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Abstract

In this paper, we investigate how knowledge acquired
during a plan analysis phase that follows model de-
sign affects planning performance. We describe a post-
design framework that combines a knowledge engi-
neering tool and a virtual prototyping environment for
the analysis and simulation of plans. Our framework
demonstrates that post-design analysis supports the dis-
covery of missing requirements and guides the model
refinement cycle. We present two case studies using
benchmark domains and eight state-of-the-art planners.
Our results demonstrate that significant improvements
in plan quality and an increase in planning speed of up
to three orders of magnitude can be achieved through a
careful post-design process. We argue that such a pro-
cess is critical for deployment of planning technology
in real-world applications.

Introduction
Over the last decade, both research effort and industry inter-
est have been directed towards the application of AI Plan-
ning techniques to solve real-life problems. As a result, it
has become clear that the process of developing algorithms
for synthesizing plans forms only one part of the complex
design life cycle of a real-world planning application. Most
of the problems identified as suitable to being solved with a
planning approach are characterized by a need for substan-
tial knowledge management, reasoning about actions and a
careful consideration of quality metrics and criteria. The
design process of real applications must have a strong com-
mitment to these prerequisites in order to result in reliable,
deployed planning systems.

Design decisions about knowledge modeling and plan-
ning algorithm development drastically affect the quality of
plans. From a planning technology perspective, in a ce-
teris paribus scenario, factors such as the improper choice
of planning techniques and heuristics may lead to the gener-
ation of poor quality solutions. From a knowledge engineer-
ing perspective, lack of knowledge, ill-defined requirements
and inappropriate definition of quality metrics and prefer-
ences can contribute directly to malformed models and, con-
sequently, to unsatisfactory plans, independent of the plan-
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ning algorithm. Traditionally, much of planning research
has focused on the former perspective, in which new algo-
rithms are developed and tuned to obtain high performance
and better plans. Not much investigation has been done on
the knowledge engineering (KE) perspective, especially re-
modeling the planning problem based on observations and
information that emerge during the design process itself.

In plan analysis, hidden knowledge and requirements cap-
tured from human feedback raise the need for a continuous
re-modeling process. The capture and use of such human-
centered feedback is still an unexplored area in the knowl-
edge engineering for AI planning. Moreover, the extent of
impact of such feedback and re-modeling on the planning
performance is unknown. In order to deal with such post-
design analysis, techniques such as simulation, visualization
and virtual prototyping, commonly used in other disciplines
(Cecil and Kanchanapiboon 2007), can help design teams
identify new requirements and inconsistencies in the model.

In this paper, we present a post-design tool for AI plan-
ning that combines the open-source KE tool itSIMPLE (Va-
quero et al. 2007) and a virtual prototyping environment
to support identification of inconsistencies and hidden re-
quirements. We describe two case studies showing that post-
design not only improves plan quality, but also improves
planning performance even in benchmark problems. The
main contributions of this work are:

1. The creation of a framework to support post-design anal-
ysis for planning;

2. Two case studies that demonstrate that improvements in
plan quality, an increase in solvability and a reduction of
planning time of up to three orders of magnitude can be
achieved through a careful post-design process.
This paper is organized as follows. First, we discuss con-

cepts in knowledge engineering for planning and their role
in plan analysis and post-design. Then, we present the post-
DAM project describing the integration of itSIMPLE and a
virtual prototyping tool. Next, we present two case studies
and the results. We conclude with a discussion of our results.

Knowledge Engineering and Post-Design
Requirements engineering (RE) and knowledge engineering
(KE) principles have become important to the success of the
design and maintenance of real world planning applications.



While pure AI planning research focuses on developing re-
liable planners, KE for planning research focuses on the de-
sign process for creating reliable models of real domains
(McCluskey 2002; Vaquero et al. 2007). A well-structured
life cycle to guide design increases the chances of building
an appropriate planning application while reducing possible
costs of fixing errors in the future. A simple design life cycle
is feasible for the development of small prototype systems,
but fails to produce large, knowledge-intense applications
that are reliable and maintainable (Studer, Benjamins, and
Fensel 1998).

