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Abstract11

When a transportation service accommodates both people and goods, operators sometimes opt for12

vehicles that can be dynamically reconfigured for different demands. Motivated by air service in13

remote communities in Canada’s north, we define a pickup-and-delivery problem in which aircraft14

can add or remove seats during a multi-stop trip to accommodate varying demands. Given the15

demand for people and cargo as well as a seat inventory at each location, the problem consists in16

finding a tour that picks up and delivers all demand while potentially reconfiguring the vehicle17

capacity at each location by adding or removing seats. We develop a total of six models using three18

different approaches: constraint programming, mixed integer programming, and domain-independent19

dynamic programming. Our numerical experiments indicate that domain-independent dynamic20

programming is able to substantially outperform the other technologies on both solution quality and21

run-time on a set of randomly generated instances spanning the size of real problems in northern22

Canada.23
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1 Introduction29

Pickup-and-delivery problems involve using vehicles to transport goods and/or passengers30

from a set of origins to a set of destinations on a given transportation network [1]. A31

typical pickup-and-delivery problem such as the Pickup and Delivery Traveling Salesperson32

Problem (PD-TSP) includes a one or more vehicles, requests with different pickup and33

delivery locations, and an objective to find a minimum-cost tour (or set of routes) that34

visit(s) each pickup location before its corresponding delivery location [4]. There has been35

substantial research literature on pickup and delivery problems over the past several years36

(e.g., [19, 21]) motivated, in part, by global efforts to reduce transportation-related carbon37

emissions [16]. Many variations of such problems have been proposed and studied in the38

operations research literature. For example, some problems include handling costs when an39

item is loaded or unloaded depending on the position of the item in the vehicle [24] and some40

include subsets of requests that cannot be in a vehicle at the same time [5].41

In this paper, we propose and study a novel variation of PD-TSP: requests can include42

both goods (cargo) and passengers and the vehicle has a capacity that can be adjusted43
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34:2 Optimization models for PDPs with reconfigurable capacities

en-route depending on the request and equipment stored at locations in the network. The44

problem is motivated by a real transportation problem faced by air services in northern45

Canada. Since many communities in this region are reachable only by air during some parts46

of the year, their access to basic human needs such as fresh food and healthcare services is47

limited. The need for air transportation combined with the relatively small populations and48

lack of resources led northern air services to adopt the practice of transporting both cargo49

and passengers on the same flights. The vehicles are aircraft with removable seats, allowing50

staff to either remove passenger seats and store them at airports to transport more cargo or51

add additional seats, previously stored at airports, to carry more passengers. The problem,52

which we call the Pickup-and-Delivery with Seat Replacement Problem (PD-SRP), therefore53

requires finding the shortest tour delivering all goods and passengers from their origins to54

destinations without exceeding aircraft capacity but allowing seats to be removed from or55

added to aircraft at each location, subject to seat availability and total aircraft capacity.56

To solve the PD-SRP, we developed three types of optimization models: one Constraint57

Programming (CP) model, three Mixed Integer Programming (MIP) models, and two Domain-58

Independent Dynamic Programming (DIDP) [14] models. We compare their performance59

on randomly generated instances based on the size of the problem in Canada’s north,60

demonstrating that both of the DIDP models outperform the CP and MIP models in terms61

of the number of instances solved and proved optimal, solution quality, and solve time.62

2 Related Works63

Reconfigurable capacity is a general term in the transportation literature, typically indicating64

that vehicle capacity can be changed at some cost and/or limited by some constraints [22, 23].65

Other terms such as multi-compartment vehicle or multi-purpose vehicle are used to convey66

a similar meaning [20, 8]. We review the vehicle routing and dial-a-ride problems literature67

for studies that considered adjustable vehicles.68

Vehicle Routing Problems (VRP): The Vehicle Routing Problem and its many variations69

have been studied extensively over the past 50 years [18]. The idea of adjusting the vehicle70

to handle different types of demand has been studied in multi-compartment vehicle routing71

problems [20]. For example, Henke et al. [9] studied how to split the capacity of a truck72

into different compartments to maintain the separation of different colors of recycled glass.73

Similarly, for grocery distribution, different temperature-sensitive products can be transported74

on the same truck with multiple compartments [11]. In both of these problems, a vehicle’s75

capacity configuration is fixed for its entire route and cannot be modified during the trip.76

Dial-a-Ride Problems (DARP): In the Dial-a-Ride Problem a transportation request77

takes the form of pickup and delivery location pair and the service provider utilizes its fleet78

of vehicles to fulfill the requests while minimizing a cost function that typically includes79

some travel distance component [10]. Some variants include a reconfigurable vehicle capacity80

to serve the needs of different users: those who use seats or those who use wheelchairs81

[23]. Some of the vehicle seats can be folded and stored inside the vehicle to make room82

for passengers in wheelchairs. Unlike this problem, the seats of the vehicle in the PD-SRP83

cannot be stored on the aircraft without occupying cargo capacity and are instead detached84

and stored at the airports.85

Hatzenbühler et al. [8] studied a multi-purpose pickup and delivery problem that can86

deliver passengers or cargo by exchanging the module of the vehicle at a depot or special87

service site. Each vehicle includes a removable module and a fixed platform such that88

changing modules modifies the ability of the vehicle from only carrying cargo to only carrying89
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passengers and vice versa. Compared to problems with conventional solo-purpose vehicles,90

requests can be served with a fewer vehicles but at the expense of adding extra service sites91

and visits. We can view the core multi-purpose pickup and delivery problem as a special92

case of PD-SRP where the seat exchange decisions must be all-or-none: either all seats are93

removed to maximize cargo space or all seats are installed to maximize passenger capacity.94

