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Abstract
Despite the importance of the management of inventory in
industrial scheduling applications, there has been little
research that has addressed reasoning about inventory
directly as part of a scheduling problem. In this paper, we
represent inventory, inventory storage constraints, and inven-
tory production and consumption in a constraint-directed
scheduling framework. Inventory scheduling is then used to
investigate heuristic commitment techniques based on the
understanding and the exploitation of problem structure. A
technique for the estimation of probability of breakage for
resource and inventory constraints is presented together with
a heuristic commitment technique based on the estimate of
constraint criticality. It is empirically demonstrated that a
heuristic commitment technique that exploits dynamic con-
straint criticality achieves superior overall performance.

Introduction
The management of inventory, its storage, production, and
consumption, represents the core function of a manufactur-
ing organization. Little scheduling research, however, has
specifically addressed inventory. While there are a wide
variety of commercial scheduling systems that deal with
inventory, the techniques used in these systems remain pro-
prietary.

The central contribution of this paper is the expansion of
a structural analysis technique (calledtexture measure-
ments) to account for a richer constraint representation and
the application of texture measurements to the problem of
scheduling with inventory constraints. A broader contribu-
tion of this paper is the demonstration of the ease of exten-
sion of the constraint-directed approach to problem solving
to problems with novel characteristics.

This paper is organized as follows: we first define the
inventory scheduling problem investigated in this paper and
present the methodology for the construction of problem
instances. We then describe two areas of previous work:
investigations of similar scheduling problems and work on
texture-based heuristics on which the inventory heuristics in
this paper are based. A detailed presentation of the inven-
tory representation and the heuristic commitment tech-
niques themselves then follows. We evaluate the heuristic
commitment techniques in two experimental conditions, the
results of which are then discussed.

A Simple Inventory Scheduling Problem
An n ✕ m inventory scheduling problem consists ofn jobs
andm resources. Each job is composed ofmactivities, each
using a different resource. Each activity,Aij , in job, j:
• has a constant duration,durij .
• uses one resource,Rij , with no interruption, for its entire

duration.
• is completely ordered with the other activities in jobj. If

Aij is beforeAkj in the complete ordering,Aij must finish
executing beforeAkj can begin executing.

• may consume some amount of one or more inventori
Consumption is assumed to happen instantaneously at
start of execution.

• may produce some amount of one or more inventorie
Production is assumed to happen instantaneously at
end of execution.
In addition to the precedence constraints among activit

in the same job, there are two additional types of co
straints:
1. Unary resource constraints – each resource can be u

by at most one activity at any time point.
2. Inventory constraints – each inventory has a maximu

and minimum constraint which specify, respectively, th
maximum and minimum amount of each type of inven
tory that can exist at any time point.
The jobs, activities, activity characteristics (duration

resource usage, inventory production/consumption
resources, and inventories are all given in the problem de
nition. A solution consists of a sequence of activities o
each resource such that all constraints (preceden
resource, and inventory) are satisfied.

This problem definition represents the minimal additio
of inventory representation to the job shop scheduling pro
lem (Garey and Johnson, 1979; Blazewicz et al., 199
While real-world inventory problems contain more com
plex inventory requirements (Beck, 1999), the relative lac
of research literature addressing such requirements m
dates a simple problem definition so that we can begin
systematically investigate inventory scheduling.

Generating Inventory Problems
Two variations of the simple inventory scheduling problem
are investigated in this paper. In theone-stageproblems,
only raw material inventory are consumed by the activitieCopyright © 2000, American Association for Artificial Intelligence (www.aaai.org). All

rights reserved.
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and only finished goods inventory are produced.Two-stage
problems add work-in-process inventory: an inventory pro-
duced by one job may be required by a subsequent job.
These two types of problems allow us to investigate inven-
tory scheduling heuristics as the complexity of the inven-
tory relationship changes: in one-stage problems, the
inventory requirements result in otherwise unrelated activi-
ties competing for a limited pool of raw materials while in
the two-stage problems, activities may also be related
through production/consumption requirements. Such
requirements are common, especially in continuous manu-
facturing applications (e.g.,activities in stagek+1 consume
inventory produced by stagek). The two-stage inventory
problems allow us to begin to investigate the inter-job con-
straints engendered by such process models.

One-Stage Inventory Problems
A single raw material inventory and a single finished goods
inventory is associated with each job. This gives the prob-
lem a total of 2n inventories. Minimally, the first activity in
each job consumes the corresponding raw material and the
final activity produces the corresponding finished good.
Further inventory interactions are added by specifying,c,
the number of consumptions of a raw material inventory in
each job. The activities that consume and the raw materials
that are consumed are randomly selected with uniform
probability and replacement. The only restriction on a sin-
gle activity is that each consumption must be of a different
inventory. The maximum value forc in ann✕mproblems is
nm which occurs when each activity consumes each of the
raw materials.

