Acquisition and Re-use of Plan Evaluation Rationales on Post-Design

Tiago Stegun Vaquero' and José Reinaldo Silva’ and J. Christopher Beck?
! Department of Mechatronics Engineering, University of Sdo Paulo, Brazil
2Department of Mechanical & Industrial Engineering, University of Toronto, Canada
tiago.vaquero @usp.br, reinaldo @usp.br, jcb@mie.utoronto.ca

Abstract

In this article we investigate how knowledge acquired
during a plan analysis phase can be represented, stored,
and re-used to support the identification and evaluation
of potential adjustments to a domain model. We de-
scribe a post-design framework that combines a knowl-
edge engineering tool and an ontology-based reasoning
system for the acquisition and re-use of human-centric
rationales for plan evaluations. We aim at rationales
that represent information about (1) why a given plan
is classified as good or bad, (2) what are the proper-
ties of the plan that directly impact its quality, and (3)
how these properties affect the plan quality, positively
or negatively. This paper shows a case study, based on
a benchmark problem, which illustrates the process of
development and acquisition of rationales.

Introduction

Decisions about knowledge modeling and planning algo-
rithm development drastically affect the quality of plans.
From a planning technology perspective, in a ceteris paribus
scenario, factors such as the improper choice of planning
techniques and heuristics may lead to the generation of poor
solutions. From a knowledge engineering perspective, lack
of knowledge, ill-defined requirements and inappropriate
definition of metrics, constraints and preferences can con-
tribute directly to malformed models and, consequently, to
unsatisfactory plans, independent of the planning algorithm.
Traditionally, much of planning research has focused on
a perspective in which new algorithms are developed and
tuned to obtain high performance and better plans. Not much
investigation has been done from the knowledge engineer-
ing (KE) perspective, especially re-modeling and refining
the planning problem based on observations and informa-
tion that emerge during the design process itself.

In plan analysis, hidden knowledge and requirements cap-
tured from human feedback raise the need for a continuous
re-modeling process. The capture, representation and use of
such human-centered feedback is still an unexplored area in
the knowledge engineering for Al planning. Moreover, the
impact of such feedback and re-modeling on the planning
performance is unknown.

In (Vaquero, Silva, and Beck 2010), we propose of a post-
design tool for Al planning that combines the open-source

KE tool itSIMPLE (Vaquero et al. 2007) and a virtual proto-
typing environment called Blender to support the short-term
identification of inconsistencies and hidden requirements. In
that work, there is a first attempt to manually interpret and
insert rationales to support design decisions in a model adap-
tation approach. However, the proposed tool did not provide
a process to capture, store and evaluate rationales. Mean-
while, the discussion about the use of rationales has grown
very fast specially in the software engineering community,
guiding the process of documentation and reuse (Daughtry
et al. 2009).

In this paper, we present a post-design tool for Al plan-
ning that addresses the acquisition and re-use of human-
centered rationales for plan evaluations. We aim at ratio-
nales that describe the reasons behind the plan classification
(e.g., bad or good quality) given by designers or users. Such
rationales describe what are the properties of the plan that
impact its quality and how these properties affect the plan
quality: positively or negatively. We study an approach that
combines the open-source KE tool itSIMPLE (Vaquero et
al. 2007) and an ontology-based reasoning system to sup-
port the capture, representation and re-use of rationales dur-
ing plan evaluation. The aim of rationale re-use is to present
to the human planner the plan properties and elements that
are likely to impact its quality. This information becomes a
starting point for the evaluation of a newly generated plan.
In addition, the tool contributes to the continuous discovery
process of hidden requirements (e.g., constraints and prefer-
ences) that were not identified during the virtual prototyping
phase but can be available from user evaluation and justifi-
cation.

This paper is organized as follows. First, we discuss con-
cepts in knowledge engineering for planning and their role in
plan analysis and model adaptation — processes that are gen-
erally performed in a post-design phase. We then focus on
the contribution of rationales to plan design and life cycle,
that is, the capture, analysis and re-use of rationales. Next,
we present a case study based on the benchmark planning
problem called Gold Miner. Following there is a discussion
of the results and some concluding remarks.

Knowledge Engineering and Post-Design

Requirements engineering (RE) and knowledge engineer-
ing (KE) principles have become important to the suc-

cess of the design and maintenance of real world planning
applications (McCluskey 2002). While pure Al planning
research focuses on developing reliable planners, KE for
planning research focuses on the design process for cre-
ating reliable models of real domains (McCluskey 2002;
Vaquero et al. 2007). A well-structured life cycle to guide
design increases the chances of building an appropriate plan-
ning application while reducing possible costs of fixing er-
rors in the future. A simple design life cycle is feasible for
the development of small prototype systems, but fails to pro-
duce large, knowledge-intense applications that are reliable
and maintainable (Studer, Benjamins, and Fensel 1998).