Research on KE for planning and scheduling has cre-
ated tools and techniques to support the design process of
planning domain models (Vaquero et al. 2009b; Simpson
2007). However, given the natural incompleteness of the
knowledge, practical experience in real applications such as
space exploration (Jónsson 2009) has shown that, even with
a disciplined process of design, requirements from different
viewpoints (e.g. stakeholders, experts, users) still emerge
after plan generation, analysis and execution. For exam-
ple, the identification of unsatisfactory solutions and unbal-
anced trade-offs among different quality metrics and crite-
ria (Jónsson 2009; Rabideau, Engelhardt, and Chien 2000;
Cesta et al. 2008) indicates a lack of understanding of re-
quirements and preferences in the model. These hidden re-
quirements raise the need for iterative re-modeling and tun-
ing process. In some applications, finding an agreement or
a pattern among emerging requirements is an arduous task
(Jónsson 2009), making re-modeling a non-trivial process.

A fundamental step in the modeling cycle is the analysis
of generated plans with respect to the requirements and qual-
ity metrics. Plan analysis naturally leads to feedback and the
discovery of hidden requirements for refining the model. We
call ‘post-design analysis’ the process performed after plan
generation, in which we have a base model and a set of plan-
ners and investigate the solutions they generate. Some of the
AI planning research on plan analysis has developed tools
and techniques for plan animation (McCluskey and Simpson
2006; Vaquero et al. 2007), visualization (e.g. Gantt charts),
and plan querying and summarization (Myers 2006). How-
ever, such work does not explore the effects of the missing
knowledge and the re-modeling loop in the planning pro-
cess. The investigation of modern analysis techniques such
as simulation for planning it is still an emerging field.

The postDAM Project

The postDAM project aims to investigate post-design tech-
niques to enhance the modeling cycle and increase the qual-
ity of plans. The project focuses on combining some of the
recently developed tools in KE for planning with virtual pro-
totyping. Virtual prototyping is commonly used in other en-
gineering fields (e.g. mechanical engineering) to validate
models and identify missing requirements (Cecil and Kan-
chanapiboon 2007) where producing a real prototype is im-
practical and costly.

The project proposes a framework that integrates the KE
tool, itSIMPLE (Vaquero et al. 2009b), and the 3D content

creation environment, Blender1, for virtual prototyping. The
former is a robust design system dedicated to AI planning in
which a set of languages and validation engines are used to
create domain models in a disciplined design process. The
latter is an open source tool, widely used for creating games
and animations. Blender provides several mechanisms for
the definition and simulation of 3D elements, including their
physical properties (such as mass, collision, gravity, inertia,
velocity, strength, and sound effects), to mimic some real
world characteristics.

The integration of these tools aims to close the design
loop, from requirements acquisition to plan analysis in the
post-design. In this loop, itSIMPLE is responsible for sup-
porting users during design and re-design of the models
while Blender, properly integrated with the KE tool, encom-
passes the simulation of plans provided by planners.

During model construction in itSIMPLE, designers per-
form the initial design phases to develop domain models in
the Unified Modeling Language. An important step in this
design process is the identification and specification of qual-
ity metrics, along with their respective importance. These
quality metrics are characterized in the form of weighted
domain or plan variables, i.e., numeric variables that are di-
rectly (or indirectly) related to the quality of plans. Exam-
ples of domain and plan variables are: the number of occur-
rences of a specific action in a plan; the total consumption of
fuel; the number of robots used for a particular purpose; and
the energy remaining in a battery. The definition of quality
metrics in itSIMPLE uses the approach described in (Ra-
bideau, Engelhardt, and Chien 2000). During simulation,
the designer can analyze and evaluate different solutions
while contrasting them based on the quality metrics. Differ-
ent viewpoints can communicate during 3D visualization in
order to validate and adjust the model based on their impres-
sions. Figure 1 illustrates this iterative refinement process.