Given ann✕m job shop problem, we calculate the lower
bound on the makespan as described by (Taillard, 1993).
The scheduling horizon, then, is based on amakespan fac-
tor multiplied by the lower bound calculation.

Supply and Demand Events.The raw materials must be
introduced into the problem via supply events, while the
finished goods must have corresponding demand events.
Both these types of events are modeled using activities of 0
duration with predefined start-times. The amount of a raw
materialRMi supplied is found by summing the amount of
all consumers ofRMi. The amount ofRMi produced by sup-
ply events is then calculated by multiplying this sum by a
supply factor. For all the problems examined here, we set
the supply factor to be 1.2. Future work will examine the
manipulation of the supply factor.

The time of the supply events forRMi is determined by
calculating,maxST(RMi), the latest time that a consumer of
RMi can begin execution. This time is found by calculating
the minimum tail (Carlier and Pinson, 1994) of all consum-
ers of RMi and subtracting that value (weighted by the
makespan factor) from the length of the scheduling horizon
as shown in Equation (1).

 (1)

The supply of raw material is created via five supply
events (each contributing approximately equal amounts of

inventory) whose times are evenly distributed on the temp
ral interval [0,maxST(RMi)]. We choose to use five supply
events to mimic real-world factory situations where it i
common to have a predefined, regular delivery schedule
raw materials inventory.

There is a single demand event for each finished good
occurs at the end of the horizon and demands the to
amount of a finished good produced in the problem.

Inventory Constraints. For all inventories, the minimum
constraint is an inventory level of 0. For a finished goo
FGi, the maximum constraint is equal to the total amount
FGi produced in the problem. Since the total amount of
finished good that is produced is equal to the maximu
limit, the maximum constraint on finished goods does n
constrain the problem.

For a raw material,RMi, the maximum constraint is equa
to 75% of the total amount ofRMi produced by supply
events.

Two-Stage Inventory Problems
We generate two-stage problems by combining two on
stage problems. There are three components to the com
nation process: inventory, resource, and temporal.
• Inventory – given the two one-stage problems,P1 andP2,

the supply events inP2 are replaced with production by
activities inP1. The activities that produce each work-in
process inventory are chosen randomly with unifor
probability from the activities inP1. The only restriction
is that each inventory is produced by five different activ
ties.

• Resources – only the resources fromP1 exist in the com-
bined problem. The activities fromP2 are randomly
assigned to execute on aP1 resource with the usual job
shop restriction that each activity in a job executes on
different resource.

• Temporal – we find the lower bound on makespan b
summing the durations of the activities on each resour
This lower bound is then multiplied by the makespan fa
tor to generate the length of the scheduling horizon. Ea
demand event is scheduled to occur at the end of the h
zon regardless of whether the finished good invento
originally came fromP1 or P2. Each supply event occurs
as described in the single-stage problems; however,
timing of each event is changed to reflect the makesp
of the two-stage problem.
For example, Figure 1, displays two jobs from a 5✕5

two-stage problem. The second job,B, is from the second

maxST RMi( ) horizon mkspFactor minTail RMi( )×–=

Figure 1. Two Jobs from a 5✕5 Two-Stage Inventory
Problem.

A2 A3 A4 A5
R3 R4 R1 R5A1

R2

(RM1, 176) (FG1, 234)

B2 B3 B4 B5
R3 R1 R5 R2B1

R4

(RM2, 16) (FG2, 74)(WIP3, 21)
(WIP0, 1021)
(RM1, 250)

(WIP3, 200)
(WIP2, 19)

(WIP2, 19)
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stage as it consumes work-in-process inventory (e.g., WIP2)
that is produced by a first-stage job such asA.

The combination of twon✕mproblems results in a single
problem withm resources, 4n inventories (n raw materials,
n intermediate inventories, and 2n finished goods), and 2n
jobs each withmactivities. There are 5n supply events (five
for each raw material inP1) and 2n demand events (one for
each finished good inP1 andP2).

Background
Given the simple inventory problem model described
above, we now examine previous work that has considered
similar problems as well as work on texture measurements
which forms the basis for the heuristic commitment tech-
niques for inventory introduced in this paper.

Inventory Scheduling
The published techniques for inventory scheduling typically
make use of constraint propagation to maintain inventory
constraints while leaving the heuristic techniques to con-
centrate on scheduling the re-usable resources.

In CHIP (Simonis and Cornelissens, 1995), the cumula-
tive constraint is used to represent inventory as a reusable
resource. An activity which produces an inventory at some
time, t1, is represented as an activity that uses the corre-
sponding resource from time 0 to timet1. At t1, the activity
ends and the resource is released for use by other activities.
Similarly, an activity which consumes an inventory at some
time, t2, is represented as an activity which uses the corre-
sponding resource fromt2 to the end of the scheduling hori-
zon. The cumulative constraint specifies that the sum of all
the activities using the resource at any time point must be
less than the maximum inventory level. The minimum
inventory constraint can also be represented with a separate
cumulative constraint with a slight modification in the mod-
eling of producers and consumers.

