
A Brief Review of Tools and Methods for Knowledge Engineering for Planning &
Scheduling

Tiago Stegun Vaquero1 and José Reinaldo Silva1 and J. Christopher Beck2

1Department of Mechatronics Engineering, University of São Paulo, Brazil
2Department of Mechanical & Industrial Engineering, University of Toronto, Canada

tiago.vaquero@usp.br, reinaldo@usp.br, jcb@mie.utoronto.ca

Abstract

In this paper we present a brief overview of the Knowl-
edge Engineering for Planning and Scheduling (KEPS)
area in the light of a prospective design process of plan-
ning application models. The main discussion is based
on the fact that KE is better introduced in the planning
world through the design process, more than through the
planning techniques. Thus, we examine the fundamen-
tal steps in the design process of AI planning domain
models considering techniques and methods that have
appeared in the research literature. We analyze design
phases that have not been received much attention in
practical planning literature.

Introduction
The 25th. anniversary special issue of The Knowledge Engi-
neering Review (KER) brings some reflection on the devel-
opment of KE during this years and what would be the al-
ternatives for the future (McBurney and Parsons 2011). We
think that it would be interesting to briefly analyze in this pa-
per the relationship between KE and planning and schedul-
ing, specially, in the capability of the combined area (KE and
P&S) of treating complex real problems. First of all it would
be interesting to ask “to which point KE would be directed to
better contribute to solve a planning problem?”. Clearly we
can identify two main points were knowledge is involved in
planning and scheduling: i) in the support of the planning
algorithm, that is, in the underlying knowledge system used
as problem solver; ii) in the modeling of the surrounding do-
main, and the explicit enunciation of the planning problem.
Besides, expert knowledge about the domain can be used to
provide better answers.

While much of the mainstream of AI planning has fo-
cused on developing and improving planning techniques, for
almost twenty years there existed some research on design
processes for planning that considers the special character-
istics of this class of problem in which the knowledge man-
agement is particularly important (Allen, Hendler, and Tate
1990). The integration of the planning algorithms with the

design processes is clearly a vital, strategic goal for plan-
ning research. Both lines of work are essential, specially if
real-life application is the final objective.

Knowledge engineering for planning has not yet reached
the maturity of other traditional engineering areas (e.g., Soft-
ware Engineering (Sommerville 2004)) to define a common
sense design process for planning applications. Neverthe-
less, research in the planning literature has shown some dis-
cussion about the needs and singularities of such design pro-
cess and life cycle (McCluskey et al. 2003; Simpson 2007;
Vaquero et al. 2007). Some of these initiatives introduce
techniques, methods and tools to support designers during
the design life cycle.

In this paper we present an overview of the Knowledge
Engineering for Planning and Scheduling (KEPS) area in the
light of a hypothetical design process of planning applica-
tion models. We present a review of tools and methods that
address the challenges encountered in each phase of a design
process. While examining reviewing the literature about the
design cycle, we pinpoint those phases and aspects that have
not been received much attention in practical planning liter-
ature. Our goal is to provide some inputs for new upcoming
research on KEPS in order to address the challenges that
have receiving least attention in the AI planning community.
They will be important to the development of real planning
and scheduling applications.

Design Process of Planning Domain Models
Design process principles have become important to the
success of the development and maintenance of real world
planning applications. A well-structured design process in-
creases the chances of building an appropriate planning ap-
plication while reducing possible costs of fixing errors in
the future. In this section we examine existing research
on knowledge engineering for planning in the light of an
prospective design process which derive some features from
Software Engineering and Design Engineering fields and ex-
pert knowledge from the experience from real planning do-
main modeling (Vaquero et al. 2007). Such process follows



a partially ordered sequence of phases.The baseline phases
are as follows:

1. Requirements Specification: the elicitation, analysis,
and validation of requirements, potentially using a semi-
formal approach and viewpoint analysis (Sommerville
and Sawyer 1997).

2. Knowledge Modeling: the abstraction, modeling and re-
use of the domain definition and the basic relationships
within the planning problem.

3. Model Analysis: verification and validation of the do-
main model and the planning problem, as well as model
enhancement.

4. Deploying Model to Planner: translation of the problem
specification into a communication language understood
by automated planners.

5. Plan Synthesis: interaction with one or more automated
planning systems to create potential solutions to the plan-
ning problem.

6. Plan Analysis and Post-Design: analysis of the gener-
ated plans according to some metrics. New insights may
be generated and added to the requirements as part of the
overall, iterative design process.

Designing a real planning application following a pure
theoretical approach can be often impractical and therefore
research on real planning application has followed a more
practical approach: developing tools to support the design
process. Most of the work on KE for planning refers to tools
that cover some of the above phases of the design (specific
tools) while few of them try to cover the whole process (gen-
eral tools). In what follows we will explain and analyze how
the available tools approach each of the design phases.

