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ABSTRACT
Recently, land has been exploited extensively for onshore

wind farms and turbines are frequently located in proximity
to human dwellings, natural habitats, and infrastructure. This
proximity has made land use constraints and noise generation
and propagation matters of increasing concern for all stakehold-
ers. Hence, wind farm layout optimization approaches should
be able to consider and address these concerns. In this study,
we perform a constrained multi-objective wind farm layout op-
timization considering energy and noise as objective functions,
and considering land use constraints arising from landowner
participation, environmental setbacks and proximity to existing
infrastructure. The optimization problem is solved with the
NSGA-II algorithm, a multi-objective, continuous variable
Genetic Algorithm. A novel hybrid constraint handling tool that
uses penalty functions together with Constraint Programming
algorithms is introduced. This constraint handling tool performs

∗Address all correspondence to this author.

a combination of local and global searches to find feasible
solutions. After verifying the performance of the proposed
constraint handling approach with a suite of test functions, it is
used together with NSGA-II to optimize a set of wind farm layout
optimization test cases with different number of turbines and
under different levels of land availability (constraint severity).
The optimization results illustrate the potential of the new
constraint handling approach to outperform existing constraint
handling approaches, leading to better solutions with fewer
evaluations of the objective functions and constraints.

Keywords: Wind farm layout, multi-objective optimization,
Constraint Programming, penalty functions.

INTRODUCTION
Installed capacity for generating electricity from wind

has seen a significant increase during the past decade [1–3].
In contrast to these growing trends, wind energy still faces
resistance for being widely used onshore, due to health and
environmental concerns. Although it is not proven that the
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noise production of turbines can have negative health impact, a
number of jurisdictions have established regulations that limit
noise emissions [4–6].

Wind farm design can be an iterative, lengthy process, in
which designers have to check for compliance with land use
constraints and environmental restrictions. Traditionally wind
farm designers and researchers have considered energy or profit
as the objective functions to be maximized [7, 8], while some
added other constraints such as land use, set backs or noise
limits in their optimization model [9–14].

Among optimization methods, stochastic meta-heuristics
such as GA [15] and Particle Swarm Optimization (PSO) [16]
are the most common approaches for the wind farm layout
optimization problem [7, 8, 17, 18]. In addition, deterministic
heuristics such as the Extended Pattern Search (EPS) approach
of Du Pont and Cagan [19] are also used. Donovan [20, 21]
and Fagerfjäll [9] introduced an alternative approach which uses
mixed-integer programming (MIP) and solves the WFLO prob-
lem by the traditional branch-and-bound method. Although MIP
solvers are widely available in operation research software pack-
ages, they all have limitations solving non-linear, non-convex
problems such as WFLO. Thus, Donovan and Fagerfjäll made
some approximations in their wake models and simplified the
problem at the expense of accuracy in the solutions. To address
this inaccuracy, Archer et al. [22] improved the simplified wake
model by introducing a wind interference coefficient, while
Turner et al. [23] suggested more accurate linear and quadratic
wake model that can be solved by MIP solvers. The accuracy
problem was resolved by Zhang et al. [24], who proposed
the first Constraint Programming (CP) and MIP models that
incorporated the non-linearity of the problem. Despite these
advances in the solution of the WFLO with mathematical pro-
gramming models, all of them use a discretized domain to solve
the problem, a feature that can lead to suboptimal solutions.
Moreover, these state-of-the-art MIP models [23, 24] still suffer
limitations on problem size and turbine density, e.g., typically
discretizing the wind farm into only 100−400 potential turbine
locations.

Using stochastic meta-heuristics for constrained WFLO
problem requires developing a constraint handling approach
to drive the search toward high-quality, feasible solutions.
Penalty functions are perhaps the most widely used constraint
handling approaches with the evolutionary algorithms due to
their simplicity of implementation, general applicability, and
strong theoretical basis [25]. The penalty function approaches
consist of recasting the problem as an unconstrained one by
incorporating a function of the constraint violations as a term in
the objective function. Hence, penalty functions are generally
applicable to constrained optimization problems, regardless of
the underlying method used to solve the resulting unconstrained
problem. The main problem with the penalty functions is that
their setup parameters may vary from problem to problem.

To address this issue, Debchoudhury et al. [26] proposed a
modified penalty function, free from scaling parameters that
finds the penalty terms based the constraint violation and the
fitness function of the infeasible solutions. Datta et al. [27]
introduced another penalty function approach, which is able
to further improve the best solutions of by decreasing the
level of constraint violation using a gradient free pattern search
method. Montemurro et al. [28] proposed the automatic dynamic
penalization method in which all the information needed for
tuning the penalty parameters is extracted from the population
members of the current generation. In addition, there are some
other studies that choose the parameters of the penalty functions
adaptively [29–31]. These penalty function approaches have
performed well on the test functions. However, their main focus
is to make the penalty functions independent of any external
parameters. In this process, they may improve the local search
of the penalty functions [27]; however, none of them introduces
a strong local search that can be combined with the penalty
functions. Here, we shall use the penalty approach; however,
we improve its performance in constrained multi-objective
optimization by hybridizing it with a powerful local search tool
that complements the global search.

