
Solving Job-Shop Scheduling Problems with
QUBO-Based Specialized Hardware

Jiachen Zhang, Giovanni Lo Bianco, J. Christopher Beck
Department of Mechanical and Industrial Engineering, University of Toronto

{jasonzjc, giolb, jcb}@mie.utoronto.ca

Abstract

The emergence of specialized hardware, such as quantum
computers and Digital/CMOS annealers, and the slowing of
performance growth of general-purpose hardware raises an
important question for our community: how can the high-
performance, specialized solvers be used for planning and
scheduling problems? In this work, we focus on the job-shop
scheduling problem (JSP) and Quadratic Unconstrained Bi-
nary Optimization (QUBO) models, the mathematical formu-
lation shared by a number of novel hardware platforms. We
study two direct QUBO models of JSP and propose a novel
large neighborhood search (LNS) approach, that hybridizes a
QUBO model with constraint programming (CP). Empirical
results show that our LNS approach significantly outperforms
classical CP-based LNS methods and a mixed integer pro-
gramming model, while being competitive with CP for large
problem instances. This work is the first approach that we are
aware of that can solve non-trivial JSPs using QUBO hard-
ware, albeit as part of a hybrid algorithm.

Introduction
Many of the recent advances in hardware design have been
aimed at specific computational tasks, including solving
combinatorial optimization problems. These emerging tech-
nologies, which include adiabatic and gate-based quantum
computers (Mohseni et al. 2017) and CMOS annealers (Ara-
mon et al. 2019), represent a variety of designs and un-
derlying models of computation. Nonetheless, many of the
designs for combinatorial optimization target Ising models:
problems formulated as an Ising model or equivalently as
a Quadratic Unconstrained Binary Optimization (QUBO)
model (Kochenberger et al. 2014).

For planning and scheduling research, it is still an open
question whether the novel hardware platforms can be used
to solve non-trivial problems. In this paper, we answer this
question in the affirmative for the case of the job shop
scheduling problem (JSP). While there has been work on
solving JSP on QUBO hardware (Kurowski et al. 2020;
Venturelli, Marchand, and Rojo 2016; Shimada, Shibuya,
and Shibasaki 2021), these approaches have tended to only
represent very small problems that are trivially solved to
optimality with standard techniques. In this study we take

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

two approaches: direct models that attempt to represent
and solve the whole JSP on specialized hardware; and hy-
brid models which decompose the problem and exploit both
traditional approaches and specialized hardware. We make
three primary contributions:
1. We study two direct QUBO models of JSP, compare their

scalability, and identify their limits on current hardware.
2. We propose a novel large neighborhood search approach

(LNS) that uses operation ranks obtained from solving
rank-based QUBO models on single machines to form
a neighborhood within which a multi-machine model is
used to search for better solutions. The proposed ap-
proach is compatible with both traditional optimization
software and specialized hardware.

3. We obtain strong results on large JSPs using constraint
programming (CP) to solve the multi-machine problem
and novel hardware for one-machine problems. The re-
sults are competitive with CP alone and better than all
the existing hardware-based methods and two classical
CP-based LNS variants. To the best of our knowledge,
this hybrid approach is the first one that is able to solve
non-trivial JSPs on specialized hardware.

Background
Job-Shop Scheduling Problem
The NP-hard Job-shop Scheduling Problem (JSP) is consid-
ered to be one of the most computationally stubborn com-
binatorial optimization problems (Lawler et al. 1993). Most
optimization approaches have been applied to JSP, includ-
ing constraint programming (Baptiste, Le Pape, and Nuijten
2001), mixed integer programming (Manne 1960), heuris-
tics (Adams, Balas, and Zawack 1988), meta-heuristics
(Nowicki and Smutnicki 2005), and large neighborhood
search (Carchrae and Beck 2009)

A job-shop scheduling problem consists of a set of oper-
ations A = {o1, . . . , o|A|} to be scheduled on M machines.
Each operation oi has a positive duration di. The operations
are partitioned into N jobs A1, A2, . . . , AN with Aj ⊆ A
and |Aj | = M . Every job has to be processed on each ma-
chine exactly once, hence a job consists of M operations and
the number of jobs is N = |A|

M .
Operations in the same job must be processed in a de-

fined order. Specifically, for every Aj we define σj =

⟨σj
1, σ

j
2, . . . , σ

j
M ⟩ with σj

h ∈ {1, ...,M} being the machine
that must process the h-th operation of the job. For conve-
nience, we denote the operation of job j on machine m by
oj,m, with its duration dj,m, and we use dmax to represent
the maximum duration of operations in A.

No operations can overlap on the same machine (unary
capacity machines). We also assume non-preemption, i.e.,
an operation that has started processing cannot be inter-
rupted. The classical objective of JSP is to minimize the
makespan, the latest completion time of the operations. We
use JSP(|A|,M ,dmax) to represent a JSP specification.

Quadratic Unconstrained Binary Optimization
A Quadratic Unconstrained Binary Optimization (QUBO)
model is the following problem:

min y =
1

2

∑
i

∑
j ̸=i

Wi,jxixj +
∑
i

bixi + c, (1)

where x ∈ {0, 1}n is a vector of binary decision variables,
W ∈ Mn,n(R) is a symmetric weight matrix, b ∈ Rn is
a bias vector, and c ∈ R is a constant. QUBO has been
used to represent practical problems in combinatorial scien-
tific computing (Shaydulin et al. 2019) and machine learn-
ing (Cohen, Senderovich, and Beck 2020). Most importantly
here, a number of recent hardware designs use quantum or
classical computing to directly solve QUBO problems in
hardware (Venturelli, Marchand, and Rojo 2016; Coffrin,
Nagarajan, and Bent 2019).