In such analysis, we emphasize the characteristics of two
of the most important general tools for KE for planning:
GIPO (Simpson 2007) and itSIMPLE (Vaquero et al. 2007).
GIPO is the pioneer tool for KE for planning that explicitly
focus on the challenges of building a planning domain model
and itSIMPLE has focused on a disciplined design process
of real planning applications. itSIMPLE integrates a set of
languages and tools to support the cyclic design process of
a domain model, from a informal representation to a formal
model. The KE tool itSIMPLE is the winner of the 3rd Inter-
national Competition on Knowledge Engineering for Plan-
ning and Scheduling (ICKEPS) and has been designed by
the author of this thesis. We also include other tools and
methods that have been active on the planning community,
especially in KE research. For example, we include tools
such as ModPlan (Edelkamp and Mehler 2005) for model-
ing and analysis with PDDL, MrSPOCK (Cesta et al. 2008)
verification of temporal and causal constraints, TIM (Fox
and Long 1998; Cresswell, Fox, and Long 2002) and DIS-
COPLAN (Gerevini and Schubert 1998) for model analy-
sis, VAL (Howey, Long, and Fox 2004) for plan validation,
and a number of application-specific tools such as JABBAH
(González-Ferrer, Fernández-Olivares, and Castillo 2009)
for modeling and planning in business process.

Requirements Specification
It is well-known in the software and systems world that
the lack of a requirements phase can be a primary cause
of difficulties in a project ranging from budget or schedule
overruns to outright failure (Kotonya and Somerville 1996;
Sommerville and Sawyer 1997). In real-life projects a clear
identification and analysis of requirements is a key issue to
the success of the project.

Real-life projects also have distinctive classes of users,
stakeholders whose viewpoints (Sommerville and Sawyer
1997) must be combined and made consistent with the goals
of the developer or designer. Therefore, a phase of require-
ment elicitation and analysis must not be missed. In the con-
text of complex systems, the specifications are very unlikely
to be provided at once, as components of the new system
and even some basic requirements may not be known in the
initial phase. Therefore, a requirements specification phase
is generally divided in two steps:

1. knowledge acquisition or requirements elicitation.
2. analysis of the requirements to spot conflicts, omissions

or misconceptions about the interaction between the plan-
ning systems and its surrounding environment.
The two pioneering works on knowledge acquisition in

planning were O-Plan (Tate, Drabble, and Dalton 1996) and
SIPE (Myers and Wilkins 1997). Both projects have devel-
oped tools that help in the knowledge engineering process.
Designed for some specific applications, O-Plan introduced
the “Common Process Method” while SIPE introduced the
Act Editor.

One of the first domain-independent tools in literature
for supporting knowledge acquisition is the system GIPO
(Simpson 2007). Knowledge acquisition is performed in
GIPO with visual interface that has been designed to assist
the user by taking care of simple syntax details in order to
avoid syntactically ill-formed model specifications (Simp-
son 2007). GIPO treats this phase as a large knowledge ac-
quisition process and does not distinguish non-functional re-
quirements from functional or operational aspects.

The system itSIMPLE (Vaquero et al. 2007; 2009) focuses
not only on the initial phases of a design process but also on
the design life cycle of planning applications. The tool pro-
vides an integrated environment that supports knowledge ac-
quisition in its early stages. The work was one of the first to
introduce the principles of requirements engineering to AI
planning. itSIMPLE is more pragmatic with the use of a vi-
sual interface for Elicitation and Analysis of Requirements;
it goes directly to the operational and functional aspects, as
well as non-functional requirements, using initially a semi-
formal representation language, the Unified Modeling Lan-
guage (UML) (OMG 2005). UML is the most commonly
used language for requirements representation in software
engineering. Many engineers, working in different applica-
tion areas, are familiar with this representation.

Because of its pragmatic approach, itSIMPLE is currently
closer to users and stakeholders while GIPO embodies a
more designer-oriented approach. The former environment
goes directly to requirements analysis and validation while
the latter encompasses all that in the knowledge analysis



and representation in Object Centered Language (OCL), a
language created as part of the GIPO project to better cap-
ture the semantics inherent in planning applications (Simp-
son et al. 2000). Therefore, no external analysis is consid-
ered in GIPO while such analysis is an important feature
in itSIMPLE via Petri Nets techniques (Silva and Santos
2003). Viewpoint analysis and requirements engineering ap-
proaches are lacking in GIPO whereas a sound manipulation
for knowledge that are strong in GIPO are missing in itSIM-
PLE. Certainly both are necessary.

Regarding domain-dependent tools, the work from
Bonasso and Boddy (2010) describes an ongoing project
for eliciting planning information from the domain experts
in order to support NASA operations personnel in planning
and executing activities on the International Space Station
(ISS). Aiming at the initial phase of the design, this work
introduces a tool for gathering procedural requirements, in-
cluding a) time, for both task duration and for temporal con-
straints among procedures, b) resources that are required,
produced or consumed by a procedure, c) preconditions,
post-conditions and other constraints for both a given proce-
dure and among concurrently executing procedures, and d)
the decomposition of large procedures into the fundamental
actions used to build up a mission plan (Bonasso and Boddy
2010). With such planning information acquired using tem-
plate forms, the goal is to generate actions specifications in
a standard planning languages that automated planners can
use. Even though the tool has a particular application, its
method can be generalized to other domains.