Figure 1: The post-design framework

In order to provide an integrated design iteration, a com-
munication channel between itSIMPLE and Blender was de-
veloped in which data is sent from the KE tool to the 3D

1Blender, available at www.blender.org



environment. The data sent by itSIMPLE consist of the do-
main model, the problem instance and the quality metrics to
be considered (all in an XML representation (Vaquero et al.
2009b)). Since users can run several state-of-the-art plan-
ner from the itSIMPLE’s GUI, the generated plans are sent
directly to the 3D simulator.

Blender reads the data from itSIMPLE and generates a
virtual prototype of the model based on a predefined library
of graphical objects and their physics. These objects are de-
signed in such a way that they can perform and react to the
actions defined in the model from itSIMPLE. The Blender
application reads the main elements of the domain and prob-
lem instance such as classes of objects, the objects and their
properties, and additional information regarding the graphi-
cal position of the elements that has been stated by the user.
Classes are used to identify the necessary graphical elements
from the predefined library, while objects, properties and
location information are used to instantiate and initiate the
graphical elements in the initial scene. All the elements in
the problem instance definition are found in the 3D represen-
tation. Having the initial state established in the 3D scene,
the plan provided by a planner is then simulated (we assume
that plan actions are deterministic). In the simulation, the
actions are sent to each involved object, step-by-step. Each
object is implemented to act based on the instructions that
it is given. In each step of the simulation, the values of the
metrics are stored to provide a clear view of their changes
over the plan.

At the end of simulation, Blender 3D produces a plan re-
port that can be analyzed by users. The report contains the
evolution of the chosen quality metrics along with the cost
of the plan.

Case Studies
In this section, we present two case studies using bench-
mark domains from the International Planning Competi-
tions (IPC). The domains are the Gold Miner domain from
IPC-6 and the Storage domain from IPC-5. Both were cho-
sen from recent competitions based on the clear correspon-
dence between objects in the real and virtual world.

The procedure used for each case study is as follows:

1. We created an initial model in itSIMPLE guided by the
original PDDL representation to simulate the design pro-
cess. Since itSIMPLE generates PDDL output as a com-
munication language to planners, we verify that such out-
put is exactly the same as the original PDDL version of
the benchmark domain. This model is called Original.

2. We selected three problem instances from the 30 IPC in-
stances to be analyzed in-depth. The selected set of prob-
lem instances is called the design set. Eight planners were
chosen to be run (using default arguments) with a 20-
minute time-out for each problem instance.

3. In addition to the PDDL reproduction process, we used
itSIMPLE to define quality metrics for the domain.

4. Using the virtual prototype in Blender, we studied ev-
ery generated plan and its execution. With the analysis
and plan reports, we manually introduced modifications

to the model in itSIMPLE. We repeated the plan simu-
lation and model refinement, going back and forth with
new ideas and results, until we had two new models (A
and B) each representing one major change and a third
new model (AB) incorporating them both.

5. We then took the remaining 27 problem instances and
tested all four models (Original, A, B, and AB) with
the eight planners. We call this set of instances the testing
set.

In order to analyze the impact of the refinement cycle, we
compare the models A, B and AB to the Original over
all 27 problem instances from the testing set. This analysis
considers the changes on plan quality, plan length, speed,
and solvability. PDDL terms and elements are used to de-
scribe the adjustments made to the original model in the re-
modeling process to facilitate the explanation.

The Gold Miner Domain
The Gold Miner is a benchmark domain from the learning
track of IPC-6 (2008). In this domain, a robot is in a mine
and has the objective of reaching a location that contains
gold. The mine is represented as a grid in which each cell
contains either hard or soft rock. There is a special location
where the robot can either pickup an unlimited supply of
bombs or pickup a single laser cannon. The laser cannon
can be used to destroy both hard and soft rock, whereas the
bomb can only penetrate soft rock. If the laser is used to
destroy a rock that is covering the gold, the gold will also
be destroyed. However, a bomb will not destroy the gold,
just the rock. This particular domain has a simple optimal
strategy2 in which the robot must (1) get the laser, (2) shoot
through the rocks (either soft of hard) until it reaches a cell
neighboring the gold, (3) go back to get a bomb, (4) explode
the rock at the gold location, and (5) pickup the gold. In
this case study we used the propositional typed PDDL model
from the testing phase of IPC-6.