In this study, a computational approach is proposed for
constrained multi-objective, continuous formulation of the
WFLO problem. This approach addresses the growing health
and environmental concerns of wind farms by not only maxi-
mizing energy generation but also minimizing noise production
and avoiding natural habitats and human dwellings. To achieve
this goal, the unconstrained multi-objective WFLO problem ad-
dressed by Kwong et al. [32, 33] is extended to include land use
constraints. The resulting optimization problem is solved with
NSGA-II [34] and without linearizing simplifications to retain
accuracy. Since a GA is generally not able to handle constraints
by its nature, penalty functions are used as the first constraint
handling approach. Then, a new constraint handling approach is
introduced, verified and applied to the WFLO problem. In the
proposed approach, a Constraint Programming (CP) model is
hybridized with penalty functions with the purpose of improving
the intensification (i.e., local search) of penalty functions and
avoiding the negative effects of pure diversification (i.e., global
search).

WIND FARM MODELLING
Wake Modelling

An analytical closed-form wake model, suggested by Jensen
[35], is used to evaluate the aerodynamic interactions between
turbines. Further details on the calculation process of this model
can be found in previous work [19,36, 37]. Based on this model,
an effective wind speed can be calculated from the sum of ki-
netic energy deficits for turbines under the influence of multiple
wakes. The effective speed of a turbine inside n wake regions is
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expressed as

u = u0

[
1−

√
n

∑
i=1

(
1− ui

uo

)2
]
. (1)

Without loss of generality, the present work follows previous
work [19, 36, 37] and uses a simplified expression for the power
output of a turbine, in which power is a simple cubic function
of the local effective speed at hub height. The cut-in and cut-off
speeds are considered to be 4 m/s and 25 m/s respectively. The
rated speed is 15 m/s, for which a power of 1.5 MW is generated.
Thus, the annual energy production (AEP), which is an expected
value of a random variable, because it is based on the probability
distribution of wind speeds and directions, is calculated as

AEP = 8766
k

∑
i=1

∑
d∈D

1
3

u3
id pd , (2)

where uid is the effective wind speed at turbine i at hub height
for wind state d, i is an index over the number of turbines k,
d ∈ D is the set of all possible wind states (i.e., the set of all
possible wind speeds and directions), pd is the probability of
wind being at state d, and 8766 is the number of hours in a year.

Noise Modelling
In this work, locations where the sound level has to be mea-

sured or calculated are referred to as noise receptors. In wind
farm layout design, all residences located within a wind farm or
in its neighbourhood are considered to be noise receptors. Ac-
cording to the ISO-9613-2 standard [38], the equivalent contin-
uous downwind octave-band sound pressure level (SPL) is cal-
culated at each noise receptor for all point sources and eight oc-
tave bands with nominal mid-band frequencies from 63 Hz to 8
kHz [38], as

L f = LW +Dc−A, (3)

where LW is the octave-band sound power emitted by the source,
Dc is the directivity correction for sources that are not omni-
directional, A is the octave-band attenuation, and f is a subscript
indicating that this quantity is calculated for each octave-band
frequency.

The sound pressure levels in Eq. 3 are converted to an effec-
tive SPL. Several octave-band weightings are available for this
conversion; however, A-weighted sound pressure levels are cus-
tomarily used in wind farm layout design and optimization [6].
The equivalent continuous A-weighted downwind sound pres-
sure level at specific location can be calculated from summation
of contributions of each sound source at each octave band,

Lavg = 10log

(
ns

∑
i=1

(
8

∑
j=1

100.1(L f (i, j)+A f ( j))

))
, (4)

where ns is the number of point sound sources, j is the index
representing one of the eight standard octave-band mid-band

frequencies, and the A f ( j) are the standard A-weighting coeffi-
cients.

The attenuation term (A) in Eq. 3 is the sum of different
attenuation effects due to geometrical divergence, atmospheric
absorption, ground effects, sound barriers, and miscellaneous
effects. In this study, it is assumed that the attenuation caused by
sound barriers and miscellaneous effects are negligible. Further
details of the calculation procedure are available in the ISO
9613-2 document [38].