Direct QUBO Models for JSP
Our starting point is to evaluate the utility of using sim-
ple, “direct” formulations of JSP in the QUBO formalism.
While, as we show, these models perform poorly, their weak-
nesses provide the motivation and justification to investigate
more sophisticated approaches.

We present two direct QUBO formulations for JSP based
on two common mixed integer programming (MIP) models
of JSP: the disjunctive and the time-indexed models.

Disjunctive QUBO Model
The disjunctive QUBO (DQ) model is based on the dis-
junctive MIP model (Manne 1960). Variable x̂j,m represents
the integer start time of the operation of job j on machine
m, while Ĉmax is the integer makespan variable. Variable
zj,k,m is a binary variable that is 1 if the operation of job j
on machine m precedes the operation of job k on machine m
and is 0 otherwise. ŝ(1)j,h, ŝ

(2)
j , ŝ

(3,1)
j,k,m, ŝ

(3,2)
j,k,m are integer slack

variables used in different constraints.
Every non-negative integer variable is represented as its

binary expansion. For example, the binary representation
of Cmax is given by a sequence of binary bits i(k) ∈
{0, 1},∀k = 1, ..., L(Cmax) such that

Cmax =

L(Cmax)∑
k=1

2k−1i(k). (2)

We require L(Cmax) = ⌊log2 Cmax⌋ + 1 binary bits to
represent Cmax. For convenience, we use Ĉmax to represent

the binary expansion of Cmax. And we use the same notation
x̂ for every integer variable x to refer to its binary expansion.
The DQ is as follows.

min
x̂,z,ŝ

Ĉmax (3a)

+ p1 ·
N∑

j=1

M∑
h=2

(
x̂
j,σ

j
h−1

+ d
j,σ

j
h−1

+ ŝ
(1)
j,h − x̂

j,σ
j
h

)2
(3b)

+ p2 ·
N∑

j=1

(
x̂
j,σ

j
M

+ dj,M + ŝ
(2)
j − Ĉmax

)2
(3c)

+ p3 ·
M∑

m=1

N−1∑
j=1

N∑
k=j+1(

x̂k,m − x̂j,m − dj,m + V − V · zj,k,m − ŝ
(3,1)
j,k,m

)2
+(

x̂j,m − x̂k,m − dk,m + V · zj,k,m − ŝ
(3,2)
j,k,m

)2
(3d)

zj,k,m ∈ {0, 1}, ∀j, k = 1, ..., N, j < k, ∀m = 1, ...,M, (3e)

Ĉmax, x̂j,m, ŝ
(1)
j,h, ŝ

(2)
j , ŝ

(3,1)
j,k,m, ŝ

(3,2)
j,k,m ≥ 0,

∀j, k = 1, ..., N, j < k, ∀m = 1, ...,M. (3f)

Term (3a) is the original objective function of the JSP.
Term (3b) is the quadratic representation of precedence con-
straints, added to the objective function as a penalty term. A
precedence constraint guarantees the start time of the h-th
operation of job j is greater than the end time of the (h−1)-
th operation of job j if h > 1, i.e.,

x̂j,σj
h
≥ x̂j,σj

h−1
+ dj,σj

h−1
. (4)

We penalize the constraint violation by transforming it to

p1 · (x̂j,σj
h
− x̂j,σj

h−1
− dj,σj

h−1
)2, (5)

where p1 is a sufficiently large integer. As we are minimizing
the overall objective, we want (5) to evaluate to 0 when con-
straint (4) is satisfied and to a non-zero value proportional
to its violation when it is not. Thus, we add an integer slack
variable to (5) and it becomes term (3b). As long as p1 is
large enough, violating the precedence constraints leads to a
large increase in the overall objective, which would reason-
ably be avoided by QUBO solvers.

Similarly, term (3c) is the quadratic representation of the
makespan constraints. Term (3d) is the quadratic represen-
tation of the disjunctive constraints, with the help of a suffi-
ciently large constant V to enforce the disjunction.

Time-indexed QUBO Model
The time-indexed MIP model (Kondili and Sargent 1988) is
well known for its poor scalability since there is a binary
variable for each ⟨job, machine, time-unit⟩ triple. However,
it is straightforward to transform a time-indexed MIP model
into a QUBO model, and, as we show below, there are ad-
vantages of a time-indexed QUBO (TIQ) model. In TIQ,
xj,m,t is a binary variable that is 1 if the operation of job
j on machine m starts at time t and is 0 otherwise. Ĉmax is
the integer makespan and ŝj is the integer slack variable for

the makespan constraint of job j. The TIQ is as follows.

min
x

Ĉmax (6a)

+ p4 ·
N∑

j=1

M∑
m=1

(
T∑

t=0

xj,m,t − 1

)2

(6b)

+ p5 ·
N∑

j=1

∑
(m1,m2)∈Pj

∑
t1+dj,m1

>t2

xj,m1t1 · xj,m2t2 (6c)

+ p6 ·
M∑

m=1

∑
j1 ̸=j2

∑
t1≤t2<t1+dj1,m

xj1,m,t1 · xj2,m,t2 (6d)

+ p7 ·
N∑

j=1

(
T∑

t=0

(
t · x

j,σ
j
M

,t

)
+ d

j,σ
j
M

+ ŝj − Ĉmax

)2

(6e)

Ĉmax ≥ 0, ŝj ∈ Z, xj,m,t ∈ {0, 1},
∀j = 1, ..., N,∀m = 1, ...,M, ∀t = 0, ..., T. (6f)

The objective term (6a) represents the makespan to be
minimized. Term (6b) ensures that an operation only starts
once. T is the horizon, i.e., the upper bound of makespan and
p4, p5, p6 and p7 are coefficients that penalize the value of
a term if it is non-zero. Term (6c) represents the precedence
constraints within a job. Pj is the set of machines pairs that
have consecutive operations of job j. Term (6d) represents
the resource constraints, where two jobs cannot overlap on
the same machine at any time point. Term (6e) guarantees
that each job completion time does not exceed the makespan.