For our design set, we chose three problem instances con-
sidering the variety of the number of objects and difficulty.
The first (gold-miner-target-5x5-02) and the second (gold-
miner-target-5x5-01) instances have a 5x5 mine with dis-
tinct positions of gold, bombs, cannon, and soft and hard
rocks. The third instance (gold-miner-target-6x6-05) has a
6x6 mine also with a particular position of the domain ele-
ments.

The quality metrics chosen for this study are (1) the travel
distance of the robot (weight 2), (2) the bomb usage (weight
1), and (3) the laser cannon usage (weight 1). In itSIMPLE,
we specified these metrics as counters of the actions move,
detonatebomb, and firelaser, respectively. For this domain
we selected SGPlan5, MIPS-xxl 2006, LPG-td, MIPS-xxl
2008, SGPlan6, Metric-FF, LPG 1.2, and hspsp to solve the
problem instances.

During the first post-design analysis with the original
model and the design set, we carefully investigated all 24
generated plans through the 3D simulation using Blender.
Figure 2 shows an example of the simulation.

2IPC-6 2008. http://eecs.oregonstate.edu/ipc-learn/



Figure 2: Virtual prototype and simulation of the Gold
Miner domain. The robot is represented as a cube in the
bottom. Soft and hard rocks are light and dark gray areas re-
spectively. We used basic shapes to represent objects, how-
ever, there is no restriction on using complex 3D shapes and
skins.

A number of observations were made in the first analysis:

• One planner generated invalid solutions in which the
robot used the laser at the gold location, destroying the
gold.3

• Some planners provided (valid) plans in which the laser
cannon was fired at an already clear location.

• Unnecessary move actions were present in some plans.

In order to fix these non-optimal and flawed behaviors, we
refined the original model. Concerning the planner assign-
ing the robot to fire at the gold, the original model does not
prevent such situation: there was no precondition on the fire-
laser operator that explicitly constrains this behavior. There-
fore, a precondition to the operator was added: (not (gold-at
?loc)). Regarding the unnecessary firelaser occurrences, a
second precondition was added to the same firelaser opera-
tor, in this case (not (clear ?loc)). We call this set of modi-
fications A. The resulting model was sent to the planners to
solve the same problem instances, resulting in a new post-
design iteration.

During the second analysis process, additional observa-
tion were collected:

• Invalid plans were no longer being generated.

• The undesirable firing behavior from the initial observa-
tion was eliminated.

• In most of the plans, at the goal state, the laser cannon
was left in a different position from the initial one. As a
new requirement, the robot could leave the laser only at
the same spot as the bomb source.

3This was observed with MIPS-xxl 2008. We contacted the au-
thors and the bug appears to arise from the way we called the plan-
ner (e.g. a special script is necessary) but due to time limitations,
we were unable to re-run these instances with the correct script.

• Unnecessary move actions were still being found in some
solutions.
These new observations guided the second re-modeling

loop. A precondition to the putdownlaser operator was
added, forcing the robot to always drop the cannon at the
location of the bombs. The precondition (bomb-at ?loc) was
used for this purpose. We call this modification B. The
plans generated with model B properly controlled the lo-
cation where the cannon was left. The combination of the
previous and the current set of adjustments is called AB.

As a result of the AB modification, most of the generated
plans to the design set converged to the same solution. The
main issues raised during post-design analysis were elimi-
nated, except some unneeded move actions.

To analyze and compare the effects of the post-design
analysis on planning performance, the Original model was
compared to the models A, B, and AB. The selected plan-
ners were run on the testing set for each of the four mod-
els. Table 1 illustrates the comparison concerning run-time
(speed) and solvability on the testing set. The table shows
the total time (including time-outs) for each planner to solve
all 27 problem instances in each of the four models. In or-
der to determine the speed-up values, we first define tMp,k as
the time planner p takes to solve problem instance k using
model M . We then define the speed-up ratio for each of the
new models (A, B, AB) compared to the Original model
as follows:

rM
p,k =

tOriginal
p,k

tMp,k

. (1)

