
From Requirements and Analysis to PDDL in itSIMPLE3.0

Tiago Stegun Vaquero1,2 and José Reinaldo Silva1 and Marcelo Ferreira3

Flavio Tonidandel3 and J. Christopher Beck2

1 Department of Mechatronics, Universidade de São Paulo, Brazil
2 Department of Mechanical & Industrial Engineering, University of Toronto, Canada

3 IAAA Lab, Centro Universitário da FEI - São Bernardo do Campo, Brazil
tiago.vaquero@poli.usp.br, reinaldo@usp.br, m fer@uol.com.br, flaviot@fei.edu.br, jcb@mie.utoronto.ca

Abstract

Transforming requirements of real planning applications into
a sound input-ready model for planners has been one of
the main challenges in the study of Knowledge Engineering
within AI planning. However, few tools and methods have
been developed to facilitate this transformation process. it-
SIMPLE is a research project dedicated to support the de-
sign phases of such planning models. In this papers we de-
scribe how requirements in UML are translated to solver-
ready PDDL models in itSIMPLE3.0. We also present the
translation from UML to Petri Nets for domain analysis. Fi-
nally, an overview of the tool support for analysis of plans
returned by planners is exposed.

Introduction
It is well-known that real planning applications require care-
ful design process, especially during the initial phases of a
development project. Requirements gathering and modeling
are two of the main challenges that usually impact directly
on the final planning application. Extracting relevant knowl-
edge from different sources (e.g. documents, experts, users,
stakeholders) and then representing it in a sound model is
indeed a hard task. Knowledge Engineering (KE) concepts
have been investigated to help the designer. However, few
tools and languages have been applied to facilitate the initial
design phases, in which knowledge is gradually transformed
from an informal representation to a formal model that can
be sent to AI planners.

The itSIMPLE (Vaquero et al. 2007) project is a research
effort to develop reliable KE tools for planning. Unlike other
tools, itSIMPLE focuses on initial phases of a disciplined
design cycle for creating sound models of real domains. The
tool provides an integrated environment that combines lan-
guages and tools for supporting designers in the design pro-
cess. In such environment, requirements gathering and mod-
eling are performed using the Unified Modeling Language
(UML) (OMG 2005), a general purpose language broadly
accepted in Software Engineering and Requirements Engi-
neering. The Petri Nets formalism (Murata 1989) is used
to analyze the requirements in the UML models. A PDDL
representation (up to 3.1) of the resulting UML model is au-

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tomatically provided to be read by AI planners. The plan-
ning solutions given by these solvers are then simulated and
evaluated in the tool.

This papers aims to expose the translation processes be-
hind the itSIMPLE3.0 framework. We focus on the transla-
tion from UML models to PDDL and also the representation
of some UML components in Petri Nets. The main contri-
butions of this paper are:
• A mapping process from UML to a solver-ready PDDL

model;
• A Petri Nets representation of UML models for planning

domain analysis;
This paper is organized as follows. First, we give an

overview of itSIMPLE3.0 and its language framework. Next,
we describe the translation processes that guide the user
from requirements in UML and Petri Nets-based analysis to
a PDDL model. We then give a brief description of the tool
support for analyzing plans returned by solvers. Finally, we
present the conclusion and future work.

itSIMPLE3.0 and its Language Framework
itSIMPLE is an open source project that aims to support de-
signers in the knowledge engineering processes of real plan-
ning applications (Vaquero et al. 2007). itSIMPLE’s inte-
grated environment focuses on the crucial initial phases of a
design such as requirements specification, modeling, model
analysis, and plan evaluation (Vaquero et al. 2007). The tool
has been applied and tested since 2005 in several real plan-
ning applications including petroleum supply ports (Sette et
al. 2008), project management (Udo et al. 2008), manu-
facturing (Vaquero et al. 2006), information systems, and
intelligent logistic systems. itSIMPLE3.0, the latest version,
brings new features such as the UML timing diagram for
time-based models, new PDDL translation capabilities, flex-
ibility in using planners, and an extended plan analysis tool.

