
Constraint Programming for Strictly Convex
Integer Quadratically-Constrained Problems

Wen-Yang Ku and J. Christopher Beck

Department of Mechanical & Industrial Engineering
University of Toronto, Toronto, Ontario M5S 3G8, Canada

{wku,jcb}@mie.utoronto.ca

Abstract. Inspired by the geometric reasoning exploited in discrete
ellipsoid-based search (DEBS) from the communications literature, we
develop a constraint programming (CP) approach to solve problems with
strictly convex quadratic constraints. Such constraints appear in numer-
ous applications such as modelling the ground-to-satellite distance in
global positioning systems and evaluating the efficiency of a schedule
with respect to quadratic objective functions. We strengthen the key as-
pects of the DEBS approach and implement them as combination of a
global constraint and variable/value ordering heuristics in IBM ILOG CP
Optimizer. Experiments on a variety of benchmark instances show sig-
nificant improvement compared to the default settings and state-of-the-
art performance compared to competing technologies of mixed integer
programming, semi-definite programming, and mixed integer nonlinear
programming.

1 Introduction

The strictly convex integer quadratically-constrained problem (IQCP) is an op-
timization problem where the objective and/or some constraints are strictly
convex quadratic functions. The IQCP is known to be NP-hard [1] and arises
in a number of applications including global positioning systems, communica-
tions, cryptography, bioinformatics, scheduling and finance [2,3,4,5]. Given its
theoretical challenge and practical value, it is of great interest to develop effi-
cient algorithms to solve IQCPs. Despite the long history of CP, the techniques
to solve quadratically constrained problems have not receive much attention.
There are only a few dedicated global constraints that reason about quadratic
terms. For example, the Spread constraint [6] enforces the standard quadratic
relationship amongst a set of variables, their mean, and their standard deviation.
General quadratic constraints [7,8] can be applied to both convex and nonconvex
quadratic functions. However, they do not exploit the strictly convex nature of
the IQCP.

It has been shown in Ku and Beck [9] that strictly convex IQCPs can be
formulated as integer least squares (ILS) problems and solved with discrete
ellipsoid-based search (DEBS), a specialized search used in the communications
literature (e.g., see [4]). From a CP perspective, DEBS can be understood as

2 Wen-Yang Ku and J. Christopher Beck

a form of CP search. First, the search strategy uses a static variable ordering
heuristic and a dynamic value ordering heuristic based on the structure of the el-
lipsoid. Second, the geometry of the ellipsoid induces an interval domain for each
variable. As a result, DEBS is essentially the enumeration of these domains un-
der the prescribed variable and value orderings with some bounds pruning based
on the radius of the hyper-ellipsoid. DEBS was originally formulated to solve
only three types of ILS problems: unconstrained, box-constrained, and ellipsoid-
constrained [10,3,11,9]. A recent work has extended DEBS for ILS problems with
general linear constraints [12].

In this work, we aim at developing techniques that are both powerful and
cover a broad range of problems. We introduce two novel techniques, inspired by
DEBS, for solving strictly convex IQCPs with constraint programming. First,
we propose the ellipsoid constraint, a global constraint that filters variable
domains with respect to strictly convex quadratic functions. We derive a di-
rect quadratically-constrained programming (QCP) formulation that achieves
bounds consistency (BC), and two light-weight filtering algorithms that do not
guarantee BC. Though it is natural to consider integer domains in CP, our
filtering algorithm can be applied to variables with real domains, broadening
its application to, for example, mixed integer programming solvers. Second, we
propose a pair of variable/value selection rules. We implement the filtering algo-
rithms and the branching heuristics in IBM ILOG CP Optimizer. We experiment
with five problem classes and show orders of magnitude improvement compared
to the default CP Optimizer. We then compare our new CP approach with the
best known algorithms on the same problem sets. Our results demonstrate that
the new CP approach is competitive to the best known approaches, and, for
some problem classes, establishes a new state of the art.

The rest of the paper is organized as follows. We give the necessary back-
ground in Section 2. In Section 3 we define of our new global constraint. Section
4 and 5 present the filtering algorithms and the branching heuristics. Section 6
provides computational results and discussions. We conclude in Section 7.

2 Background

2.1 The Strictly Convex Integer Quadratically-Constrained
Problem (IQCP)

The general IQCP problem has the following form:

min
x∈C

1

2
xTHx + fTx,

C = {x ∈ Zn :
1

2
xTMkx+cTk x ≤ bk,∀k = 1, . . . ,m, l ≤ x ≤ u, l ∈ Zn, u ∈ Zn}.

The IQCP is strictly convex if the quadratic matrices H, Mk,∀k are sym-
metric positive definite [13]. As the above form suggests, quadratic formulations
can exist in the form of an objective function and/or as constraints.

CP for Strictly Convex IQCPs 3

In Operations Research, the common generic approaches to solving IQCPs
exactly are the use of mixed integer nonlinear programming (MINLP) such as
BARON [14,15] and ANTIGONE [16], and the application of MIP solvers such
as CPLEX and Gurobi which have been extended to reason about quadratic
constraints [17]. Another generic approach is semi-definite programming (SDP)
based branch-and-bound [18]. The available SDP solvers, e.g., BiqCrunch [19],
only solve problems with binary variables as opposed to general integer variables.

2.2 Discrete Ellipsoid-based Search (DEBS)

The DEBS method consists of two phases: reduction and search. The reduction
is a preprocessing step that transforms A to an upper triangular matrix R using
the “QRZ” factorization [3]:

min
x∈Zn

‖y −Ax‖22 → min
z∈Zn

‖ȳ −Rz‖22 , (1)

where ȳ = QTy, z = Z−1x, Q is orthogonal, Z is unimodular. The diagonal en-
tries of R are approximately1 ordered in non-decreasing order: |rii| ≤ |ri+1,i+1|.
This ordering has been shown to increase the efficiency of the DEBS search by
reducing the branching factor at the top of the search tree [10]. As we argue in
Section 5 below, this ordering is approximately equivalent to a static smallest
domain first variable ordering.