Venturelli et al. (2016) proposed a slightly different time-
indexed formulation that solves a series of feasibility prob-
lems with decreasing horizon rather than having an explicit
makespan objective. However, as our purpose is to establish
a baseline performance of direct QUBO models, we use the
TIQ that is solved in a single QUBO run.

Shimada et al. (2021) experimented with a number of
QUBO models for JSP on the Fujitsu Digital Annealer, with
the best one being an Approximate Expression (AE) model.
It is a time-indexed QUBO model that uses the sum of com-
pletion times to approximate makespan, and needs no gen-
eral integer variables. The AE model replaces term (6a) by
the following term, while retaining terms (6b) to (6f).

N∑
j=1

M∑
m=1

T∑
t=0

(t+ dj,m) · xj,m,t. (7)

Though not optimizing the makespan directly, by reduc-
ing the completion time of all operations, the AE model will
tend to reduce the makespan. As far as we are aware, though
the AE model is not a direct QUBO model for JSP, it is the
state-of-the-art QUBO approach for JSP. We include the AE
model in our experiments.

Some current specialized platforms such as the third gen-
eration of Fujitsu Digital Annealer with 100000 bits (Fu-
jitsu Ltd. 2021) cannot accommodate JSP(400,20,100) or
JSP(225,15,100) if using DQ or TIQ, respectively.1 The D-

1The detailed analysis and the formal derivation for the model
sizes are provided in the appendix.

Wave quantum annealer with 5000 qubits (D-Wave Sys-
tems Inc. 2020) can only represent smaller problems (e.g.,
JSP(25,5,100)) due to the smaller number and partial con-
nectivity of qubits. Another downside of previous QUBO
approaches is that they cannot handle instances with large
dmax, e.g., dmax > 10. The limitations of the current hard-
ware for representing and, as we show below, solving JSP
with direct QUBO models motivate our large neighborhood
search approach.

Rank-Guided Large Neighborhood Search
Large Neighborhood Search (LNS) (Shaw 1998) is a frame-
work that combines the scaling advantage of local search
with the search power of specialized solvers. LNS modifies
an existing solution to the problem by selecting a subset of
variables and unassigning them. LNS then searches in the
space induced by these unassigned variables. The choice
of variables to unassign, namely the neighborhood heuris-
tic, is crucial to the performance of LNS. For JSP, classical
neighborhood heuristics identify a set of operations to focus
search effort on. For example, the time window neighbor-
hood heuristic selects all the operations that are scheduled in
a particular time interval (Caseau et al. 2001). The resource
load neighborhood heuristic selects operations scheduled on
a particular set of resources (Carchrae and Beck 2009).

By contrast, we propose a rank-guided neighborhood
heuristic that considers all operations but restricts their time
windows based on rank information extracted from solutions
of multiple one-machine scheduling problems. That is, the
large neighborhood is formed by the heuristic restriction of
variable domains, a generalization of the standard approach
that fixes a subset of variable values and completely relaxes
the domains of the rest.

As shown in Figure 1, the proposed LNS approach alter-
nately solves multiple one-machine problems and a single
multi-machine problem. The two main components are rank
generation and constrained global search. In rank genera-
tion, one-machine problems are solved to generate operation
ranks, which if combined naively might lead to cycles. In
constrained global search, the multi-machine problem hence
derives a time window for each operation from the single
machine schedules and searches for improving, feasible so-
lutions within the constrained time-windows. Conversely, a
given global solution is used to define “rank windows” for
operations in each single machine problem. The primary de-
cision variable is the rank of each operation and the feasi-
ble domain of each rank variable is established via inference
from the current global solution.

Figure 1: General description of rank-guided LNS.

Rank Generation
The rank of an operation is its position on its machine. The
operation scheduled first has a rank 1, the second scheduled
operation has rank 2, and so on. Ranks can serve as decision
variables for JSP (Wagner 1959) since a feasible solution
is obtained once all the one-machine sequences are gener-
ated and combined without cycles. Ranks can be obtained
from solving one-machine scheduling problems, which have
been used as subproblems in decomposition methods for
JSP (e.g., the shifting bottleneck heuristic (Adams, Balas,
and Zawack 1988)). Here, we obtain ranks by solving one-
machine problems formulated as rank-based QUBO models.

The rank generation process is done by simultaneously
solving multiple one-machine problems, one for each ma-
chine. Provided the total size of models for each machine is
smaller than the hardware capacity, all models can be solved
in parallel as they are independent.

The rank-based single-machine model assigns a rank to
each operation on a machine, hence binary variable xj,q is 1
if the operation of job j is in the q-th rank and 0 otherwise.
The model is as follows.

min
x

N/2∑
q=1

N∑
j=1

xj,q · Posj · (N − q) · dmax (8a)

+

N∑
q=1

N∑
j=1

xj,q · (Hj − Tj) · (N − q) (8b)

+ p8 ·
N∑

j=1

(
N∑

q=1

xj,q − 1

)2

+ p9 ·
N∑

q=1

(
N∑

j=1

xj,q − 1

)2

(8c)

xj,q ∈ {0, 1}, ∀j = 1, ..., N, ∀q = 1, ..., N. (8d)

The constant N is the number of operations on the ma-
chine and, consequently, the highest rank. In the objective,
Posj is the precedence position of the operation j in its job.
If operation j is the h-th operation in a job, then Posj = h.
Recall that the job ordering is fixed for each job. Thus, for
the operations that are ranked from 1 to N/2, the term (8a)
favors small job precedence positions. Note that N/2 is a
tunable parameter. We use N/2 to ensure that precedence
positions are taken into consideration in the first half of the
one-machine sequence.