3 Problem Definition95

In PD-SRP, we are given n requests, each potentially requiring the transportation of cargo96

and passenger demands. Let V = P ∪ D where P = {v1, . . . , vn} is the set of pickup97

locations and D = {vn+1, . . . , v2n} is the set of delivery locations. We assumed that cargo is98

shipped in unit-sized boxes, each having the same weight and volume. Although, in reality99

cargo is shipped in various shapes and weights, incorporating four-dimensional packing100

(i.e., combining volume and weight) would substantially complicate the problem. Therefore,101

similar to approximations done in practice by airlines (e.g., standard weight per passenger),102

we opted for this simplification.103

Each request i includes picking up q̂i boxes of cargo and π̂i passengers from location104

vi and delivering them to location vn+i. Thus, the demand of the corresponding delivery105

location has an equal magnitude negative value (i.e., −q̂i = q̂i+n, −π̂i = π̂i+n, ∀i ∈ P ). Note106

that this representation can model more complex patterns (e.g., requests that share pickup107

or delivery locations but not both) by copying locations for each unique pickup-delivery pair.108

When an aircraft is at its maximum seat capacity, it has Ŝ seats and can carry Ĉ boxes109

of cargo. By removing a seat, L boxes of cargo capacity are added to the aircraft. Therefore,110

the maximum cargo capacity when removing all the seats is K = ŜL + Ĉ. Each location i111

starts with S0
i stored seats and therefore the aircraft can add at most min(Ŝ, S0

i ) seats or112

remove at most Ŝ seats when visiting location i. There is no maximum number of seats that113

can be stored at a given location.114

In order to represent the problem as a path, two nodes are assigned to the depot:115

v0 is the start node and v2n+1 is the end node. For modeling purposes we define sets116

VN+1 = V ∪ {v2n+1}, V0 = V ∪ {v0} and V0,N+1 = V ∪ {v0, v2n+1}. Therefore, the problem117

is defined on graph G = (V0,N , A) where A = {(i, j)|i, j ∈ V0,N+1, i ≠ j} with each arc118

having an associated distance, dij . The vehicle is initially at the depot v0 with a cargo and119

passenger capacity of C̃0 and S̃0 where C̃0 = K − LS̃0 and S̃0 ≤ Ŝ, respectively, and must120

finish the trip at depot v2n+1. We assume that the start and end nodes are not the pickup121

or delivery location of any requests. Again, this assumption is not limiting as such requests122

can be represented by adding extra nodes at the same location as the start and end nodes.123

In PD-SRP we aim to minimize the travel distance while deciding how many seats to124

add or remove at each location to fulfill all the requests while respecting capacities. The125

PD-SRP is NP-hard because if we fix the seat decisions and set all the demands to zero, the126

problem can be reduced to TSP which is known to be NP-hard [13].127

An instance of this problem can be seen in Figure 1. The optimal tour is shown in pink,128

and the seat icon near each vertex represents the number of seats stored at the corresponding129

base. The optimal tour for this instance is (v0, v2, v4, v1, v3, v5) with two seats left at v1.130

4 Methods131

We develop six models for the PD-SRP using constraint programming (CP), mixed integer132

programming (MIP), and domain independent dynamic programming (DIDP). One of the133

CP 2023



34:4 Optimization models for PDPs with reconfigurable capacities

Figure 1 Example of an PD-SRP instance with 2 requests. The optimal tour is shown by dotted
pink edges. In the aircraft configuration, white seats and boxes show the current passenger and cargo
capacity, respectively. The colored seats and boxes show the corresponding cargo and passenger
requests that are picked up.

MIP models solves a restricted version of the PD-SRP and is used to warm-start the CP134

model and the two other MIP models. In this section, we describe each of the models in135

detail.136

4.1 A Constraint Programming Model (CP)137

Our CP model equates distance and time and, thus, uses a one-machine scheduling approach138

where jobs correspond to the visits and the setup times between two consecutive jobs139

correspond to the distance between two locations. The model uses |V0,2n+1| interval variables140

xi that represent visits to each location, and a sequence variable, π, that constrains interval141

variables to form a sequence with an extra end node representing the return to the depot.142

The size of the interval variable is 0 because there is no service time associated with the143

visits. For every location i ∈ {0, ..., 2n}, variable si is introduced to represent the number of144

seats that are added or removed. The formulation of the CP model is presented in Figure 2.145

Note that CP model is written in CP Optimizer language.146

The objective function is the minimization of the total distance traveled by the aircraft.147

EndOf(x2n+1) corresponds to the end-point of the last interval variable in the sequence148

variable π: the time (i.e., total distance travelled) when the aircraft returns to the depot.149

Constraint (1a) ensures that each pair of consecutive interval variables is scheduled with a150

transition time equal to at least the required travel distance between the two corresponding151

locations. Constraint (1b) enforces that the pickup location of each request is visited before152

the delivery location. Constraint (1c) specifies that the aircraft begins and ends at the start153

and end depot locations.154

We used three cumulative functions to represent the following values that are potentially155
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min EndOf(x2n+1) (CP)
s.t. NoOverlap(π, {di,j : (i, j) ∈ A}) (1a)

EndBeforeStart(xi, xn+i) ∀i ∈ {1, ..., n} (1b)
First(π, x0), Last(π, x2n+1) (1c)

