
2(¬(Currently(A) ∧ Currently(B))).
Activity Instances: For every activity A, let property PA =
{A}, so only instances of A share this property. Let predi-
cate InstanceOf(x,A) ≡ PA(x), so that InstanceOf(x,A) is
true iff x is an instance of A.



Figure 1: Complexity classes for satisfiability of SMTL
fragments and related problems, in the spirit of Planken
(2013). Arrows represent polytime reductions.

Notice that SMTL supports the compact encoding of
scheduling constraints, while specifying durations and time
windows in LTL is impossible for timing that ranges over
the real numbers and cumbersome for discrete time.

3 Tractable Fragments of SMTL
We study the complexity of SMTL and more tractable frag-
ments of the language, demonstrating that these fragments
are sufficiently expressive to represent important problems
in OR and AI scheduling. Finally, we describe an algorithm
for solving a fragment of SMTL that is PSPACE-complete.

To measure the complexity of SMTL, we consider the dif-
ficulty of solving the following problem:

Definition 3.1. The SMTL satisfiability problem is the task
of taking a SMTL formula φ and finding a schedule T such
that T |= φ.

As an extension of propositional MTL, SMTL satisfiabil-
ity is at least as hard (i.e., EXPSPACE for integer values
(Ouaknine and Worrell 2008) and undecidable for real val-
ues (Alur, Feder, and Henzinger 1996)). Figure 1 summa-
rizes our complexity results for the SMTL restrictions that
we define, situating them in the context of other logics and
scheduling problems discussed below. An arrow from A to
B indicates that problem B is polytime reducible to problem
A. The vertical arrows denote reductions that are trivial or
were previously known. The full proofs of the new results
are given in a technical report (Luo et al. 2015).

In our first restriction, we consider problems which have
a bound on the number of times an activity can occur:

Definition 3.2. Bounded-instance SMTL, or BI-SMTL, is
SMTL with the additional restriction that for every A ∈ A,
the problem specification includes a bound ∼ kA, where ∼
is either = or ≤, and kA ∈ N.

While the bounds mean that it is no longer possible to
specify infinite schedules, they are natural in many ap-
plications in which there is a finite number of events,
like timetabling, shop scheduling, and project scheduling.
To evaluate the complexity of this fragment, we consider
BI-SMTL satisfiability which can be shown to be PSPACE-
hard by reducing True Quantified Boolean Formulae (QBF)

to it. As we can also define a satisfiability algorithm that re-
quires polynomial space, the following is true:
Theorem 3.1. BI-SMTL satisfiability is PSPACE-complete.

Let us now consider the following fragment, which is
given by further removing quantifiers.
Definition 3.3. Bounded-instance quantifier-free SMTL, or
BI-QF-SMTL, is the set of BI-SMTL formulae in which no
subformula has the form ∃x.φ or ∀x.φ.

BI-QF-SMTL satisfiability can be shown to be NP-hard
by reducing standard boolean satisfiability (SAT) to it. As
we can also describe a polynomial time verification algo-
rithm for BI-QF-SMTL, the following is true:
Theorem 3.2. BI-QF-SMTL satisfiability is NP-complete.

We also define an exactly-once quantifier-free formula
(EO-QF-SMTL), as a BI-QF-SMTL formula in which all ac-
tivities have a =1 bound. While EO-QF-SMTL satisfiability
is also NP-complete, we introduce this new fragment for the
convenience of the discussion below.

3.1 Representing Existing Problems in SMTL
Here, we demonstrate that the above fragments of SMTL are
sufficient to express classical scheduling problems.

Job Shop Scheduling. Job shop scheduling problems
(JSP) are among the most commonly studied scheduling
problems in OR. In JSP, we consider n jobs, which are to
be processed on m machines. Each job requires a machine-
and job-dependent processing time, and all jobs must be
processed by the machines in a specified job-specific order.
A JSP can be represented as an EO-QF-SMTL formula by
having one activity with a =1 bound for the processing of
each job on each machine. The formula is then given by
the conjunction of constraints representing processing du-
rations, pair-wise constraints ensuring no two jobs are pro-
cessed simultaneously by the same machine, and precedence
constraints on the order in which the jobs are processed by
each machine. Additional JSP variations can also be eas-
ily represented as EO-QF-SMTL formulae, including those
where the jobs have release times or deadlines, or in which
machines have some minimum idle time between jobs.