In (8b), Hj is the ‘head’ (Adams, Balas, and Zawack
1988) or the inferred earliest start time of operation j and Tj

is the ‘tail’ (Adams, Balas, and Zawack 1988) of operation
j, i.e., length of the longest path from the end of the oper-
ation to a dummy node representing the makespan variable.
The heads and tails are generated by constraint propagation
with a makespan upper bound (see Figure 2).

Figure 2: The head and tail of operations. The dark blue
boxes are the operations and the lighter blue boxes are time
windows of the two operations.

The term (8b) represents the weighted sum of operation
head minus tail. The weight N − q prioritizes operations
with small value of (Hj − Tj) to start early. Terms (8c) are
penalized one-hot constraints that guarantee each position of
the machine sequence is assigned to only one operation and
each operation is assigned only one position.

Overall, therefore, this model seeks to assign ranks such
that operations with small job-precedence positions and
small heads vs. tails are scheduled earlier.

Extra constraints on ranks are added to the model based
on the operation time windows extracted from a feasible,
partial solution to the multi-machine problem. We denote
a feasible partial solution by sp and a globally valid up-
per bound on makespan as UBC . We then define the refer-
ence time windows as the following lower and upper bounds
for operation start times obtained via constraint propagation
based on sp and UBC :

[LBj,m, UBj,m],∀j = 1, ..., N,∀m = 1, ...,M. (9)

We restrict the domain of rank variables according to the
reference time windows. For the operation oj,m of job j on
machine m, we define the following two sets:

Bj,m = {oj′,m|UBj′,m ≤ LBj,m}, (10a)
Aj,m = {oj′,m|UBj,m ≤ LBj′,m}, (10b)

where Bj,m is the set of operations on machine m that have
a maximum reference start time that is less than the mini-
mum reference start time of oj,m. In any improving sched-
ule, each oj′,m ∈ Bj,m must be scheduled before oj,m. Sim-
ilarly, Aj,m is the set of operations that are scheduled after
oj,m in any improving schedule. Then the resulting rank do-
main becomes:

|Bj,m| < rj,m ≤ N − |Aj,m|, (11)

where rj,m represents the rank of the operation oj,m. In the
rank-based QUBO model, we remove variables xj,q , if q ≤
|Bj,m| or q > N − |Aj,m|.

In addition, for operation oj,m, for each operation oj′,m ∈
Bj,m, it is safe to conclude that rj′,m < rj,m. Thus, we can
add the following penalty term (p10 is a sufficiently large
coefficient) to the rank-based QUBO model of machine m:

p10 ·
N∑

j,j′=1, UBj′,m≤LBj,m

 N∑
q,q′=1,q≤q′

xj,qxj′,q′

 . (12)

The constraints (12) are conflict constraints that can be
represented as

xj,q + xj′,q′ ≤ 1, ∀j, j′ = 1, ..., N,

∀q, q′ = 1, ..., N, q ≤ q′, if UBj′,m ≤ LBj,m.
(13)

Note that the problem defined by (8a) to (8d) is the assign-
ment problem that can be solved in polynomial time (Kuhn
1955). The assignment problem with conflict constraints, in
the form of (13), is strongly NP-hard (Darmann et al. 2011).

By solving the QUBO models with extra constraints for
all one-machine problems we obtain operation ranks that are
used to constrain the multi-machine global search.

Constrained Global Search
We use a constrained version of the standard multi-machine
CP model for JSP (Baptiste, Le Pape, and Nuijten 2001) to
conduct the global search. In the standard CP model, opera-
tions are represented by interval variables: variables whose
domain is a subset of {⊥} ∪ {[s, e)|s, e ∈ Z, s ≤ e}, where
s and e are the start and end of the interval respectively and
l = e − s its length. In the CP model, the interval vari-
ables xj,m represent each operation oj,m, with the duration
dj,m = l, and Cmax is the integer makespan variable.
min
x

Cmax (14a)

s.t. endOf
(
x
j,σ

j
h−1

)
≤ startOf

(
x
j,σ

j
h

)
,

∀j = 1, ..., N, ∀h = 2, ...,M, (14b)

endOf
(
x
j,σ

j
M

)
≤ Cmax, ∀j = 1, ..., N, (14c)

disjunctive ({x1,m, ..., xN,m}) , ∀m = 1, ...,M, (14d)
startOf (xj,m) ≥ 0, ∀j = 1, ..., N, ∀m = 1, ...,M, (14e)
Cmax ≥ 0. (14f)

The objective function is to minimize makespan, as stated
in (14a). Constraints (14b) are the precedence constraints
which guarantee that all operations of a job are processed
in order. Constraints (14c) ensure that the makespan is at
least the largest completion time of the last operation of all
jobs. Constraints (14d) are global constraints which ensure
that no two operations overlap on a given machine.

Given a set of one-machine schedules (e.g., from the rank
generation procedure) along with a feasible solution of the
multi-machine CP model, we add the following constraints
to the CP model.

We define an integer parameter k that controls the size of
the neighborhood. For machine m, we define the given op-
eration ranks as reference ranks, denoted by {1 ≤ gj,m ≤
N, ∀j = 1, ..., N}. For machine m, job j1 and job j2, if the
condition gj1,m + k ≤ gj2,m − k is satisfied, then oj1,m ex-
ecutes before oj2,m. Thus, we add the following constraints:

endOf(xj1,m) ≤ startOf(xj2,m), ∀m = 1, ...,M,

∀j1, j2 = 1, ..., N, if gj1,m + k ≤ gj2,m − k.
(15)

We also constrain the time windows of each operation
based on reference ranks. We sort the durations of operations
on the same machine in ascending order to get the following
ordered set for each machine m:

{d1m, d2m, ..., dNm}, (16)
where d1m ≤ d2m ≤ ... ≤ dN−1

m ≤ dNm. To enforce a rank
window of [gj,m − k, gj,m + k] to the operation oj,m, then
we add the following constraints:
gj,m−k−1∑

i=1

dim ≤startOf(xj,m) ≤ Cmax −
N−gj,m−k+1∑

i=1

dim

∀j = 1, ..., N, ∀m = 1, ...,M.