Knowledge Modeling
No real-life system is truly isolated. Any planning system
is embedded in a real domain: a myriad of “non-system”
tools, objects, people, and processes with which it must in-
teract. It is necessary to have a model for this environment
– and it is important that this model be developed indepen-
dently of the planning system (McDermott 1981). The term
model implies that we have a representation or a formal-
ism that mirrors behaviors in the real domain. Such model
representation must provide semantics, implying that named
elements within it correspond directly to named elements
in the real domain (McCluskey 2002). Moreover, since sev-
eral planning problems could be related to the same or sim-
ilar domains, reusability is a key issue in real-life planning
systems and is a fundamental part of the modeling process.
Reuse can speed up the design process by using well-tested
model structures and elements from other successful appli-
cations.

GIPO utilizes the Object Centered Language (OCL) to
model domain ontology, objects and actions. GIPO’s GUI
allows the use of diagrams to support users defining such
domain elements. For the domain ontology representation,
GIPO (version IV) provides an editor to create “Concept Di-
agrams” in the style of UML class diagrams to define the
kinds of objects and concepts, as well as their relationships.
These diagrams also provide the opportunity to define prop-
erties that are common to all object instances of the various
concepts (Simpson 2007).

The Life History editor from GIPO allows the user to

draw state machines that describe the dynamics of an object
class. It can be used to name the states that object instances
can occupy and to show the possible transitions between the
states. In addition to the manual input of the action represen-
tation, users can be assisted by induction techniques to aid
the acquisition of detailed operator descriptions. The oper-
ator description assistant, called opmaker, requires as input
an initial structural description of the domain along with a
training instance and a valid plan for that instance (Simpson
2007).

GIPO is the only tool that currently provides support
for knowledge re-use in which the development of the ac-
tion representation may involve the use of common de-
sign patterns of planning domain structures (called “Generic
Types”). Of course, domain knowledge re-use and storage
raise a number of issues such as when to create new reusable
knowledge to avoid storing too many similar ones, or what is
the impact on planner performance of a reusable component.
At the moment a base of cases does not exist and these issues
have consequently not yet been demonstrated in practice.

itSIMPLE provides a tool-set and methods to support de-
signers during domain model creation through an object-
oriented approach (Vaquero et al. 2007). The system uses
the diagrammatic language UML (OMG 2005) for Knowl-
edge Acquisition and Modeling processes. Modeling is made
through UML diagrams, from a high level of abstraction
(such as use case diagrams) to lower levels (e.g., class di-
agrams or state machine diagrams). The visual components
provided by UML can make the planning domain modeling
process friendly and can facilitate communication and anal-
ysis of requirements belonging to different viewpoints (e.g.,
stakeholders, planning domain experts, users).

Classes, properties, relationships, and constraints are de-
fined by using class diagrams which represent most of static
characteristics of a domain. Operators’ parameters and du-
rations are also specified in the class diagram. The dynamics
of operators (actions) are modeled by using UML state ma-
chine diagrams. These diagrams represent the states that a
class object can enter during its life. One diagram is built for
each class that has dynamic features. An action’s pre- and
post-conditions are defined by using a formal constraint lan-
guage of UML, called Object Constraint Language (OCL –
a different “OCL” than used in GIPO) (OMG 2003), as part
of operator representation. Planning problems are created by
using object diagrams which represent snapshots of a plan-
ning domain, most commonly the initial state and the goal
state. Users can also create preferences and constraints with
object diagrams, for instance on the plan trajectory, which
can capture either desirable or undesirable situations (Va-
quero et al. 2007).

ModPlan (Edelkamp and Mehler 2005) is a planning
workbench that provides some knowledge acquisition and
modeling functionalities. The tool uses PDDL (version 2.2)
as the base representation of the knowledge and it is aimed
more at planning experts than designers with domain knowl-
edge.

Bouillet et al. (2007) describe an ongoing knowledge
engineering and planning framework that supports design-
ers during construction of planning domains and problems



based on OWL ontologies (McGuinness and van Harme-
len 2004). The state of the world is represented as a set of
OWL facts, using a Resource Description Framework (RDF)
graph, while actions are described as RDF graph transfor-
mations. Planning goals are described as RDF graph pat-
terns. The framework allows the creation of planning do-
main through OWL ontologies extension in a collaborative
manner. The framework (2007) provides a certain re-use ca-
pability by the general concept of ontology, but not as ex-
plicitly as GIPO. As mentioned by Bouillet et al. (2007), the
use of OWL ontologies as a basis for modeling domains al-
lows the re-use of existing knowledge in the Semantic Web.
While the framework has been applied towards composing
workflows in stream processing systems, it can be seen as a
general tool and could, therefore, be applied in other plan-
ning domains (Bouillet et al. 2007).

Inspired by GIPO and itSIMPLE, Vodrazka and Chrpa
(2010) created a compact modeling tool for planning as
an attempt to simplify the model construction process to
non-planning experts. Unlike GIPO and itSIMPLE, the tool
called VIZ uses straightforward approach to model simple
STRIPS-like domains. The tool provides a graphical inter-
face that uses uniquely simple (non-standard) diagrams to
capture action specifications, objects and their relations.

Besides the general purpose tools, as those considered
above, there are also research on specific knowledge applica-
tions. For example, JABBAH (González-Ferrer, Fernández-
Olivares, and Castillo 2009) is a KE tool dedicated to Busi-
ness Process Modeling (BPM). This tool is able to support
modeling and representation of business process models in
order to use planners to obtain action plans for task manage-
ment.