Suppose the optimal solution z∗ satisfies ‖ȳ −Rz∗‖22 < β, or equivalently∑n
k=1(ȳk −

∑n
j=k rkjzj)

2 < β, where β is a constant that can be obtained by
substituting any feasible integer solution to equation (1). This expression defines
a hyper-ellipsoid with center R−1ȳ. The search, then, systematically enumerates
all the integer points in the bounded hyper-ellipsoid [21]. When an incumbent,
i.e., new upper bound on β, is found, the hyper-ellipsoid is contracted resulting
in reduction of the bounds of the decision variables.

In more detail, let zn
i = [zi, zi+1, . . . , zn]T be the vector of decision variables

and define the so-far-unknown (apart from cn) and usually non-integer variables:

cn = ȳn/rnn, ck : ck(zk+1, . . . , zn) = (ȳk−
n∑

j=k+1

rkjzj)/rkk, k = n−1, . . . , 1.

Note that ck is a function of zk+1 to zn, and it is fixed when zk+1 to zn are
fixed. The above equation can be rewritten as

∑n
k=1 r

2
kk(zk − ck)2 < β, which

defines the possible values that zk can take on. This inequality is equivalent to

1 Depending on the data, it is sometimes not possible to transform a matrix to exactly
achieve this ordering [20].

4 Wen-Yang Ku and J. Christopher Beck

the following n inequalities:

level n : (zn − cn)2 <
1

r2nn
β,

level n− 1 : (zn−1 − cn−1)2 <
1

r2n−1,n−1
[β − r2nn(zn − cn)2],

...

level k : (zk − ck)2 <
1

r2kk
[β −

n∑
i=k+1

r2ii(zi − ci)2],

...

level 1 : (z1 − c1)2 <
1

r211
[β −

n∑
i=2

r2ii(zi − ci)2].

The search starts at level n, heuristically assigning zn = bcne, the nearest
integer to cn. Given the value of zn, cn−1 can be calculated from the above
equation as cn−1 = (ȳn−1 − rn−1,nzn)/rn−1,n−1. From this value, we can set
zn−1 = bcn−1e and search continues. During the search process, zk is deter-
mined at level k, where zn, zn−1, . . . , zk+1 have already been determined, but
zk−1, zk−2, . . . , z1 are still unassigned. At some level k − 1 in the search, it is
likely that the inequality cannot be satisfied, requiring the search to backtrack
to a previous decision. When we backtrack from level k− 1 to level k, we choose
zk to be the next nearest integer to ck.

After the optimal solution z∗ to the reduced problem (right hand side of
equation (1)) is found, the optimal solution, x∗, to the original problem (left
hand side of equation (1)) can be recovered with the relationship x∗ = Zz∗.

3 The Ellipsoid Constraint

We propose the ellipsoid constraint to reason about convex quadratic func-
tions. It consists of a set of n variables {x1, . . . , xn}, an n × n matrix A with
full column rank, an n-dimensional vector y, and a constant β. The definition is
given as follows:

ellipsoid({x1, . . . , xn},A,y, β),

where A ∈ Rn×n, y ∈ Rn, β ∈ R. The constraint ensures the following condition:

‖y −Ax‖22 ≤ β. (2)

Geometrically, the above expression defines a hyper-ellipsoid with center A−1y.
Equivalently, 2 can be written in its standard convex quadratic constraint form
as

1

2
xTHx + fTx ≤ β̄, (3)

CP for Strictly Convex IQCPs 5

where H ∈ Rn×n is a symmetric positive definite matrix, f ∈ Rn is a vector,
and β̄ = (β − yTy)/2. The transformation is obtained with the relationships
H = ATA and f = −yTA.

The ellipsoid constraint can be applied to any formulation with a strictly
convex quadratic function. For example, consider the following objective func-
tion: min 1

2x
THx+fTx+ 1

2y
TH1y+fT

1 y, where only H is symmetric positive
definite. We can still apply the ellipsoid constraint to the first half of the ob-
jective function: 1

2x
THx + fTx, even if the second part is not strictly convex.

4 Filtering Algorithms for the Ellipsoid Constraint

In this section, we present a number of filtering algorithms that achieve or ap-
proximate bounds consistency of the ellipsoid constraint.

Let xj be a finite-domain variable, Dom(xj) be the domain of xj , which is
a set of ordered values that can be assigned to xj , and ID(xj) = [lj , uj] be the
interval domain of xj .

Definition 1. A ellipsoid constraint is bounds consistent [22] with respect to
domains Dom(xj) if for all j ∈ 1, . . . , n and each value vj ∈ {lj , uj}, there
exists values vi ∈ ID(xi) for all i ∈ {1, . . . , n} \ {j} such that ellipsoid({x1 =
v1, . . . , xn = vn},A,y, β) holds.

In the 2D example shown in Fig. 1, the ellipsoid constraint (on the two vari-
ables) is bounds consistent.

A\1y"

10"
Fig. 1: A 2D example that shows the tangent box of the ellipsoid and bounds
consistency of the ellipsoid constraint.