Research on KE for planning and scheduling has created
tools and techniques to support the design process of plan-
ning domain models (Vaquero et al. 2009; Simpson 2007).
However, given the natural incompleteness of the knowl-
edge, practical experience in real applications such as space
exploration (Jénsson 2009) has shown that, even with a
disciplined process of design, requirements from different
viewpoints (e.g. stakeholders, experts, users) still emerge af-
ter plan generation, analysis, revision and execution (Hatzi
et al. 2010). For example, the identification of unsatisfactory
solutions and unbalanced trade-offs among different quality
metrics and criteria (Jonsson 2009; Rabideau, Engelhardt,
and Chien 2000; Cesta et al. 2008) indicates a lack of un-
derstanding of requirements and preferences in the model.
These hidden requirements raise the need for iterative re-
modeling and tuning process. In some applications, finding
an agreement or a pattern among emerging requirements is
an arduous task (Jénsson 2009), making re-modeling a non-
trivial process.

A fundamental step in the modeling cycle is the analysis
of generated plans with respect to the requirements and qual-
ity metrics. Plan analysis naturally leads to feedback and the
discovery of hidden requirements for refining the model. We
call ‘post-design analysis’ the process performed after plan
generation, in which we have a base model and a set of plan-
ners that provide the solutions to be evaluated. In fact, liter-
ature on plan analysis has shown interesting tools and tech-
niques for plan animation (McCluskey and Simpson 2006;
Vaquero et al. 2007), visualization (e.g. Gantt charts), vir-
tual prototyping (Vaquero, Silva, and Beck 2010), and plan
querying and summarization (Myers 2006).

Unfortunately, visualization and simulation approaches,
such as the virtual prototyping used in our previous work
(Vaquero, Silva, and Beck 2010), can not assure that all
missing knowledge will emerge, specially in real planning
problems. In many real cases, user feedback and rationales
are hard to understand and compile; they are captured in
pieces over time, making patterns hard to be identified. An-
alyzing plans individually in such real cases will probably
not correctly emphasize the hidden requirements; they must
be captured, pieced together and recognized. The accumu-
lation of data from plan evaluation and their respective ra-
tionales can serve as a foundation for the identification of
domain knowledge that cannot clearly or easily be detected
during the first plan analysis interactions with visualization
techniques. In this work, we want to go a step further on
such investigation of post-design. We focus on studying the

capture, representation of human-centric feedback from plan
evaluation, in the form of rationales, and the reuse of such
rationales for further evaluations.

Rationales in Planning

In software engineering, a design rationale is essentially the
explicit recording of the issues, alternatives, tradeoffs, deci-
sions and justifications that were relevant to the elements in
the design. Rationales can be used in a number of ways in
the design of an artifact:

e to explore and evaluate the various design alternatives dis-
cussed during the design process.

e to determine the changes that are necessary to modify a
design.

e to facilitate better communication among people who are
involved in the design process.

e to assist in making decisions during the design process.

e in design verification, to check if the artifact/product re-
flects what the designers and the users actually wanted.

e to re-use past experiences and to avoid the same mistakes
made in the previous design.

Requirements engineering research has already reported
the importance of rationale-based approaches; they have
provided improvements in quality and reduction in costly
errors that outweigh the costs of capturing rationales (Ra-
maesh and Dhar 1994).

In planning literature, rationale has been generally re-
ferred to the “why a plan is the way it is”, and to “the rea-
son as to why the planning decisions were taken” (Polyank
and Austin 1998). These rationales, usually called plan ra-
tionales, have been recognized as an important type of infor-
mation (Wickler, Potter, and Tate 2006; Polyank and Austin
1998) that can influence not only the plan synthesis process
but the whole life cycle of a plan. In such life cycle, plan ra-
tionales can be acquired and used in the plan synthesis pro-
cess itself, or in plan analysis, evaluation, explanation, plan
indexing and retrieval, failure recovery, and plan communi-
cation.

Most of the work on plan rationales focuses on capturing
and using them to improve the plan generation. The exist-
ing approaches of capturing plan rationales are related to
the identification of planning decisions made by the plan-
ners (e.g., rationales in the form of causality, dependency)
that stem from the planning process itself (planning trace).
As an example of plan rationale related to a planner decision
might be “action A is chosen at the state S because it achieves
goal g” or “because A’s effects match an open condition of
partial plan p”. These planning decisions are usually ana-
lyzed and re-used for making further similar decisions. For
example, the usefulness of storing plan rationales to help
future planning has been demonstrated by several types of
case-based planners (Upal and Elio 1999). The case-based
approach proposes that each planning decision within a plan
be annotated with a rationale for making that decision. In
this case, the planners remember past planning solutions and
failures so they can be re-used or avoided in the future. The

idea behind storing these types of rationales is that a pre-
viously made and retrieved planning decision will only be
applied in the context of the current planning problem if the
rationales for it also holds in the current problem (Upal and
Elio 1999). The work of Wickler, Potter, and Tate (2006)
describes a recording process of rationales into a plan on-
tology in which a planner can record the justifications for
including components into the plan represented in the <I-
N-C-A> ontology within the framework called I-X. In addi-
tion, research on plan rationales has also focused on learning
and using such information to produce control knowledge or
plan-refinement strategies, which would, as a result, improve
the plan quality. A good review of plan rationales is provided
in (Polyank and Austin 1998).