C = StepAt(x0, C̃0) +
2n∑

i=0
StepAtStart(xi, −q̂i − L · si) (1d)

C ≥ 0 (1e)

H = StepAt(x0, S̃0) +
2n∑

i=0
StepAtStart(xi, −π̂i + si) (1f)

H ≥ 0 (1g)

S = StepAt(x0, S̃0) +
2n∑

i=0
StepAtStart(xi, si) (1h)

S ≤ Ŝ (1i)
xi : intervalVar(0) ∀i ∈ V0,2n+1 (1j)

si : integerVar(−Ŝ, min(Ŝ, S0
i )) ∀i ∈ V0 (1k)

π : sequenceVar(x0, ..., x2n+1) (1l)

Figure 2 The CP Model for the PD-SRP.

changed by each interval variable (aircraft visits): available cargo space, number of empty156

seats, and the total number of seats. In particular, cumulative functions (1d) and (1f) are157

used to represent the available passenger and cargo space as the trip proceeds. H represents158

the number of empty seats in the aircraft (i.e., the available passenger space) and C represents159

the available cargo space. Before the trip starts, K = H + C and, if there are Ŝ0 seats in160

the aircraft at the start, H = L · Ŝ0. The expression StepAtStart(var, impact) specifies161

the change (increment or decrement) to the cumulative function at the start of an interval162

variable. The available cargo space C will decrease as cargo and seats are picked up, therefore163

we use StepAtStart(xi, −q̂i − L · si) to represent the changes to available cargo space at164

each location i ∈ {1, ..., 2n}. The available passenger space will decrease when cargo is165

picked up, while increasing when adding seats as represented by StepAtStart(xi, −π̂i + si)166

at each location i ∈ {0, ..., 2n}. The cumulative function S is introduced in constraint (1h)167

to describe the change of the total number of seats in the aircraft. S will change with the168

number of seats being added or removed as represented by si. Constraint (1i) restricts the169

total number of seats by the maximum seat capacity Ŝ. In constraint (1k), the domain of si170

is [−Ŝ, S0
i ] reflecting the range of the number of seats that the aircraft can remove or add at171

location i.172

It should be noted that every interval variable contributes to the cumulative constraint,173

which means that these bounds are maintained throughout the sequence. Therefore, we do174

not need to have a separate cumulative function for every location of the tour.175

CP 2023
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4.2 Mixed Integer Programming Models176

In this section, we describe three MIP models motivated by existing models for pickup and177

delivery problems. The first two models exactly represent the PD-SRP and therefore admit178

optimal solutions. The final model is a restriction of the PD-SRP problem that can be used179

to quickly find a feasible solution and, therefore, an upper bound for the PD-SRP. In our180

experiments, we investigate the use of this restricted model to warm-start the CP model and181

two other MIP models.182

4.2.1 Two-indexed Location-Based MIP (MIPloc)183

We propose a two-indexed location-based MIP model for PD-SRP (MIPloc) based on a model184

for an existing pickup and delivery variant [7]. In MIPloc, xij is a binary variable that is 1 if185

arc (i, j) ∈ A is traveled and is 0 otherwise. Non-negative continuous variables τi, ui, and186

yi represent the distance, available cargo space, and empty seats, respectively, on arrival at187

vertex i ∈ V0,N+1. As above, let variable si be the number of seats that are added (si > 0) or188

removed (si < 0) at location i. Finally, let πi and qi be the number of passengers and boxes189

of cargo on the aircraft on arrival at vertex i ∈ V0,N+1, respectively. The MIPloc model is190

shown in Figure 3.191

The objective function minimizes the total distance traveled. Constraint (2a) ensures that192

each customer is visited exactly once while constraint (2b) forces an arrival and departure193

at each non-depot vertex. Constraints (2c) and (2d) prevent the formation of the subtours,194

using Miller-Tucker-Zemlin (MTZ) constraints [17]. Constraint (2e) forces the aircraft to195

visit the pickup location of each commodity before the delivery location. Constraints (2f) and196

(2g) respectively ensure that the total number of seats before and after adding or removing197

new seats does not exceed the passenger capacity. Similarly, constraint (2h) ensures that the198

total number of passengers on the aircraft after fulfilling the demand of vertex i does not199

exceed the passenger capacity. Constraint (2i) enforces the relationship between ui and yi.200

Note that the left hand side of the constraint restricts the picked-up cargo and passengers to201

not exceed the aircraft capacity. Constraints (2j) and (2k) define the upper bound and lower202

bound on the available cargo space, respectively. Similarly, constraints (2l) and (2m) set the203

upper and lower bounds on the number of empty seats. Constraint (2n) ensures that the204

passenger demand is met at each location, while constraint (2o) does the same thing for the205

cargo demand. Constraint (2p) restricts the number of the seats that can be added based on206

their availability. The lower bound on the number of removed seats, when si < 0, is always207

the number of seats on the aircraft at the arrival of location i. Lastly, constraints (2q) - (2s)208

specify binary and continuous variable domains.209

4.2.2 Three-indexed Rank-Based MIP (MIPrank)210

The three-indexed ranked-based MIP model for PD-SRP (MIPrank) is adapted from a model211

for the multi-commodity pickup and delivery traveling salesperson problem [3]. In MIPrank,212

zt
i,j is a binary variable indicating that aircraft goes directly from location i to location j213

and location i is at position t of the tour, for i, j ∈ V0,N+1, i ̸= j, t ∈ {0, . . . , 2n + 1}. Binary214

variable yi,t is 1 if location i is visited at position t of the tour, i ∈ V0,N+1, t ∈ {0, . . . , 2n+1}215

and 0 otherwise. Variable st is the number of seats added or removed at the t’th position of216

the tour, for t ∈ {0, . . . , 2n + 1}, with a negative value corresponding to the number of seats217

removed. Variables wt and ut represent the empty seats and available cargo space on arrival218

at t’th position of the tour, for t ∈ {0, . . . , 2n + 1}. Finally, let πt and qt be the number219
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min
∑
i∈V0