Model Analysis
The definition of a suitable planning domain is related to the
possibility of analyzing the model during the design phases.
Contrasting features of the model being built and the ac-
quired requirements becomes very important in non-trivial
planning applications. Model analysis encompasses verifi-
cation, validation, knowledge enhancement and refinement
of the entire model (McCluskey 2002). Generally, the anal-
ysis, performed manually, automatically or system-assisted,
focuses on two main aspects: the static and dynamic proper-
ties. Fining errors, inconsistencies and incoherences in such
properties can save time and resources in posterior phases.

Static analysis essentially investigates whether the model
is self-consistent. Such analysis can range from simple syn-
tax checkers and debuggers to cross-validation of different
parts of the model, particularly for those models contain-
ing a set of diagrams or representation schemes. For exam-
ple, static analysis can be applied to verify the definition of
types of objects, constraints, state definition, and other static
model elements.

Dynamic analysis entails validating whether the behav-
ior of modeled actions is consistent to the requirements and
to what is expected by humans. That involves the examina-
tion of how actions interact with each other and how they
are executed. Both static and dynamic analysis can be made
independently of the planner.

Most real-life planning problems require the investigation
and enhancement of specific knowledge, acquired during
analysis, in order to achieve reliable planner performance
and high plan quality. Some of this specific knowledge may
take the form of heuristics or domain control knowledge that
can be used to guide planners in finding an efficient plan.
Moreover, knowledge enhancement may be concerned with
the inclusion of design decisions, reasons, and justifications
(i.e. rationales) in the specification process and documenta-
tion, which supports the maintenance of complex projects.
Klein (1993) explains how rationale are important to engi-
neering design projects for airplane parts.

Few methods and tools are available in the planning litera-
ture that can deal with domain analysis. As described by Mc-
Cluskey (2002), because AI planning has been largely in the
realm of research, many researchers in the past used nothing
more than basic syntax checkers in support of their model
analysis process. However, this approach is neither sufficient
nor efficient in large models. Inspired by these large appli-
cations, recent research has introduced more elaborated do-
main analysis techniques.

GIPO (Simpson 2007) checks local and global model con-
sistency such as object class hierarchy consistency, object
state descriptions invariants satisfaction, mutual consistency
of predicate structures, and others. This static validation can
uncover potential errors within a domain specification. In
addition to static analysis, GIPO provides a visual repre-
sentation of dynamic behavior for analysis, a combination
of state-machine-like diagrams to show how objects of two
or more concept types coordinate their dynamic movements
(Simpson 2007). GIPO allows designers to check the model
against a set of problems by using a stepper. The stepper
provides the manual selection of actions state-by-state to
verify their applicability and to validate the dynamic part
of domain model (Simpson 2007). Knowledge discovery
and enhancement during domain analysis is not provides by
GIPO.

itSIMPLE (Vaquero et al. 2007) provides a rich graphi-
cal interface where different viewpoints can be used to vali-
date or criticize a model. Users are supported while creating
coherent diagrams to avoid modeling mistakes. For exam-
ple, snapshots are created based on class diagrams and all
constraints defined on them. The tool can check each snap-
shot for coherence in order to avoid inconsistent states. For
dynamic analysis, the environment uses Petri Nets (Murata
1989), a formal representation for dynamic domain valida-
tion deploying visual and animated information of the entire
system based on the UML state machine diagrams. How-
ever, the approach with Petri Net is not fully implemented
and tested. itSIMPLE has no support for knowledge en-
hancement, trusting the requirement validation process to
provide insight into improving the problem description and
also, based on the direct intervention of the designer, to pro-
vide heuristics to guide the planner.

In the literature there is a large variety of techniques for
knowledge extraction during domain analysis, but most of
them are dependent of the planning system (McCluskey
2002). The extraction of properties such as types, invariants,
strategies, heuristics, or subproblems can be a way to en-



hance models with essential information to be used during
the planning process. Systems such as TIM (Fox and Long
1998; Cresswell, Fox, and Long 2002) and DISCOPLAN
(Gerevini and Schubert 1998) find types and state invariants
while RSA (Scholz 1999) and RedOp (Haslum and Jons-
son 2000) find different types of constraints on which action
sequences are necessary or relevant for solving a given prob-
lem. Moreover, the work described in (Fox and Long 1999;
Crawford et al. 1996) introduces detection of symmetry as
additional knowledge to improve planners’ performance.

Deploying Model to Planner
Standard planners cannot directly parse arbitrary specifica-
tion languages. Enabling them to do so would require a large
amount of effort which is, at best, peripheral to the interests
of the researchers, mainly directed to the implementation of
AI planning algorithms. Therefore, it is reasonable to de-
velop a unified communication language embodying a con-
vergence of goals and computational effort.

At present, PDDL (Fox and Long 2003) works as such a
language even though it was not explicitly designed with that
purpose in mind. Thus, existing tools and integrated envi-
ronments should be able to translate specifications to a com-
munication language without any (or minimum) loss in the
problem specification. The communication language must,
therefore, have the same expressive power as the specifi-
cation language. Since expressiveness issues are not in the
scope of this thesis, we do not go into that discussion.