4.1 A Direct Quadratically-Constrained Programming (QCP)
Formulation

Achieving bounds consistency for a variable xj is equivalent to finding the lower
bound lBC

j and upper bound uBC
j for xj , given the ellipsoid constraint and

the current bounds of the variables. Assume that no further reduction can be
inferred on the domains of xi,∀i 6= j, the mathematical model for achieving
bounds consistency for xj can be defined as follows:

lBC
j = min

x∈Rn
eTj x subject to ‖y −Ax‖2 ≤

√
β, l ≤ x ≤ u, (4)

6 Wen-Yang Ku and J. Christopher Beck

uBC
j = max

x∈Rn
eTj x subject to ‖y −Ax‖2 ≤

√
β, l ≤ x ≤ u. (5)

Note that ej ∈ Rn is the unit vector in the j-th direction, i.e., the j-th column
of an identity matrix with size n. The problems (4) and (5) are quadratically-
constrained programming (QCP) optimization problems, which can be solved
with QCP solvers such as CPLEX. However, it is computationally expensive,
since at least 2n QCPs have to be solved in each iteration.

This approach is essentially a QCP version of optimization-based bound
tightening (OBBT) as used in the MINLP literature [23]. While typically per-
formed with linear constraints, OBBT is often only done at the root node of the
search tree as it is too expensive to perform at every node. Convex QCPs can be
solved in polynomial time using iterative approaches such as the interior point
method [24].

4.2 Axis-Aligned Tangent Box Filtering (BOX)

The simplest way to tighten the domains of the variables is to compute the
tangent box of the hyper-ellipsoid defined in Equation (2), where the edges of
the box are parallel to the axes of the coordinate system. As a 2D example, the
dotted box in Fig. 1 shows the tangent box. The lower bound lb and the upper
bound ub that define the tangent box can be computed by solving the following
problems:

lbj = min
x∈Rn

eTj x subject to ‖y −Ax‖2 ≤
√
β, (6)

ubj = max
x∈Rn

eTj x subject to ‖y −Ax‖2 ≤
√
β. (7)

Chang & Golub [3] proposed an efficient way to solve the above problems. We
first solve the problem in (7) for ubj , and the lower bound lbj can be obtained by
using the symmetric property of an ellipsoid. Let p = Ax− y, the problem (7)
becomes

ubj = max
p

eTj A
−1(p + y)

= max
p

eTj A
−1p + eTj A

−1y subject to ‖p‖2 ≤
√
β. (8)

By the Cauchy-Schwarz inequality, we have

eTj A
−1p ≤

∥∥∥A−Tej∥∥∥
2
‖p‖2 ≤

∥∥∥A−Tej∥∥∥√β.
The first inequality becomes an equality if and only if p = cA−Tej for some

non-negative scalar c. The second inequality becomes equality if and only if

‖p‖2 =
√
β. Therefore, p is the minimizer for (8) when p =

√
βA−Tej/

∥∥∥A−Tej∥∥∥
2
.

Substituting p into (8), we have

ubj =
√
β
∥∥∥A−Tej∥∥∥

2
+ eTj A

−1y. (9)

CP for Strictly Convex IQCPs 7

From the symmetry property of an ellipsoid, we have

lbj = −
√
β
∥∥∥A−Tej∥∥∥

2
+ eTj A

−1y. (10)

Computing the Reduced Intersecting Ellipsoid EF . When a variable is
fixed during the search, e.g., xi = vi, the dimension of the ellipsoid is reduced
by one. Geometrically, we need to find the one-dimension-smaller ellipsoid that
intersects at xi = vi and ‖y −Ax‖22 ≤ β. We propose a general way to compute
the reduced intersecting ellipsoid with any number of variables fixed.

Let F be the set of the variables that are fixed and let Ã = [Aj] ,∀j 6= F ,

ȳ = y −
∑

i∈F Aivi and the QR factorization of Ã as: Ã =
[
Q̃1 Q̃2

] [R̃
0

]
, the

reduced intersecting ellipsoid EF can be computed as follows:

EF =
∥∥∥ỹ − R̃x̃

∥∥∥2
2
≤ β̃, (11)

where x̃ is the vector of the unknown variables of the reduced ellipsoid, ỹ = Q̃
T

1 ȳ

and β̃ = β − ‖ȳ‖22 + ‖ỹ‖22. The derivations on R̃ and ỹ are straightforward so

we only explain β̃ as follows. We know that

‖y −Ax‖22 =
∥∥∥ȳ − Ãx̃

∥∥∥2
2

=

∥∥∥∥∥
[
Q̃

T

1

Q̃
T

2

]
ȳ −

[
R̃
0

]
x̃

∥∥∥∥∥
2

2

.

It follows that

‖y −Ax‖22 −
∥∥∥Q̃T

1 ȳ − R̃x̃
∥∥∥2
2

=
∥∥∥Q̃T

2 ȳ
∥∥∥2
2

= ‖ȳ‖22 −
∥∥∥Q̃T

1 ȳ
∥∥∥2
2
.

We assume that β and β̃ constraints are satisfied at equality as this corre-
sponds to the largest ellipsoids defined by our inequalities and therefore ensures

that no valid values are pruned. Since β = ‖y −Ax‖22 and β̃ =
∥∥∥Q̃T

1 ȳ − R̃x̃
∥∥∥2
2
,

we have β̃ = β − ‖ȳ‖22 + ‖ỹ‖22.
At each node of the tree, we can first compute the reduced ellipsoid EF w.r.t

the variables that are already fixed with Equation (11), then apply Equations
(9) and (10) to compute the axis-aligned tangent box. The algorithm propagates
when variables are instantiated or β is reduced. As our CP search instantiates
variables, the propagation is active at each node.