∑
j∈VN+1,i̸=j

dijxij (MIPloc)

∑
j∈VN+1

xij = 1 i ∈ V0 (2a)

∑
j∈V0,j ̸=i

xji −
∑

j∈VN+1,i̸=j

xij = 0 i ∈ V (2b)

τi + xij − |V |(1 − xij) ≤ τj i ∈ V0, j ∈ VN+1, i ̸= j (2c)
1 ≤ τi ≤ |V | i ∈ V (2d)
τi + 1 ≤ τn+i i ∈ P (2e)

yi + πi ≤ Ŝ i ∈ V0 (2f)

yi + πi + si ≤ Ŝ i ∈ V0 (2g)

πi + π̂i ≤ Ŝ i ∈ V0 (2h)
ui + qi + Lyi + Lπi ≤ K i ∈ V0 (2i)
uj ≤ ui − Lsi − q̂ixij + (2K)(1 − xij) i ∈ V, j ∈ VN+1, i ̸= j (2j)
uj ≥ ui − Lsi − q̂ixij − (2K)(1 − xij) i ∈ V, j ∈ VN+1, i ̸= j (2k)

yj ≤ yi + si − π̂ixij + 2Ŝ(1 − xij) i ∈ V, j ∈ VN+1, i ̸= j (2l)

yj ≥ yi + si − π̂ixij − 2Ŝ(1 − xij) i ∈ V, j ∈ VN+1, i ̸= j (2m)

πj ≥ πi + π̂ixij − Ŝ(1 − xij) i ∈ V, j ∈ VN+1, i ̸= j (2n)
qj ≥ qi + q̂ixij − K(1 − xij) i ∈ V, j ∈ VN+1, i ̸= j (2o)

− yi ≤ si ≤ min (Ŝ, S0
i ) i ∈ V (2p)

τ0 = π0 = q0 = 0, u0 = C̃0, y0 = S̃0 (2q)
xij ∈ {0, 1} i ∈ V0, j ∈ VN+1, i ̸= j (2r)
ui, yi, πi, qi, τi ∈ R0+, si ∈ R i ∈ V0,N+1 (2s)

Figure 3 The MIPloc Model for the PD-SRP.

CP 2023
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of passengers and boxes of cargo on arrival at t’th position of the tour. The MIPrank is220

presented in Figure 4.221

The objective function minimizes the total travel distance. Constraints (3a) and (3b)222

ensure that tour positions are assigned to exactly one location and that each location is223

visited exactly once, respectively. Constraint (3c) calculates the number of empty seats just224

before visit t, where
∑n

i=1 yi,t−1π̂i is the number of passengers picked up at position t − 1225

of the tour. Similarly, constraint (3d) calculates the available cargo space just before visit226

t, where
∑n

i=1 yi,tq̂i is the amount of cargo picked up at position t of the tour. Constraint227

(3e) states that each commodity is picked up before it is delivered. Constraint (3f) enforces228

the relationship between wt and ut. The left hand side of the constraint enforces that the229

picked-up cargo and passengers do not exceed the available aircraft capacity. Constraint230

(3g) ensures that there is always Ĉ space available for cargo on the aircraft. From (3f)231

and (3g) we can conclude that πt + wt ≤ Ŝ: the total number of seats does not exceed232

the passenger capacity. Constraint (3h) ensures the feasibility of the number of seats to233

be added or removed. Constraints (3i) and (3j) calculate the number of passengers and234

boxes of cargo at each position of the tour, respectively. Constraints (3k) and (3l) enforce235

the relationship between y and z variables and, together with (3e) and (3m), prevent the236

formation of subtours in a MTZ fashion. Lastly, constraints (3n) - (3q) specify the domains237

of the variables.238

4.2.3 Upper bound MIP Model (MIPUB)239

Our preliminary experiments suggested that the CP amd MIP models presented above240

struggled to find good feasible solutions. We, therefore, investigate the use of a third MIP241

model, designed to quickly find an upper bound on the PD-SRP by solving a restriction of242

the full problem. Such a model provides a heuristic solution as well as a potential warm-start243

solution for the complete models.244

The upper bound model is obtained by over-constraining the original problem to require245

that a request must be delivered immediately after being picked up. The nodes in this246

problem include the start depot v0, the end depot vN+1, and all the pickup nodes P =247

{v1, . . . , vn}. For modeling purposes we define sets PN+1 = P ∪ {vN+1}, P0 = P ∪ {v0}248

and P0,N+1 = P ∪ {v0, vN+1}. The delivery nodes are not explicitly included because each249

origin-to-destination trip takes place immediately after the visit to the pickup node with the250

total distance increased by both the travel to the pickup node and the travel between the251

pickup node and the delivery node.252

The MIPUB model is presented in Figure 5. Let xi,j be a binary variable indicating that253

the aircraft goes from the delivery location of the request i to the pickup location of request254

j. Let si be the number of seats in the aircraft right after visiting location i. Finally, let ti255

be the position of location i on the tour. The solution returned by this model is likely to be256

sub-optimal for the PD-SRP.257

The objective function minimizes the total distance traveled. The coefficient cij represents258

the total distance starting from the delivery location of request i, visiting the pickup location259

of request j, and then travelling to the delivery locations of request j. Request 0 is to travel260

from the depot to the pickup location of the first request. The delivery and pickup locations261

of request 0 are nodes v0 and v2n+1, respectively.262

Constraints (4a) and (4b) ensure that each node is visited exactly once. Constraints263