Design and decision rationales coming from people have
received the least amount of attention in the planning liter-
ature. Differently from existing work on rationales in plan-
ning, we focus on acquiring human-centric rationales that
emerge from user feedback, observations and justifications
during plan evaluation. Based on general and individual cri-
teria, interests, feelings and expectations, the rationales from
plan evaluation generate explanations and justifications as to
why a plan was classified into a specific quality level. There-
fore, we extend here the concept of plan rationales with ra-
tionales that encompass “why a certain plan element does
or does not satisfy a criterion” or “why a certain plan does
or does not satisfy a preference”. Moreover, these rationales
could explain “why a certain metric does or does not satisfy
a given criterion” and “what is the effect of a given plan char-
acteristic or element in the plan quality” (e.g., it decreases or
increases the quality). As an example of plan rationale, one
might say that “the plan has a decreased quality because the
robot left a block too close to the edge of the table” or “the
plan has a high quality because the robot avoided repeatedly
passing through the two most crowded areas of the building
while cleaning it”. We call these explanations plan evalua-
tion rationales.

In this paper we focus on the implementation of the
processes related to plan evaluation and the acquisition
and re-use of rationales. We have designed a framework
called Post-Design Application Manager (postDAM) that
integrates itSIMPLE and a reasoning system called tuPro-
log! (a Java implementation of the Prolog engine). The im-
plemented framework supports users on the following pro-
cesses: classification of metrics and plans (plan evaluation),
and the acquisition and re-use of rationales. In this paper we
focus on the acquisition and re-use of rationales processes to
support plan analysis.

Acquiring Rationales for Plan Evaluations

One of the main goals of this work is to capture the knowl-
edge behind the classifications made upon the metric values
and the plans. Rationales for plan evaluation may refer to el-
ements and properties of the plan, including the plan struc-
ture itself. Therefore, it is necessary in the first place to con-
sider a formal foundation of terms, concepts, relations and
axioms to provide the base vocabulary of plan elements that

'tuProlog: see http://alice.unibo.it/xwiki/bin/view/Tuprolog/.

can be used to specify a rationale. In this work, such a formal
foundation is the Plan Ontology. Before introducing how ra-
tionales are captured and represented, we first describe the
plan ontology utilized in the postDAM.

Representation of Evaluated Plans

As mentioned by Tate (Tate 1996), a richer plan represen-
tation could provide the following: a common basis for hu-
man and system communication about plans; a shared model
of what constitutes a plan; mechanisms for automatic ma-
nipulation and analysis of plans; a target representation for
reliable acquisition of plan information and feedback; for-
mal reasoning about plans and re-use mechanisms. Such a
representation is often based on an ontology - a plan ontol-
ogy - which explicitly specifies the intended meanings of
the terms being used, such as processes, activities, the con-
straints over their occurrences, or the meaning of the plan-
ning problem itself (Griininger and Kopena 2005).

Among different ontologies for representing plans, we
have chosen the Process Specification Language (PSL)
(Schlenoff, Knutilla, and Ray 1996; Griininger and Menzel
2003; Griininger and Kopena 2005). PSL is an expressive
ontological representation language of processes (plans), in-
cluding activities and the constraints on their occurrences.
PSL has been designed as a neutral interchange ontology to
facilitate correct and complete exchange of process informa-
tion among manufacturing systems such as scheduling, pro-
cess modeling, process planning, production planning, sim-
ulation, project management, workflow, and business pro-
cess applications (Griininger and Kopena 2005). An inter-
esting aspect of the PSL architecture is that it supports a set
of extensions. A designer can extended PSL precisely to fit
their expressive needs. We use PSL as the base for the plan
ontology utilized in the postDAM framework.

Two of the most important terms in the core of PSL On-
tology are the activity and its occurrence. As described in
(Griininger and Menzel 2003), an activity is a repeatable pat-
tern of behavior, while an activity occurrence corresponds
to a concrete instantiation of this pattern. For example, the
term pickup(r,x) can denote the class of activities for pick-
ing up some object x with robot r, and the term move(rx,y)
can refer to the class of activities for moving robot r
from location x to location y. The ground terms such as
pickup(Robotl,BlockA) and move(Robotl,LocA,LocB) are
instances of these classes of activities, and each instance can
have different occurrences (e.g., two different occurrences
of move(Robotl,LocA,LocB) can appear in plan). In fact, ac-
tivities may have several or no occurrences. The relationship
between activities and activity occurrences is represented by
the occurrence_of{o0,a) relation. Any activity occurrence cor-
responds to a unique activity. Object is also a term in PSL-
core ontology. An object might be an argument of activities
or fluents. Fluents are used to describe facts. For example,
at(Robotl,LocA) is a fluent in PSL while Robotl and LocA
are objects. Moreover, the term State is also used in PSL
ontology, in its extensions. States may refer to a particular
situation of the domain or to a fluent. Relationships such
as prior(f,0) and holds(f,0) denote, respectively, a fluent (or
state) f that holds prior to the activity occurrence o and af-

ter such occurrence. The complete lexicon of the language
is detailed in the PSL website.