Considering general purpose tools, GIPO, itSIMPLE and
VIZ have sound and efficient mechanisms to translate their
respective front-end languages to PDDL. GIPO translates its
OCL domain model to PDDL 2.2 (Simpson 2007) while it-
SIMPLE transfers the knowledge in UML to a solver-ready
PDDL model up to version 3.1 (the latest version of PDDL)
(Vaquero, Silva, and Beck 2010). VIZ translates simple di-
agrams into a STRIPS-like PDDL model (Vodrazka and
Chrpa 2010).

Regarding specific tools, JABBAH translates a business
process model into a solver-ready representation, in this case
the Hierarchical Task Network (HTN) (González-Ferrer,
Fernández-Olivares, and Castillo 2009). Fernández et al.
(2009) describe an approach to represent data-mining pro-
cesses, using Predictive Model Markup Language (PMML),
in terms of automated planning and translate the data mining
tasks into PDDL. The tool PORSCE II (Hatzi et al. 2009),
while focusing on semantic description of web services, pro-
vides a translation process from OWL-S to PDDL to make
the domain available for planners.

Plan Development
In this phase, plans are produced by planning algorithms
based on knowledge specified and modeled in the domain
model. This phase is where most research work on AI plan-
ning are focused. However, instead of focusing on planning
techniques (see (Ghallab, Nau, and Traverso 2004) for de-
tails on techniques) we look at the research on KE tools that
give support and facilitate the use of planning algorithms,
by an integrated environment that support different planners

- using distinct AI planning approaches - and by including
features to communicate and visualize the resulting plans.

The most significant work on this phase is itSIMPLE (Va-
quero et al. 2009; Vaquero, Silva, and Beck 2010). As an
integrated environment, itSIMPLE uses PDDL to commu-
nicate automatically with solvers, including Metric-FF, FF,
SGPlan, MIPS-xxl, LPG-TD, LPG, hspsp, SATPlan, Plan-
A, Blackbox, MaxPlan, LPRPG, and Marvin. In fact, the
tool allows new planners to be easily added. This feature
gives to itSIMPLE the flexibility to exploit recent advances
in solver technology. Designers can test different planning
approaches on their model and identify the most promising
one. Other tools like GIPO, ModPlan, JABBAH and VIZ do
not have such extensive connection with planners.

Plan Analysis and Post-Design
Because of the characteristics of models, it is likely that
some problem instances, domains, and models will be bet-
ter suited to the one planning algorithm rather than another.
Furthermore, for complex problems, the lack of knowledge
or ill-defined requirements and metrics could propagate to
specifications and from there to the problem submitted to
the planner. Either of these scenarios (and others) may lead
to the generation of poor quality plans. Regardless, bad plans
must be spotted and fixed.

A last fundamental step in the design cycle is the analy-
sis of generated plans with respect to the requirements and
quality metrics. Plan analysis naturally leads to feedback and
the discovery of hidden requirements for refining the model,
giving consequently the capacity of improving the quality
of generated plans. We call ‘post-design analysis’ the pro-
cess performed after plan generation, in which we have a
base model and a set of planners to investigate the solutions
generated by them. Such a post-design process requires ap-
proaches that range from simple plan validation and visual-
ization to a more sophisticated treatment based on metrics.
Such a treatment should be able to evaluate the plan and to
relate defects to a set of requirements or even to a lack of
such requirements. What may be produced is a new insight
and a need to change requirements which can be used in the
next design iteration.

AI planning research on plan analysis has developed tools
and techniques mostly for plan validation, plan visualization
(e.g., diagrams and Gantt charts), animation, plan querying
and summarization. In (Smith and Holzmann 2005), formal
verification is used in order to check the existence of unde-
sirable plans with respect to the domain model. The work
from Howey, Long, and Fox (2004) describes the system
VAL, a plan validation tool for PDDL. Given an input plan
in PDDL syntax and its respective domain model and prob-
lem, VAL validates action execution while recognizing if the
plan does not reach the specified goal or if it contains in-
valid sequence of actions. VAL has recently been extended
to capture most of PDDL features (up to version 3.0) such as
continuous effects, exogenous events and process handling.

GIPO provides a simple plan visualizer (animator) to al-
low a graphical view of successful plans. Recent publica-
tions (McCluskey and Simpson 2006) describes such visu-
alization tool. In contrast with GIPO, itSIMPLE starts from



basic visualization and simulation of plans to a more so-
phistiThis information is the base for discovering hidden re-
quirements, constraints, preferences and the real intentions
of design actors (knowledge that was not identified during
the virtual prototyping phase).cated simulation interaction
and analysis of domain variable (Vaquero et al. 2007). With
a flexible interface to a large set of planners, it is possi-
ble to analyze plans produced by different planning tech-
niques. The tool supports plan evaluation through a func-
tionality called “Variable Tracking”, which allows analysis
based on variable observation or quality metrics displayed
on charts. The functionality called “Movie Maker” provides
a simulation and a visualization of plans through a sequence
of UML object diagrams, snapshot-by-snapshot. A minimal
interaction with the simulator is allowed where new actions
can be added or removed to check different situations. The
plan analysis tools provided by itSIMPLE aim to help de-
signer adjust models by observing plans being executed in
diagrammatic form. However, the use of these diagrams pre-
vent the proper analysis of large-scale problems.