Constraint Modelling
In this work, we consider two types of constraints: proximity

constraints and regulatory (land-use) constraints. The proximity
constraint states that the distance between each pair of turbines
must be at least five times their rotor diameter to avoid the strong
turbulence and vibration effects. The proximity constraint is han-
dled by calculating the Euclidean distance of turbines from each
other in Cartesian coordinates. Thus, turbine i with coordinates
(xti ,yti) is feasible if its distances from each of the other turbines
is greater than five times its diameter,√

(xti − xt j)
2 +(yti − yt j)

2 > 5D, ∀ j (5)

where D is the diameter of turbine i.
If we assume the proximity constraint as the first constraint,

g1 is the first constraint function and shows the amount of prox-
imity constraint violation. This function can be defined as

g1 =
nprox−1

∑
i=1

nprox

∑
j=i+1

(
5D−

√(
xti − xt j

)2
+
(
yti − yt j

)2
)
, (6)

where nprox is the number of turbines, which violate the prox-
imity constraint. Also, {(xti ,yti),(xt j ,yt j)} are the coordinates of
each pair of turbines that violate the proximity constraint.

The regulatory constraints state that the turbines should not
be located inside the non-feasible areas of the domain, as defined
later in this section. To mathematically define the regulatory con-
straints, we assume that all the non-feasible areas of the domain
can be modelled as convex polygons.

In general, there are several well-known approaches in the
literature to determine if a point is inside a polygon [39–41];
however, they are not convenient for this application because
they include many conditionals and/or inverse trigonometric
functions. In this study, we used an approach based the area of
the non-feasible polygon. In this approach, all the non-feasible
polygons are considered to be convex and the non-convex poly-
gons are divided into multiple convex polygons. The main idea
is to draw lines from the location of turbine to the vertices of
the polygon, such that each adjacent pair of vertices creates a
triangle with the location of turbine. The summation of the ar-
eas of these triangles is compared to the area of the polygon and
if they are the same, the turbine is inside the non-feasible poly-
gon. Thus, turbine i with coordinates (xti ,yti) is feasible if for
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any non-feasible polygon called Pk,

Aik > APk , ∀k (7)

where APk and Ai are the area of the non-feasible polygon and the
summation of the areas of the aforementioned triangles, respec-
tively. APk and Ai are calculated in Eq. 8 and Eq. 9 using the
so-called shoelace formula [42],

APk =
1
2

[
n

∑
j=1
|(xv j yv j+1 − yv j xv j+1)|

]

+
1
2
|(xvnyv1 − yvnxv1)|

(8)

Aik =
1
2

[
n

∑
j=1
|xti(yv j − yv j+1)+ xv j(yv j+1 − yti)+ xv j+1(yti − yv j)|

]

+
1
2
|xti(yvn − yv1)+ xvn(yv1 − yti)+ xv1(yti − yvn)|

(9)

where j ∈ {1,2, · · · ,n}, n is the number of non-feasible poly-
gon’s vertices and (xv j ,yv j) are the coordinates of each vertex.

In a similar fashion to the proximity constraint, if we assume
the regulatory constraint as the second constraint, g2 shows the
amount of regulatory constraint violation, defined as the summa-
tion of the minimum distances of the infeasible turbines to the
sides of the non-feasible areas in which they are located. Hence,
for a polygon with n sides the distance of turbine i from side j
can be defined as the height of the triangle formed by the tur-
bine’s location point and two vertices of side j. We calculate this
height by dividing the triangle’s area by the base of the triangle,
i.e., side j,

di, j =
|xti(yv j − yv j+1)+ xv j(yv j+1 − yti)+ xv j+1(yti − yv j)|√

(xv j − xv j+1)
2 +(yv j − yv j+1)

2
(10)

where j ∈ {1,2, · · · ,n}. Finally, g2 can be defined as,

g2 =
nreg

∑
i=1

min{di,1,di,2, · · · ,di,n} (11)

where nreg is the number of turbines that violate the regulatory
constraint.
OPTIMIZATION MODEL

For this non-linear, non-convex multi-objective optimiza-
tion, no solution can maximize the energy generation and mini-
mize noise production simultaneously. In this case, there exist a
set of solutions for which neither of the objective functions can
improve without degrading the other. These optimal solutions
are also known as the Pareto optimal solutions and are consid-
ered equally desirable.

The problem formulation is carried out using the following
notation. We define T as a set of pairs representing the coordi-
nates of the turbines,i.e.,

T= {(xt1 ,yt1),(xt2 ,yt2), · · · ,(xtnT
,ytnT

)}, (12)

where nT is the number of turbines. In a similar fashion, R is
defined to show the coordinates of the noise receptors as

R= {(xr1 ,yr1),(xr2 ,yr2), · · · ,(xrnR
,yrnR

)}, (13)

where nR is the number of noise receptors. Note that T is a set of
pairs of decision variables while R is a set of pairs of parameters.