As opposed to most applications of the PSL ontology, in
this work we focus on the representation of plans generated
by automated planners. Therefore, additional semantics and
vocabularies must be considered. We have extended the PSL
lexicon to include the terms, characteristics and vocabulary
of Al planning, including domain, problem, operators, pre-
and post-conditions, objects, fluents that define states, plan,
metrics, and plan quality. Table 1 summarizes such addi-
tional terms and vocabulary used in the postDAM frame-
work to represent a plan and its quality.

domain(d) d is a domain
problem(i)
problem_of{i,d)

problem_solving_acti-

4 is a problem instance

4 is a problem instance of d

a the problem-solving activity of problem
vity_of(a,i) instance of

plan(p) pis aplan

p is a solution to the problem 4 of domain d

solution_of(p,d,i)
Sfluent_of(f.s)

f is a fluent of the state s. A set of fluents
defines a state

numeric fluent_of{f,v,s) f is a numeric fluent with value v in the state s

positive_precondition(a,f) f is a precondition of a

negative_precondition(a,f)
effect(a,f)
negative_effect(a,f)
metric(m)

f is a negative precondition of a

fisaeffectof a

f is a negative effect of a

m is a metric

metric_value(p,m,v)
metric_quality(p,m,q)
quality(p,q)

m has value v in plan p

m has quality value g in plan p

p has quality value g

Table 1: Addition terms and relations to PSL Ontology used
in postDAM

As an example of the ontological representation of plans
in postDAM, let us suppose a simple planning problem from
the classical blocks world domain in which block B must
be unstacked from block A and put on the table. A plan
with two actions solves the problem. In such example, the
plan structure is represented along with the basic informa-
tion about domain and problem, as well as the initial state.
Figure 1 illustrates the two blocks example, along with basic
concepts and elements of the proposed PSL extension (some
of the terms are omitted in the figure to provide a clear view
of ontology structure). The top area of Figure 1 illustrates the
terms of the domain of application and the problem, whereas
the bottom illustrates the plan structure.

Reasoning about a given plan would require the proper
encoding of the PSL ontology, including the plan represen-
tation, action specifications and propagation rules. Such rea-
soning could be used to infer or check plan properties and
characteristics (e.g. to infer in which state a given goal or
fluent is achieved). We use Prolog for encoding the ontology
in the postDAM framework.

2PSL is available at http://www.mel.nist.gov/psl/ontology.html.

Q — — ‘ TwoBlocks

BlocksWorld solution\ of o
‘ Activity PlanTwoBlocks
subactivity ——< |~ cubactivty
| Putdown(x) Pickup(x)
\ ocgurrence _of

Plan p1 | Quality=1.0
» occurrence_of S~ occurrence_of
| root-oce leaf-occ |

o1 next_occ o2

Stacﬂx,y)

Unstack(x,y)
preconditions effects [)

unstac/k(bloci(B;b‘lockA) putdbwn(BiockB)
prioy” K“‘hglds prior “holds

so() () s [) s2
— ey g

Figure 1: An illustration of the plan structure in the plan
ontology used in postDAM

Representation of Rationales for Plan Evaluations

We aim at rationales that explain what affects the quality
of plans (positively and negatively) and consequently why
a plan has a given classification (including factual reasons
or preferences). Conceptually, plan evaluation rationales in
postDAM have the following straightforward format:

if < condition > then < ef fect on plan quality >

ey

The condition of the rationale can be any logical sentence
involving the properties of a plan, while the effects are pre-
defined terms that specify whether the condition increases
or decreases the quality of the plan. A rationale may refer to
the effect on plan quality or on a particular metric quality.
For example, one may have the following evaluation ratio-
nale: “if (actionl occurs after action2 AND action3 is the
last action in the plan) then (plan quality decreases)”.

In order to represent rationales, we use the plan on-
tology described above along with a new vocabulary to
capture the concepts of plan evaluation rationale. The vo-
cabulary includes an important term called rationale(r)
to represent an evaluation rationale. The relation qual-
ity_rationale_of{rp,j) denotes the relationship between a ra-
tionale r and the plan p along with a user justification
j. Depending on the ontology encoding, the justification
might be a string object such as in the following exam-
ple: quality_rationale_of(rl,pl, “when actionl occurs after
action2 and action3 is the last action in the plan the qual-
ity is decreased”). The effects on plan quality are repre-
sented using the relations affect_plan_quality(r,p,e) and af-
fect_metric_quality(r,p,m,e) where e can be either increase or
decrease. The former refers to the direct effect on the quality
of a plan, while the latter refers to the effect on a particular
metric m. The following sentences represent the conceptual
format of the rationale (sentence 1) using the above extended
vocabulary:

< condition >— quality_rationale_of (r,p, j).
quality_rationale_of (r,p,j) —
af fect_plan_quality(r, p,e).

In the first sentence, if condition is satisfied then relation
quality_rationale_of becomes true, and consequently rela-
tion affect_plan_quality also becomes true according to the
second sentence. The rationale’s condition is represented us-
ing the vocabulary defined in the plan ontology.

We also consider different abstraction levels of ratio-
nales in the extended ontology. Rationales can be classi-
fied as problem-dependent, domain-dependent or domain-
independent. Problem-dependent rationales are those that
are only applied in the context of a particular problem in-
stance (e.g., “if a robot moves to location 7 the plan has a
low quality”). Domain-dependent rationales are those that
are applicable in all problem instances of a particular do-
main (e.g., “if any robot performs a loop in its path the re-
sulting plan quality is low”). Finally, domain-independent
rationales are those applied to any planning domain or set of
domains (e.g., “if a vehicle performs a loop of movements
then the quality of the plan will be decreased”). The relation
used to represent these concepts is the abstraction_level(rl),
where [refers to one of the three levels of abstraction. The
level of abstraction of rationales assists their re-use as will be
discussed in th next section. Table 2 summarizes the terms
and relations for representing rationales in postDAM.