For a particular planner and model, we calculate the mean
and the median of the speed-up ratios. The mean speed-up
value presented in Table 1 for each model is the mean of
means of speed-up ratios over all planners. Similarly, the
median speed-up is the median of the medians of speed-
up ratios over all problem instances and planners for each
model. Model AB shows a significant speed-up compared
to the Original. Even A and B individually provide a sig-
nificant speed-up. The maximum speed-up ratios observed
on an individual problem instance were 7,547 with model A,
5,068 with model B and 5,185 with model AB. However,
we also observed that in some cases the new models were
slower than the original. The lowest ratio observed was 0.26
with model B. Considering the total time to solve the testing
set, all planners perform better in the AB model. Because
MIPS-xxl 2008 was run improperly it is not considered in
the analysis showed in Table 1.

Table 1 also illustrates the number of instances solved by
the planners in each model, as well as the percentage im-
provement of each new model compared to the original. All
problem instances were solved in the AB model, a 22.7%
improvement compared to the original model.

Improvements are not only found on speed and solvabil-
ity, but also on plan length and quality. By looking at each
problem instance and the four plans generated by a particu-
lar planner, we can determine the model that gives the best
performance on three criteria: run time, plan length and plan
quality (cost). Table 2 illustrates the number of times each



Time (s) Problems Solved
Planners Original A B AB Planners Original A B AB
SGPlan5 3,303.42 1.93 3.65 1.99 SGPlan5 14 27 27 27

MIPS-xxl 06 3,995.34 983.79 2,015.28 22.13 MIPS-xxl 06 15 25 21 27
LPG-td 41.04 29.69 39.28 27.83 LPG-td 27 27 27 27

SGPlan6 3,925.85 3.13 4.65 3.51 SGPlan6 18 27 27 27
Metric-FF 1,707.00 3.79 4.35 3.78 Metric-FF 26 27 27 27
LPG 1.2 10.58 5.58 4.47 4.70 LPG 1.2 27 27 27 27

hspsp 37.53 16.77 8.22 8.19 hspsp 27 27 27 27
Mean Speed-Up 469.70 267.97 479.67 Total 154 187 183 189

Median Speed-Up 7.33 6.82 10.54 Improvement 21.4% 18.8% 22.7%

Table 1: Total time (including time-outs) required to solve all problem instances and the solvability comparison for the Gold
Miner domain models.

Best Time Occurrence Best Plan Length Occurrence Best Plan Quality Occurrence
Planners Original A B AB Original A B AB Original A B AB
SGPlan5 0 10 5 13 14 13 24 13 14 17 24 17

MIPS-xxl 06 0 4 0 23 11 19 21 25 11 19 21 25
LPG-td 2 10 2 13 5 24 10 27 5 24 10 27

SGPlan6 0 19 2 7 17 19 24 19 17 20 24 20
Metric-FF 0 9 9 10 26 13 23 13 26 17 23 17
LPG 1.2 3 3 10 12 12 15 18 12 15 17 19 12

hspsp 0 0 19 8 27 27 27 27 27 27 27 27
Total 5 55 47 86 112 130 147 136 115 141 148 145

Table 2: Best time, plan length and plan quality comparison over the Gold Miner models.

model results in the best solution with respect to each of the
three criteria for a given planner. For example, LPG-td gen-
erated the best plan lengths compared to the other models
using LPG-td in 5 cases with the Original model, 24 with
model A, 10 with model B, and 27 with model AB. The
numbers sum to greater than 27 due to ties. Better plans are
usually found with refined models.

The Storage Domain
The Storage domain is one of the benchmark domains from
the deterministic track of IPC-5 (2006). This domain in-
volves moving a certain number of crates from containers to
depots using hoists. Inside a depot, each hoist can move ac-
cording to a specified spatial map connecting different areas
of the depot, represented by a grid. Transit areas are used
to connect depot areas to containers and also depots to de-
pots. The domain has five actions: (1) lifting a crate with a
hoist; (2) dropping a crate from a hoist; (3) moving a hoist
into a depot; (4) moving a hoist from one area of a depot
to another; and (5) moving a hoist outside a depot. At the
beginning of each problem, all crates are inside the contain-
ers waiting to be transported to the necessary depot. For this
case study we used the propositional version of the PDDL
domain model.