With the purpose of imposing the regulatory constraints, the
whole wind farm terrain is divided into np convex polygons,
which are the members of P,

P= {P1,P2, · · · ,Pnp}, (14)

where each Pi is a set of pairs including the coordinates of all the
vertices of polygon i in counter clockwise order,

Pi = {(xv1 ,yv1),(xv2 ,yv2) · · · ,(xvn ,yvn)}. (15)

From the above mentioned polygons, some of them are identified
as non-feasible due to the regulatory constraints. These polygons
are all included in a set called S, S⊂ P, defined as

S= {Pi|Pi is non-feasible}. (16)

Now, we can define the WFLO problem as,

minimize
T

{
−AEP(T),max

R
(SPL(T,R))

}
, (17)

subject to, √
(xti − xt j)

2 +(yti − yt j)
2 ≥ 5D, (18)

∀{(xti ,yti),(xt j ,yt j)} ⊂ T, i, j ∈ {1,2, · · · ,nT}, i 6= j, and

Aik −APk > 0, (19)

∀i ∈ {1,2, · · · ,nT}, ∀Pk ∈ S, where APk and Aik are as defined in
Eq. 8 and Eq. 9, respectively.

The objective functions of the problem can be defined as,

AEP(T) =
nT

∑
i=1

∑
d∈D

1
3

(
uid,∞

(
1−
√

∑
j∈Uid

(
1−

ui jd

uid,∞

)))3

pd ,

(20)
and

SPL(T,R) = 10log

(
nT

∑
i=1

8

∑
j=1

100.1
(

L(i, j)f (T,R)+A( j)
f

))
, (21)

where Uid is the set of turbines upstream of turbine i for wind
state d, uid,∞ is the undisturbed wind speed at turbine i for wind
state d, and ui jd is the wind speed at turbine i due to a single
wake caused by upstream turbine j for wind state d.

Multi-objective Genetic Algorithm
In this study, the NSGA-II algorithm [34] is implemented

to solve the multi-objective wind farm layout optimization. The
cross-over and mutation probabilities are considered to be 0.95
and 0.05 respectively, while npop (i.e., the population of each
generation) and ngen (i.e., the number of generations for which

4 Copyright c© 2015 by ASME



the GA is run) are selected based on computer experiments with
typical instances of the WFLO, as described in the next sections.
After evaluating the objective function values of the offspring
population, the amount of constraint violation is calculated for
each individual and passed to the constraint handling approach.
To evaluate whether the algorithm has converged, this work
implements the approach of Deb et al. [34], which determines
convergence by monitoring the change in crowding distances
across a certain number of generations. A test case is considered
to be converged if the variance of the crowding distances of rank
1 solutions is less than 0.005 over 100 generations. In addition, a
limit of 80,000 objective function evaluations has been imposed
as a termination criterion. These convergence and termination
criteria are uniformly applied when generating the results. The
readers are referred to [34] for more details on the NSGA-II
algorithm and its implementation.

Constraint Handling
In this section, two approaches that we used to handle the

constraints are discussed. First, we handled them using dynamic
penalty functions and second, a CP model is hybridized with dy-
namic penalty functions. In the following paragraphs these two
approaches are discussed in depth.

Penalty Functions Approach Dynamic penalty func-
tions [25] are implemented to penalize the objective functions of
the infeasible layouts. The dynamic penalty coefficients increase
as the optimization progresses through generations. Thus, the
penalized objective functions are defined as,

AEPP(T) = AEP(T)+
nc

∑
i=1

(max(0,gi))
2
(

t
Cgen

)2

RAEP,i (22)

and

SPLP(T,R) = SPL(T,R)+
nc

∑
i=1

(max(0,gi))
2
(

t
Cgen

)2

RSPL,i,

(23)

where AEPP and SPLP are the penalized objective functions, nc
is the number of constraints, gi is the i-th constraint function,
RAEP,i is the penalty coefficient for constraint i and the energy
objective function, RSPL,i is the penalty coefficient for constraint
i and the noise objective function, t is the current generation num-
ber and Cgen is a constant providing a relative generation param-
eter, which will be defined later. The generation parameter is
squared according to the approach suggested in [43]. Since we
have two constraints, i.e., proximity and regulatory constraints,
nc is equal to 2.

Based on the experiments carried out in previous study [36],
the value of the penalty coefficients is set to 104, while two differ-
ent values are assigned to the Cgen parameter, namely Cgen = ngen
and Cgen = ngen/2. With these parameter choices, the effective
penalty coefficients are in the range 0− 104 and 0− 4× 104.
When appropriate, the solutions found by these two formulations

are merged together and the best solutions found overall are re-
ported.

Hybrid Constraint Programming Approach Before
introducing the hybrid Constraint Programming approach, it is
necessary to get an insight about the effects of the penalty func-
tion approach on the iteration-level behavior of GA. As soon as
an infeasible solution is penalized with penalty functions, the
chance for that solution to be chosen to participate in the re-
combination process decreases drastically. The GA is forced to
forget that solution and look for new feasible solutions in the
domain. This characteristic of the penalty functions is known
as exploration, global search, or diversification. For highly con-
strained problems, the probability of finding feasible solutions
is relatively low; thus, the penalty functions can result in find-
ing a small number of solutions (i.e., having empty slots in the
Pareto set) and premature convergence [25]. Although the dy-
namic penalty approach performs a combination of global and
local searches due to lower penalizations in the initial stages of
the optimization [44–46], in this study we use CP to reinforce the
local search behavior of the constraint handling approach.