rationale(r) 7 is a rationale

quality_rationale_of(r,p,j) 7 is a rationale of plan p with justification j
affect_plan_quality(r,p,e)

affect_metric_quality(r,p,m,e)

7 describes the effect e on quality of p

r describes the effect e on quality of metric
mof p

abstraction_level(rl) [is the abstraction level of r

Table 2: Rationales terms and relations in postDAM

The following examples represent two rationales using
the vocabulary in Table 2.
rationale(rl).
abstraction_level(r1, problem — dependent).
Vp, 0, sg - leaf _occ(o, p) A holds(sg, 0)A
fluent_of (at(robotl,locl), sg) —

quality_rationale_of (rl,p, j1).
Vp - quality_rationale_ of(rl p,jl) —

af fect_plan_quality(rl,p, increase).

rationale(rQ}.
abstraction_level (r2, problem — dependent).
Vp, 0,89, - leaﬁocc(o,p) A holds(sg, 0)A

numeric_fluent_of (traveleddistance(robotl, v), sg)A

v > 50 — quality_rationale_of (12 p,jZ)
Vp - quality_rationale_of (r2,p, j

af fect-metric_quality(r2, p, fuelused, decrease).

The above example represents two rationales, r1 and r2.
The first rationale can be interpreted as follows: “The qual-
ity of a plan increases whenever the robot! is at locl in the
state generated by the last activity occurrence in the plan
(leaf-occ(o,p)), and the goal state is still sg”. The second ra-
tionale has the following meaning: “The quality of the met-
ric fuelused decreases whenever the traveled distance of the
robotl (variable v) is greater than 50 to the goal state”. These
rationales are manually inserted and maintained by users us-
ing itSIMPLE’s interface.

Re-using Rationales for Plan Evaluation
During the plan evaluation, stored rationales can be re-used
to support classification and justification. When a new plan
is created, we can use past evaluations to identify the good
and bad characteristics of the plan. In postDAM, the re-use
process involves the tool itSIMPLE, the reasoning interface
tuProlog and the Plan Analysis Database. The information
from the abstraction level of rationales is essential to the re-
use process. Supposing a new plan pn is generated to solve
a problem instance 7 in the domain d, the process of re-using
existing rationales is as follows:

1. itSIMPLE first translates the domain operators, the ob-
jects, the problem instance, and the new plan pn to the
PSL plan ontology.

2. itSIMPLE accesses the plan analysis database to select
the following rationales: (1) problem-dependent ratio-
nales that are applied specifically to the problem ¢; (2)
domain-dependent rationales that are applied to any prob-
lem instance in domain d; and (3) domain-independent
rationales that are applied to any planning domain.

3. The translated plan and selected rationales are put to-
gether with the PSL-Core and core theories forming a
knowledge base to the plan.

4. The knowledge base is then read by the tuProlog for in-
ference requests.

5. itSIMPLE accesses tuProlog to check which rationales are
applied to plan pn. itSIMPLE requests the inference of
quality_rationale_of(R,p1,J), where R and J are variables
to be instantiated by the Prolog engine.

6. The list of applied rationales (instantiated values of vari-
able R), along with their respective justification (instanti-
ation values of variable .J), is read by itSIMPLE and at-
tached to the new plan pn (in the XML format).

The re-used rationales can be seen in the evaluation sum-
mary provided by itSIMPLE.

Case Study

In this section, we present a case study using a benchmark
domain from the International Planning Competitions (IPC)
to evaluate the acquisition process of plan evaluation ratio-
nales in a post-design domain adaptation: the Gold Miner
domain. This domain was chosen from a recent KE compe-
tition, because it is intuitive and has a clear correspondence
between objects in the real and virtual world.
The procedure used for the case study is as follows:

1. We gather all rationales found and observations made
during a virtual prototyping phase of plans generated by
eight state-of-the-art planners: SGPlan5, MIPS-xxI 2006,
LPG-td, MIPS-xx1 2008, SGPlan6, Metric-FF, LPG 1.2,
and hspsp. For more details about the virtual prototyping
phase see (Vaquero, Silva, and Beck 2010)

2. We represent the rationales in itSIMPLE using the pro-
posed extension of the PSL ontology and the acquisition
process described above.

3. We then analyze the rationales regarding their applicabil-
ity, re-use and generality.

The Gold Miner Domain

The Gold Miner is a benchmark domain from the learning
track of IPC-6 (2008). In this domain, a robot is in a mine
and has the objective of reaching a location that contains
gold. The mine is represented as a grid in which each cell
contains either hard or soft rock. There is a special location
where the robot can either pickup an unlimited supply of
bombs or pickup a single laser cannon. The laser cannon
can be used to destroy both hard and soft rock, whereas the
bomb can only penetrate soft rock. If the laser is used to
destroy a rock that is covering the gold, the gold will also
be destroyed. However, a bomb will not destroy the gold,
just the rock. This particular domain has a simple optimal
strategy3 in which the robot must (1) get the laser, (2) shoot
through the rocks (either soft of hard) until it reaches a cell
neighboring the gold, (3) go back to get a bomb, (4) explode
the rock at the gold location, and (5) pickup the gold. In
this case study we used the propositional typed PDDL model
from the testing phase of IPC-6.