Complexity of the Filtering Algorithm. The filtering algorithm reduces
the domains of all the variables based on β with O(n3) time-complexity. First,
computing the reduced ellipsoid takes O(n3), as the QR factorization is required,
Second, computing the tangent box takes O(n3), as the complexity is dominated
by computing the matrix inverse A−1. Therefore the total time complexity for
filtering the domain for all the variable is O(n3).

8 Wen-Yang Ku and J. Christopher Beck

4.3 Approximate Bounds Consistency (ABC) Filtering

Before we introduce the next filtering algorithm, our notation is summarized as
follows:

– [lj , uj]: The interval domains (local bounds) of variable xj .
– [lbj , u

b
j]: The tangent box derived with Equation (9) and (10) of the ellipsoid

E defined in Equation (2).
– vj : A value that is within xj ’s domain, i.e, vj ∈ ID(xj) = [lj , uj].

It is observed that if l ≤ lb ≤ ub ≤ u, then the tangent box defines the bounds
of the variables. However, a pair of bounds may lead to reductions in other
variable domains. For example, in Fig. 2-a, the bounds li and ui have the effect
of increasing the lower bound lbj to lj and decreasing the upper bound ubj to uj .

To perform stronger domain reductions on the ellipsoid, first we need to
determine the set of variables that can be used to infer reductions on the lower
bounds or upper bounds of the variables. We explain the propagation algorithm
below for the lower bound only since the propagation on the upper bound can
be derived in a symmetric manner.

Proposition 1. Let P (E)ij be the ellipse defined by the projection of the hyper-
ellipsoid (Equation 2) onto the xixj plane. Then the variable xi can be used
to infer domain reductions on xj’s lower bound if and only if li ≤ ui ≤ tlij or

tlij ≤ li ≤ ui, where tlij is the xi value at the intersection of xj = lbj and the
projected ellipse P (E)ij.

Proof. If li ≤ tlij ≤ ui (Fig. 2-b), we can set xi = tlij , so that xj = lbj , thus no
domain reduction can be inferred to xj ’s lower bound. In the other two cases
where li ≤ ui ≤ tlij (Fig. 2-a) or tlij ≤ li ≤ ui, since xj is forced to take a value

that is greater than lbj , we can increase xj ’s lower bound.

li# ui#

lj#

lbj#

ubj#

uj#

tlij#

tuij#

P(ε)ij#

(a) The case that li ≤ ui ≤ tlij .

li# ui#

lj#

lbj#

ubj#

uj#

tlij#

tuij#

P(ε)ij#

(b) The case that li ≤ tlij ≤ ui.

Fig. 2: The 2D projection of the hyper-ellipsoid onto the xixj plane.

We refer to tlij and tuij as the touching points.

CP for Strictly Convex IQCPs 9

Computing the Touching Points. The touching points can be computed
easily as a by-product of computing the axis-aligned tangent box (9) and (10).

Since p =
√
βA−Tej/

∥∥∥A−Tej∥∥∥
2

uniquely defines the minimizer for the upper

bound ubj , let x∗ be the solution to the equation p = Ax− y, we have:

(tuj)T = [tu1j , . . . , t
u
j−1,j , t

u
j+1,j , . . . , t

u
nj]

T = [x∗1, . . . , x
∗
j−1, x

∗
j+1, . . . , x

∗
n]T

Note that tuj is a n − 1 dimensional vector and x∗j = ubj . Using the symmetry

property of the ellipsoid, tlj can be computed by reflecting tuj about the center
of the ellipsoid.

The complexity of computing the touching points for all the variables, i.e.,
tlj , t

u
j ,∀j, is O(n3), as x∗ can be computed in O(n2) for each variable, given that

A−1 is known.

Proposition 2. If xi can be used to increase xj’s lower bound lj according to
Proposition 1, the value vdi that should be used to increase lj is defined as

vd
i =

{
li, if (tlij − li)2 ≤ (tlij − ui)2.
ui, otherwise.

Proof. Since P (E)ij is convex and xj achieves its minimum lbj at xi = tlij , for any

point xj in P (E)ij , we have xj strictly larger than lbj if xi takes any value other

than tlij . That is, xj increases strictly when xi moves away from tlij . Therefore,

the value (li or ui) that achieves the minimum of the expression min((tlij −
ui)

2, (tlij − li)2) determines xj ’s lower bound.

As Fig. 2-a depicts, we choose ui in this example, as using li removes the valid
value lj .

Using Proposition 1 and 2, we can identify the set of variables and their
values that can be used to increase the lower bound of a variable.

Definition 2. For each variable xj, let S l
j (Su

j) be the set of all the variables
that can be used to infer domain reductions on xj’s lower (upper) bound.

Definition 3. An assignment A: xi 7→ ID(xi), i ∈ Sl
j or Su

j is said to be a

determining assignment when A(xi) = vdi .

When a variable takes a determining assignment, we can compute the reduced
intersecting ellipsoid using the method in Section 4.2. The complete filtering
algorithm for pruning the lower bound of a variable is presented in Algorithm
1. The upper bound pruning can be derived in a symmetric manner.