The idea behind the CP model is to find feasible solutions
that are as close as possible to the corresponding infeasible solu-
tions. Since this model only searches the neighbourhood of the
infeasible solutions, it can be considered as exploitation, local
search or intensification. The advantage of repairing the infea-
sible solutions is that GA does not have to search for feasible
solutions with that small probability discussed above. However,
the drawback is that it prevents GA from exploring the feasible
area of the domain and keeps searching close to the infeasible so-
lutions. To avoid the drawbacks of either pure exploration or ex-
ploitation the hybrid approach, which uses the penalty functions
and the CP model together is introduced. An infeasible layout is
first passed to the CP model. This model strives to find a feasible
layout which is as close as possible to the infeasible layout. If the
CP model cannot find a feasible layout which is close enough to
the infeasible layout in a certain amount of time, the infeasible
layout will be penalized using dynamic penalty functions.

Based on the proposed approach, the CP model can be for-
mulated as,

minimize
nn f

∑
i=1

((
xti − x∗ti

)2
+
(
yti − y∗ti

)2
)
, (24)

subject to, √
(xt j − x∗ti)

2 +(yt j − y∗ti)
2 ≥ 5D, (25)

∀ j ∈ {1,2, · · · ,nT}, j 6= i, and

A∗ik −APk > 0 ∀Pk ∈ S, (26)

where nn f is the number of infeasible turbines in an infeasible
layout (i.e., the number of turbines that violate either the prox-
imity or the regulatory constraint in an infeasible layout) and
(x∗ti ,y

∗
ti) are the corrected coordinates of the ith infeasible turbine.
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The CP code is developed using IBM ILOG CP Optimizer [47].
Since it is more common to use integer variables in a CP solver,
domains of the coordinate variables are discretized for the sole
purpose of this optimization sub-problem.

This model has three different parameters that can be tuned.
The first parameter is the discretization resolution. If we make
the discretization finer, the hybrid approach provides a better
resolution. However, it is clear that the computational cost will
increase. The second parameter is the time limit in which the
CP model has to correct an infeasible layout. Longer time limits
for the CP model result in better solutions; however, an increase
in the overall run time. The last parameter is the maximum
objective function value that a solution of the CP model can have
in order to be accepted as a close enough feasible layout to the
infeasible layout. In a similar way, decreasing this value results
in longer run times and a decrease in the number of infeasible
layouts that are corrected with the CP model in each generation
of the evolutionary algorithm.

Based on a set of experiments with the hybrid CP and static
penalty function model, the wind farm terrain is discretized
in 20 meters intervals. These experiments show that a finer
discretization increases the computational cost, while the opti-
mization results will not be changed significantly. The time limit
per call for the CP model is 10 seconds. The experiments on this
parameter show that time limit does not have an effect on the
number of solutions that are corrected by the hybrid approach.
However, it is shown that the important parameter in this case is
the objective function of the CP model. This objective function
is defined as the sum of the squared Euclidean distances of the
corrected feasible turbines from their corresponding infeasible
turbines. The maximum objective function value (i.e., the
maximum value of Eq. 24) for which the solution found by
the CP solver is accepted is set to 10,000 m2. Considering the
fact that this value is the sum of squared values, it is assumed
as a reasonable value in wind farm with characteristics that are
explained in the following section.

TEST CASES
In this study, the hybrid CP approach is first verified with

sample test functions and then applied to the WFLO problem.

Verification Test Cases
The novel hybrid constraint handling algorithm is verified

with a sample constrained multi-objective optimization problem
that is previously used by Deb et al. [34] for testing constraint
handling approaches with NSGA-II. This problem is called SRN
and is formulated as,

minimize
X

f1(X) = (x1−2)2 +(x2−1)2 +2,

f2(X) = 9x1− (x2−1)2,

subject to g1(x) = x2
1 + x2

2 ≤ 225, g2(x) = x1−3x2 ≤−10,

where X = {x1,x2} and x1,x2 ∈ [−20,20].
We followed Deb et al. [34] to set the NSGA-II parameters

for solving this problem. Each test case has a population of 100
and is run for 500 generations. Also, the test case is considered
to be converged if the variance of the crowding distances of
rank 1 solutions is less than 0.005 over 100 generations. Both
constraint handling approaches are tested on these problems. In
addition, different setups of the hybrid approach are tested on
this problem to investigate the effect of the parameters of the
hybrid approach on the results. To avoid the potential negative
impacts of randomness, 20 different random test cases with two
different penalty coefficient are solved for the SRN problem and
are compared using box plots.