(4c), (4f), and (4i) prevent the formation of subtours. Constraint (4d) describes seat changes264

when the aircraft visits a node and constraint (4e) requires that the space taken up by the265

seats in the aircraft must be less than or equal to the remaining space after picking up the266
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min
2n∑

t=0

∑
i∈V0,N+1

∑
j∈V0,N+1,j ̸=i

di,jzt
i,j (MIPrank)

∑
i∈V0

yi,t = 1 t ∈ {0, . . . , 2n} (3a)

2n∑
t=1

yi,t = 1 i ∈ V (3b)

wt = wt−1 + st−1 −
n∑

i=1
yi,t−1π̂i t ∈ {1, . . . , 2n + 1} (3c)

ut = ut−1 − Lst−1 −
n∑

i=1
yi,t−1q̂i t ∈ {1, . . . , 2n + 1} (3d)

n∑
t=1

tyi,t −
n∑

t=1
tyn+i,t ≤ −1 i ∈ P (3e)

qt + ut + Lwt + Lπt ≤ K t ∈ {0, . . . , 2n + 1} (3f)

qt + ut ≥ Ĉ t ∈ {0, . . . , 2n + 1} (3g)

− wt ≤ st ≤ min (Ŝ,

n∑
i=1

S0
i yi,t) t ∈ {0, . . . , 2n + 1} (3h)

πt = πt−1 +
n∑

i=1
yi,t−1π̂i t ∈ {1, . . . , 2n + 1} (3i)

qt = qt−1 +
n∑

i=1
yi,t−1q̂i t ∈ {1, . . . , 2n + 1} (3j)

yi,t −
n∑

j=0
zt

i,j = 0 i ∈ V0, t ∈ {0, . . . , 2n} (3k)

yj,t −
n∑

i=0
zt−1

i,j = 0 j ∈ V0,N+1, t ∈ {1, . . . , 2n + 1} (3l)

y0,0 = y2n+1,2n+1 = 1, y0,t = 0 t ∈ {1, . . . , 2n} (3m)

st ≤ Ŝ, wt ≤ Ŝ, ut ≤ K t ∈ {0, . . . , 2n + 1} (3n)
u0 = C̃0, w0 = S̃0, π0 = q0 = 0 (3o)
yi,t ∈ {0, 1}, zt

i,j ∈ {0, 1} i, j ∈ V0,N+1, t ∈ {0, . . . , 2n + 1} (3p)
ut, wt, πt, qt ∈ R0+, st ∈ R t ∈ {0, . . . , 2n + 1} (3q)

Figure 4 A Three-Indexed MIP Model for the PD-SRP.
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min
∑
i∈P0

∑
j∈P0,i̸=j

ci,jxi,j (MIPUB)

s.t.
∑

j∈P0,i̸=j

xi,j = 1 ∀i ∈ P (4a)

∑
i∈PN+1,i̸=j

xj,i −
∑

i∈P0,i̸=j

xi,j = 0 ∀j ∈ P (4b)

ti + xi,j − |P |(1 − xi,j) ≤ tj ∀i ∈ PN+1, j ∈ PN+1, i ̸= j (4c)

sj ≤ si + (S0
i+n + S0

j )xi,j + |Ŝ|(1 − xi,j) ∀i ∈ P0, j ∈ PN+1, i ̸= j (4d)
Lsi + q̂i ≤ K ∀i ∈ PN+1 (4e)
1 ≤ ti ≤ |P | ∀i ∈ P (4f)

si ≤ Ŝ ∀i ∈ P (4g)
si ≥ π̂i ∀i ∈ P (4h)
t0 = 0 (4i)
S̃0 ≤ s0 ≤ S̃0 + S0

0 (4j)
xi,j ∈ {0, 1} ∀i ∈ P (4k)
ti ∈ N, si ∈ N ∀i ∈ P0,N+1 (4l)

Figure 5 The Upper Bound MIP model for a restriction of PD-SRP.

cargo of the current request. Constraint (4g) restricts the number of seats to never surpasses267

the maximum number of seats allowed in the aircraft and constraint (4h) ensures that the268

number of seats in the aircraft never drops below the number of passengers to be picked up.269

Constraints (4j) - (4l) specify the domains of the variables.270

4.3 Domain-Independent Dynamic Programming Models271

Domain-Independent Dynamic Programming (DIDP) is a recently proposed methodology272

for solving combinatorial optimization problems by formulating the problem as state-based273

dynamic program (DP) and using a generic solver to solve it [14]. DP models are declaratively274

formulated in Dynamic Programming Description Language (DyPDL), a solver-independent275

modeling formalism for DP that is inspired by AI planning. In DyPDL, a model consists of276

the following:277

state variables: variables that take on numeric, set, or set-element values that define the278

states in the search space of the problem279

target state: the problem state for which the optimal value is to be computed by the280

recursive formulation281

constants: state-independent values282

transitions: decisions in the DP that move between states283

base cases: a set of conditions that define states that terminate the recursion284

state constraints: conditions that must be satisfied by all states285

dual bound: an optional lower (upper) bound on the objective function for minimization286