In ILOG Scheduler, one method of inventory modeling is
the use of a time-table mechanism (Le Pape, 1994b;
Le Pape, 1994a) in which each inventory has a time-table
defining the time-varying minimum and maximum capacity
constraints. Activities produce and consume inventory, and
propagation is done through the time-tables to prune start
times that are not consistent with the inventory constraints.

The KBLPS distribution planner (Saks, 1992) treats the
initial inventory and subsequent incoming supplies as sepa-
rate discrete quantities. All the activities in one order are
scheduled before moving to the next order. This enables the
algorithm to use texture measurements to identify the most
critical resource or inventory, and to schedule the order
which relies most on that resource or inventory.

In CHIP and ILOG Scheduler, the primary use of the
inventory modeling is for propagation. With such an
approach, traditional scheduling algorithms can be used to
assign start times to activities, while the inventory propaga-
tion maintains the inventory constraints. A weakness of this
approach is that no heuristics directly examine the inven-
tory constraints, even if inventory constraints are the major

challenge in solving a problem. The KBLPS model, in con
trast, directly represents and reasons about inventory as
of the heuristic commitment technique. However, th
approach depends on the order-based problem decomp
tion and the scheduling of all inventory transitions withi
an order.

Our approach to inventory scheduling is to extend textu
measurements to evaluate the criticality of both resour
and inventory constraints. This criticality measurement c
then be used as a basis for the dynamic focus of the heu
tic commitment technique enabling it to identify the mos
critical constraint in each search state and then to find
commitment that will tend to reduce that criticality.

Texture Measurements
Our approach to heuristic search rests on the problem str
ture hypothesis (Simon, 1973) which states that an und
standing of the problem structure is central to high-quali
heuristic search. With a constraint graph representatio
understanding of the problem structure arises from the an
ysis of the constraint graph. We use texture measureme
(Fox, 1983; Fox et al., 1989; Sadeh, 1991) to distill info
mation from the constraint graph and then base our heu
tic decision-making on the distilled information.

A texture measurementis an analysis of the constraint
graph underlying a problem state that distills informatio
that can be used by a heuristic commitment technique (F
et al., 1989). For example,contention(Sadeh, 1991) is the
extent to which variables linked by a disequality constrai
compete for the same value. In the context of schedulin
contention is the extent to which activities compete for th
same resource over the same time interval.

The foundation of the contention measurement and la
extensions (Muscettola, 1992; Beck et al., 1997b) is a pro
abilistic estimate of each activity’s demand for a resour
over time. The individual activity demands are summed
form the aggregate demand over time for each resource
the aggregate demand is then used to dynamically iden
the critical resource and time point. The heuristic uses t
criticality information to focus on the most important par
of the problem in each search state.

In this paper, we measure the criticality of a constraint b
its probability of breakage as estimated by the VarHeig
texture measurement, previously applied to unary capac
resources (Beck et al., 1997a). VarHeight aggregates
individual expected value and variance of each activity
demand for a resource into aggregate expected value
aggregate variance curves. The aggregate curves are
used to estimate the probability of breakage of the resou
constraint at each time point.

In extending VarHeight to inventory constraints, w
modify the individual expected value and variance curve
An activity that produces or consumes inventory makes
positive or negative contribution to the level of that inven
tory. Assuming that each of the remaining start times
equally likely to be assigned and considering inventoryI, a
time pointt, and an activityA, we associate a random vari
ableX with the contribution thatA has toI at time t. The
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domain ofX is {0, AMTA(I)} where AMTA(I) is the total
amount of inventoryI thatA produces or consumes. IfA is a
consumer,AMTA(I) < 0.The expected value forX at time,t,
EXA(t), is ID(A, I, t). If A is a production activity,ID is cal-
culated as follows, for alleftA ≤ t ≤ lftA (whereeftA andlftA
are, respectively the earliest and latest finish times ofA and
STDA is the domain of the start time variable ofA):

 (2)

If A is a consumption activity,ID is calculated the same
way, relative to the start time window. That is, for all
estA ≤ t ≤ lstA (whereestA andlstA are the earliest and latest
start times ofA):

 (3)

We calculate the variance ofX at time,t, VXA(t), as fol-
lows (see (Beck, 1999) for the full derivation):

 (4)

Given these definitions, we can calculateEXA(t) and
VXA(t) for all activities,A, at time pointt.

The aggregation of the individual demands on inventory
is done exactly as the aggregation on resources described in
(Beck et al., 1997a). In particular, the same assumptions
and same time-complexity apply:O(mn log n) + O(mn)
(wheren is the maximum number of activities on a resource
andm is the number of resources).

With this formulation, the VarHeight texture measure-
ment can be used to estimate the probability of breakage
(over time) of resource and inventory constraints as illus-
trated in Figure 2. (Note that the normal distribution is an
assumption discussed in (Beck et al., 1997a)).