WFLO Test Cases
As described in [36], random wind farm test cases are gener-

ated with pre-defined feasibility percentage and uniformity. Fol-
lowing the standard test cases used in the literature, a 3 km ×
3 km square is considered as the wind farm domain. The feasi-
bility of wind farm domain is defined to specify the percentage
area available in the farm for placing the turbines. In addition, a
uniformity parameter is defined to characterize the spatial distri-
bution of the non-feasible areas in the domain. To generate a test
case, the wind farm domain is divided into 225 random convex
polygons with areas of the same order of magnitude.

Based on industrial wind farm design experience, cases with
70%, 80%, and 90% feasibility percentages are considered and
the uniformity parameter is kept constant for all the test cases.
Figure 1 shows a WFLO test case with 80% feasible area. The
noise receptors are shown in asterisks. The shaded polygons are
the members of S, which are chosen randomly and their total area
satisfies the pre-defined domain feasibility. A noise receptor is
located randomly inside each non-feasible polygon. As a result,
the more constrained the domain becomes, the more noise recep-
tors exist in it. For each feasibility percentage, five random test
cases are created in order to avoid the effects of randomness in
GA. Then, the optimization is carried out for each test case with
5, 10, and 15 turbines. The hub height and the rotor diameter of
the turbines used in this study are 80 m and 77 m respectively.

In order to determine the population size and the number
of generations for the GA, a set of computational experiments
is carried out on sample test cases with the land availability per-
centages mentioned above and penalty functions as the constraint
handling approach. Population sizes of 100, 150, and 200 indi-
viduals are tested and the corresponding number of generations is
set to keep the number of objective function evaluations constant.
For 70% of land availability, a population size of 200 results in
the best solutions, no matter how many turbines are included in
the wind farm. Similarly, for 80% and 90% of land availabilities
the population sizes of 150 and 100 perform the best, respec-
tively.

The wind regime is as defined by Kusiak et al. [37], with 24
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FIGURE 1. SAMPLE WIND FARM DOMAIN.

wind directions in 15◦ intervals. The wind speed ranges from 4
m/s to 25 m/s in intervals of 0.5 m/s. For each direction-speed
bin a probability is assigned based on the industrial data and they
are used to calculate AEP in Eq. 20.

RESULTS AND DISCUSSION
In this section, the verification results for the test problem

are first discussed and then the application of the above men-
tioned constraint handling approaches in the WFLO problem is
investigated.

Verification of Constraint Handling Approaches
In this section, we verify the functionality of the hybrid

approach and find the setup for which the hybrid approach
performs better than the dynamic penalty approach and other
hybrid setups. The important characteristic of the hybrid
approach is the percentage of infeasible solutions that are
corrected by the CP model. Thus, we tune the parameters of
the hybrid approach in such a way that different percentages of
using the CP model can be compared. We use two metrics for
this comparison. The first metric is the non-dominated hyper
volume (NDHV). This metric shows how close the Pareto set is
to the utopia point (i.e., the infimum of the objective functions
vector) and the closer the Pareto set is to the utopia point the
smaller the NDHV is. However, this metric is not sufficient for
comparing the optimization results especially at the early stages
of the optimization, where it is very likely that a Pareto set has
a smaller value of NDHV due to incomplete exploration of the
objective space. The second comparison metric is the maximum
crowding distance in the Pareto set which provides a measure
how well the objective space is explored by the optimization
algorithm. A small value for the maximum crowding distance
shows that the optimization algorithm has been successful in
having a uniform coverage over all the areas of the Pareto set.

The SRN problem is a bi-objective optimization with

FIGURE 2. CP PERCENTAGE WITH DIFFERENT OBJECTIVE
TARGETS FOR SRN PROBLEM.

non-linear objective functions, a linear, and a non-linear con-
straint, which can be solved analytically. As stated before, the
maximum acceptable objective function for the CP model affects
the number of infeasible solutions that are corrected by it. Thus,
we run test cases with different maximum acceptable objective
function values. For all these experiments the time limit of the
CP model is 10 seconds per call and the decision variable space
is discretized to 22500 available set of values for the variables
of the problem, (the same discretization as the WFLO problem).
For simplicity, we call the percentage of invocations to the CP
solver that successfully return a feasible solution, CP percentage.
Similarly, the maximum acceptable objective function value is
called objective target. The objective target shows the maximum
squared Euclidean distance of a corrected feasible solution
from its corresponding infeasible solution in the variable space.
Figure 2 shows the variation of CP percentage for different
objective targets for SRN problem. As the objective target of the
CP model decreases, it is forced to find feasible solutions closer
to the infeasible solutions within the same time limit. Thus, CP
percentage decreases with decreasing the objective target.

Figure 3 shows the comparison of the above mentioned
metrics for the dynamic penalty approach (CP percentage of
0%) and the hybrid approach with different CP percentages
and for two different number of generations. For each CP
percentage, the problem is solved with 20 random test cases and
two different penalty coefficients for each random test case. To
compare the constraint handling approaches and the effect of
different CP percentages with the hybrid approach, the Pareto
set found by them at the 4th and 10th generation are evaluated.
Based on our experiments, after the 10th generation, there is no
further difference between the performance of the two constraint
handling approaches, except for those test cases using the hybrid
approach that were lagging. The comparison of Fig. 3(a) to Fig.
3(b) and Fig.3(c) to Fig. 3(d) shows that the median NDHV is
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(a) NDHV AFTER 4 GENERATIONS. (b) NDHV AFTER 10 GENERATIONS.