Complexity of the Filtering Algorithm The filtering algorithm reduces
the domain of a single variable in O(n3) time-complexity. First, computing the
tangent box takes O(n3) (see Section 4.2). The touching points require O(n2) as
explained previously. In line seven, the sets Sl

j can be computed in O(n). The for-

loop at Line 8 requires O(n3), as Line 9 and 10 require O(n2) for computing the
reduced ellipsoid (by updating the QR factorization) and the tangent plane for

10 Wen-Yang Ku and J. Christopher Beck

Algorithm 1 Prune(lj)

1: Data: The local bounds: l1, . . . , ln, u1, . . . , un, the tangent box for the ellipsoid E :
lb1, . . . , l

b
n, ub

1, . . . , u
b
n, the touching points tlij , β

2: Results: The filtered lower bound l′j
3: Initialization: Set l′j = −∞, F = {}
4: if uj < lbj then
5: The constraint is not satisfiable
6: else
7: Compute the set Sl

j and the associated assignments A(xi), ∀i ∈ Sl
j

8: for each i ∈ Sl
j do

9: Let F = {i}, compute the reduced intersecting ellipsoid EF
10: Compute the tangent box (lFj)b of EF
11: Set l′j = max((lFj)b, l′j)
12: end for
13: if ui < l′j then
14: The constraint is not satisfiable
15: else
16: Set l′j = max((l′j , lj)
17: end if
18: end if

each of the i in Sl
j . Therefore the total time-complexity for filtering the domain

for one variable is O(n3).
The complexity for filtering all the variables is therefore O(n4), which is the

complexity when Sl
j ,∀j, contains n−1 variables. However, it is beneficial to have

more variables in the set, as more and stronger pruning might be done.

4.4 Relative Strength of the Three Filtering Algorithms

It is clear that the ABC filtering algorithm is at least as strong as the BOX
filtering algorithm, since ABC uses the tangent box as the starting point. The
QCP filtering is at least as strong as ABC. ABC only considers the 2D projection
of the hyper-ellipsoid onto each xixj plane, i.e., xj is only tightened using the
bounds of each xi, independently. However, it is also possible to perform a higher
dimension projection of the hyper-ellipsoid and use the bounds of more than
one variable together to do bound tightening. Consider the 3D projection of the
hyper-ellipsoid and the reasoning among xi, xj , xk. It is possible to use xi and
xk, together, to tighten xj , given that xi and xk intersects inside the hyper-
ellipsoid. For this reason, ABC only achieves BC when |Sl

j | = 1, |Su
j | = 1,∀j,

and the tangent box only achieves BC when |Sl
j | = 0, |Su

j | = 0,∀j.

5 Branching Rules

We propose variable and value ordering rules inspired by the search strategy
of DEBS. Recall that the static variable ordering in DEBS tries to minimize

CP for Strictly Convex IQCPs 11

the branching factor at the top of the tree so that it is easier to find feasible
solutions. In CP, this is the same as choosing a variable with minimum domain
size. We therefore use the standard dynamic variable selection rule that chooses
a variable with the smallest domain. The value ordering rule in DEBS always
assigns a variable to the integer value closest to the center of the ellipsoid of the
objective function so that the search greedily chooses the best integer value at
the current node with the hope of finding good feasible solution quickly. In our
implementation, suppose xj is the variable chosen for branching, we first compute
the center of the ellipsoid cj in j-th dimension given the reduced ellipsoid, and
then round it to the nearest integer. When the search backtracks, we assign xj
to the next nearest integer to cj , and so on.

6 Experimental Results

Experimental Setup. We design two experiments. The goal of the first experiment
is to evaluate the impact of our filtering algorithms and the branching heuristics
compared to a default CP model. The second experiment compares our new CP
approach to the best known exact approaches for IQCPs.

For the first experiment, we use IBM ILOG CP Optimizer v12.6.3 with its
default settings. The three filtering algorithms, e.g., BOX, ABC, and QCP, are
implemented in CP Optimizer as customized global constraints. The branching
rules are implemented as customized variable and value choosers (denoted with
the symbol “+b” in our results). We use CPLEX v12.6.3 for solving the QCPs.
We report the arithmetic mean CPU time “time” in seconds, and the arithmetic
mean number of choice points “chpts” to find and prove optimality for each
problem set.

For the second experiment, we use CPLEX v12.6.3,2 BARON v16.4.7 (using
CPLEX v12.6.3 as its LP/MIP solver) and the SDP solver BiqCrunch down-
loaded from the website [19] for comparison. All solvers are executed with their
default settings.3 The DEBS algorithm is written in C.

The CPU time limit for each run on each problem instance is 3600 sec-
onds. All experiments were performed on a Intel(R) Xeon(R) CPU E5-1650 v2
3.50GHz machine (in 64 bit mode) with 16GB memory running MAC OS X
10.9.2 with one thread.

6.1 Problem Sets

We experiment on medium size problems in five problem classes. The problem
size of each set is chosen with the aim for a mix of solvable and non-solvable
instances across the default CP Optimizer and the three filtering algorithms.

2 A major improvement was made in solving IQCPs in CPLEX v12.6.3 [25].
3 There are four versions of the SDP solver that deal with problem-specific structures.

The SDP results presented are the best version for each individual problem instance,
representing the “virtual best” SDP solver.

12 Wen-Yang Ku and J. Christopher Beck

Binary Quadratic Programming (BQP) Problem. The BQP problem is
defined as: minx∈{0,1}

1
2x

THx + fTx, where H ∈ Rn×n and f ∈ Rn. BQPs
arise in many combinatorial optimization problems such as task allocation [26],
quadratic assignment [27], and max-cut problems [18]. We experiment on the
Carter type problems [28] divided into four sub-sets of instances with size 40
(p = 0.2), 40 (p = 0.3), 50 (p = 0.2) and 50 (p = 0.3), respectively, where p is a
problem generation parameter.
Exact Quadratic Knapsack Problem (EQKP). The EQKP [29] is defined
as: minx∈C

1
2x

THx + fTx, C = {x ∈ {0, 1} : cT1 x = K, cT2 x ≤ B} , where
H ∈ Rn×n, f ∈ Rn, c1 ∈ Rn is a vector equal to ones, c2 ∈ Rn