Texture-Based Heuristics
Given an estimate of the criticality of each constraint at
each time point, we then use a heuristic commitment tech-
nique that makes use of the criticality information. As pre-
sented in more detail below, the VarHeight heuristic has
different behavior depending on what type of constraint is
found to be most critical. If a resource constraint is most
critical, the heuristic attempts to sequence the two activities
that contribute most to the criticality. In contrast, if an
inventory minimum constraint is most critical, the Var-
Height heuristic identifies the consumer that contributes

most to that criticality and constrains it to consume inve
tory from an available producer. A similar commitment i
made if an inventory maximum constraint is most critica
In all cases, the intuition behind the heuristic is the sam
given the texture measurement information that identifi
the most critical constraint, the heuristic makes a comm
ment that will tend to reduce that criticality.

Inventory Representation
Our inventory representation is a generalization of th
resource representation in the ODO scheduler (Be
et al., 1998; Beck, 1999). Each activity has one or mo
inventory requirements, each represented as a variable
takes the value of an inventory. For each requirement, th
is a variable corresponding to the amount of the invento
that the activity produces or consumes. Consumption
assumed to take place instantaneously at the start of
activity while production occurs instantaneously at the en
of an activity. The inventory constraints are represent
analogously to resource capacity constraints. A maximu
constraint defines the highest inventory level allowable
any time point while a minimum constraint defines the low
est inventory level allowable.

The inventory termination criteriaare a set of conditions
under which it is guaranteed that the constraints on
inventory will be satisfied in all subsequent search stat
The standard, and usually implicit, termination criterion i
a constraint satisfaction problem is that all variables a
assigned a value and all constraints are satisfied. Beca
we are not simply assigning start times to activities (s
below), we require that the termination criteria be mad
explicit. Our inventory termination criteria are that th
lower bound on inventory level is greater than or equal
the minimum constraint and the upper bound is less than
equal to the maximum constraint. If both conditions are sa
isfied, no further commitments are required to guarant
that the inventory constraints are satisfied. This terminati
criteria requires the calculation and maintenance of t
upper and lower bounds on the inventory level for ea
inventory. An efficient algorithm is presented in
(Beck, 1999).

As noted above, much of the previous work on invento
scheduling uses standard scheduling commitments (e.g.,
start time assignment) and depends on propagation to de
dead-ends and prune alternatives for inventory activitie
Start time assignments, however, do not address the roo
inventory criticality. If a minimum inventory constraint is
critical, for example, there is a danger that some consum
will be scheduled such that no producer can execute to s
ply its required inventory. The problem is not the assig
ment of start times, but the ordering of a produce
consumer pair. Our inventory commitment, therefore, co
sists of a precedence constraint specifying that the produ
will occur before the consumer as well as a constraint spe
ifying the amount of inventory produced by the produce
that is consumed by the consumer. We include a spec
amount of inventory to improve the structural informatio
on which we make inventory commitments: knowing how

ID A I t, ,( ) AMTA I( )
t ef tA– 1+

ST DA
----------------------------×=

ID A I t, ,( ) AMTA I( )
t estA– 1+

ST DA
----------------------------×=

V XA t( ) EXA t( ) AMTA I( ) EXA t( )–( )×=

EXM

Area used as estimate
for the probability of
breakage of maximum
capacity constraint

Inventory Demand

Area used as estimate
for the probability of
breakage of minimum
capacity constraint

m

Figure 2. Calculating the Probability of Breakage at Timet
with VarHeight.

m - minimum constraint M - maximum constraint
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much of the inventory produced by an activity has already
been assigned to be consumed by a particular consumer sig-
nificantly aids in the identification of critical producers and
consumers.

Simply matching consumers with producers does not
guarantee that the termination criteria for an inventory (or a
dead-end) will be met. It may be the case that we have to
further constrain the linked producer-consumer pairs to exe-
cute within a certain time interval of each other. In the
worst case, in fact, it may be necessary to actually assign
start times to some activities in order to guarantee the satis-
faction of inventory constraints. To address such situations,
we propose three types of commitments to reduce inventory
criticality: producer/consumer commitments, producer/con-
sumer interval commitments, and start time commitments.

Producer/Consumer Commitments
We use the notation (P → C, 25) to indicate a producer/con-
sumer commitment between activitiesP and C. Specifi-
cally, this notation indicates thatC must start at or after the
end ofP and that 25 units of the inventory produced byP
are consumed byC. P is not constrained toonly produce 25
units of inventory, nor isC constrained toonly consume 25
units: each may be linked with other consumers and pro-
ducers, respectively. When all of the inventory that is pro-
duced (respectively, consumed) by an activity has been
matched to a corresponding consumer (respectively, pro-
ducer) via producer/consumer commitments, we say that
the activity has beencompletely matched. In a solution, a
producer does not necessarily have to be completely
matched since some of the inventory it produces may
remain in storage at the end of the scheduling horizon. A
consumer, however, must be completely matched.