The design set for this domain is composed of three prob-
lem instances with different numbers of elements and diffi-
culty. In the first instance (p10), four crates must be allo-
cated in one depot using a single hoist. In the second (p16),
six crates must be carried from two containers into two de-

pots by three available hoists. The third instance (p20) has
ten crates stored in three containers, three depots, and three
hoists.

The quality metrics specified for this domain are the
numbers of occurrence of each operator in the plan: move
(weight 2), lift (weight 1), drop (weight 1), go-out (weight
3); and go-in (weight 3). The weights used in this exper-
iment were inspired by the PDDL numeric version of the
domain. We selected the same planners used in the previous
case study, except LPG 1.2 which was removed due to a bug
identified while running the design set. Instead we used FF
2.3.

During the first post-design iteration, the plans for the de-
sign set were analyzed in the virtual prototype platform. Fig-
ure 3 shows the simulation of the first problem instance from
the design set.

The main observation raised while analyzing the plans
provided by planners were:

• In some solutions, the hoists were putting the crates back
into the containers. This scenario happens mainly when
hoists left other crates on the main access to the depots,
blocking access. Such situation forced the hoist into a
lift-drop loop in and out of the containers.

• The fact that hoists drop crates on the doorway of depots
forced them to rearrange the crates, which culminated in
unnecessary actions to correct the previous decisions.

• Some of the plans included unnecessary lifts and drops of
the same crate. This lift-drop loop happened usually in



Figure 3: Virtual prototype and simulation of the Storage
domain. Three crates at the depot and a hoist on the transit
area.

transit and depot areas.
• Some solutions contained unnecessary move actions.

We focused on the fact that crates were being placed back
into the containers. In order to constrain that situation, a
simple modification of the parameters of operator drop was
made. The original operator has the following PDDL rep-
resentation (?h - hoist ?c - crate ?a1 - storearea ?a2 - area
?p - place). The adjusted version of the drop operator dif-
fers from the original in the last parameter: ?p - depot.
The parameter p constrains the location where crates can be
dropped. We call this modification A.

During the second iteration of simulation with adjustment
A, the following observation were acquired:
• Crates were no longer being put back into the containers.
• Some of the plans still contained unnecessary lifts and

drops of the same crate, but fewer than the original model.
• The unneeded move actions still occurs in some plans.

In the second re-modeling iteration, we focused on the
unnecessary lift and drop cycles of the same crate. The ap-
proach taken for this problem was to make the hoist memo-
rize the last lifted crate. For that, a new predicate was spec-
ified (lastLifted ?h - hoist ?c - crate). This predicate was
added to the precondition of the lift operator in the follow-
ing form (not (lastLifted ?h - hoist ?c - crate)), as well as
in the post-condition as (lastLifted ?h - hoist ?c - crate) to
record the current crate. The precondition constrained the
planner not to assign a hoist to lift the same crate again. The
added post-condition defines the previously lifted crate. It is
important to note that this is just one approach to attempt to
tackle the issue. More elaborate re-modeling could be per-
formed. We call this individual modification B. The combi-
nation of the refinements A and B generated the model AB.
Note that A, B and AB do not require modification of the
problem instances, even with the new predicate in B, since
the hoists start with no previous lifted crates.

By analyzing the model AB in the post-design frame-
work, the unnecessary lift-drop loops of the same crate were
reduced drastically. However, some plans exhibited the
problem in a different form: two hoists alternatively lift and
drop the same crate. The occurrence of such situations was
rare. The unnecessary move actions were reduced but not
eliminated.

Table 3 shows the impact on run-time and solvability
when running the selected planners over the testing set with
the original and the new models. A and B are again analyzed
separately for a better view of individual effects. In this ta-
ble, the speed-up is not as impressive as the first case study.
The maximum speed-up ratios observed for a single problem
instance were 4,411 with model A, 1,597 with model B and
5,194 with model AB. The minimal ratio observed was 0.01
with model B. We do not have a significant improvement in
the solvability with the new models. The highest one is the
AB with a 9.4% improvement on the total number of prob-
lems solved. As above, the results of MIPS-xxl 2008 are not
included due to the use of an incorrect script.