(17)

The rank-guided neighborhood is defined by model (14)
and constraints (15) and (17). The size of the neighbor-
hood can be tuned by the parameter k. With a small k (e.g.,
k = 1), an exact search algorithm can quickly find better
solutions or conclude that none exist in the neighborhood. A
larger k increases both the search effort and the likelihood
that the neighborhood contains an improving solution.

Rank-Guided LNS
The full rank-guided LNS procedure is shown in Algorithm
1. At line 1, the best solution sol∗ and the best objective
value v∗ are set to sol0 and v0. Until the time limit, the al-
gorithm repeats lines 3 to 11.

Algorithm 1: Rank-guided LNS
input : Data of a JSP instance; an initial

solution/objective sol0/v0; an initial runtime for
constrained global search t0; the time limit Tend,
an initial k0.

output : The best solution/objective sol∗/v∗.

1 v∗ ← v0, sol
∗ ← sol0;

2 while Runtime ≤ Tend do
3 (Mr,Mu)← RelaxMachSeq(sol∗,ratio);
4 twr ← Propagation(sol∗,v∗,Mr ,Mu);
5 rwr ← RankGeneration(Mr , twr);
6 k← k0, status← Infeasible, ts ← t0 ;
7 while status ̸= Feasible and k < N/3 do
8 (sol, v, status)← CGSearch(rwr , sol∗, Mu,

k, ts);
9 (k, ts)← ktUpdate(status);

10 if v < v∗ then
11 sol∗← sol, v∗← v;

At line 3, a number of machines depending on a ratio are
randomly selected and their operation sequences are relaxed.
Mr and Mu are the sets of relaxed and unrelaxed machines
and ratio = Mr/(Mr +Mu). The algorithm then performs
constraint propagation with the best-known objective value
and the precedence graph induced by the relaxed and unre-
laxed machines, producing time windows twr for the opera-
tions on the relaxed machines. At line 5, the QUBO models
of the one-machine problems are solved in parallel.

The initialization of constrained global search is per-
formed at line 6. While there is no feasible solution and k
has not reached its limit at line 8, the algorithm repeatedly
searches for better solutions with increasing k values. Note
that when k reaches N/2, the constrained CP model would
be the same as the original CP model. Thus, the limit of k
is set to a smaller value N/3. ts is the running time of the
constrained global search which is updated according to the
solution status, as detailed in the next section.

In the search, constraints (15) and (17) are added to op-
erations on relaxed and unrelaxed machines. The reference
ranks of the operations on Mr are based on the solving one-
machine problems at line 5, while the reference ranks of the
operations on Mu are the corresponding operation ranks in
the best feasible solution sol∗. As a consequence, operations
on Mu also have time windows constrained by (15) and (17).

The k and ts are updated according to the solver status,
as shown at line 9. Thus, the growing neighborhood mech-
anism (Carchrae and Beck 2009) has been realized by in-
creasing k gradually: operations get less constrained as the
neighborhood grows. At line 10 and 11, when feasible so-
lutions are found, if the best solution among them is better
than sol∗, the algorithm replaces sol∗ and v∗ for the next
iteration. Otherwise, it keeps using the current solution.

Empirical Evaluation
In this section, we present our experimental results. Recall
that our goal is to investigate if specialized hardware can be
used to solve non-trivial JSP problem instances.

Our solvers are the CP solver IBM ILOG CP Optimizer
(CPO) V20.1.0, the MIP solver Gurobi V9.5.0, and the
QUBO solver, the Fujitsu Digital Annealer (DA) (Matsub-
ara et al. 2020). The third generation DA (DA3) is a hybrid
system of hardware and software with a capacity of 100,000
binary variables. For our DA environment,2 the coefficients
for the quadratic terms range from −262 to 262 and those for
the linear terms range from −273 to 273 (Fujitsu Ltd. 2021).
Different from the quantum annealing algorithms, the DA
algorithm is a classical algorithm based on simulated anneal-
ing (SA), that takes advantage of the massive parallelization
provided by the custom CMOS hardware. The difference be-
tween the SA and DA algorithm are as follows:

• DA utilizes parallel tempering that runs a number of
problem solving processes (replicas) in parallel with dif-
ferent temperatures. Replicas can swap temperatures to
diversify the search (Dabiri et al. 2020). In a replica, each
Monte Carlo step considers all one-bit flips in parallel.

• DA supports a dedicated bit flip mechanism, over a sub-
set of variables belonging to one-hot equivalent con-
straints when using DA3.

• DA can deal with inequality constraints that are not mod-
eled in QUBO.

For our experiments, we run DA3 on a remote computer
and do not include the communication time in our runtime
limits and results. The programs for running DA3, CPO, and
Gurobi are written in Python 3.7 and run on a Ubuntu com-
puter with Intel(R) Core(TM) i7-9700K CPU @3.00GHz
with 32 GB RAM.

Experiment Metrics
We use the best objective value found and the mean rela-
tive error as two measures. Let Bi,t,a be the best solution
attained by runtime t of approach a for instance i. The rela-
tive error at time t for approach a on instance i is shown in
(18) where Bi represents the best known lower bound in the
literature for known benchmarks or the best feasible objec-
tive value over all approaches for generated instances. For
a minimization problem, (18) is always non-negative. The
mean relative error of approach a at time t, MRE(t, a), is
computed in (19).