ModPlan integrates VAL for plan validation (Edelkamp
and Mehler 2005) and, for plan visualization, it includes the
animation system Vega (Hipke 2000) allowing a magnifica-
tion to an arbitrary part of the plan. Gantt charts are plot-
ted for temporal plans, in which a horizontal open oblong
is drawn against each activity indicating estimated duration.
Plan animation is assisted by users and is provided for some
benchmark domains. JABBAH also shows output plans for
business processes using Gantt diagram (González-Ferrer,
Fernández-Olivares, and Castillo 2009).

The work from Haas and Havens (2008) introduces a spe-
cific dynamic plan simulator for the Canadian CoastWatch
project. CoastWatch is an oversubscribed dynamic multi-
mode problem with unit resources and lies in the Search
& Rescue domain. CoastWatch datasets simulate a typical
day for the Canadian Coast Guard, where officers assign re-
sources (planes, helicopters, ships) to execute several dif-
ferent kinds of missions (rescue, patrol, transport). The dy-
namic simulator includes a visualization tool which creates
an animation of the planning and scheduling problem on
GoogleEarthTM. The animation steps through the scheduling
horizon and visualizes the different entities in action. Such
application-dependent simulator creates a good communica-
tion channel between project participants.

Aiming at plans with rich sophistication and complexity,
Myers (2006) describe a domain-independent framework for
plan summarization and comparison that can help a human
user to understand both key strategic elements of an individ-
ual plan and important differences among plans. The goal of
such summarization and comparison is to analyze the rela-
tive merits of various plan candidates before deciding on a
final option. The approach is grounded in a domain metathe-
ory, which specifies important semantic properties of tasks,
actions, planning variables, and plans. This work defines
three capabilities grounded in the metatheoretic approach:
(1) summarization of an individual plan, (2) comparison of
pairs of plans, and (3) analysis of a collection of plans. The
approach has the benefit of framing summaries and compar-
isons in terms of high-level semantic concepts, rather than

low-level syntactic details of plan structures and derivation
processes. As reported by Myers (2006), application of these
capabilities within a rich application domain facilitates user
understandability of complex plans.

Giuliano and Johnston (2010) proposes a visualization
tool for multi-objective problems in space telescope control
systems that helps users while selecting schedules to be ex-
ecuted. The tool supports schedule analysis by keeping user
objectives separated instead of combined to make trade-offs
between competing objectives. The analysis is done through
charts and graphs to explore the different aspects of distinct
schedules. In a similar direction, Cesta et al. (2008) describe
the MrSPOCK system able also to validate schedules and il-
lustrate trade-offs of space mission plans. These two works
emphasize how important and difficult it is to work with dif-
ferent criteria coming from distinct groups in real problems.

The main focus of works like Myers (2006), Cesta et al.
(2008) and Giuliano and Johnston (2010) is on helping users
to (1) better understand the underlying properties of gener-
ated plans and schedules and (2) to select the most appro-
priated solutions to be executed. In fact, re-modeling, or the
refinement cycle, seems not be the main target for most of
plan analysis tools in AI planning literature. In addition, ac-
quiring valuable information during analysis process itself is
not the main goal either.

Discussion
As defined by Fox (2011), knowledge engineering is “a dis-
cipline that involves integrating knowledge into computer
systems in order to solve complex problems, normally re-
quiring a high level of human expertise”. Therefore, KE is
connected with solving real problems. In what follows we
look at the tools and its underlying knowledge systems and
methods in this perspective, that is, by the contribution they
might have to the integration of knowledge into computer
systems that solve real problems.

As we mentioned before, the contribution of these tools
could appear: i) in the knowledge system underlying algo-
rithms encapsulated in planners; ii) in the knowledge repre-
sentation methods applied to the domain environment; iii) in
the knowledge about the design process. Here, we focus the
discussion on the last two kinds of contribution (since the
present analysis does not include planners).

Concerning the knowledge representation methods ap-
plied to the domain we should point the following:

1. none of the tools treat differently the knowledge encap-
sulated in the planning problem and in the surrounding
domain. Such a distinction could be valuable since in sev-
eral cases it is required to solve different instances of the
planning problem. All of those instances have the same
surrounding domain and such knowledge could be reused.

2. the general problem of reusing knowledge is not explored
besides some tools as GIPO where an attempt were made
by using design patterns.

3. there is no attempt in any tool to investigate the rela-
tionship between knowledge domain and the underlying
knowledge system that supports planners. That implies



that there is no way to find a “best planner” to a given
planning domain. Some tools (like itSIMPLE) address at
least a pool of planners where the result could be com-
pared, but that is far from solving the matching issue.

Regarding the design process, the challenging points are:

1. there is not a referential design process for planning
and scheduling applications. At most, general phases are
adapted from a General Design Theory (Tomiyama 1994)
or more recent developments of that. Therefore, it is not
clear if formal methods such as Process Algebra, Petri
Nets, and others would help or improve the process.

2. in all tools, few attention was given to requirement analy-
sis which is important to any real problem. Certainly it is
not possible to assume that the planning problem could be
synthesized ad hoc, without a requirement gathering and
analysis.

3. once the planning problem is defined, it is necessary to
provide a model of the overall domain that could be for-
mally verified. In that point it is important to notice that
to cover scheduling a formal time verification is required.
Unfortunately there is not a long list of time formalisms
that could be applied for that.