(maximization) problems.287

We developed two DIDP models for the PD-SRP.288
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compute Z(V, 0, 0, 0, S̃0, 0) (DIDP2T )

Z(U, i, q, π, s, α) =


di,2n+1 if U = ∅, α = 1
minδ∈T (q,π,s,i) Z(U, i, q + wi, π + ui, s + δ, 1) if U ̸= ∅, α = 0
minj∈R(U,i) di,jZ(U\{j}, j, q, π, s, 0) if U ̸= ∅, α = 1

(5a)

Z(U, i, q, π, s, α) ≥ 0 (5b)

T (i, q, π, s) =
{

δ ∈
[
−s, Ŝi

]
| q + wi ≤ K − (s + δ)L ∧ π + ui ≤ s + δ, δ ∈ Z

}
(5c)

R(U, i) = {j ∈ U | (i, j) ∈ A ∧ (j /∈ D ∨ pj /∈ U)}. (5d)

Figure 6 The Two-transition DIDP Model (DIDP2T ) for PD-SRP.

4.3.1 A Two-transition DIDP Model (DIDP2T )289

Our first DIDP model has two types of transition: one to represent adding or removing seats290

and picking up or delivering cargo and passengers and a second to model moving the aircraft291

to a different location. In the model, a state is a tuple ⟨U, i, q, π, s, α⟩, which represents292

the set of unvisited vertices, U , the current location, i, the cargo load, q, the number of293

passengers, π, the number of seats, s, and a flag representing which type of transition to294

apply, α. We set α = 1 if we have finished pickup/delivery at a location to indicate that the295

next transition should be to move the aircraft. Otherwise, α = 0.296

The DIDP2T model is defined in Figure 6. We focus first on Eqs. (5c) and (5d), which297

respectively define the possible seat changes and possible next locations at a location i.298

Suppose that the number of seats at the current location i is increased by δ. Since there299

are S0
i seats stored at each location initially, when the aircraft has s seats, at i we can add300

at most min{S0
i , Ŝ − s} seats and remove at most s seats. For simplicity we will denote301

Ŝi = min{S0
i , Ŝ − s}. Therefore, δ ∈

[
−s, Ŝi

]
. Let numeric constants wi and ui be the net302

change of cargo and passengers at location i, respectively. The cargo will be increased by303

wi, so the current cargo will become q + wi ≤ K − (s + δ)L, the current space for cargo.304

Similarly, the number of passengers will be π + ui ≤ s + δ. Lastly, δ must only take integer305

values. With these conditions, Eq. (5c) specifies the values of δ.306

Consider visiting the next location, j, from current location i. To be a valid location to307

visit next, j must be unvisited (j ∈ U), it must be connected by an edge in the graph to308

i ((i, j) ∈ A), and it must be either a pickup location (j /∈ D) or its corresponding pickup309

location must have already been visited. If we let pj be the pickup location for the request310

whose delivery location is j, then this final condition is: pj /∈ U . Eq. (5d) represents the311

candidate locations to visit next after current location i.312

The objective function specifies the state for which the optimal cost needs to be computed:313

the state where all pickup and delivery nodes are unvisited, the current location is the start314

depot (v0), the cargo and passenger loads are 0, the aircraft has S̃0 seats, and the next315

transition should be to move the aircraft (α = 0). In Eq. (5a), the first line computes the316

cost to return to the depot from node i, the second line describes the cost of adding or317

removing δ seats at node i, and the third line describes the cost of visiting node j from i.318

Note that when the aircraft is moved, the state variable α is set to 0 and if the decision319

regarding seats is made in this transition, α is set to 1. Constraint (5b) is a dual bound for320

the DIDP model which is optional but may be exploited by the solver.321
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compute Z(V, 0, 0, 0, S̃0) (DIDP1T )

Z(U, i, q, π, s) =

di,2n+1 if U = ∅ ∧ ∃δ ∈ T (i, q, π, s)
min

(δ,j)∈T (i,q,π,s)×R(U,i)
di,j + Z(U\{j}, j, q + wi, π + ui, s + δ) if U ̸= ∅

(6a)
Z(U, i, q, π, s) ≥ 0 (6b)
Eq. (5c), Eq. (5d).

Figure 7 The One-transition DIDP Model (DIDP1T ) for PD-SRP.

4.3.2 A One-transition DIDP Model (DIDP1T )322

We present the DIDP1T model in Figure 7. In this model, instead of two types of transitions,323

we define one type that performs the pickup/delivery and seat exchange at a location and324

then moves the aircraft to a new location. A state is the same as in DIDP1T with the325

exception of the α flag which is no longer necessary: ⟨U, i, q, π, s⟩. As a transition first picks326

up or delivers cargo, passengers, and seats at the current location and then moves the aircraft327

to the next location, each transition corresponds to selecting (δ, j): δ is the number of picked328

up seats and j is the next location to visit. The set of possible decisions at each state is329

therefore T (i, q, π, s) × R(U, i) as defined in the second line of Eq. (6a).330

The objective function of DIDP1T defines the state for which the optimal cost is to be331

calculated. It is identical to the target state in DIDP2T with the removal of α. In Eq. (6a),332

the first line describes the cost of returning to the depot from node i, and the second line333

describes the cost of visiting node j from i. Note that the first line checks if there exists334

some δ such that the capacity constraints on the cargo and the passengers are satisfied. If335

there is no such δ, we assume Z(∅, i, q, π, s) = ∞.336

4.3.3 Model Sizes and Solver337

In a DIDP model, we need to define all transitions that are applicable in a state. In DIDP2T ,338