RE(i, t, a) =
(Bi,t,a −Bi)

Bi
(18)

MRE(t, a) =
1

|I|
∑
i∈I

RE(i, t, a) (19)

Experiments on Small Instances
As an initial experiment, we restrict ourselves to small prob-
lems to evaluate the direct models to test if direct models are

2Experiments were conducted on the Digital Annealer environ-
ment prepared exclusively for research at the University of Toronto.

promising enough to try on large problem instances as future
hardware capacity evolves.

We test 5 randomly generated JSP(25,5,100) instances
and 5 randomly generated JSP(100,10,100) instances,
with integer operation processing times uniformly drawn
from [1..100]. We obtain initial solutions and associated
makespans by using the shortest-processing time (SPT) dis-
patching rule (Conway 1965). Then, all the JSP instances
are preprocessed by constraint propagation to generate lower
and upper bounds on the makespan and on the start time of
each operation. The QUBO sizes of direct models are all
significantly smaller than a naive model.

For the DA3, we use the default parameter configuration
that works reasonably well across the instances. The penalty
terms are selected so there is no violation to any constraint.
The DA3 was run for 20s for direct models and 1s for rank-
based models. The total runtime of the rank-guided LNS is
20s for fair comparison. When testing TIQ with approxi-
mate expression (TIQAE) (Shimada, Shibuya, and Shibasaki
2021), DA3 was run for 1s per iteration and 20 iterations
(20s in total), matching the authors’ parameterization.

For the rank-guided LNS, the constrained global search
is initialized by setting ratio to 0.7 and k0 to 1. Once the
solver status is ‘Infeasible’ or ‘Timeout’, k is increased by
⌈N/10⌉, where N is the number of jobs. The runtime of the
multi-machine CP model on CPO is fixed to 1s (ts = 1).

For comparison, we run the standard CP model defined in
(14) and classical CP-based LNS with the same CP model
using CPO. We select the time window neighborhood with
two windows and the resource load neighborhood with 65%
resources (Carchrae and Beck 2009). We also run a disjunc-
tive MIP model (Manne 1960) on Gurobi.

The total runtime of each of the aforementioned ap-
proaches is 20s. CPO and Gurobi are set to the default con-
figurations. The makespan results are shown in Table 1.

In the table, RGLNS is the rank-guided LNS. TW is the
time window neighborhood and RL is the resource load
neighborhood. The ‘*’ indicates proved optimality. For both
5× 5 and 10× 10 instances, the standard CP model and the
disjunctive MIP model find and prove an optimal solution
in 2s. RGLNS is competitive as it finds the same solutions
in 2s, but, as a heuristic method, is unable to prove optimal-
ity. The classical neighborhood TW is better than RL, but

RGLNS CP-LNS Existing Direct model
Size QUBO/CP TW RL TIQAE DQ TIQ MIP CP

5 355 387 387 355 inf 355 *355 *355
× 282 282 282 282 inf 282 *282 *282
5 372 372 372 372 inf 372 *372 *372

369 369 372 369 inf 369 *369 *369
355 355 355 355 inf 355 *355 *355

10 780 818 917 inf inf inf *780 *780
× 788 802 838 inf inf inf *788 *788
10 872 882 920 inf inf inf *872 *872

785 787 866 inf inf inf *785 *785
766 775 821 inf inf inf *766 *766

Table 1: Makespan of small instances.

both are worse than RGLNS. The TIQ and TIQAE achieve
good results for 5× 5 instances but cannot find any feasible
solutions for 10 × 10 instances. The DQ is the worst as it
produces no feasible solutions to any instance.

The results demonstrate that DA3 can solve very small
JSP instances with TIQ or TIQAE but the solution quality
degrades substantially with even modest increases in prob-
lem size. Although 10 × 10 JSP is not the largest problem
DA3 can represent with DQ or TIQ, our experiments already
show the challenge in terms of directly solving JSP.

Experiments on Large Instances
We test JSP(400,20,100) Taillard benchmark instances from
the OR-Library (Beasley 1990). Direct QUBO models for
these problems are too large for DA3 and hence are not in-
cluded. As on the small instances, DA3 is run 1s for rank
generation. For the constrained global search running on
CPO in RGLNS, we still set ratio to 0.7 and k0 = 1 and
update k by ⌈N/10⌉ once the CPO status is ‘Infeasible’ or
‘Timeout’. We set t0 = 5 as we only want to put little effort
on proving infeasibility when k is small. Once the solution
status is ‘Timeout’, the CPO runtime is updated to larger
values: 10N seconds, as shown at line 9 of Algorithm 1.

As shown in Table 2, rank-guided LNS achieves good re-
sults. CPO running for 10Ns finds five best solutions com-
pared to the other approaches. The rank-guided LNS is much
better than the disjunctive MIP model and the classical LNS
with time window or resource load neighborhoods.

The MRE graph comparing against best-known lower
bounds is shown in Figure 3. At the bottom, we can see that
RGLNS with DA3 and CPO running for 1s and 10Ns per-
forms almost identically to the standard CP model.

Scaling to Larger Instances
To evaluate the limit of the RGLNS, we do further experi-
ments on randomly generated square JSP instances of size
{25, 30, 35, 40, 45, 50}, with operation duration uniformly
drawn between 1 and 100, as there is no such benchmark
instances in the literature. We focus on square instances as
they are in general more difficult than rectangular instances
(Watson et al. 2003). The standard CP model, the disjunctive
MIP model, RGLNS, and the two classical LNS are run for
3600s per instance for 10 instances per size. The configu-

RGLNS CP-LNS Direct model
Taillard QUBO/CP TW RL MIP CP

20× 20 21 1659 1727 1748 1684 1655
22 1620 1640 1689 1641 1629
23 1569 1604 1629 1588 1584
24 1652 1703 1745 1718 *1644
25 1601 1619 1719 1638 1598
26 1660 1679 1704 1711 1674
27 1699 1749 1781 1723 1693
28 1604 1648 1714 1633 *1603
29 1628 1653 1679 1651 1634
30 1598 1619 1669 1636 1599

Table 2: Makespan of selected Taillard instances.