(c) CROWDING DISTANCE AFTER 4 GENERATIONS. (d) CROWDING DISTANCE AFTER 10 GENERATIONS.

FIGURE 3. NON-DOMINATED HYPER VOLUME AND MAXIMUM CROWDING DISTANCE WITH DIFFERENT CONSTRAINT HAN-
DLING APPROACHES FOR THE SRN PROBLEM AFTER 4 AND 10 GENERATIONS.

smaller for the hybrid approach with different CP percentages
after only 4 generations, so we can say that the hybrid approach
converges faster. This trend can also be observed after 10
generations. In addition, the range of NDHV and maximum
crowding distance for the hybrid approach across multiple runs
is smaller compared to that of the penalty approach (smaller box
plots and length of whiskers), which indicates less variability
of results from run to run. Among different CP percentages
for which the hybrid approach is tested, 59.3% and 91.2%
have smaller NDHV and maximum crowding distance. The
comparison of these two CP percentages shows that the 59.3%
test cases perform better due to lower maximum crowding
distance and NDHV. The 91.2% test cases are not able to explore
the objective space to the extent of the 59.3% test cases due to
extreme local search, thus having a higher maximum crowding
distance.

Constraint Handling Performance for WFLO Problem
The experiments for the WFLO problem are carried out

with one objective target for the CP model and hence relatively

the same CP percentage. The objective target used for these
experiments yields to extremely high CP percentages, a char-
acteristic that makes the local search of the hybrid constraint
handling approach much stronger than its global search. Further
experiments are in progress to investigate the effect of CP
percentage on the performance of the hybrid approach in this
constrained, multi-objective WFLO problem. However, there
are some valuable points with these results that can be discussed.

Table 1 shows the average number of infeasible layouts for
10 runs of each test case. It is shown that extreme use of the CP
model in the hybrid approach results in more infeasible layouts
compared to the pure global search by penalty functions. Each
time that an infeasible layout is corrected by the CP model, a
feasible solution that is very close to the infeasible solution is
created. Although this solution increases the chance to find an
optimal layout that could not be found by the global search, it
is likely that this corrected feasible solution leads to infeasible
solutions after the recombination process of the GA.

Figures 4, 5, and 6 compare the optimal Pareto sets found
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TABLE 1. CONSTRAINT HANDLING INFORMATION OF THE CONSTRAINT HANDLING APPROACHES FOR DIFFERENT NUMBER OF
TURBINES AND LAND AVAILABILITIES.

Number of
Turbines

Feasibility Penalty Approach Hybrid Approach
Average Infeasible Layouts CP % Average Infeasible Layouts CP %

5 70% 1536.2 0 4789.9 99.35
5 80% 356.9 0 1375.3 99.28
5 90% 73.3 0 246.3 97.32
10 70% 3996.6 0 5435.7 98.39
10 80% 1582.2 0 4857.6 98.34
10 90% 1631.0 0 3162.3 93.02
15 70% 4158.2 0 9658.4 92.67
15 80% 3488.6 0 4183.6 97.07
15 90% 2084.7 0 4159.3 94.49

TABLE 2. RUN-TIME AND CONVERGENCE OF THE CONSTRAINT HANDLING APPROACHES FOR DIFFERENT NUMBER OF TUR-
BINES AND LAND AVAILABILITIES.

Number of
Turbines

Feasibility Penalty Approach Hybrid Approach
Average Run-time Convergence Average Run-time Convergence

(hr) (out of 10) (hr) (out of 10)
5 70% 15.76 3/10 15.54 5/10
5 80% 15.11 9/10 16.39 7/10
5 90% 18.40 4/10 14.01 9/10
10 70% 69.44 0/10 82.85 2/10
10 80% 77.89 1/10 88.22 0/10
10 90% 84.84 4/10 78.47 4/10
15 70% 150.42 0/10 168.73 0/10
15 80% 153.01 0/10 178.04 1/10
15 90% 183.09 0/10 220.71 1/10

by the penalty and hybrid constraint handling approaches. It
should be noted that the x axis is reversed in all the above
mentioned figures, so that the utopia point is located in the
bottom left corner of each figure. The performance of the
constraint handling approaches are different for different test
cases. However, by comparing Figures 5(c) and 6(a) with Table
1, it can be claimed that the hybrid approach is performing better
(i.e., higher energy generation and lower noise production) than
the penalty approach due to its lower percentage of repaired
solutions compared to the other test cases. Thus, there should be
a certain CP percentage for which the hybrid approach performs
better than the penalty approach. For the other test cases the
hybrid approach is not as effective as it is expected, since its
constraint handling is mostly based on local search and the
hybrid approach loses its hybrid nature.