The commitment scheme adopted here is that in a search
state,S, where for inventory,I, there exists a consumer,c,
that has not been completely matched, we can assert a pro-
ducer/consumer commitment of the following form:

(p → c, min(amt-unmatched(p,S), amt-unmatched(c,S))  (5)

Where:
• p is a producer ofI
• amt-unmatched(a, S) is the amount of inventory produced

(or consumed) bya that has not been matched in stateS
• amt-unmatched(a, S) > 0

If, through a complete retraction technique, we derive a
dead-end, we post the commitment ¬ (p → c, min(amt-
unmatched(p, S), amt-unmatched(c, S)). This alternative
commitment has the effect of removing from consideration
another heuristic commitment betweenp andc until a state
such that the minimum amount of unmatched inventory for
p andc has changed. This branching scheme is similar to
the “schedule versus postpone” branching scheme for start
time assignments used in (Le Pape et al., 1994). Complete-
ness of the branching scheme is proven in (Beck, 1999).

Producer/Consumer Interval Commitments
When all consumers are completely matched, an inventory
minimum constraint cannot be violated (unless the problem

is trivially unsatisfiable: the amount of inventory consume
is greater than the amount produced). All consumers ha
been paired with producers that supply sufficient invento
and, therefore, the inventory minimum constraint must b
satisfied. A critical inventory maximum constraint, how
ever, indicates that there is a non-zero probability that t
inventory maximum constraint will be broken. To reduc
this criticality, we constrain the time interval between th
end of the producer and the start of the consumer. The in
ition behind this commitment is that when a producer an
consumer execute closer together in time, the avera
inventory level is decreased.

The actual commitment made is to constrain the interv
between producer and consumer to be equal to or less t
the middle value of the current domain of possible interv
lengths. If such a commitment is retracted, we can post t
opposite commitment: constraining the temporal interval
be greater than the middle value in the domain.

Start Time Commitments
Finally, it may be the case that all consumers are co
pletely matched and all producer-consumer pairs are c
strained to occur within a constant time of each other, b
the search state is still neither a dead-end nor a solution
such a state, it is necessary to assign start times to at le
some of the activities.

Heuristic Commitment Techniques
Three classes of heuristic commitment techniques are u
in our empirical investigations.
1.Texture-based heuristics– the defining characteristic of

these techniques is the calculation of texture measu
ments onboth inventory and resource constraints. Th
heuristic uses the texture information to dynamical
decide which type of commitment to make.

2.Non-texture-based inventory heuristics– in this class,
producer/consumer commitments are made by a non-t
ture-based heuristic before proceeding to a second h
ristic commitment component to sequence the activiti
on each resource, followed (possibly) by a third heurist
to assign start times.

3.Non-inventory heuristics– this class is composed of heu
ristics which simply make commitments on the resourc
and use inventory propagation to maintain the invento
constraints.
It should be stressed that these techniques repres

methods to form heuristic commitments. Other componen
of the scheduling algorithms (i.e., propagators and retrac-
tion techniques) are orthogonal and complementary to
work reported here. In particular, the heuristic commitme
techniques can be directly used in algorithms that also co
tain the inventory timetable mechanism of ILOG Schedul
and/or the cumulative constraint in CHIP.

Texture-based Heuristics
The texture measurements allow us to estimate the pro
bility of breakage of resource maximum, inventory min
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mum, and inventory maximum constraints over time. The
heuristic used in this paper, VarHeight, does the following:
1. Calculates texture measurements on all resource and

inventory constraints.
2. Identifies the most critical constraint and time point,

defined to be the constraint and time point with the high-
est probability of breakage (ties are broken arbitrarily).

3. Generates a commitment to reduce the criticality of the
most critical constraint.
The heuristic commitment that is generated depends on

which type of constraint is most critical. Therefore, the dif-
ferent types of commitments are interleaved throughout the
scheduling process based on the texture information.

Resource Commitment
Given that resource,R*, at time,t* , has been identified as
most critical, the VarHeight heuristic does the following:
1. Identifies the two activities,A andB, which rely most on

R* at t* and that are not already connected by a path of
temporal constraints.

2. Chooses the sequence (A → B or B → A) based on
sequencing heuristics. These sequencing heuristics are
presented in (Beck et al., 1997b).

Minimum Inventory Commitment
When a minimum inventory constraint is found to be most
critical, the heuristic identifies all consumers that can con-
sume at or before the critical time point, and selects the one
with the largest unmatched inventory. The activity is, heu-
ristically, the most critical consumer.

Having the most critical consumer,c, we then examine
all producers that can supply that consumer. We choose the
producer with an earliest finish time less than or equal to
the latest start time of the critical consumer which has some
unmatched inventory and minimizes the valuelstc – eftp.
The justification for this heuristic is that it will tend to min-
imize inventory levels if the producer and consumer are
able to execute close together in time. The commitment
posted is a producer/consumer commitment betweenp and
c as described in our branching scheme.