Figure 3: MRE of 20× 20 Taillard instances.

Figure 4: Final MRE of square JSP instances.

rations of DA3/CPO/Gurobi and the parameters of RGLNS
remain the same as the experiments on Taillard instances.
The final MRE comparing against the best feasible objective
values over all approaches with respect to problem sizes is
plotted in Figure 4.

The figure shows that the RGLNS is on average better
than direct CP when problem size is smaller than 40 but un-
derperforms CP after 40. The performance of MIP and clas-
sical LNS deteriorates rapidly as the problem size increases.
In particular, Gurobi with the disjunctive MIP model can-
not find any feasible solution for 35× 35 or larger instances
in 3600s. By contrast, RGLNS has a much slighter relative
performance degradation with increasing problem size.

The MRE plot of the 60 instances over time is shown in
Figure 5. For the instances that Gurobi fails to find any so-
lution, we use the SPT makespan to calculate the MRE. We
can see that RGLNS significantly outperforms MIP and clas-
sical CP-based LNS, while being competitive with CP.

Comparing One-Machine Models
The one-machine scheduling problems of the rank-guided
LNS can be solved by other methods. A key question is

Figure 5: MRE of square JSP instances.

whether the use of the DA3 provides advantages over alter-
native techniques within the RGLNS approach. Hence, we
compare DA3 with the QUBO model defined above, CP Op-
timizer (CPO) with a rank-based CP model, and Gurobi with
a rank-based MIP model. While having the same decision
variables xj,q as the rank-based QUBO model, the MIP/CP
model also use (8a) + (8b) as the objective function, with
variable pruning induced by (11). Instead of terms (8c) and
(12), the MIP/CP models have constraints (13) and the fol-
lowing constraints:

N∑
j=1

xj,q = 1, ∀q = 1, ..., N.

N∑
q=1

xj,q = 1, ∀j = 1, ..., N.

(20)

We randomly generate 10 instances each for one-machine
problems with the operation number in {10,20,30,40,50,60,
70,80} and the operation heads and tails uniformly drawn
between 1 and 500. The window of each operation start
time is given by constraint propagation with some fixed ma-
chine sequences obtained from the SPT solution. The three
methods are each run for 5s. The MRE results are shown
in Figure 6. DA3 and Gurobi reach similar solution qual-
ities at 20s, while DA3 finds good solutions much faster.
The CPO performance is consistently worse than Gurobi and
DA3 throughout the 20s.

These results show that, for the one-machine problems in
RGLNS, the third generation Fujitsu Digital Annealer out-
performs existing state-of-the-art approaches, demonstrating
its value within the RGLNS framework.

Discussion
The better performance of TIQAE than TIQ and the failure
of DQ cast a shadow on using binary expansion for inte-
ger variables in QUBO. We believe that the DA3 does not
perform well with the binary representation of integer vari-
ables due to its one-flip neighborhood. Flipping one bit in a
binary representation of an integer can lead to very distant
integers, requiring changes to many other binary variables

Figure 6: MRE of one-machine scheduling problems.

to achieve an energy of zero (i.e., feasibility). Since general
integers naturally appear in many optimization problems, an
important question for future work is whether difficulties in
solving problems with integer variables are seen with other
QUBO hardware.

Our hybrid approach that incorporates traditional opti-
mization techniques and novel hardware makes solving large
JSP with a QUBO-based approach possible. The largest JSP
that previous QUBO-based methods could solve on special-
ized hardware is a 6× 6 instance with tiny dmax = 2 (Ven-
turelli, Marchand, and Rojo 2016). Our approach can solve
20× 20 to 50× 50 JSPs with dmax = 100 and, as shown by
our experiments, achieves results that are competitive with
state-of-the-art constraint programming based approaches.
Note that for Taillard 20 × 20 benchmark instances, the
makespans found by RGLNS are on average 0.7% worse
than the makespans found by state-of-the-art metaheuristics
(Shylo 2020). Our goal, however, was not to compete with
JSP-specific metaheuristic techniques but to investigate if
non-trivial scheduling problems can be solved using hard-
ware designed for a general optimization problem.

Conclusion
Our results show that current specialized hardware for solv-
ing Quadratic Unconstrained Binary Optimization problems
can only represent small job shop scheduling problems when
using a direct encoding and further that even on small in-
stances, direct models perform poorly.

By contrast, we showed for the first time that it is pos-
sible to employ such specialized hardware in combination
with constraint programming to solve large-scale job shop
scheduling problems. The hybrid performance is substan-
tially better than mixed integer programming and compet-
itive with a state-of-the-art constraint programming model.

Acknowledgements The authors would like to thank Fu-
jitsu Ltd. and Fujitsu Consulting (Canada) Inc. for provid-
ing financial support and access to the Digital Annealer at
the University of Toronto. Partial funding for this work was
provided by Fujitsu Ltd. and the Natural Sciences and Engi-
neering Research Council of Canada.