+, K ∈ Z+,
B ∈ R+. The objective is to minimize a quadratic function subject to a cardinal-
ity constraint and a knapsack constraint. The EQKP is a extension of the BQP,
maximum diversity problem [30], quadratic knapsack problem [31], and exact
linear knapsack problem [32]. EQKPs arise in a wide range of real world appli-
cations such as wind farm optimization [33,34]. We experiment on the EQKP
and a variation from Ku & Beck [12] with binary domains xj ∈ {0, 1} relaxed to
xj ∈ {0, 1, 2}. We use three sub-sets of the instances with size 10, 20 and 30.
Box-constrained ILS (BILS) Problem. The BILS problem can be defined

as: minx∈C ‖y −Ax‖22 , C = {x ∈ Zn : l ≤ x ≤ u, l ∈ Zn, u ∈ Zn}. The
problem minimizes a least squares expression subject to general integer bounds.
Such problems exist in elevator scheduling [5] and signal processing [10]. We
generate problems the same way as Chang et al. [10], with medium size variable
domains (0 ≤ xi ≤ 10,∀i) and medium level of noise (σ = 0.05). We use five
sub-sets of the instances with size 10, 20, 30, 40 and 50.
Box-constrained and Ellipsoid-constrained ILS (BEILS) Problem. The

BEILS problem can be defined as: minx∈C ‖y −Ax‖22 , C = {x ∈ Zn : ‖Ax‖ ≤
α2, l ≤ x ≤ u, l ∈ Zn, u ∈ Zn}, where α is a constant. In addition to the least
squares objective function, the BEILS problem is also subject to a least squares
constraint. Such problem can exist in signal processing [35]. We generate prob-
lems the same way as those in Chang et al. [3] on the ellipsoid-constrained ILS
problem then add medium size variable domains (−10 ≤ xi ≤ 10,∀i). We use
five sub-sets of the instances with size 10, 20, 30, 40 and 50.
Quadratic Lateness Scheduling Problem (QLSP) The QLSP can be de-
fined as: min

∑n
j=1(Sj+pj−dj)2 s.t. disjunctive({S1, ..., Sn}, {p1, ..., pn}), Sj ≥

0,∀j, where Sj , pj , and dj are the start time, processing time, and due date of
job j. The QLSP is a single machine scheduling problem with the goal of mini-
mizing the sum of the quadratic lateness of the jobs. We generate problems the
same way as those in Schaller [36]. We use four sub-sets of the instances with
size 5, 10, 15 and 20.
Each problem set includes 10 instances of each size, e.g., the BQP problems
includes 4 sub-sets of size 10 for 40 instances.

6.2 Results of Experiment 1

We present the results of Experiment 1 in Tables 1 and 2. From Table 1, it is
clear that the ellipsoid constraint significantly improves the performance of

CP for Strictly Convex IQCPs 13

the default CP Optimizer for the BQPs, the BILS problems, and the BEILS
problems both in terms of running time and number of choice points. Without
the reasoning from the ellipsoid constraint, the default CP Optimizer cannot
prove optimality for any instances of these three problem types. For the EQKPs,
the ellipsoid constraint (BOX) is able to decrease the number of choice points
by a factor of 1.5 for the {0,1} problems and almost a factor of 2 for the {0,1,2}
problems. But the extra computation makes the running time worse than that
of the default CP Optimizer.

For QLSPs, CPO achieves the best average running time. Interestingly, for
the instances where all the filtering algorithms are able to prove optimality, the
number of choice points is the same for all the filtering algorithms. Our pre-
liminary investigation shows that the disjunctive constraint has a significant
impact on reducing variable domains for the QLSP, therefore determining the
number of choice points regardless of the strength of propagation of the ellipsoid
constraint. It is worth pointing out that the convex ellipsoid structure of the
QLSP has a simple axis-aligned structure, i.e., the off-diagonal entries of H in
Equation (3) are all equal to zero. Our results show that the default CPO prop-
agation does not achieve BC for axis-aligned ellipsoids and that the strength of
pruning of our three inference algorithm follows the same pattern for axis-aligned
ellipsoids as for the general case. As future work, we would like to exploit the
axis-aligned property to achieve more efficient filtering.

Among the three filtering algorithms, BOX performs the best in terms of
running time to prove optimality. ABC and QCP both find better primal solu-
tions in fewer nodes but, BOX finds better solutions in less time. On problems
where all three algorithms are able to prove optimality, the tree size of BOX is
about 15% larger than that of ABC and QCP. This is somewhat surprising and
suggests that variable fixing leads to strong inference. We observe that the re-
duced ellipsoid obtained after fixing a variable often has a much tighter tangent
box on the unfixed variables compared to that of the original ellipsoid. However,
we also observe that ABC can sometimes achieve one order of magnitude im-
provement compared to BOX in tree size on some larger instances. We would
like to investigate the problem characteristics that result in such difference. Note
that the lower number of choice points of ABC and QCP are misleading because
neither prove optimality for all instances within the time limit. However they
are good indicators on the number of nodes that can be visited when these two
algorithms are applied.

From Table 2, it is observed that the new branching rules greatly improve
the number of choice points, the running time, and the percentage of optimal
solutions found for most approaches. However CPO still cannot prove optimality
for the BQPs, the BILS problems, and the BEILS problems. The most significant
reduction is observed on the BILS problem and the BEILS problem, followed by
the QLSP, where the variable domains are much larger than the other two types
of problems: a good branching strategy apparently is especially important for
problems with large domains. It is particularly striking to see that the BILS

14 Wen-Yang Ku and J. Christopher Beck

problems are solved at least five orders of magnitude faster by CP through the
use of the ellipsoid constraint and the branching rule.