Maximum Inventory Commitment
When a maximum inventory constraint is critical, three
types of commitments are made in the following order: pro-
ducer/consumer, producer/consumer interval, and start time
assignment. In each case, all commitments of one type are
made before any commitments of the next. That is, no pro-
ducer/consumer interval commitments will be made if it is
still possible to make a producer/consumer commitment.
Similarly, no start times will be assigned if it is still possible
to make either of the other two commitments. Each of these
commitment choices have their own sub-heuristics.
• Producer/Consumer Heuristic – when a maximum inven-

tory constraint is critical, the heuristic identifies the pro-
ducer,p, with the largest unmatched inventory that can
produce at or before the critical time point. The consum-
ers whose latest start times are greater than the earliest
finish time ofp are evaluated and, as with the inventory
minimum heuristic, the consumer,c, that minimizeslstc–
eftp is chosen.

• Producer/Consumer Interval Heuristic – a producer-co
sumer pair,p andc, is heuristically selected such that th
inventory transferred fromp to c is the maximum of all
producer-consumer pairs that meet the requirement t
eftp ≤ t* ≤ lstc, where t* is the critical time point. As
noted above, the actual commitment that is made is
limit the allowed time interval between the end of th
producer and the start of the consumer.

• Start Time Assignment Heuristic – our start time assig
ment follows the “earliest or postpone” (EorP) branching
scheme for start time assignments due to Le Pape et
(Le Pape et al., 1994). All unassigned activities a
ordered in ascending order of earliest start time with ti
broken by ascending order of latest start time. A comm
ment results from selecting the first element on the li
and assigning its earliest start time. If a dead-end
found, the activity is “postponed”: the activity can no
take part in a start time commitment until propagatio
results in a new earliest start time for the activity.

Non-texture-based Inventory Heuristics
Without a technique to compare the criticality of inventor
and resource constraints, there does not appear to be a p
cipled way to interleave the types of heuristic commi
ments. The commitments are therefore made in t
following order: producer/consumer, resource, and st
time. As with the inventory maximum heuristic, all com
mitments of one type are made before any commitments
the next. Different heuristics are used for each commitme
• Producer/Consumer Commitment Heuristic – the no

texture-based producer/consumer heuristic selects c
sumers in descending order of their amount of unmatch
consumption. An upstream producer is identified bas
on the minimization oflstc – eftp. We refer to this heuris-
tic asGreedyInv.

• Resource Commitment Heuristics – any of the techniqu
used for job shop scheduling can be used for the resou
sequencing heuristic. In our experiments, we use Su
Height and CBASlack. TheSumHeightheuristic (Beck
et al., 1997b) uses the contention texture measuremen
estimate the criticality of all resources and the
sequences the two most critical activities on the most cr
ical resource using the same sequencing heuristics u
by VarHeight. SumHeight is used here, rather than t
more general VarHeight, because the former has be
shown to outperform the latter on job shop schedulin
problems (Beck, 1999). The Constraint-Based Analys
Slack (CBASlack) heuristic (Cheng and Smith, 1997
identifies the unsequenced activity pair with the smalle
biased slack. This pair is then sequenced to preserve
most slack. A resource commitment heuristic does n
necessarily have to be defined. In the case of a n
resource commitment heuristic, the start-time assignm
heuristic is used after all inventory commitments ar
made.

• Start Time Assignment Heuristics – it is possible to reac
a search state such that all consumers are comple
matched and all activities on the resources are sequenc
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yet the termination criteria on one or more inventories are
not met. In such a search state, start time assignments are
necessary. The start time assignment heuristic used is the
EorP heuristic described above.

Scheduling Without Inventory Heuristics
To provide a basis of comparison for our inventory heuris-
tics against heuristics typical of those in the literature, we
use the resource sequencing heuristics and start time
assignment heuristics discussed in the previous section. We
run one of our resource heuristics (SumHeight, CBASlack,
or NULL) followed, if necessary, by the EorP start-time
assignment heuristic.

Summary
The three classes of heuristic commitment technique are
shown in Figure 3. There is a single instance of a texture-
based heuristic commitment technique (VarHeight) and
three instances each of the other two classes. The name
below each technique corresponds to the scheduling policy
using that technique.

Empirical Evaluation
The primary goal in our experiments is to understand the
performance differences among the heuristic commitment
techniques. To this end, we undertake two experiments. The
first uses one-stage problems to investigate heuristic perfor-

mance as the number of inventory consumptions
increased. The second experiment turns to two-stage pr
lems and manipulates the overall scheduling horizon.

The heuristic commitment techniques are the sole diffe
ence among the scheduling policies. All algorithms u
chronological backtracking and the following propagators
• temporal propagation (Lhomme, 1993)
• constraint-based analysis (Cheng and Smith, 1997)
• edge-finding exclusion (Nuijten, 1994)
• edge-finding not-first/not-last (Nuijten, 1994)
• inventory bound propagation (Beck, 1999)
• producer/consumer propagation (Beck, 1999)

The final two propagation techniques have been shown
significantly improve the overall performance of schedulin
policies on inventory scheduling problems (Beck, 1999).

