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Abstract. We propose an extension to the discrete ellipsoid-based search
(DEBS) to solve the exact quadratic knapsack problem (EQKP), an im-
portant class of optimization problem with a number of practical ap-
plications. For the first time, our extension enables DEBS to solve con-
vex quadratically constrained problems with linear constraints. We show
that adding linear constraint propagation to DEBS results in an algo-
rithm that is able to outperform both the state-of-the-art MIP solver
CPLEX and a semi-definite programming approach by about one order
of magnitude on two variations of the EQKP.

1 Introduction

The exact quadratic knapsack problem (EQKP) [1] consists of selecting a subset
of elements such that the sum of the distances between the chosen elements is
maximized while also satisfying a knapsack constraint. The EQKP is an exten-
sion of the well studied maximum diversity problem [2], the quadratic knapsack
problem [3], and the exact linear knapsack problem [4], which arise in a wide
range of real world applications such as wind farm optimization [5,6] and task
allocation [7]. The EQKP consists of one quadratic objective function and two
linear constraints, i.e., one knapsack constraint and one cardinality constraint,
where all variables are binary. The EQKP was first studied by Létocart [1] who
proposed an efficient heuristic method for the problem.

For solving EQKPs exactly, the common generic approach in Operations Re-
search is the use of a commercial MIP solver such as CPLEX or Gurobi. These
solvers have been extended to reason about quadratic constraints [8] and they
are able to outperform several other exact approaches [9]. The other generic
approach is the semi-definite programming (SDP) based branch-and-bound al-
gorithm [10], which is often regarded as the state-of-the-art approach for solving
binary quadratic programming problems (BQP). EQKP is an extension of the
BQP and it can be solved with the SDP approach. However, the SDP approach
has not been evaluated on problems with the EQKP structure.

In this paper, we extend discrete ellipsoid-based search (DEBS) method to
solve the EQKP. DEBS is a specialized search used in the communications lit-
erature (e.g., see [11]) to solve integer least squares problems (ILS) based on
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the clever enumeration of integer points within the hyper-ellipsoid defining the
feasible space. We have previously shown that DEBS can be applied to the BQP
efficiently [12]. As EQKPs can be reformulated as ILS problems, we perform this
transformation and extend DEBS for solving convex quadratically constrained
problems with linear constraints. To our knowledge, this is the first time that
DEBS has been applied to problems with linear constraints so our extension
enables DEBS to solve a much broader class of problems, i.e., problems with a
quadratic objective function and any number of linear constraints. As an initial
test-bed, we use the EQKP to show that our extension achieves state-of-the-art
for solving the EQKP and a variation, outperforming both CPLEX and the SDP
based approach. Interestingly, the three exact approaches agree on problem dif-
ficulty: instances that take more time for the DEBS method to solve are also
more challenging for the other two approaches.

2 The Exact Quadratic Knapsack Problem

The EQKP problem is defined as follows:

max
x∈{0,1}

n−1∑
i=1

n∑
j=i+1

hijxixj , (1)

s.t.

n∑
i=1

xi = K,

n∑
i=1

aixi ≤ B,

where n ∈ Z , K ∈ Z, ai ∈ R+,∀i, B ∈ R+, hij ∈ R,∀i, j.
For the simplicity of explanation, we reformulate the EQKP in its minimiza-

tion form with matrix representation as follows:

min
x∈{0,1}

1

2
xTHx + fTx, s.t. cT1 x = K, cT2 x ≤ B, (2)

where H ∈ Rn×n is a symmetric semi-definite positive matrix, f ∈ Rn is a
vector equal to zeros, c1 ∈ Rn is a vector equal to ones, and c2 ∈ Rn is a vector
equal to ais. Note that H can always be made symmetric semi-definite positive
to ensure convexity when all variables are binary [9].

To solve the EQKP with the DEBS method, we need to transform the ob-
jective function into its equivalent integer least squares (ILS) form through the
relationship H = ATA and f = −yTA. Thus, the equivalent ILS problem can
be defined as follows:

min
x∈{0,1}

‖y −Ax‖22 , s.t. cT1 x = K, cT2 x ≤ B. (3)
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3 The DEBS Method

The DEBS method has been developed to address three types of the ILS prob-
lems: unconstrained, box-constrained, and ellipsoid-constrained [13,14,15]. To
the best of our knowledge, the DEBS method has not been extended to solve
ILS problems with general linear constraints.