The itSIMPLE environment allows users to follow a disci-
plined design process to create knowledge intensive domain
models, from the informality of real world requirements to
formal representations that can be directly read by solvers.
The suggested design process, shown in Figure 1, follows
a cycle of phases inherited from Software Engineering and
Design Engineering, combined with modeling experiences
of real planning domain.



Figure 1: Design process in itSIMPLE3.0

In the proposed process, requirements gathering and mod-
eling are perform using UML. This diagrammatic language
is an established notation for object-oriented design com-
monly used for modeling software applications, web appli-
cations, and business processes (OMG 2005). itSIMPLE al-
lows designers to analyze UML models, including their dy-
namic characteristics, by using the Petri Nets (PN) formal-
ism. Petri Nets are a well-known schema to represent work-
flow, discrete events and discrete dynamic processes in gen-
eral (Murata 1989). The simulation of the resulting PN can
reveal the need for refinements of the UML models. To de-
liver the analyzed UML model to a planner, itSIMPLE uses
the standard PDDL representation which most planning sys-
tems support. As a final step, the tool supports designers dur-
ing plan analysis, including simulation with UML diagrams
and plan evaluation using acquired metrics. All adjustments
and maintenance on the model, resulting from analysis, are
performed manually in the UML representation.

In order to facilitate the translation between languages in
the proposed design process, itSIMPLE uses the well-known
language XML (Bray et al. 2004) as a core language for stor-
ing all information from UML diagrams (reflecting directly
the UML model). Petri Nets and PDDL have direct rep-
resentation in XML. For example, Petri Nets Markup Lan-
guage (PNML) (Billington et al. 2003) is a XML-based rep-
resentation of PNs while eXtensible Planning Domain Def-
inition Language (XPDDL) (Gough 2004) is a XML-based
representation of PDDL. The tool utilizes these two XML-
based languages as means of achieving the PN representa-
tion and the PDDL model. All internal verifications and
translations are performed in the data available in the core
XML file, as shown in Figure 2.

Translation Processes

The main translators available in itSIMPLE3.0 are based
on mapping processes. Knowledge inserted in the tool us-
ing UML diagrams are first stored as an XML representa-
tion which is then mapped to PN and PDDL. Depending on
which translation is requested by users, the tool extracts the
necessary data from the central XML-based representation.

Figure 2: The architecture of the integrated languages

From UML to XML
itSIMPLE3.0 provides designers a set of UML diagrams as
a front-end to requirements elicitation and domain model-
ing. Five diagrams are available: (1) use case diagram for
requirements; (2) class diagrams for static characteristics of
the domain; (3) state machine diagrams for dynamics; (4)
the new timing diagrams for time-based domain features;
and (5) the object diagrams for problem and constraint def-
initions. Besides these diagrams, UML provides a prede-
fined formal language called Object Constraint Language
(OCL) (OMG 2003) to describe expressions on UML mod-
els, especially in class diagrams, state machines and object
diagrams. OCL was designed to specify domain invariants,
pre- and post-conditions of actions, and application-specific
constraints.

Figure 3: UML diagrams in itSIMPLE3.0

All UML diagrams and expressions are stored directly in
an XML representation. In fact, these diagrams are just a di-
agrammatic view of the knowledge in the XML model. The
data input through the diagrams are represented using proper



XML tags that can be easily mapped back into a graphical
representation of UML. The following example is a simpli-
fied XML representation of a class from UML.

<class id="6">
<name>Truck</name>
<description>class Truck</description>
<stereotype>agent</stereotype>
<attributes> ... </attributes>
<operators> ... </operators>
<generalization .../>
<constraints> ... </constraints>

</class>

Since the XML model reflects the UML diagrams in
essence, the following descriptions of the translation pro-
cesses use the term UML/XML as the central model of the
planning domain in itSIMPLE.

From UML/XML to Petri Nets
In this translation, which is specific to dynamic analysis, it-
SIMPLE captures the data from state machines diagrams of
UML/XML. These diagrams contain the knowledge directly
related to dynamics. The tool creates a PNML representa-
tion of the state machines that will be graphically expose
to the user as Petri Nets for visualization and simulation.
While simulating the PNs, designers can validate the flow
of the tokens in order to identifying deadlocks, parallelism,
concurrency and inconsistent sequences of actions.