During the virtual prototyping and model refinement cy-
cles performed with the Gold Miner domain described in
(Vaquero, Silva, and Beck 2010), a set of observations were
made. We summarize these observations as follows:

e One planner generated invalid solutions in which the
robot used the laser at the gold location, destroying the
gold (Vaquero, Silva, and Beck 2010).

e Some planners provided (valid) plans in which the laser
cannon was fired at an already clear location.

e The laser cannon was left in a different position from the
initial one. It would be better if the robot could leave the
laser only at the same spot as the bomb source.

e Unnecessary move actions were present in some plans.

In this case study, we address each one of the above ratio-
nales in the postDAM framework.

The undesirable firing behavior of the laser cannon nat-
urally decreases the quality of the plan, and specifically to
the laserusage metric. The following rationale rG M1 de-
notes the issue of firing to an already clear position (the el-
ement jGM 1 represents the user’s justification of rationale
rGM1):

rationale(rGM1).

Vp,o,t, z,y, s - subactivity_occurrence(o, p)A
occurrence_of (o, firelaser(t,z,y))A
prior(s,0) A fluent_of (clear(y),s) —
quality_rationale_of (rGM1,p, jGM1).

Vp - quality_rationale_of (rGM1,p, jGM1) —
af fect_plan_quality(rGM1,p, decrease).

The justification jG M1 could be encoded as a string like
JGM1 = ’Laser fired to nowhere (clear position), at ° + y.
Such a justification will be instantiated with every possibil-
ity of firing the laser cannon to a clear position y. itSIM-
PLE captures and records these instantiations in the XML
representation of the plan as well as in the database. The
evaluations summary provided by the tools shows such jus-
tifications to the users.

3IPC-6 2008. http://eecs.oregonstate.edu/ipc-learn/

The above rationale is applicable to plans of any prob-
lem instances in the Gold Miner domain and, therefore,
can be considered in this work as a domain-dependent ra-
tionale (abstraction_level(rGM1, domain-dependent)).
However, one might consider it as a domain-independent
rationale, applicable to a class of domains in which action
firelaser(t,x,y) exists and fluent clear is used as one of
the effects.

A specific undesirable firing behavior was also detected in
some of the plans generated for the problem instance gold-
miner-target-5x5-01 from IPC. In this case, two laser can-
non shots were made at rock locations that did not belong to
areasonable path to the gold position, consequently decreas-
ing plan quality. The following rationale G M2 represents
such situation (the objects node2:1 and node3il represent
the specific locations where the laser was fired):

rationale(rGM2).
Vp,0l,02,t - occurrence_of(p, plangoldminertarget-

5x501) A subactivity_occurrence(ol, p)A
subactivity_occurrence(02, p)A
occurrence_of(ol, firelaser(t, node2i0, node2il))A
occurrence_of (02, firelaser(t,node3i0, node3il)) —
quality_rationale_of (rGM2,p, jGM?2).

Vp - quality_rationale_of (rGM2,p, jGM2) —

af fect_plan_quality(rGM2,p, decrease).

The condition of the rationale rGM2 checks the
existence of two specific firing occurrences. Note
that rationale rGM?2 is restricted to solutions of the
problem gold-miner-target-5x5-01 by the condition
occurrence-of (p, plangoldminertarget5z501) (where
plangoldminertarget5x501 is the activity of solving problem
gold-miner-target-5x5-01). Therefore, this is a problem-
dependent rationale (abstraction_level (rGM2,problem-
dependent)).

During the virtual prototyping phase, we raised the issue
of the position in which the laser cannon was left at the
goal state. Leaving the cannon at the same position as the
bomb source was preferred. The following rationale rGM 3
denotes such a preference and expectation:

rationale(rGM3).

Vp, 0, sg,x - leaf _occ(o,p) A holds(sg, o)\
fluent_of (bombat(x), sg)A
fluent_of (laserat(x), sg) —
quality_rationale_of (rGM3,p, jGM3).

Vp - quality_rationale_of (rGM3,p, jGM3) —
af fect_plan_quality(rGM3, p, increase).

The condition of rG M 3 checks the existence of both flu-
ents bombat(x) and laserat(x) (where x is a location) at
the goal state sg. In this case study, the rationale rGM 3 is
considered domain-dependent since it is applicable for all
synthesized solutions for the Gold Miner domain.

In all refined models resulted from the virtual prototyp-
ing phase, unnecessary move actions appear in their respec-
tive plans. During the experiment, the rationales for detect-
ing and explaining such undesirable characteristic evolve
from a specific approach to a more general one (reaching a
reusable representation). Due to limited space, we will focus
on an example of rationale that referred to some loops in the

robot’s path. This rationale captured during the experiment
has the following representation:

rationale(rGM4).

Vp, 01,02, a,t,x1, 22 - subactivity_occurrence(ol, p)A
subactivity_occurrence(02, p)A
next_subocc(ol, 02, a)A
occurrence_of(ol, move(t,x1,x2))A
occurrence_of (02, move(t,x2,x21)) —
quality rationale_of (rGM4, p, jGM4).

Vp - quality_rationale_of (rGM4,p, jGM4) —
af fect_plan_quality(rGMA4,p, decrease).