The DEBS method consists of two phases: reduction and search. The reduc-
tion is a preprocessing step that transforms A to an upper triangular matrix R
with properties such that the search is more efficient [13]:

min
x∈Zn

‖y −Ax‖22 → min
z∈Zn

‖ȳ −Rz‖22 . (4)

Geometrically, the optimal solution is found by searching discretely inside the
ellipsoid defined by the objective function of the reduced ILS problem (right
hand side of Equation (4)). Suppose the optimal solution z∗ to the ILS problem

satisfies the bound ‖ȳ −Rz∗‖22 < β, where β is a constant. This expression
defines a hyper-ellipsoid with center R−1ȳ.

Reduction. The reduction phase of DEBS transforms A into an upper triangular
matrix R such that the diagonal entries are ordered in non-decreasing order:

|r11| ≤ |r22| ≤ . . . ≤ |rkk| ≤ . . . ≤ |rn−1,n−1| ≤ |rnn|.

It has been shown that the above order can greatly affect the efficiency of the
DEBS search by reducing the branching factor at the top of the search tree [13].

Transforming A to R can be achieved by finding an orthogonal matrix Q ∈

Rn×n and a permutation matrix P ∈ Zn×n such that QTAP =

[
R
0

]
, Q =[

Q1,Q2

]
. Therefore we have:

‖y −Ax‖22 =
∥∥∥QT

1 y −RP Tx
∥∥∥2
2

+
∥∥∥QT

2 y
∥∥∥2
2
.

Let ȳ = QT
1 y, z = P Tx, and c̄2 = c2P , the original EQKP (3) is then trans-

formed to the new reduced EQKP:

min
z∈{0,1}

‖ȳ −Rz‖22 , s.t. cT1 x = K, c̄T2 x ≤ B. (5)

Note that applying the permutation matrix P to the original problem changes
the order of the variable bounds and the coefficients of the linear constraints.
However, since the original lower and upper bounds on the variables are all zeros
and ones, and the coefficients of the cardinality constraint are all ones for the
EQKP, the new bounds and c1 remain unchanged after applying the permutation
matrix P . For problems with general variable bounds, i.e., l ≤ x ≤ u, the
reordering can be done with l̄ = P T l and ū = P Tu.

After the optimal solution z∗ to the new EQKP problem (5) is found, the
optimal solution, x∗, to the original EQKP problem (3) can be recovered with
the relationship x∗ = Pz∗.
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Search. The search is performed on the reduced problem (5). Among several
search strategies in the literature, the Schnorr & Euchner strategy is usually
considered the most efficient [16]. The search systematically enumerates all the
integer points in the bounded hyper-ellipsoid with specific variable and value
ordering heuristics. In addition, the hyper-ellipsoid is contracted during the enu-
meration process to further constrain the search space. The main ideas of the
search are as follows.

Suppose the optimal solution z∗ satisfies the bound ‖ȳ −Rz‖22 < β, or
equivalently

∑n
k=1(ȳk −

∑n
j=k rkjzj)

2 < β, where β is a constant which can
be obtained by substituting any feasible integer solution to equation (5). Let
zn
i = [zi, zi+1, . . . , zn]T . Define the so-far-unknown (apart from cn) and usually

non-integer variables:

cn = ȳn/rnn, ck = ck(zk+1, . . . , zn) = (ȳk−
n∑

j=k+1

rkjzj)/rkk, k = n−1, . . . , 1.

Note that ck is a function of zk+1 to zn, and it is fixed when zk+1 to zn are
fixed. The above equation can be rewritten as

∑n
k=1 r

2
kk(zk − ck)2 < β, which

defines the possible values that zk can take on. This inequality is equivalent to
the following n inequalities:

level n : (zn − cn)2 <
1

r2nn
β,

level n− 1 : (zn−1 − cn−1)2 <
1

r2n−1,n−1
[β − r2nn(zn − cn)2],

...

level k : (zk − ck)2 <
1

r2kk
[β −

n∑
i=k+1

r2ii(zi − ci)2],

...

level 1 : (z1 − c1)2 <
1

r211
[β −

n∑
i=2

r2ii(zi − ci)2].