4. all previous topics are concerned with what could be
called the design phases, that is, all phases that culminate
with a design model for the domain and planning prob-
lem. However the design process could be accelerated if a
post-design process is added to feed the refinement cycle,
just when the top down refinement no longer improves the
model significantly.

Besides all these points another important issue is that
there is not enough effort to support scheduling for several
reasons, where the most significant is the lack of a time for-
malism that could be more practical to be inserted in soft-
ware tools. In addition, there has been not enough effort to
support resource reasoning.

Conclusion
In this paper, we presented a brief overview of tools and
methods on knowledge engineering for planning consider-
ing a design process of planning domain models. We re-
viewed existing tools that support each phase of such design
process, especially the plan analysis and post-design which
drive re-modeling and refinement. The intention of this pa-
per is to raise a discussion about where we are on the use
of knowledge engineering for planning and scheduling and
to give some inputs about were we want to go as research
community in this area.

References
Allen, J. F.; Hendler, J.; and Tate, A. 1990. Readings on
Planning. San Mateo, Ca., USA: Morgan-Kaufman.
Bonasso, P., and Boddy, M. 2010. Eliciting Planning In-
formation from Subject Matter Experts. In Proceedings of
ICAPS 2010 Workshop on Scheduling and Knowledge Engi-
neering for Planning and Scheduling (KEPS), 5–12.

Bouillet, E.; Feblowitz, M.; Liu, Z.; Ranganathan, A.; and
Riabov, A. 2007. A Knowledge Engineering and Planning
Framework based on OWL Ontologies. In Proceedings of
the Second International Competition on Knowledge Engi-
neering.
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci, E.
2008. Validation and verification issues in a timeline-based
planning system. In Proceedings of the ICAPS 2008 Work-
shop on Knowledge Engineering for Planning and Schedul-
ing (KEPS).
Crawford, J.; Ginsberg, M.; Luks, E.; and Roy, A. 1996.
Symmetry-breaking predicates for search problems. In Fifth
International Conference on Principles of Knowledge Rep-
resentation and Reasoning, 148–159. Cambridge, Mas-
sachusetts: Morgan Kaufmann.
Cresswell, S.; Fox, M.; and Long, D. 2002. Extending tim
domain analysis to handle adl constructs. In Knowledge En-
gineering Tools and Techniques for AI Planning: AIPS’02
workshop.
Edelkamp, S., and Mehler, T. 2005. Knowledge acquisi-
tion and knowledge engineering in the modplan workbench.
In Proceedings of the First International Competition on
Knowledge Engineering for AI Planning.
Fernández, S.; Fernández, F.; Sánchez, A.; de la Rosa, T.;
Ortiz, J.; Borrajo, D.; and Manzano, D. 2009. On Com-
piling Data Mining Tasks to PDDL. In Proceedings of the
Third International Competition on Knowledge Engineering
for Planning and Scheduling (ICKEPS), ICAPS 2009, 8–17.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research 9:367–421.
Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. In Proceeding of
the Sixteenth International Joint Conference on Artificial In-
telligence (IJCAI), 956–961. Stockholm, Sweden: Morgan
Kaufmann.
Fox, M., and Long, D. 2003. PDDL2.1: An extension of
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research (JAIR) 20:61–124.
Fox, J. 2011. Formalizing knowledge and expertise: where
have we been and where are we going? The Knowledge En-
gineering Review 26(1):5–10.
Gerevini, A., and Schubert, L. 1998. Inferring state con-
straints for domain-independent planning. In Proceedings
of 15th National Conference on Artificial Intelligence, 905–
912. Madison, USA: AAAI Press/MIT Press.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. San Francisco, CA, USA:
Morgan Kaufman.
Giuliano, M. E., and Johnston, M. D. 2010. Visualization
Tools for Multi-Objective Scheduling Algorithms. In Pro-
ceedings of ICAPS 2010 System Demostration, 11–14.
González-Ferrer, A.; Fernández-Olivares, J.; and Castillo, L.
2009. JABBAH: A Java Application Framework for the
Translation Between Business Process Models and HTN.
In Proceedings of the Third International Competition on