The use of chronological backtracking as opposed to
discrepancy-based retraction technique (Harvey a
Ginsberg, 1995; Walsh, 1997) is motivated by our focus o
the heuristics and the relative lack of previous work o
scheduling with inventory. Future work will explore the
effect of such techniques.

The Reporting of Time-outs
Our experiments are run with a bound on the CPU tim
Each algorithm must either find a schedule or prove that
schedule exists for a problem instance. If an algorithm
unable to do so within the CPU time limit (in all our experi
ments the limit is 20 minutes), a time-out is recorded.

The primary reason for reporting time-out results is th
it allows us to use problem sets that contain both solub
and over-constrained problems. The phase transition w
in combinatorial problems such as SAT and CSP (Gent a
Walsh, 1994; Gent et al., 1996) demonstrates that the ha
est problem instances are found in locations of the proble
space where approximately half of the problems are ov
constrained. While the space of scheduling problems is n
as well-understood as SAT or CSP in terms of phase tran
tion phenomena (Beck and Jackson, 1997), we want to ta
advantage of this insight in order to generate challengi
problem instances. We construct our problem sets so tha
the independent variable changes, the problem instan
move from an over-constrained area in the problem space
an under-constrained area. In the former area, proofs
insolubility can often be easily found while in the latte
area, solutions can be easily found. It is in the middle ran
of problems where we expect to find the most difficult prob
lems.

Unless otherwise noted, statistical significance for ea
performance measure is evaluated with the boot-str
paired-t test (Cohen, 1995) withp ≤ 0.0001.

Experiment 1: One-Stage Problems
The problems used in this experiment are 10✕10 one-stage
inventory scheduling problems. The makespan factor
held constant at 1.2 and the primary independent variable
c, the number of consumptions per job. Rather than direc
manipulatingc, we manipulatep = c/nm, the proportion of

Texture-based Heuristic Commitment Techniques

VarHeight

Figure 3. Schematic Representation of the Three
Classes of Heuristic Commitment Technique.
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the maximum possible consumers for each job. For our
experiments,p varies from 0.2 to 0.8 in steps of 0.2. For
each value ofp, twenty problems are generated. At low val-
ues ofp, there are few consuming activities and therefore
the combination of temporal and inventory constraints
should be relatively easy to satisfy: there are few activities
that must be scheduled to consume from the predefined
supply events. In contrast, at high values ofp, there are
many such consumers and, therefore, we expect problems
to be more difficult to solve and, in many cases, insoluble.
The makespan factor was chosen based on the results of job
shop problems that showed that most of the random job
shop problems are soluble at such a factor (Beck, 1999).

The timed-out results are presented in Figure 4 while the
mean CPU time results are in Figure 5. Similar perfor-
mance among a number of the algorithms obscures some of
the results. In Figure 4, all the algorithms using the non-tex-
ture-based inventory heuristics (i.e., GreedySumHeight,
GreedyCBASlack, and GreedyEorP) achieve the same
results and coincide on the plot beginning at (0.2, 0.5). In

Figure 5, the non-texture inventory heuristics achieve ide
tical performance within a few hundredths of a second a
coincide on the plot beginning at (0.2, 601.0).

Statistically, VarHeight times-out on significantly fewe
problems than SumHeight, CBASlack, and EorP whi
showing no significant difference when compared to th
algorithms using non-texture-based inventory heuristics.
comparing the corresponding pairs of algorithms, (e.g.,
GreedySumHeight with SumHeight) we see that each no
texture-based inventory heuristic times-out on significant
fewer problems than its non-inventory heuristic counterpa
(p ≤ 0.0005).

Turning to the CPU time results, the statistical analys
reveals that VarHeight incurs significantly less CPU tim
than each of the algorithms using non-inventory heuristi
(p ≤ 0.0005). Examining the corresponding pairs of non
texture heuristics versus non-inventory heuristics, w
observe that each algorithm using a non-texture invento
heuristic incurred significantly less CPU time than the co
responding one using non-inventory heuristics. There a
no other significant differences. In particular, there are
significant differences between VarHeight and any of th
non-texture-based inventory heuristics.

Experiment 2: Two-Stage Problems
Experiment 2 uses two-stage problems, each formed fr
two 10✕10 one-stage problems. The same algorithms
Experiment 1 are used. The proportion of possible consu
ers,p, is held constant at 0.4. This value was chosen, bas
on Experiment 1, in order to generate relatively difficu
problems. The independent variable is the makespan fac
which is varied from 1.0 to 1.5 in steps of 0.1. For eac
makespan factor, twenty problems are generated.