The search starts at level n, heuristically assigning zn = bcne, the nearest
integer to cn. Given the value of zn, cn−1 can be calculated from the above
equation as cn−1 = (ȳn−1 − rn−1,nzn)/rn−1,n−1. From this value, we can set
zn−1 = bcn−1e and search continues. During the search process, zk is deter-
mined at level k, where zn, zn−1, . . . , zk+1 have already been determined, but
zk−1, zk−2, . . . , z1 are still unassigned. At some level k − 1 in the search, it is
likely that the inequality cannot be satisfied, requiring the search to backtrack
to a previous decision. When we backtrack from level k− 1 to level k, we choose
zk to be the next nearest integer to ck, and so on.

In the Schnorr & Euchner strategy, the initial bound β can be set to ∞.
Once the first integer point is found, we can use this integer point to update β,
reducing the hyper-ellipsoid thus the search space.
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In order to take into account the variable bounds, i.e., l ≤ z ≤ u, the
algorithm limits the enumeration of zk at level k to be within [lk, uk].

4 Extending the DEBS Method to Solve the EQKP

From a constraint programming perspective, DEBS does three things. First, the
search strategy implies a fixed variable ordering heuristic (zn, zn−1, . . . , zk, . . . , z1)
that is determined after the reduction phase, where the variables are reordered
with the permutation matrix as z = P Tx. Second, through the calculation of
ck, DEBS provides a value ordering heuristic: for zk, integer values closer to ck
are preferred. Third, the inequalities described above induce an interval domain
for each zk. DEBS is essentially the enumeration of these domains under the
prescribed variable and value orderings. We use this insight to integrate linear
constraints into DEBS in a straightforward way: linear constraints are made arc
consistent to further reduce the domains of the zk variables.

A linear constraint is defined as b ≤ aTz ≤ b̄, where b, b̄ ∈ Rn ∪ {±∞}, and
a ∈ Rn is the coefficients of the constraint. Given a linear constraint, let

αk = min{aTz − akzk | l ≤ z ≤ u} and ᾱk = max{aTz − akzk | l ≤ z ≤ u}

be the minimal and maximal values that aTz can achieve over all variables
except zk with respect to the variable bounds. These values can be computed by
substituting the zks with their lower or upper bounds, depending on the signs
of the aks. The propagation rule for each integer variable zk is then defined as
follows: ⌈

b− ᾱk

ak

⌉
≤ zk ≤

⌊
b̄− αk

ak

⌋
if ak > 0, (6)

⌈
b̄− αk

ak

⌉
≤ zk ≤

⌊
b− ᾱk

ak

⌋
if ak < 0. (7)

Although the idea of propagating the linear constraint is straightforward and
not novel, the implementation involves maintaining useful information efficiently
as the search moves between levels. As a variable is fixed when the search moves
down the levels, the values αk and ᾱk actually consist of two parts: the sum of all
the variables that are fixed already (zk+1 to zn), and the sum of the maximum or
minimum values that the unfixed variables (z1 to zk−1) can achieve, according
to the variable bounds. Below we show how to update αk and ᾱk using the
cardinality constraint as an example.

For the cardinality constraint, we have ak = 1,∀k, and b = b̄ = K. Therefore,
using Equation (6), the lower bound Lk and upper bound Uk imposed by the
cardinality constraint can be derived as follows:

Lk = K −
n∑

i=k+1

zi −
k−1∑
i=1

ui and Uk = K −
n∑

i=k+1

zi −
k−1∑
i=1

li,

where
∑k−1

i=1 li = 0 and
∑k−1

i=1 ui = k − 1, since zis are binary for the EQKP.
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During the search, the sum of the fixed values S =
∑n

i=k+1 zi is only changed
when moving up or down between two adjacent levels. Therefore, we can use
a single variable to keep track this value, efficiently updating S rather than
computing from scratch. When the search backtracks from level k to k + 1, we
set S = S− zk to reverse the assignment of zk. Similarly, when the search moves
down from level k to k − 1, we set S = S + zk to take into account the current
assignment of zk.

Equations (6) and (7) are general and they can be applied to all types of linear
constraints. In addition, some types of constraints, e.g., the cardinality constraint
as shown above, can be specialized from the general linear constraint formulation
and be propagated more efficiently. Similarly, each linear constraint keep tracks
of its own sum of the current assigned values S. Therefore our extended DEBS
can be used to solve problems with any number of linear constraints of any type.
The variable domain at each level is therefore the intersection of all the bounds
imposed by the linear constraints.