The PNML fits properly in itSIMPLE’s analysis process
not only because it is a XML-based representation, but also
because it provides the concept of modules, called modu-
lar PNML (Kindler and Weber 2001), which is similar to
object-oriented concepts. The modular PNML allows the
definition of modules. A module in PNML encapsulates a
set of places (states) and transition that defines the behavior
of an object or artifact. A Petri Net in PNML can be created
by instantiating and combining modules.

The following sections describe the mapping process
from state machine diagram to modular PNML based on
two analysis processes provided by itSIMPLE3.0: Modular
Analysis and Interface Analysis (Vaquero et al. 2007). It is
important to note that these dynamic analysis are still in a
preliminary stage and so far the tool uses only structural el-
ements of the state machine diagrams to produce Petri Nets
in PNML. Pre and post conditions of actions (described in
OCL) are not considered yet. However, even with some
limitations, the translation to PNML is still useful since it
provides a simulation mechanism and also opens the oppor-
tunity to apply model checking techniques available in the
Petri Nets literature (Murata 1989).

Modular Analysis
The Modular Analysis supports users in verifying the be-
havior of each class individually, taking into account depen-
dencies with other classes. In order to perform this analy-
sis, every state machine (representing a class) is a module in
the modular PNML. Each state in a UML state machine is
converted to a place in the PNML module while every ac-
tion (arc) is converted to a transition element in the PNML

module. Since the actions connect states in the UML dia-
gram, the resulting transitions will connect the correspond-
ing places in the module. The ‘initial state’ element in state
machine indicates the initial token position in the module.

As an example of a PNML module, lets suppose a state
machine diagram representing a class CD where an action
t (that does not depend of any other class) leaves a state s1
and goes to the state s2. In this example, an ‘initial state’
points to s1. The state machine diagram would be translated
as a module d in the PNML in the following simplified form:
<module name="d">

<interface> ...
</interface>
<place id="{s1}">

<initialMarking>
<text>1</text>

</initialMarking>
</place>
<place id="{s2}"> ... </place>
<transition id="{t}"/>
<arc source="{s1}" target="{t}" />
<arc source="{t}" target="{s2}" />

</module>

In this modular PNML approach, actions that belongs to
other classes are distinguished graphically, creating a depen-
dency relationship in the modules. Furthermore, actions that
depend on other classes receive an extra state, as a precondi-
tion, also to represent dependency. Figure 4 shows an exam-
ple of Petri Net modules derived from Package and Airplane
state machines of the Logistic domain. All transitions in the
Package’s module (a) indicate that they affect the behavior
of such class; however, they belong to and depend on other
classes (modules), in this case the classes Truck and Air-
plane. On the other hand, Airplane’s module shows actions
load and unload represented differently. This graphical dif-
ference shows that the actions belongs to the Airplane but
they depend on other modules, such as Package. The action
fly does not depend on other modules and it is then repre-
sented as a simple transition.

Interface Analysis
The Interface Analysis investigates the dynamic interactions
among modules. During this analysis, designers can verify
not just one but many modules together, visualizing their
dependencies. In this analysis, state machines are trans-
lated individually as modules, following the same approach
of Modular Analysis. However, the chosen modules are
joined in a single PNML representation following the ap-
proach described in (Kindler and Weber 2001). When mod-
ules are combined, actions that appears in different diagrams
are merged graphically as shown in Figure 5. As a result, a
PNML file is generated and shown to users for simulation.

From UML/XML to PDDL
As opposed to the previous translation process, translat-
ing from UML/XML to PDDL requires that all knowledge
contained in UML/XML must be represented in the PDDL
model. In this procedure, the UML/XML model is rep-
resented as a PDDL model by means of XPDDL. Since



Figure 4: Modular Analysis of (a) Package and (b) Airplane

XPDDL to PDDL translation is a straightforward process
(as seen in (Gough 2004)), in this section we will directly
refer to the mapping from XML/UML to PDDL.

Because PDDL models are divided in two files, domain
and problem, the following descriptions focus on each trans-
lation process individually.

Domain Translation
A PDDL domain file contains static information about
the model and the specification of actions/operators. This
information is found in the UML/XML representation in
the class diagrams, state machine diagrams, and timing
diagrams.