For all the test cases, the Pareto sets found by the two
constraint handling approaches are close to each other; however,
for the test case with 10 turbines and 80% of land availability
(Fig. 5(b)) the Pareto set found by the penalty approach is
significantly better than the Pareto set found by the hybrid
approach. Investigation of the optimal layouts found by the
two constraint handling approaches shows that the optimal
layouts found by the penalty approach have more turbines near
the borders of the domain, where there is no concentration of
non-feasible areas. However, the local search carried out by the

hybrid approach, corrects the infeasible layouts by keeping the
turbines close to the non-feasible areas and fails to explore the
borders of the wind farm terrain to find feasible/optimal layouts.

Finally, it is essential to discuss the run-time and con-
vergence of the constraint handling approaches. The average
run-time and the number of times that convergence is observed
based on the aforementioned convergence criterion during the 10
runs for each test case are provided in Table 2. As the constraint
severity increases, i.e., the number of turbines increases and the
land availability decreases, the CP model requires more time to
correct the infeasible solutions. Thus, the run-time of the hybrid
approach increases. However, this increase can be controlled by
decreasing the number of infeasible solutions that are corrected
by the CP model. In other words, reducing the CP percentage
may result in a smaller run-time difference between the two
constraint handling approaches. Generally, the hybrid approach
has a better convergence compared to the penalty approach.
However, it is important to note that this higher convergence rate
for the hybrid approach can be due to the high CP percentage.
The local search of the hybrid approach is stronger and as
mentioned before may prevent it from exploring the domain and
result in a premature convergence.
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(a) 70% FEASIBILITY.

(b) 80% FEASIBILITY.

(c) 90% FEASIBILITY.

FIGURE 4. COMPARISON OF CONSTRAINT HANDLING AP-
PROACHES FOR 5 TURBINES (X AXIS IS REVERSED).

(a) 70% FEASIBILITY.

(b) 80% FEASIBILITY.

(c) 90% FEASIBILITY.

FIGURE 5. COMPARISON OF CONSTRAINT HANDLING AP-
PROACHES FOR 10 TURBINES (X AXIS IS REVERSED).
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(a) 70% FEASIBILITY.

(b) 80% FEASIBILITY.

(c) 90% FEASIBILITY.

FIGURE 6. COMPARISON OF CONSTRAINT HANDLING AP-
PROACHES FOR 15 TURBINES (X AXIS IS REVERSED).

CONCLUSION
In this paper, the constrained multi-objective energy-noise

wind farm layout optimization is solved with a continuous vari-
able Genetic Algorithm, called NSGA-II. Primarily, dynamic
penalty functions are used to handle the constraints. Then, a
hybrid approach based on the combination of penalty functions
and a Constraint Programming model is introduced to improve
the objective function of the solutions (smaller objective func-
tions in case of minimization and larger otherwise).

The local search associated with the dynamic penalty
approach is confined to a smaller amount of penalization in
the initial stages of the optimization. Thus, it is important for
us to hybridize the penalty function approach with a powerful
local search. The Constraint Programming model is designed
for this purpose. This model tries to find the closest feasible
solutions to the infeasible solutions. However, the penalty
functions perform a global search by penalizing the objective
functions of the infeasible solutions. The hybridization of
the Constraint Programming model with the penalty function
approach creates a constraint handling approach that is able to
carry out a combination of local and global searches.

The results of the optimization with the test problems show
that the hybrid approach has the potential to perform better than
the penalty approach. However, its performance is dependent on
the number of the infeasible solutions that are corrected by the
Constraint Programming model. Our experiments for the WFLO
problem also show that there is a certain amount of infeasible
solution correction that will produce results with higher energy
generation and lower noise production compared to the penalty
function approach. In addition, a moderate use of both local and
global searches will have a computational cost, which is close to
that of the penalty function approach. It should not be neglected
that extreme use of the Constraint Programming model can
result in handling the constraints with pure local search. This
pure local search converges to suboptimal solutions because it
does not explore the optimization space comprehensively.

Future work will focus on documenting the impact of the
percentage of solutions that are corrected by the Constraint
Programming model on the results of the WFLO problem.
Furthermore, the effect of discretization on the optimization
results will be investigated. For this purpose, CP Optimizer [47]
can be substituted by other CP solvers such as SCIP [48] that
are capable of solving problems with continuous variables. In
addition, a more complete set of test problems with non-linear
objective functions and constraints can be solved to investigate
the effect of non-linearity on the performance of the hybrid
approach. WFLO problem can also be solved with more turbines
to explore the performance the hybrid approach on large scale
WFLO problems. Finally, the effect of the parameters of the
Constraint Programming model on the number of infeasible
solutions corrected by this model is an interesting area to explore.
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