References
Adams, J.; Balas, E.; and Zawack, D. 1988. The shifting
bottleneck procedure for job shop scheduling. Management
science, 34(3): 391–401.
Aramon, M.; Rosenberg, G.; Valiante, E.; Miyazawa, T.;
Tamura, H.; and Katzgraber, H. G. 2019. Physics-inspired
optimization for quadratic unconstrained problems using a
digital annealer. Frontiers in Physics, 7: 48.
Baptiste, P.; Le Pape, C.; and Nuijten, W. 2001. Constraint-
based scheduling: applying constraint programming to
scheduling problems, volume 39. Springer Science & Busi-
ness Media.
Beasley, J. E. 1990. OR-Library: distributing test problems
by electronic mail. Journal of the operational research so-
ciety, 41(11): 1069–1072.
Carchrae, T.; and Beck, J. C. 2009. Principles for the de-
sign of large neighborhood search. Journal of Mathematical
Modelling and Algorithms, 8(3): 245–270.
Caseau, Y.; Laburthe, F.; Le Pape, C.; and Rottembourg, B.
2001. Combining local and global search in a constraint pro-
gramming environment. The Knowledge Engineering Re-
view, 16(1): 41–68.
Coffrin, C.; Nagarajan, H.; and Bent, R. 2019. Evaluating
ising processing units with integer programming. In Inter-
national Conference on Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research, 163–
181. Springer.
Cohen, E.; Senderovich, A.; and Beck, J. C. 2020. An
ising framework for constrained clustering on special pur-
pose hardware. In International Conference on Integration
of Constraint Programming, Artificial Intelligence, and Op-
erations Research, 130–147. Springer.
Conway, R. W. 1965. Priority dispatching and job lateness
in a job shop. J. Ind. Eng., 16(4): 228–237.
D-Wave Systems Inc. 2020. Hybrid Solver for Discrete
Quadratic Models. https://www.dwavesys.com/sites/default/
files/14-1050A-A Hybrid Solver for Discrete Models.pdf.
Accessed: 2022-03-01.
Dabiri, K.; Malekmohammadi, M.; Sheikholeslami, A.; and
Tamura, H. 2020. Replica exchange mcmc hardware with
automatic temperature selection and parallel trial. IEEE
Transactions on Parallel and Distributed Systems, 31(7):
1681–1692.
Darmann, A.; Pferschy, U.; Schauer, J.; and Woeginger, G. J.
2011. Paths, trees and matchings under disjunctive con-
straints. Discrete Applied Mathematics, 159(16): 1726–
1735.
Fujitsu Ltd. 2021. The third generation of the Digi-
tal Annealer. https://www.fujitsu.com/jp/group/labs/en/
documents/about/resources/tech/techintro/3rd-g-da en.pdf.
Accessed: 2022-03-01.
Kochenberger, G.; Hao, J.-K.; Glover, F.; Lewis, M.; Lü, Z.;
Wang, H.; and Wang, Y. 2014. The unconstrained binary
quadratic programming problem: a survey. Journal of com-
binatorial optimization, 28(1): 58–81.

Kondili, E.; and Sargent, R. 1988. A general algorithm for
scheduling batch operations. Department of Chemical En-
gineering, Imperial College.
Kuhn, H. W. 1955. The Hungarian method for the assign-
ment problem. Naval research logistics quarterly, 2(1-2):
83–97.
Kurowski, K.; Weglarz, J.; Subocz, M.; Różycki, R.; and
Waligóra, G. 2020. Hybrid Quantum Annealing Heuristic
Method for Solving Job Shop Scheduling Problem. In Inter-
national Conference on Computational Science, 502–515.
Springer.
Lawler, E.; Lenstra, J.; Kan, A.; and Shmoys, D. 1993.
Sequencing and scheduling: Algorithms and complexity.
Handbooks in operations research and management science,
4: 445–522.
Manne, A. 1960. On the job-shop scheduling problem. Op-
erations Research, 8(2): 219–223.
Matsubara, S.; Takatsu, M.; Miyazawa, T.; Shibasaki, T.;
Watanabe, Y.; Takemoto, K.; and Tamura, H. 2020. Digital
annealer for high-speed solving of combinatorial optimiza-
tion problems and its applications. In 2020 25th Asia and
South Pacific Design Automation Conference (ASP-DAC),
667–672. IEEE.
Mohseni, M.; Read, P.; Neven, H.; Boixo, S.; Denchev, V.;
Babbush, R.; Fowler, A.; Smelyanskiy, V.; and Martinis, J.
2017. Commercialize quantum technologies in five years.
Nature News, 543(7644): 171.
Nowicki, E.; and Smutnicki, C. 2005. An advanced tabu
search algorithm for the job shop problem. Journal of
Scheduling, 8(2): 145–159.
Shaw, P. 1998. Using constraint programming and local
search methods to solve vehicle routing problems. In Inter-
national conference on principles and practice of constraint
programming, 417–431. Springer.
Shaydulin, R.; Ushijima-Mwesigwa, H.; Safro, I.;
Mniszewski, S.; and Alexeev, Y. 2019. Network com-
munity detection on small quantum computers. Advanced
Quantum Technologies, 2(9): 1900029.
Shimada, D.; Shibuya, T.; and Shibasaki, T. 2021. A Decom-
position Method for Makespan Minimization in Job-Shop
Scheduling Problem Using Ising Machine. In IEEE 8th In-
ternational Conference on Industrial Engineering and Ap-
plications (ICIEA 2021). IEEE.
Shylo, O. 2020. Best known lower and upper bounds of Tail-
lard instances. http://optimizizer.com/TA.php. Accessed:
2022-03-01.
Venturelli, D.; Marchand, D.; and Rojo, G. 2016. Job shop
scheduling solver based on quantum annealing. In Proc. of
ICAPS-16 Workshop on Constraint Satisfaction Techniques
for Planning and Scheduling (COPLAS), 25–34.
Wagner, H. 1959. An integer linear-programming model for
machine scheduling. Naval Research Logistics Quarterly,
6(2): 131–140.
Watson, J.; Beck, J. C.; Howe, A.; and Whitley, L. 2003.
Problem difficulty for tabu search in job-shop scheduling.
Artificial intelligence, 143(2): 189–217.