Mapping Types
The mapping process starts from the class diagrams, in
which all defined classes are extracted and represented in the
:types section of the domain file. The hierarchy relationship
is respected and represented in PDDL. For example, a class
Truck, which is a specialization of a class Vehicle, would
be represented as Truck - Vehicle in PDDL types. Figure 6
shows the mapping rules for types in PDDL.
Mapping Predicates and Functions
Predicates and functions are also mapped to PDDL from
class diagrams, specifically from classes’ attributes and as-
sociations. Generally, attributes defined as Boolean are rep-
resented as predicates in the :predicates section of PDDL
(for example, attribute clear of class Block is mapped as
(clear ?x - Block)). Integer or Float are represented as flu-

Figure 5: Interface Analysis of the classes Package, Truck
and Airplane

Figure 6: Mapping PDDL types from class diagrams

ents in :functions of PDDL.
Some of the attributes are treated distinctly based on the

chosen version of PDDL. For example, attributes that are de-
fined as having their types of another class may depend on
PDDL version (e.g., attribute onTable of a Block class is of
type Table). In version 2.1, 2.2, and 3.0 these attributes are
represented as predicates, for instance (onTable ?x - Block
?y - Table). Conversely, in version 3.11, these cases are nat-
urally mapped as fluents in :functions, for example (onTable
?x - Block) - Table.

Parameterized attributes are also used in UML class di-
agrams. For example, the attribute distance(from:City,
to:City) of type Float from a class CityMap is a possible
parameterized attribute in a class diagram. In these cases,
the representation depends on the attribute’s type as describe
above. For the distance example, it would be represented in
the :function section of PDDL as (distance ?from - City ?to
- City).

Attributes defined in classes that have stereotype “util-
ity” are treated as global variables. The translation of these

1PDDL3.1 http://ipc.informatik.uni-freiburg.de/PddlExtension



attributes to PDDL follows the same approach described
above, but the class’s name is not mentioned. For example,
attribute totalfuel (Float) from a class called Global (utility)
would be mapped as (totalfuel) in the section :functions of
PDDL.

Associations are treated as predicates in PDDL as
well. For example, lets suppose that class Truck has an
association, called ‘at’, with class Place. This association is
mapped as (at ?x - Truck ?y - Place) in PDDL predicates.
Figure 7 illustrates some of the main rules for translating
predicates and functions in PDDL.

Figure 7: Mapping PDDL predicates and functions from
class diagrams

Mapping Actions
Since classes hold the name and parameters of their oper-
ators, itSIMPLE represents each action in the PDDL do-
main based on this information. As an example, opera-
tor Truck::drive(t:Truck, from:Place, to:Place) from a UML
class is mapped as (:action drive :parameters ?t - Truck
?from - Place ?to - Place)). However, pre and post con-
ditions are generally not specified in class diagrams, but in
the state machine diagrams. Figure 8 shows the mapping of
the name and parameters of actions.

In itSIMPLE’s state machine diagrams, the pre- and post-
conditions of each operator and the states are defined in
OCL expressions (OMG 2003). These expressions are used
in the actions to represent their conditions in the diagram.
Moreover, each state is defined by the possible values of the
class’s attributes using conjunctive and disjunctive OCL ex-
pressions.

Figure 8: Mapping PDDL action’s name and parameters
from class diagrams

Since an operator can affect different classes of objects,
the conditions of such operators can be spread among the
state machine diagrams. The mapping process collects all
preconditions and postconditions of each operator, merging
all state machines. In order to translate merged conditions
expressed in OCL, itSIMPLE has a map that correlates OCL
expressions and PDDL conditions. For example, if the ex-
pression ‘block.clear = true’ is found in an operator’s pre-
condition, the tool would add the following expression into
the proper action of PDDL: (clear ?block). Another exam-
ple: ‘truck.currentLoad = truck.currentLoad + 1’ in a post-
condition would be represented as (increase (currentLoad
?truck)) in PDDL.