δ can take an integer in [−Ŝ, Ŝ] depending on a state, so there are 2Ŝ + 1 candidates. We339

have |VN+1| locations to visit. Thus, DIDP2T requires 2Ŝ + 1 + |VN+1| transitions to be340

defined in total. In contrast, DIDP1T needs to define (2Ŝ + 1)|VN+1| transitions but does341

not have state variable α. An alternative perspective is that the two DIDP models make342

different trade-offs between the maximum branching factor and solution length. DIDP1T has343

a branching factor of at most (2Ŝ + 1)|VN+1| at each state and a solution path length of344

|VN+1|. DIDP2T has a maximum branching factor that alternates between 2Ŝ + 1 and |VN+1|345

and a solution length of 2|VN+1|. The performance of a solver is affected by the number of346

state variables, the branching factor, and the solution length.347

We solve the DIDP models with a complete anytime beam search (CABS) solver [25, 15].348

CABS is an anytime algorithm meaning that seeks to quickly find a feasible solution and349

then to improve it in the remaining run-time. CABS employs beam search: a heuristic search350

algorithm that maintains a fixed number, b (beam width), of best states when exploring the351

search space. In CABS, beam search is performed iteratively with increasing the beam width352

until a stopping condition is met. Due to the iteratively increasing beam width, CABS is a353

complete algorithm [25].354
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5 Numerical Evaluation355

5.1 Experimental Setup356

We have developed six different models, i.e., CP, MIPloc, MIPrank, MIPUB , DIDP1T , DIDP2T .357

For the experiment, we use MIPUB to warm-start the MIP and CP models, producing three358

additional approaches: MIPloc_W , MIPrank_W and CPW .359

To implement and solve the models we used Python v3.8.0 and the corresponding Python360

interfaces to the solvers: Gurobi Optimizer 10.0.1 and gurobipy for MIP, CP Optimizer361

22.1.0.0 and DOCPlex for CP, and didppy 0.3.3 for DIDP.1 Each run has a time limit of362

600s. The machine used to run the experiment has Intel(R) Core(TM) i7-9700 8 core CPU363

@ 3.00GHz, 12MB cache, and memory of 31G.364

The models are tested on randomly generated instances with sizes 4, 6, 8, 10, 12, 15, and365

20 with 10 instances per size. The size of each instance is the number of requests, which is366

half of the number of locations. We generate problem instances randomly, approximately367

reflecting real-world problem size, aircraft capacity and configurations, and stored seats at368

each location. We fix the maximum number of seats in the aircraft Ŝ = 6, the cargo-to-seat369

ratio L = 100, and the cargo capacity on a full-seat aircraft Ĉ = 200. The number of seats370

in the aircraft start configuration, S̃0, is selected uniformly from {0, ..., 6} and the cargo371

capacity in the start configuration is C̃0 = 800 − 100S̃0. Similarly, the number of seats372

available at location i, S0
i , is set uniformly from {0, ..., 6}, independently for each location.373

The (x, y) coordinates of every location are uniformly generated from {0, ..., 100}2.374

We generate the passenger and cargo demand to ensure the existence of capacity-feasible375

solutions. For each request i ∈ {1, ..., n}, there is a demand of π̂i passengers and demand of376

q̂i kg cargo (i.e., q̂i/L units of cargo). We first define the total number of passengers and377

units of cargo as K̂ = q̂i/L + π̂i, and K̂ is uniformly generated from {1, ..., Ŝ + Ĉ/L = 8}.378

The passenger request π̂i is then selected uniformly from {0, ..., min(Ŝ, K̂)}. Consequently,379

the cargo request is q̂i = L(K̂ − π̂i).380

To compare the models, we used the number of instances solved and proved optimal, the381

PAR10 score time [12] (i.e., mean run-time with 10 times the time limit used if no optimal382

solution was proved), and mean relative error (MRE).383

MRE compares the solution quality returned by each model. For an optimization problem384

let objt,m,i be the objective value of the best solution achieved by time t of model m for385

instance i and let obj∗
i be the best-known objective value for that instance considering all the386

models. For the set of instances, I, the relative error and mean relative error are computed387

in Eqs. (7) and (8). If a model did not find a feasible solution by a given time, the MIPUB388

value is used to calculate a non-infinite measure.389

RE(t, m, i) = objt,m,i − obj∗
i

obj∗
i

(7)390

MRE(t, m) = 1
|I|

∑
i∈I

RE(t, m, i) (8)391

1 https://didp.ai
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(a) Number of instances solved to optimality. (b) Mean PAR10 time to solve instances.

(c) Comparison of MRE of all the models.

Figure 8 Performance of MIP, CP and DIDP models.