Rationale G M4 refers to all sequences of move actions
that take a robot from location x1 to 22 and then back to
x1 immediately after that. As the re-modeling process pro-
gressed, more sophisticated explanations can be constructed
manually (Vaquero 2011). For example, a rationale could be
defined to detect any complex loop (x1, 22, ..., zn, x1) per-
formed by a robot. The following rationale representation
captures any outer loop in a single robot’s path:

rationale(rGMS5).

Vp, 01,02, x,y, 2, a - subactivity_occurrence(ol, p)A
subactivity_occurrence(02, p)A
occurrence_of(ol, move(t, z,y))A
occurrence_of (02, move(t,y, z))A
next_subocc(ol, 02, a) —
consecutive_move(ol, 02,t,p

Vp,o0l,02,03,x,y, z,w, h,a-
subactivity_occurrence(ol,
subactivity_occurrence(o
subactivity_occurrence(o
occurrence_of(ol, move(t,x,y))A
occurrence_of (02, move(t, z A
occurrence-of (03, move(t, h, z))A
min_precedes(ol, 02, a) A next_subocc(03, 02, a)A
consecutive_move(ol, 03,t,p) —
consecutive_move(ol, 02,t, p).

Vp, 01,02, x,y, 2, a - subactivity_occurrence(ol, p)A
subactivity_occurrence(02, p)A
occurrence_of(ol, move(t,x,y))A
occurrence_of (02, move(t, z,x))A
min_precedes(ol, 02, a)A
consecutive_move(ol, 02,t,p) —
loop_of -move(ol,02,t,p).

Vp,o0l,011,02,022,x,y,l, h,a
occurrence_of (ol, move(t, z,1))A
occurrence_of(02, move(t, h,x))A
min_precedes(ol, 02, a) A next_subocc(oll, 01, a)A
next_subocc(02, 022, a) A
occurrence_of(oll, move(t,y, z))A
occurrence_of (022, move(t,x,y) —
has_previous_loop_move(ol, 02,t).

Vp,0l,02,t,x,y, z - subactivity_occurrence(ol, p)A
subactivity_occurrence(02, p)A
occurrence_of(ol, move(t,x,y))A
occurrence_of(02, move(t, z, z)) A
—has_previous_loop-move(ol, 02, t)A
loop-of _move(ol,02,t,p) —
quality rationale_of (rGM5, p, jGM5).

).
PA
2,p)A
3, p)A
,y)))

)
Y

Vp - quality_rationale_of (rGM5,p, jGM5) —
af fect_plan_quality(rGMS5, p, decrease).

In the above rationale, we define new relations to as-
sist the identification of outer loops (for this context only)
such as consecutive_move(ol,02,t,p), loop_of-move(ol,o02,
tp) and has_previous_loop_move(ol,02,3). The relation
consecutive_move(ol,02,t,p) and loop_of-move(ol,02,t,p)
together capture any consecutive sequence of move
occurrences that constitutes a loop, whereas relation
has_previous_loop_move(ol,02,t) filters the outer loops. It
is indeed possible to capture the existing inner loops per-
formed by the robot, but we see them as redundant informa-
tion when we capture the outer ones. The interesting point
here is that we can design and create any supporting concept,
relations and axiom for defining a rationale condition.

The rationales represented in this case study can be re-
used and applied in a new plan evaluation process. Using
the integration between itSIMPLE and the reasoning system
(tuProlog) we can automatically generate some justifications
to the initial plan evaluation made by itSIMPLE. All justifi-
cations are based on the rationales acquired and inserted in
the Plan analysis Database in this case study. For example,
if a plan has a loop in the robot’s path, the framework will be
able to detect such a loop and pinpoint where it is happening
to the user, as well as how it is affecting the plan quality (in
this case negatively).

Discussion

The proposed acquisition process of human-centered ratio-
nales has shown to be feasible using an ontological ap-
proach. The case study provides an indication that these ra-
tionales can be an important source of essential knowledge
such as user preferences. The reuse of past evaluation ex-
perience gives an important starting point in any analysis of
a newly generated plan. Such re-use not only supports the
knowledge acquisition process but also the decision process
on already built applications. In the latter case, rationales
can be applied to identify the trade-offs of plans selected for
execution, knowing beforehand their advantages and disad-
vantages.

The case study has also shown that rationales can evolve
during design and over time. As designer becomes familiar
with the observations and users’ intention, the representation
of the collected rationales becomes more accurate, encom-
passing the exact envisaged situations. Therefore, rationales
have their own maturity process in the design cycle.

Although we have not implemented the cross-project re-
use of rationales in this work, it is possible to infer from the
case study some examples about what could be enhanced
in planning design patterns. In the Gold Miner domain ex-
periment, the rationale related to the undesirable movement
loops is a potential candidate for being attached to design
patterns such as the transportation described in (Long and
Fox 2000). Moreover, metrics utilized in the experiments
could enhance the design patterns; some of them can be used
in a number of planning applications such as the travel dis-
tance (a common quality measure in transportation and nav-
igation benchmark domains).

We believe that the matching process between past eval-
uations and design patterns can speed up the design process
itself, improve quality, reduce cost, and decrease problem
fixing issues in real planning applications.