It has been observed that some of itSIMPLE’s users define
pre- and post-conditions of actions directly in the class dia-
grams using OCL expression. In this case, itSIMPLE does
not perform the state machine merging process; instead,
the tool performs the expression mapping directly. Figure
9 shows some examples of the mapping rules for translat-
ing OCL expressions into PDDL conditions. A complete
map of pre and post-conditions in OCL into XPDDL and
PDDL is described in the user documentation available in
the project’s website.2

Since OCL expressions on post-conditions work with
variables attribution, itSIMPLE’s translator must treat the
cases where negating predicates are necessary. For exam-
ple, if the OCL expression ‘truck.at = from’ appears in the
precondition and ‘truck.at = to’ appears at the postcondition
of an action drive, the tool would automatically add the
condition (not (at ?truck ?from)) in the :effect of a PDDL
action, along with (at ?truck ?to) condition.

Mapping Temporal Characteristics of Actions
With the new timing diagrams added in itSIMPLE3.0, tem-
poral characteristics of actions can also be modeled and
translated to PDDL. The timing diagram was added in or-
der to address challenging domains such as those involving
time. This diagram is a timeline based approach to capture
temporal aspects of actions. When this diagram is used in a
planning approach, it is intrinsically connected to the state
machine diagrams which supply all significant states and at-
tributes of an object.

There are two approaches to modeling temporal aspects
in a domain using timing diagrams. The first one has a more

2User documentation. http://dlab.poli.usp.br



Figure 9: Mapping OCL expression to PDDL conditions

general view of the model in which all objects are presented
in a single diagram. This approach shows the how long the
objects remain in each of their states in a possible sequence
of actions. Each object in this diagram receives a frame that
is linked to a shared timeline. The timeline represents the
general duration of the possible sequence of actions. Each
object’s state is linked to time points that represent its dura-
tion. Figure 10 shows an example of a timing diagram using
two objects. This diagram illustrates that each one has its
own life-cycle that contains all states of the object and also
the duration of each state.

The second approach shows the temporal details of a spe-
cific action. The goal is to describe how attributes and prop-
erties change during an action execution. OCL expressions
are also used for defining the evolution of these attributes.
Only the objects related to such action can participate in the
diagram, as shown in Figure 11.

Currently, only the second approach is considered in the
translation process to PDDL. If an action is represented in
a timing diagram, this action will be a durative-action in
PDDL. Accordantly to the latest version of PDDL, there are
three types of temporally annotated conditions and effects:
(1) at start, specifies that a variable must have a specific
value when the action is triggered; (2) the over all specifies
that a variable has to hold its values during the execution
of the action; and (3) the at end specifies that the variable
must has a specific value at the end of the action. When

Figure 10: Timing diagram in itSIMPLE3.0

an OCL expression is defined in the timing diagram, each
property is translated to PDDL surrounded by one of these
three temporal operators, depending on how they appear in
the diagram. OCL expressions are also translated to PDDL
following the processes described previously. For example,
expression ‘attribute = attribute + number’ in the effects
would be interpreted as (increase (attribute) number) in
PDDL surrounded by a temporal operator (e.g., at end) (Fox
and Long 2003).

Mapping Constraints
The first constraint treated in itSIMPLE’s translator is re-
lated to the association multiplicity on the class diagrams.

Figure 11: Timing diagram of an action in itSIMPLE3.0



In the association ‘at’ mentioned before, a Truck can only
be at one Place at a time. The multiplicities are represented
as constraints (using ‘always’ operator) in the section :con-
straints of a PDDL 3.0 domain(Gerevini and Long 2006). In
fact, these constraints reinforce (make explicit in the model)
what most of time are implicit on action’s conditions and
effects. Figure 12 illustrates this mapping rule.

Figure 12: Mapping association multiplicity to PDDL con-
straints

As a new feature in itSIMPLE3.0, users can also specify
constraints on classes, attributes or associations in class dia-
grams by using OCL. For example, one could want to con-
strain the battery power level of a Robot inserting the follow-
ing OCL expression in the class: inv: self.powerlevel <20.
This expression would be represented in the domain section
:constraints from PDDL 3.0 as (always (forall (?r - Block)
(<(powerlevel ?r - Robot) 20))). The translation process
of these constraints is restricted to the available mapping of
OCL expression to PDDL described previously.

Problem Translation
A PDDL problem file considered in itSIMPLE3.0 can
contain five main elements: objects, initial state, goal con-
ditions (objective state), metrics, and problem constraints.
This information is found in the object diagrams of the
UML/XML representation.