CPO BOX ABC QCP

Problem time chpts time chpts time chpts time chpts

BQP - - 11.12 17169 1204.8985 10565 - -
BILS - - 44.61 61552 871.8084 19229 2810.0140 3836

BEILS - - 362.1494 167162 1480.6864 10301 3092.1438 1637
EQKP{0,1} 23.48 667740 44.09 426255 745.7987 60789 2494.7767 2494

EQKP{0,1,2} 83.98 1803982 99.70 932035 481.4490 63177 2256.9557 2273
QLSP 136.34 962400 166.16 962400 754.0785 438394 2432.9850 8631

Table 1: A comparison of default CP Optimizer and the three filtering algorithms.
Bold numbers indicate the best approach for a given problem set. The symbol ‘-’
means that no problem instances were solved to optimality within 3600 seconds.
The superscripts indicate the percentage of instances solved to optimality within
3600 seconds. If no superscript is indicated, all of the instances are solved.

CPO+b BOX+b ABC+b QCP+b

Problem time chpts time chpts time chpts time chpts

BQP - - 8.28 12611 1099.8292 12575 3595.853 1069
BILS - - 0.06 225 5.21 228 314.16 221

BEILS - - 0.47 426 213.47 394 1713.8982 360
EQKP{0,1} 16.40 247896 24.84 193269 578.7490 72134 1868.7157 2550

EQKP{0,1,2} 50.04 521037 46.77 269937 407.5990 39076 2304.0160 2365
QLSP 20.63 347665 31.47 347665 602.7790 265252 2249.5750 8516

Table 2: A comparison of default CP Optimizer and the three filtering algorithms
with the branching rules. All notations are the same as in Table 1.

6.3 Results of Experiment 2

In this section, we compare our best CP results (using the BOX filtering with
the branching rules) with the best known exact approaches. From Table 3, it
is observed that our new CP approach significantly outperforms the general
MINLP solver BARON and it is competitive with state-of-the-art MIP solver
CPLEX, running at the same order of magnitude as CPLEX for BQPs and BILS
problems. While our CP approach is one order of magnitude slower than CPLEX
for EQKPs, it is almost two orders of magnitude faster for BEILS problems and it
is significantly better for QLSPs. The reason that CPLEX performs particularly
poorly on QLSPs is that the modeling of the disjunctive relationship among the
jobs involve big-M constraints, which result in weak dual bounds. As future work,
we would like to apply our CP approach to even more complicated scheduling
problems, where quadratic component is only one of many components.

The SDP approach, while being the state-of-the-art for the BQPs, is limited
to problems with binary domains. Similarly, DEBS cannot be applied to all the
problem classes due to its specialized nature. In contrast, BARON is the most

CP for Strictly Convex IQCPs 15

general solver tested here (along with CPO) and these results on strictly convex
IQCPs do not reflect its more general problem solving power [15].

CPO BOX+b CPLEX BARON DEBS SDP

Problem time time time time time time

BQP - 8.28 37.06 38.03 0.24 0.69
BILS - 0.06 0.02 2715.0426 0.01 N/A

BEILS - 0.47 14.79 3248.2516 N/A N/A
EQKP{0,1} 23.48 24.84 4.49 6.23 0.24 114.01

EQKP{0,1,2} 83.98 46.77 4.27 429.6293 0.34 N/A
QLSP 136.34 31.47 1588.1565 1855.0250 N/A N/A

Table 3: A comparison of default CP Optimizer and our best setting: BOX+b.
All notations are the same as in Table 1. The additional symbol “N/A” indicates
that the problem cannot be solved with the approach.

7 Conclusion

We propose a CP-based approach to solve strictly convex IQCPs via a novel
ellipsoid constraint with three different filtering algorithms and variable/value
ordering heuristics. The constraint and branching heuristics are based on the
geometry of the strictly convex quadratic function. We experiment with a variety
of problems and show significant improvement over the default CP Optimizer
and competitive results to general state-of-the-art solvers CPLEX and BARON.

For future work, it is interesting to experiment with our filtering algorithms
on other problem types. Although ABC and QCP perform worse than BOX for
the problem types tested here, it is possible that ABC and QCP can perform
better for problems where variable fixings do not take place frequently. For the
same reason it is also interesting to implement the filtering algorithms in a MIP-
based solver such as SCIP [37] where branching is typically done by tightening
variable bounds instead of fixing variables. In general, our technique can be
integrated with other solvers provided they represent bounds on variables and
have an“inference loop”.

More broadly, we propose that it may be possible to develop CP as a basis
for MINLP. MINLPs are challenging optimization problems that arise in many
industrial applications. As CP is not dependent on a strong linear relaxation to
bound the search, it may be valuable to study inferences that can be made for
common non-linear constraints as we have done here. We hope that this paper
might serve as a step in this direction.

8 Acknowledgement

We would like to thank Nick Sahinidis for the BARON license and Felipe Serrano
and Benjamin Müller for valuable discussions. This research has been supported
by the Natural Sciences and Engineering Research Council of Canada and the
University of Toronto School of Graduate Studies Doctoral Completion Award.