Conclusion

We have described a post-design framework that integrates
a number of tools to assist the discovery of missing require-
ments, to support evaluation rationale acquisition and re-use,
and to guide the model refinement cycle. In previous work
we demonstrated that following a careful post-design analy-
sis, we can improve not only plan quality but also solvabil-
ity and planner speed (Vaquero, Silva, and Beck 2010). In
this paper we demonstrated how evaluation rationales can
be captured, represented and re-used. We discuss that this
type of human-centric feedback can be useful and reusable
in further plan evaluations and in other planning domains. In
a real planning application, the analysis process that follows
design becomes essential to have the necessary knowledge
represented in the model.

References

Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci, E.
2008. Validation and verification issues in a timeline-based
planning system. In Proceedings of the ICAPS 2008 Work-
shop on Knowledge Engineering for Planning and Schedul-
ing (KEPS).

Daughtry, J. M.; Burge, J. E.; Carroll, J. M.; and Potts, C.
2009. Creativity and rationale in software design. ACM
SIGSOFT Software Engineering Notes 34:27-29.

Griininger, M., and Kopena, J. B. 2005. Planning and
the Process Specification Language. In Proceedings of the
ICAPS 2005 Workshop on the Role of Ontologies in Plan-
ning and Scheduling, 22-29.

Griininger, M., and Menzel, C. 2003. The Process Specifica-
tion Language (PSL) theory and applications. Al Magazine
24(3):63-74.

Hatzi, O.; Vrakas, D.; Bassiliades, N.; Anagnostopoulos, D.;
and Vlahavas, I. P. 2010. A visual programming system for

automated problem solving. Expert Systems With Applica-
tions 37:4611-4625.

Jénsson, A. K. 2009. Practical Planning. In ICAPS 2009
Practical Planning & Scheduling Tutorial.

Long, D., and Fox, M. 2000. Automatic Synthesis and use
of Generic Types in Planning. In In Artificial Intelligence
Planning and Scheduling AIPS-00, 196-205. Breckenridge,
CO: AAAI Press.

McCluskey, T. L., and Simpson, R. M. 2006. Tool support
for planning and plan analysis within domains embodying
continuous change. In Proceedings of ICAPS 2006 Work-
shop on Plan Analysis and Management.

McCluskey, T. L. 2002. Knowledge Engineering: Issues for
the AI Planning Community. Proceedings of the AIPS-2002
Workshop on Knowledge Engineering Tools and Techniques
for Al Planning. Toulouse, France 1-4.

Myers, K. L. 2006. Metatheoretic Plan Summarization and
Comparison. In Proceedings of the 16th International Con-
ference on Automated Planning and Scheduling (ICAPS-06).
Cumbria, UK: AAAI Press.

Polyank, S., and Austin, T. 1998. Rationale in Planning:
Causality, Dependencies and Decisions. Knowledge Engi-
neering Review 13(3):247-262.

Rabideau, G.; Engelhardt, B.; and Chien, S. 2000. Using
generic preferences to incrementally improve plan quality.
In Proceedings of the Fifth International Conference on Ar-

tificial Intelligence Planning and Scheduling. Breckenridge,
CO.: AAAI Press.

Ramaesh, B., and Dhar, V. 1994. Representing and main-
taining process knowledge for large-scale systems develop-
ment. IEEE Expert: Intelligent Systems and Their Applica-
tions 9(2):54-59.

Schlenoff, C.; Knutilla, A.; and Ray, S. 1996. Unified
process specification language: Functional requirements for
modeling processes. In National Institute of Standards and
Technology.

Simpson, R. M. 2007. Structural Domain Definition us-
ing GIPO IV. In Proceedings of the Second International
Competition on Knowledge Engineering for Planning and
Scheduling.

Studer, R.; Benjamins, V. R.; and Fensel, D. 1998. Knowl-
edge Engineering: Principles and Methods. Data and
Knowledge Engineering 25(1-2):161-197.

Tate, A. 1996. Representing plans as a set of constraints
- the I-N-OVA model. In Proceedings Third International
Conference on Al Planning Systems (AIPS-96). Edinburgh:
AAAI Press.

Upal, M. A., and Elio, R. 1999. Learning rationales to gen-
erate high quality plans. In Proceedings of the Twelfth In-
ternational FLAIRS Conference, 371-377. Menlo Park, CA,
USA: AAAI Press.

Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An integrated Tool for Designing Plan-
ning Environments. In Proceedings of the 17th International
Conference on Automated Planning and Scheduling (ICAPS
2007). Providence, Rhode Island, USA: AAAI Press.

Vaquero, T. S.; Silva, J. R.; Ferreira, M.; Tonidandel, F,;
and Beck, J. C. 2009. From Requirements and Analysis to
PDDL in itSIMPLE3.0. In Proceedings of the Third Interna-
tional Competition on Knowledge Engineering for Planning
and Scheduling, ICAPS 2009, 54-61.

Vaquero, T. S.; Silva, J. R.; and Beck, J. C. 2010. Improv-
ing Planning Performance Through Post-Design Analysis.
In Proceedings of the ICAPS 2010 Workshop on Scheduling
and Knowledge Engineering for Planning and Scheduling
(KEPS), 45-52.

Vaquero, T. S. 2011. Post-Design Analysis for Al Planning
Applications. Ph.D. Dissertation, Polytechnic School of the
University of Sdo Paulo, Brazil.

Wickler, G.; Potter, S.; and Tate, A. 2006. Recording Ratio-
nale in <I-N-C-A> for Plan Analysis. In Proceedings of the
ICAPS 2006 Workshop on Plan Analysis and Management.