Table 4 illustrates in which model each planner provides
it best run time, plan length and plan quality. For example,
SGPlan6 provided the best plan lengths on 4 problem in-
stances with the original model; 10 with model A, 17 with
model B, and 18 with model AB. Similarly to the previous
case study, the table shows that better plans are found more
often using the refined models.

Discussion
In this section we present some of the main discussions
raised by the case studies.

Knowledge Acquisition and Extraction
The case studies presented above demonstrate that even in
benchmark domains missing requirements and modeling is-
sues emerge in the post-design analysis. In real planning
applications, we expect such gaps to be very common due
to the difficulties of obtaining the necessary knowledge and
requirements. The knowledge acquisition process in real-
world applications is not the pure collection of already ex-
isting requirements during the beginning an application de-
sign (Studer, Benjamins, and Fensel 1998). Tacit knowledge
and hidden and unknown requirements must be discovered
and considered. Therefore, knowledge must be built up and
structured during an iterative design process, especially dur-
ing the initial phases and after design. Domain modeling
is an iterative process in which new observations may lead
to a refinement of the already built-up model (Studer, Ben-
jamins, and Fensel 1998), even over time; moreover, the
model itself may guide the further acquisition of knowledge.

In this work, both the KE tool and the 3D simulation en-
vironment have an important role in the discovery of miss-
ing requirements and the refinement cycle. The use of vir-
tual prototyping, in particular, has shown to be a powerful
technique on plan validation and new requirements identi-
fication as opposed to looking at plan traces. Visual and
sound effects can give experts and non-experts a clear view
of the domain model as well as the planning strategy. The



Time (s) Problems Solved
Planners Original A B AB Planners Original A B AB
SGPlan5 11,562.25 10,137.26 7,686.23 7,470.18 SGPlan5 18 19 21 21

MIPS-xxl 06 3,433.82 3,334.95 3,913.46 3,347.97 MIPS-xxl 06 16 16 14 16
LPG-td 5,980.77 7,124.50 5,796.66 4,775.16 LPG-td 25 26 25 26

SGPlan6 8,230.74 10,177.03 7,754.42 7,508.96 SGPlan6 18 19 21 21
Metric-FF 13,441.49 9,767.35 13,205.63 12,003.99 Metric-FF 16 19 16 17

FF 2.3 14,416.93 9,935.53 15,603.44 12,117.64 FF 2.3 15 19 16 17
hspsp 21,782.20 21,744.39 21,117.63 20,989.91 hspsp 9 9 10 10

Speed-Up mean 37.22 13.03 43.49 Total 117 127 123 128
Speed-Up median 1.15 1.00 1.04 Improvement 8.5% 5.1% 9.4%

Table 3: Total time (including time-outs) required to solve all problem instances and the solvability comparison for the Storage
domain models.

Best Time Occurrence Best Plan Length Occurrence Best Plan Quality Occurrence
Planners Original A B AB Original A B AB Original A B AB
SGPlan5 2 8 3 8 13 13 16 16 13 13 16 16

MIPS-xxl 06 2 7 1 6 13 14 12 13 10 13 13 13
LPG-td 5 6 4 11 9 9 17 18 9 9 15 18

SGPlan6 0 11 2 9 4 10 17 18 4 10 17 18
Metric-FF 1 10 3 9 15 16 10 12 14 17 10 12
LPG 1.2 2 12 1 5 12 15 14 17 13 15 14 16

hspsp 1 4 1 4 9 9 10 10 9 9 10 10
Total 13 58 15 52 75 86 96 104 72 86 95 103

Table 4: Best time, plan length and plan quality comparison on the Storage domain.

KE tool was also essential in the process, especially in the
re-modeling phases. A metric-focused analysis, using for
example the plan report, helps the designer to determine the
subset of high quality solutions as well as the proper set of
quality criteria.