Mapping Objects
The tool provides a dedicated object diagram (called object
repository) to hold all objects used in a set of planning
problems. Every object’s name, along with the respective
class’s name, in the repository is translated and inserted to
the section :object of a PDDL problem file. The mapping
rule for objects in PDDL is shown in Figure 13.

Figure 13: Mapping PDDL objects from object repository

Mapping Initial and Goal States
In every problem, there are at least two object diagrams, the

init and the goal. The translation process for both diagrams
follows the same mapping approach. Starting from the
init snapshot, the tool seeks an object’s attributes and their
values in order to represent them in PDDL. For example, a
graphical object truck1 with attribute capacity equals to 100
would be represented as (= (capacity truck1) 20) in section
:init of PDDL. Another example is an object blockA with
attribute clear equal to true that would be represented as
(clear blockA) in PDDL. Since associations are also treated
as predicates, as previously described, their translation is
also straightforward. For instance, truck1 associated with
place1 through association ‘at’ in the object diagram would
be mapped as (at truck1 place1). Another general example
of creating the PDDL initial state from object diagrams is
presented in Figure 14. The goal state (:goal) follows the
same translation process as for the :init.

Figure 14: Mapping PDDL init from object diagram

Mapping Problem Constraints
Additional object diagrams can be used to represent the
Timed Initial Literal concept from PDDL 2.2 (Edelkamp and
Hoffmann 2004) and also the State Trajectory Constraints
concept from PDDL 3.0 (Gerevini and Long 2006). When
considering timed initial literal, users usually create specific
situations or facts in time using object diagrams for describ-
ing exogenous events. Each diagram is attached to a specific
point in time representing that all containing elements (as-
sociations and attributes with their respective values) will
be true at such time point. This approach follows the same
translation process as the init state; however, elements in the
diagram are translated to the section :init preceded by the
specified point in time. An example would be (at 5 (clear
blockA)) in PDDL 2.2.

In order to model state trajectory constraints, users can
also create object diagrams that represent situations to be
constrained. These object diagrams are attached to the de-
sired constraint using basic modal operators such as always,
sometime, at-most-once, and at end or never (always not).
In this case, the whole snapshot is first translate to PDDL as
described for init and goal states. Then, it is inserted in the
:constraints section of a PDDL 3.0 problem file surrounded
by the desired basic modal operator such as (:constraints
(and (always (<facts from the object diagram>)).

Mapping Metrics
Finally, user can insert in the model OCL expressions con-
taining an object’s attributes that affect directly the qual-
ity of plans. These expressions must be generally maxi-
mize or minimize, depending on the problem. Following
the approach of mapping OCL expression to PDDL con-
ditions, itSIMPLE inserts the translated expression in the
:metric section of PDDL. For example, a minimization of



the expression ‘robot1.traveldistance + robot1.powerusage’
would be translate to (:metric minimize (+ (traveldistance
robot1) (powerusage robot1))) in a PDDL representation.

With both PDDL files created, itSIMPLE can deliver the
PDDL model to a chosen planner.

Plan Analysis Support
For complex problems, lack of knowledge or ill-defined re-
quirements can propagate to specifications and then to the
problem submitted to the planner. Either of these scenar-
ios (and others) may lead to the generation of poor qual-
ity plans. In these cases, bad plans and defects to a set of
requirements must be spotted and fixed. Following these
principles, itSIMPLE3.0 allows users to test the generated
PDDL model with a set of modern planners (Metric-FF, FF,
SGPlan, MIPS-xxl, LPG-TD, LPG, hspsp, and SATPlan) in
order to analyze the quality of the produced plans. Plan anal-
ysis starts from plan visualization and simulation in UML to
a plan evaluation based on domain metrics.

Plan visualization and simulation, provided by the func-
tionality called “Movie Maker” (Vaquero et al. 2007), are
performed by capturing the response of a planner and exe-
cuting the plan from the initial state to the goal state. This
process creates a sequence of UML object diagrams that
simulates the plan, state by state. Plan evaluation can be
performed by selecting the domain metrics that directly ef-
fect the plan quality and observing their evolution during the
simulation. Preference on values of these metrics can be de-
fined by correlating the values to grades. These preferences
allow itSIMPLE to evaluate the plan and produce a plan re-
port that provides an overall grade for the plan, along with
the charts showing the evolution of the metrics.