16 Wen-Yang Ku and J. Christopher Beck

References

1. van Emde-Boas, P.: Another NP-complete partition problem and the complexity
of computing short vectors in a lattice. Mathematisch Instituut, Amsterdam, The
Netherlands (1981)

2. Agrell, E., Eriksson, T., Vardy, A., Zeger, K.: Closest point search in lattices.
Information Theory, IEEE Transactions on 48(8) (2002) 2201–2214

3. Chang, X.W., Golub, G.H.: Solving ellipsoid-constrained integer least squares
problems. SIAM Journal on Matrix Analysis and Applications 31(3) (2009) 1071–
1089

4. Teunissen, P.J., Kleusberg, A., Teunissen, P.: GPS for Geodesy. Volume 2. Springer
Berlin (1998)

5. Kuusinen, J.M., Sorsa, J., Siikonen, M.L.: The elevator trip origin-destination
matrix estimation problem. Transportation Science 49(3) (2014) 559–576

6. Pesant, G., Régin, J.C.: Spread: A balancing constraint based on statistics. In:
Principles and Practice of Constraint Programming-CP 2005. Springer (2005)
460–474

7. Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Con-
straints 15(3) (2010) 404–429

8. Lebbah, Y., Michel, C., Rueher, M.: A rigorous global filtering algorithm for
quadratic constraints. Constraints 10(1) (2005) 47–65

9. Ku, W.Y., Beck, J.C.: Combining discrete ellipsoid-based search and branch-and-
cut for binary quadratic programming problems. In: Integration of AI and OR
Techniques in Constraint Programming. Springer (2014) 334–350

10. Chang, X.W., Han, Q.: Solving box-constrained integer least squares problems.
Wireless Communications, IEEE Transactions on 7(1) (2008) 277–287

11. Ku, W.Y., Beck, J.C.: Combining discrete ellipsoid-based search and branch-and-
cut for integer least squares problems. Submitted to IEEE Transactions on Wireless
Communications (2014)

12. Ku, W.Y., Beck, J.C.: Combining constraint propagation and discrete ellipsoid-
based search to solve the exact quadratic knapsack problem. In: Integration of AI
and OR Techniques in Constraint Programming. Springer (2015) 231–239

13. Golub, G.H., Van Loan, C.F.: Matrix computations. Volume 3. JHU Press (2012)

14. Sahinidis, N.V.: BARON 14.3.1: Global Optimization of Mixed-Integer Nonlinear
Programs, User’s Manual. (2014)

15. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global
optimization. Mathematical Programming 103 (2005) 225–249

16. Misener, R., Floudas, C.A.: ANTIGONE: Algorithms for coNTinuous / Inte-
ger Global Optimization of Nonlinear Equations. Journal of Global Optimization
(2014) DOI: 10.1007/s10898-014-0166-2.

17. Bussieck, M.R., Vigerske, S.: MINLP solver software. Wiley Encyclopedia of
Operations Research and Management Science, Wiley, Chichester (2010)

18. Krislock, N., Malick, J., Roupin, F.: Improved semidefinite bounding procedure
for solving max-cut problems to optimality. Mathematical Programming (2012)
1–26

19. Krislock, N., Malick, J., Roupin, F.: BiqCrunch solver. http://lipn.univ-
paris13.fr/BiqCrunch/download (Retrieved: 04/12/2016)

20. Borno, M.A.: Reduction in solving some integer least squares problems. arXiv
preprint arXiv:1101.0382 (2011)

CP for Strictly Convex IQCPs 17

21. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical programming 66(1) (1994) 181–
199

22. Dechter, R.: Constraint processing. Morgan Kaufmann (2003)
23. Gleixner, A.M.: Exact and fast algorithms for mixed-integer nonlinear program-

ming. PhD thesis, Technische Universität Berlin (2015)
24. Nesterov, Y., Nemirovskii, A., Ye, Y.: Interior-point polynomial algorithms in

convex programming. Volume 13. SIAM (1994)
25. Bonami, P., Tramontani, A.: Advances in CPLEX for mixed integer nonlinear

optimization. Presented at ISMP 2015, Pittsburgh, PA (2015)
26. Lewis, M., Alidaee, B., Kochenberger, G.: Using xqx to model and solve the

uncapacitated task allocation problem. Operations research letters 33(2) (2005)
176–182

27. FlNKE, G., Burkard, R.E., Rendl, F.: Quadratic assignment problems. Surveys in
combinatorial optimization 132 (2011) 61–82

28. Carter, M.W.: The indefinite zero-one quadratic problem. Discrete Applied Math-
ematics 7(1) (1984) 23–44

29. Létocart, L., Plateau, M.C., Plateau, G.: An efficient hybrid heuristic method
for the 0-1 exact k-item quadratic knapsack problem. Pesquisa Operacional 34(1)
(2014) 49–72

30. Mart́ı, R., Gallego, M., Duarte, A.: A branch and bound algorithm for the maxi-
mum diversity problem. European Journal of Operational Research 200(1) (2010)
36–44

31. Caprara, A., Pisinger, D., Toth, P.: Exact solution of the quadratic knapsack
problem. INFORMS Journal on Computing 11(2) (1999) 125–137

32. Caprara, A., Kellerer, H., Pferschy, U., Pisinger, D.: Approximation algorithms for
knapsack problems with cardinality constraints. European Journal of Operational
Research 123(2) (2000) 333–345

33. Turner, S., Romero, D., Zhang, P., Amon, C., Chan, T.: A new mathematical
programming approach to optimize wind farm layouts. Renewable Energy 63
(2014) 674–680

34. Zhang, P.Y., Romero, D.A., Beck, J.C., Amon, C.H.: Solving wind farm layout
optimization with mixed integer programs and constraint programs. EURO Journal
on Computational Optimization 2(3) (2014) 195–219

35. Damen, M.O., El Gamal, H., Caire, G.: On maximum-likelihood detection and
the search for the closest lattice point. Information Theory, IEEE Transactions on
49(10) (2003) 2389–2402

36. Schaller, J.: Single machine scheduling with early and quadratic tardy penalties.
Computers & Industrial Engineering 46(3) (2004) 511–532

37. Achterberg, T.: SCIP: solving constraint integer programs. Mathematical Pro-
gramming Computation 1(1) (2009) 1–41

	Constraint Programming for Strictly Convex Integer Quadratically-Constrained Problems