5.2 Results392

Figures 8a and 8b show the number of solved instances (i.e., proved infeasible or optimal) and393

mean PAR10 times for all the models. We do not include MIPUB as it is incomplete, however394

for each model, its run-time is less than 0.02s. The run times for MIPloc_W , MIPrank_W ,395

and CPW models, include the warm-start time.396

The DIDP models solved all of the instances with 12 or fewer requests, with DIDP2T397

performing slightly better than DIDP1T for instances of size 15 as it could solve three instances398

compared to none for DIDP1T . Neither CP nor CPW were able to solve any instances of size399

larger than 6 while the MIP models scaled up to size 10 or 12. There was one instance of400

size 4 that CPW could not prove optimality, but CP could.401

In terms of solution time, the DIDP models were the fastest and CP models were the402

slowest. For the MIP models, MIPrank_W performed slightly better than MIPrank in terms403

of both the number of solved instances and mean solution time. For one instance of size 12,404

MIPrank_W proved optimality where MIPrank could not.405

The MRE graph is shown in Figure 8c. DIDP2T returns the best solutions and finds those406

best solutions within a few 10s of seconds. Up to 300s, CPW outperformed MIPrank_W ,407

MIPloc_W , MIPloc but after that point, their solution qualities are very similar. The solution408

qualities returned by CP are the worst after 100 seconds. However, the use of MIPUB as a409
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warm start substantially improves CP quality especially for short run times. The performance410

of the MIPloc and MIPloc_W models was very similar, however, the MIPloc_W model returned411

slightly better solution qualities than MIPloc, especially before 200s. As we expected, the412

solutions found by the incomplete MIPUB are substantially worse than other models.413

Overall, DIDP models performed better than MIP and CP, and in particular DIDP2T414

performed best in terms of the number of solved instances and average time to solve the415

instances. We hypothesize that DIDP outperforms other models due to the combination416

of tight capacity constraints and the precedence constraints induced by the pickup-and-417

delivery structure. DIDP uses these constraints to prune many transitions and, thus, reduce418

the search space. This result is consistent with previously observed behavior of DIDP on419

constrained routing problems [15] and suggests an opportunity for research to understand420

model characteristics that correlate with strong DIDP performance compared to other421

optimization approaches.422

6 Discussion423

The contributions of this work are the introduction of a novel pickup-and-delivery problem424

inspired by air services in northern Canada, the creation and evaluation of six optimization425

models in three different frameworks, and the further demonstration that the recently426

proposed domain-independent dynamic programming approach can out-perform incumbent427

techniques in a model-and-solve paradigm.428

While DP models are inherently state-based, the DIDP formalism provides a novel avenue429

for constraint-based problem solving with connections to early ideas in CP (e.g., [6]). The430

DIDP models for PD-SRP are unusual as DP models due to the extensive, constraint-based,431

limitations on transitions (i.e., Eqs. (5c) and (5d)). While such limitations are key to strong432

DP performance, they are typically procedurally implemented in a problem-specific DP433

search algorithm. In DIDP, in contrast, constraint reasoning is used to prune transitions434

based on the values of state variables rather than pruning variable domains based on partial435

assignments. We believe that understanding this difference and developing constraint-based436

reasoning for this context is a fruitful research direction for CP.437

Our study has a number of limitations and opportunities for further research:438

In the definition of PD-SRP, we discretized cargo into identical boxes with one size439

dimension (i.e., weight). In reality, cargo can take many forms from boxes of different440

sizes and weights to baggage in various forms. Minimally, the volume of cargo needs to441

be represented. More generally, the problem should address the four-dimensional (i.e.,442

volume plus weight) packing of heterogeneous cargo.443

We made the assumption that passengers do not have travel time restrictions. However,444

as a potential avenue for future research it would be interesting to incorporate additional445

constraints regarding how long a single passenger can be stowed in the aircraft or how446

long they can wait to be picked up.447

As is common in OR literature on transportation problems, our objective function is the448

minimization of the travel distance. A more realistic objective would represent aspects449

such as time and fuel consumption as well as handling and storage costs for seats.450

Most airlines run regular services with defined timetables and routings. Preliminary work451

indicates that determining seat exchanges is an easy problem when routes are decided.452

If this result bears out, there are two implications. First, we may have tools to deal453

with harder aspects of the real world problem including multiple aircraft, uncertain and454

dynamically changing demand (e.g., due to extreme weather in Canada’s north), and455
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strategic decisions about timetable creation, seat inventory, and aircraft capacities. Second,456

even with the version of PD-SRP presented here, we may be able to scale by exploiting457

the “easy” seat exchange part of the problem through Benders decomposition [2].458

Although, in this study, our focus was to design simple models that can be used “off the459

shelf”, it is interesting to investigate sophisticated custom-constraint CP models in the460

future development of this work to see if they outperform the currently developed MIP461

and CP models.462

7 Conclusion463

This paper studied a novel pickup and delivery transportation problem with reconfigurable464

capacities, a problem inspired by air service in northern Canada. We defined the problem465

formally and developed six models in three different modeling formalisms: constraint pro-466

gramming, mixed integer programming, and domain-independent dynamic programming.467

We compared the performance of the models on a set of randomly generated instances. MIP468

and CP models were solved with commercial solvers, the DIDP model was solved using the469

recently developed domain-independent dynamic programming solver [15].470

Our results show that domain-independent dynamic programming models are the fastest471

in both finding high-quality feasible solutions to problem instances and in solving them to472

optimality. For large instances, when the number of requests is greater than 15, even DIDP473

models were not able to solve the instances to the optimality. Although in general, MIP474

models were faster to find feasible solutions than CP, for short run times, CP found better475

solutions than both of the MIP models.476

Our future work will study generalizations of the problem by considering multiple aircraft477

and more realistic representation of cargo size and aircraft capacity. We have also embarked478

on a study of the decomposition of the problem both to better fit the real-world use case where479

routes are often predefined and to exploit the computational advances of the mathematical480

structure of the decomposition.481
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