Conclusion
In this paper, we presented the translation processes avail-
able in itSIMPLE3.0, a KE tool that has been developed to
support designers in the development of real planning do-
mains. We have described how requirements modeled in
UML can be analyzed by Petri Nets and translated to an
input-ready PDDL model for planners. The UML to Petri
Nets translation opens the possibility to validate and analyze
the model by using simulation and model checking tech-
niques available in the PNs literature. The translation from
UML to PDDL 3.1 provides a mechanism for testing and
analyzing models with planners. The analysis gives the op-
portunity to improve models and, consequently, the quality
of plans.

As future work, we have been investigating new meth-
ods for plan analysis such as virtual prototyping of plans
and plan comparison that will reinforce the gradual improve-
ment of domain models. New UML diagrams have been also
studied to be included in itSIMPLE. The first candidate is
the activity diagram which will represent HTN domains and
some predefined strategies for planning. Finally, we plan to
include the System Modeling Language (SysML3) to the it-
SIMPLE’s framework for model verification and validation.

3www.omgsysml.org.

Acknowledgments
The authors are especially grateful to the researchers and
students involved directly and indirectly in the project, as
well as the many others who have, from time to time, sent
suggestions on improvements to the itSIMPLE tool. This
work has been supported in part by CNPq and CAPES.

References
Billington, J.; Christensen, S.; van Hee, K.; Kindler, E.;
Kummer, O.; Petrucci, L.; Post, R.; Stehno, C.; and We-
ber, M. 2003. The petri net markup language: con-
cepts, technology, and tools. In Proceedings of the 24th
Int Conf on Application and Theory of Petri Nets, LNCS
2679, Springer, 483–505.
Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.; Maler, E.;
and Yergeau, F. 2004. Extensible Markup Language
(XML) 1.0 (Third Edition). Technical report.
Edelkamp, S., and Hoffmann, J. 2004. Pddl 2.2: The lan-
guage for classical part of the 4th international planning
competition. Technical report, Fachbereich Informatik and
Institut fr Informatik, Germany.
Fox, M., and Long, D. 2003. Pddl2.1: An extension of
pddl for expressing temporal planning domains. Journal of
Artificial Intelligence Research (JAIR) 20:61–124.
Gerevini, A., and Long, D. 2006. Preferences and soft
constraints in pddl3. In Gerevini, A., and Long, D., eds.,
Proceedings of ICAPS workshop on Planning with Prefer-
ences and Soft Constraints, 46–53.
Gough, J. 2004. Xpddl 0.1b: A xml version of pddl.
Kindler, E., and Weber, M. 2001. A universal module
concept for petri nets. In Proceedings of the 8th Workshops
Algorithmen und Werkzeuge fr Petrinetze, 7–12.
Murata, T. 1989. Petri nets: Properties, analysis and appli-
cations. In Proceedings of the IEEE, volume 77, 541–580.
OMG. 2003. UML 2.0 OCL Specification m Version 2.0.
OMG. 2005. OMG Unified Modeling Language Specifica-
tion, m Version 2.0.
Sette, F. M.; Vaquero, T. S.; Park, S. W.; and Silva, J. R.
2008. Are automated planners up to solve real problems?
In Proceedings of the 17th World Congress The Interna-
tional Federation of Automatic Control (IFAC’08), Seoul,
Korea, 15817–15824.
Udo, M.; Vaquero, T. S.; Silva, J. R.; and Tonidandel, F.
2008. Lean software development domain. In Proceed-
ings of ICAPS 2008 Scheduling and Planning Application
woRKshop. Sydney, Australia.
Vaquero, T. S.; Tonidandel, F.; Barros, L. N.; and Silva,
J. R. 2006. On the use of uml.p for modeling a real ap-
plication as a planning problem. In Proceedings of the
16th International Conference on Automated Planning and
Scheduling (ICAPS), 434–437.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An integrated tool for designing plan-
ning environments. In Proceedings of the 17th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2007). Providence, Rhode Island, USA.