Temporal Networks. Temporal networks are the founda-
tional representation used in scheduling and temporal plan-
ning in AI. For example, simple temporal networks (STNs)
consist of a set of simple temporal constraints, each of the
form [l, u]xy , where x, y are times of events and l, u are
constant bounds. These constraints represent the inequality
l ≤ y − x ≤ u. A simple temporal problem (STP) requires
assigning times to the events such that they satisfy all the
constraints of a given STN (Dechter, Meiri, and Pearl 1991).

While SMTL is a timed temporal logic, its semantics still
allow it to model temporal network problems simply and di-
rectly. To see this, consider the set of EO-QF-SMTL formu-
lae that only allow for the use of the ∧ and 3I operators. We
refer to this fragment as EO-QF-{∧, 3I}-SMTL, for which
we have shown the following:
Theorem 3.3. EO-QF-{∧, 3I}-SMTL formulae and STNs
are equivalently expressive.



It is remarkable that the simple syntactic restriction of
EO-QF-SMTL results in a temporal logic expressible as a
temporal network. Alur, Feder, and Henzinger (1996) estab-
lished the relationship between the MTL timed-word model
and timed automata, but the continuous semantics of logics
such as the one used here were not previously known to be
expressible with such a graph-based model. This may shed
further light on the connection between timed automata and
temporal networks (Cimatti et al. 2014).

Given that STPs can be solved in polynomial time
(Planken 2013), and the translation from EO-QF-{∧,
3I}-SMTL to an STN is linear, we can show the following:
Theorem 3.4. EO-QF-{∧, 3I}-SMTL satisfiability is in P.

We have also shown (cf. (Luo et al. 2015)) that disjunc-
tive temporal networks (DTNs) (Stergiou and Koubarakis
2000) and generalized temporal networks (Staab 1998) can
be modelled in EO-QF-SMTL, and that conditional tempo-
ral networks (Tsamardinos, Vidal, and Pollack 2003) can be
expressed in BI-QF-SMTL. The benefits of SMTL are clear:
while entirely new formulations were developed to handle
these variations, even the BI-QF-SMTL fragment can spec-
ify disjunctions and conditions of arbitrary subformulae.

3.2 Solving BI-SMTL Formulae
We now describe a general method for finding a schedule
that satisfies a given BI-SMTL formula. First, the formula
is translated to an EO-QF-SMTL formula by expanding out
the quantifiers and replacing the bounded activities with a
set of =1 activities that preserve the semantics of the origi-
nal formula. The result is then translated to first-order logic,
using a similar algorithm to that used by Hirshfeld and Rabi-
novich (2004) to translate from propositional MTL to first-
order logic. Finally, a Satisfiability Modulo Theory (SMT)
solver is used to find start and end times for each activity.

To demonstrate the potential of the restricted SMTL lan-
guages for specifying scheduling problems, we built a proof-
of-concept system that implements the method above. While
our system cannot compete with state-of-the-art problem-
specific encodings and solvers, it can effectively solve prob-
lems from multiple domains. In contrast, the inherent spe-
cialization of some state-of-the-art systems means that even
small changes to the problem may require major changes to
the encoding, which may make the specialized solving tech-
niques ineffective.

4 Concluding Remarks
This paper introduces SMTL, an extension of MTL tailored
to the specification of scheduling problems. The value and
significance of SMTL lies in its ability to help specify, un-
derstand, compare, and solve a myriad of scheduling prob-
lems with varying complex constraints that are one-off and
may not have crafted solutions in the literature. By using
a logic-based language, we also afford the possibility for
domain-independent querying and verification. In (Luo et al.
2015) we describe an encoding of SMTL in a SMT solver
and our experimental findings.

Few attempts have been made to apply temporal logic to
scheduling with Dorn (1993) and later Karaman, Sanfelice,

and Frazzoli (2008) being some notable exceptions. LTL on
finite traces (e.g., (Baier and McIlraith 2006; De Giacomo
and Vardi 2013; Fionda and Greco 2016)) is of increasing
interest in AI. By bounding the number of instances of ac-
tivities, our bounded instance restriction to SMTL indirectly
achieves finite traces. We provide all proofs and an extensive
discussion of related work in (Luo et al. 2015).
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