Another important factor on discovering a lack of knowl-
edge in the model and hidden requirements is the presence
of different levels of quality over the analyzed plans. The
identification of bad plans, for example, proved to be a pow-
erful guidance on the re-modeling process. Bad plans not
only raise the need for new constraints on the model, but
also help designers to capture user’s feedback and prefer-
ences. In our case studies, the generation of distinct plan
qualities was enhanced by using a variety of planners. Since
the lack of knowledge in the model can impact differently on
the planners, their different responses also contribute to the
identification of model issues. After the adjustment process
these different responses are narrowed as many of the plans
converge to the same solution over different planners.

We observed that planners can be very sensitive to the
presence or absence of specific knowledge in the model. As
an example, in the Gold Miner domain, the adjustment cy-
cle made some of the planners perform impressively better;
however, in the Storage domain, the addition of knowledge
negatively affected the planners’ internal heuristics. In fact,
adding missing constraints not necessarily implies in faster
responses from the planners; however even with a higher
run-time we are moving toward better plans. These facts
suggest that IPC results could be different if such issues were

considered.

Modeling and Planning
The case studies showed that the planning performance in-
deed improved with a post-design analysis. We achieved
speed-ups through a careful plan analysis and re-modeling
process, without changing or adjusting planners. In some
cases we have added obvious knowledge, from a human per-
spective, to the model; however, its explicit representation
facilitates the search process of the planners. This evidence
reinforces that both aspects, model and planner, must be
carefully designed and refined. A sole emphasis on improv-
ing planners, neglecting observations and feedback from the
design process itself, can de facto prevent or constrain plan-
ning use in real applications.

We believe that our results represent a challenge for prac-
tical planning research. The central justification for building
general-purpose planners is that domain experts cannot be
expected to also be planning experts. Domain experts should
be able to concentrate on modeling the domain, treating the
solver as a black-box. In practice, therefore, the only op-
tions available to a domain expert are domain and problem
re-modeling. The use of planning technology by someone
who is not a planning expert therefore depends entirely on
the extent to which domains can be modeled (and remod-
eled) to allow planning algorithms to achieve satisfactory
performance. Yet, we know very little about how domain
modifications affect planning algorithms and we can provide
little advice to domain experts (without becoming domain



experts ourselves) on what changes are likely to be positive.4
Tools, such as the one presented here, to allow domain ex-
perts to investigate changes and planning experts to begin to
develop an understanding of the impact of changes on their
algorithms are therefore critical.

There is a fundamental mismatch between the target do-
mains of the postDAM framework (i.e., real-world planning
applications) and the case studies using IPC domains. A
true test of our tool should be in the form of a case study
with a real problem (e.g., (Cesta et al. 2008; Jónsson 2009;
Vaquero et al. 2009a)). However, such case studies are not
reproducible and often rely for success on external factors:
significant interest from the client, success of other parts of
the mission (e.g., landing on Mars), and larger economic
forces. System building research is extremely valuable but
sometimes inaccessible and difficult to generalize. Research
in AI planning has shifted toward a more empirical style
since the beginning of the IPC, where research innovations
can be reproduced and directly compared. This style, too,
has substantial benefits as can be observed from the gains
in solver performance. The design of our case studies was
an attempt to bridge the gap between “real” applications and
“academic” benchmarks and to encourage further research
on modeling in planning. We have shown that even in bench-
mark domains that, by definition, do not include a wealth of
unrepresented knowledge, it is still possible to substantially
increase solver performance by domain re-modeling.

Conclusion
In this paper, we have described a post-design framework
to assist the discovery of missing requirements and to guide
the model refinement cycle. We have demonstrated that fol-
lowing a careful post-design analysis, we can improve not
only plan quality but also solvability and planner speed. The
modifications made through the observations acquired dur-
ing post-design resulted in impressive speed-up of state-of-
the-art planners. In a real planning application, the analysis
process that follows design becomes essential for having the
necessary knowledge represented in the model. Post-design
analysis is critical for deployment of planning technology in
real-world applications.
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