Knowledge Engineering for Planning and Scheduling (ICK-
EPS), ICAPS 2009, 28–37.
Haas, W., and Havens, W. S. 2008. Generating Ran-
dom Dynamic Resource Scheduling Problems. In ICAPS
2008 Workshop on Knowledge Engineering for Planning
and Scheduling.
Haslum, P., and Jonsson, P. 2000. Planning with reduced
operator sets. In Proceedings of the Fifth International Con-
ference on Artificial Intelligence Planning and Scheduling
Systems (AIPS), 150–158. Breckenridge, CO: AAAI Press.
Hatzi, O.; Meditskos, G.; Vrakas, D.; Bassiliades, N.; Anag-
nostopoulos, D.; and Vlahavas, I. 2009. PORSCE II: Using
Planning for Semantic Web Service Composition. In Pro-
ceedings of the Third International Competition on Knowl-
edge Engineering for Planning and Scheduling, 38–45.
Hipke, C. A. 2000. Distributed Visualization of Geometric
Algorithms. Phd thesis, University of Freiburg.
Howey, R.; Long, D.; and Fox, M. 2004. Val: Automatic
plan validation, continuous effects and mixed initiative plan-
ning using pddl. In ICTAI’04: Proceedings of the 16th
IEEE International Conference on Tools with Artificial Intel-
ligence, 294–301. Washington, DC, USA: IEEE Computer
Society.
Klein, M. 1993. Capturing design rationale in concurrent
engineering teams. IEEE Computer 26(1):39–47.
Kotonya, G., and Somerville, I. 1996. Requirements engi-
neering with viewpoints.
McBurney, P., and Parsons, S. 2011. The Knowledge En-
gineering Review, volume 26 - Special Issue 01 (25th An-
niversary Issue). Cambridge University Press.
McCluskey, T. L., and Simpson, R. M. 2006. Tool sup-
port for planning and plan analysis within domains embody-
ing continuous change. In Proceedings of the ICAPS 2006
Workshop on Plan Analysis and Management.
McCluskey, T.; Aler, R.; Borrajo, D.; Haslum, P.; Jarvis, P.;
Refanidis, I.; and SCHOLZ. 2003. Knowledge engineering
for planning roadmap.
McCluskey, T. L. 2002. Knowledge Engineering: Issues for
the AI Planning Community. Proceedings of the AIPS-2002
Workshop on Knowledge Engineering Tools and Techniques
for AI Planning. Toulouse, France 1–4.
McDermott, J. 1981. Domain knowledge and the design
process. In Proceedings of the 18th Conference on Design
Automation, 580–588. Piscataway, NJ, USA: IEEE Press.
McGuinness, D. L., and van Harmelen, F. 2004. OWL Web
Ontology Language Overview. W3C recommendation.
Murata, T. 1989. Petri nets: Properties, analysis and appli-
cations. In Proceedings of the IEEE, volume 77, 541–580.
Myers, K. L., and Wilkins, D. 1997. The Act-Editor User’s
Guide: A Manual for Version 2.2.
Myers, K. L. 2006. Metatheoretic Plan Summarization and
Comparison. In Proceedings of the 16th International Con-
ference on Automated Planning and Scheduling (ICAPS-06).
Cumbria, UK: AAAI Press.

OMG. 2003. OMG Unified Modeling Language Specifica-
tion - Object Constraint Language, Version 2.0.
OMG. 2005. OMG Unified Modeling Language Specifica-
tion, Version 2.0.
Scholz, U. 1999. Action constraints for planning. In Biundo
& Fox, 148–160. Berlin, Heidelberg: Springer Verlag.
Silva, J. R., and Santos, E. A. 2003. Viewpoint requirements
validation based on petri nets. In Proceedings of the 17th
Int. Conf. of Mechanical Engineering, Brazilian Mechanical
Eng. Society.
Simpson, R. M.; Mccluskey, T. L.; Liu, D.; and Kitchin, D.
2000. Knowledge Representation in Planning: A PDDL to
OCLh Translation. In In Proceedings of the 12th Interna-
tional Symposium on Methodologies for Intelligent Systems.
Charlotte, North Carolina, USA: Springer.
Simpson, R. M. 2007. Structural Domain Definition us-
ing GIPO IV. In Proceedings of the Second International
Competition on Knowledge Engineering for Planning and
Scheduling.
Smith, M. H., and Holzmann, G. J. 2005. Model Check-
ing Autonomous Planners: Even the best laid plans must be
verified. In Aerospace, 2005 IEEE Conference, 1–11. IEEE
Computer Society.
Sommerville, I., and Sawyer, P. 1997. Viewpoints: Prin-
ciples, Problems and a Practical Approach to Requirements
Engineering. Annals of Software Engineering 3:101–130.
Sommerville, I. 2004. Software Engineering (7th Edition).
Pearson Addison Wesley.
Tate, A.; Drabble, B.; and Dalton, J. 1996. O-Plan: a
Knowledged-Based Planner and its Application to Logistics.
In Advanced Planning Technology ARPI, 259–266. AAAI
Press.
Tomiyama, T. 1994. From general design theory to
knowledge-intensive engineering. Artificial Intelligence for
Engineering, Design, Analysis and Manufacturing 8:319–
333.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An integrated Tool for Designing Plan-
ning Environments. In Proceedings of the 17th International
Conference on Automated Planning and Scheduling (ICAPS
2007). Providence, Rhode Island, USA: AAAI Press.
Vaquero, T. S.; Silva, J. R.; Ferreira, M.; Tonidandel, F.;
and Beck, J. C. 2009. From Requirements and Analysis to
PDDL in itSIMPLE3.0. In Proceedings of the Third Interna-
tional Competition on Knowledge Engineering for Planning
and Scheduling, ICAPS 2009, 54–61.
Vaquero, T. S.; Silva, J. R.; and Beck, J. C. 2010. Im-
proving Planning Performance Through Post-Design Analy-
sis. In Proceedings of ICAPS 2010 workshop on Scheduling
and Knowledge Engineering for Planning and Scheduling
(KEPS), 45–52.
Vodrazka, J., and Chrpa, L. 2010. Visual design of plan-
ning domains. In Proceedings of ICAPS 2010 workshop on
Scheduling and Knowledge Engineering for Planning and
Scheduling (KEPS), 68–69.