The proportion of problems in each problem set fo
which the algorithms time-out is shown in Figure 6. In gen
eral, the algorithms using non-inventory heuristics d
poorly on all problem sets from makespan factor 1.1
makespan factor 1.5. The algorithms using non-textur
based inventory heuristics perform poorly on problem se
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with low makespan factors (1.1 and 1.2), but improve as the
makespan factor increases. The mean CPU time for each
algorithm is shown in Figure 7. VarHeight incurs lower
mean CPU time than all other algorithms across all problem
sets. The other algorithms perform similarly on the problem
sets with low makespan factor, but diverge at higher
makespan factors. As above, the algorithms with non-tex-
ture-based heuristics appear to improve (relative to the non-
inventory heuristic algorithms) with the higher makespan
factors.

Statistical analysis reveals that VarHeight times-out on
significantly fewer problems and incurs significantly less
mean CPU time than all other algorithms. In comparing the
non-texture-based heuristics with their non-inventory heu-
ristic counterparts, we see that the former significantly out-
perform the latter (p ≤ 0.005) in terms of the number of
problems timed-out and the mean CPU time.

Discussion
The experiments show that the use of texture-based heuris-
tics results in as good as or better performance than the use
of non-texture-based inventory heuristics and non-inventory
heuristics. In particular, when the inventory relationships
among activities are made more complex, the algorithm
using a texture-based heuristic significantly outperforms all
other algorithms on all problem sets tested.

The motivation for a measure of criticality that can be
applied to a wide range of constraints is that, at each search
state, we want to be able to identify the most critical con-
straint, regardless of type, and focus our heuristics on
reducing the criticality. The contributions of the dynamic
focus ability are particularly evident in Experiment 2. As
we argue below, as the makespan factor increases the rela-
tive criticality of the resource and inventory constraints
changes. Throughout the change, VarHeight outperforms all
other algorithms. We interpret these results as support for
our approach to scheduling via texture measurement-based
heuristic search. The ability to not only identify the con-
straints that are more critical at the beginning of the prob-

lem but also in every search state allows the texture-bas
heuristics to achieve high-quality search on problems w
varying characteristics.

The experiments demonstrate that taking inventory in
account when making heuristic decisions, even with
greedy heuristic, leads to better overall search performan
than when the heuristics focus solely on resource co
straints and allow propagators to maintain the invento
constraints. This observation would seem to be obviou
given problems that are strongly characterized by invento
constraints. Nonetheless, the few scheduling strategies
the literature that address inventory problems tend
account for inventory via inventory propagators alone.

In Experiment 2, for low values of the makespan facto
there is little slack on each resource, and therefore the cr
cality of the resource constraints is high. When th
makespan is larger, however, the resource constraints
easier to satisfy and therefore the inventory constrain
become, relatively, more critical. On this basis, then, w
would expect that a heuristic that focuses on resource c
straints will perform well for problem sets with low
makespan factors while at larger factors heuristics that p
more effort toward the inventory constraints will be supe
rior. These are the results we see: the non-inventory heu
tics perform well at makespan factors 1.0 and 1.1 and ve
poorly on the problem sets with makespan factors 1.4 a
1.5. The non-texture-based inventory heuristics, in contra
improve with higher makespan factors.

In many problem sets, the non-texture-based invento
heuristics achieved identical performance. Analysis reve
that each of the algorithms is dependent on the Greedy
heuristic: either GreedyInv found a set of producer/co
sumer commitments that could be extended to an over
solution with no further backtracking or it was unable t
find a set of consistent producer/consumer commitments

Conclusions
The central thesis of this paper is that an understanding
the structure of a problem leads to high-quality heurist
problem solving performance in constraint-directed sche
uling. Our methods for gaining an understanding of pro
lem structure focus ontexture measurements: algorithms
that implement dynamic analyses of each search state. T
ture measurements distill structural information from th
constraint graph which is then used as a basis for heuris
decision making.

We formulated a texture measurement to estimate t
probability of breakage of resource and inventory co
straints. The ability to estimate the criticality of both
resource and inventory constraints allows heuristics
dynamically and opportunistically reason about the mo
critical constraint in a problem state, independent
whether the constraint is a resource or inventory constra

It was empirically demonstrated that the ability to
dynamically focus on the most critical constraint in a prob
lem state leads to significantly better overall heurist
search performance. When the experimental problems
manipulated to have more complex producer/consum
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relationships, it was shown that the dynamic focusing abili-
ties arising from an understanding of the problem structure
is particularly important to successful heuristic search.
These results support the problem structure hypothesis that
we set out to investigate in this paper. The identification and
exploitation of the problem structure revealed by an esti-
mate of the constraint criticality leads to better overall heu-
ristic problem solving performance.

Finally, it should be noted that the techniques presented
fit wholly within the constraint-directed scheduling
approach. Therefore, a broader contribution of this paper is
the demonstration of the flexibility and extensibility of the
constraint-directed approach to scheduling. Indeed, the
ability to represent and reason about the myriad of con-
straints relevant to real-world scheduling problems was one
of the original motivations for applying constraint technol-
ogy to scheduling (Fox, 1983).
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