A naive extension of the DEBS method for solving problems with linear
constraints can be achieved by using the linear constraints only as “checkers”:
the constraints simply return true or false when all the variables are instantiated.
If all linear constraints agree on an instantiation, it is accepted as an integer
solution and the search proceeds correspondingly. However from our preliminary
experiments, this naive implementation is, unsurprisingly, orders of magnitude
slower than the MIP and SDP approaches. Thus, we do not report the results
but note that our simple propagation is critical for results presented below.

Solving Non-Binary Problems. Our extended DEBS method can solve non-
binary problems without any modification. However, it requires that the quadratic
objective function be inherently convex, as convexifying a non-binary problem
is not possible. The reduction and the propagation on the linear constraints are
not affected by the variable domains and therefore remain the same.

5 Experimental Results

Experimental Setup. The CPU time limit for each run on each problem instance
is 3600 seconds. All experiments were performed on a Intel(R) Xeon(R) CPU E5-
1650 v2 3.50GHz machine (in 64 bit mode) with 16GB memory running MAC OS
X 10.9.2 with one thread. The DEBS approach is written in C. We use CPLEX
Optimization Studio v12.6 and the SDP solver BiqCrunch downloaded from the
website [17] for comparison. Both solvers are executed with their default settings.
For the SDP solver, there are four specialized versions that deal with problem-
specific structures. Three of them are consistent with the EQKP problem and
the SDP results presented are the best of the three versions for each individual
problem instance, representing the “virtual best” SDP solver. We report the



Combining Constraint Propagation and DEBS for the EQKP 7

arithmetic mean CPU time “arith”, and the shifted geometric mean CPU time
“geo” to find and prove optimality for each problem set.1

{0,1} Problems

n DEBS DEBS+Red. CPLEX SDP

arith geo arith geo arith geo arith geo

10 0.00 0.00 0.00 0.00 0.04 0.04 0.14 0.14
20 0.01 0.01 0.01 0.01 0.18 0.18 4.94 4.35
30 0.72 0.68 0.69 0.65 18.82 12.21 336.94 152.53
40 115.64 31.91 109.63 30.78 1274.052 401.52 2374.784 1238.914

50 317.83 49.87 329.31 50.91 1810.346 1006.416 3237.457 3119.117

{0,1,2} Problems

n DEBS DEBS+Red. CPLEX

arith geo arith geo arith geo

10 0.00 0.00 0.00 0.00 0.01 0.01
20 0.02 0.02 0.02 0.02 0.26 0.25
30 1.05 0.95 0.99 0.90 11.49 6.78
40 276.28 65.86 308.52 69.78 1203.592 281.982

50 2354.506 1216.436 2406.486 1262.996 3149.808 2700.368

Table 1: A comparison of CPLEX, DEBS and the SDP approach for the EQKP
({0,1} Problems) and its problem variation ({0,1,2} Problems). Bold numbers
indicate the best approach for a given problem set. The superscripts indicate the
number of instances not solved to optimality within 3600 seconds.

Test sets. We use five sets of the benchmark instances with different sizes gen-
erated in the same way as Létocart et al. [1], with 10 instances in each set. For
additional comparison, we relax the binary domains xj ∈ {0, 1} to xj ∈ {0, 1, 2}.
This means that we have the option of selecting two “copies” of each element
when maximizing the quadratic objective function but hjj = 0 (see Formula-
tion 1). To the best of our knowledge, this problem has not been studied in the
literature.

In order to ensure convexity, we compute the smallest eigenvalue for the H
matrix of each problem and let it be λmin. If λmin is negative, i.e., the problem is
non-convex, we apply the perturbation vector u = (−λmin + 0.001)e such that

the original objective function is transformed to: minx∈{0,1}
1
2x

T H̄x + f̄
T
x,

where H̄ = H +diag(u) and f̄ =
(
f − 1

2u
)T

. Note that this convex formulation
has the same optimal solution as the original one. For the DEBS method, we use
Cholesky decomposition on the perturbed matrix H̄ to obtain matrix A in the
ILS formulation (3), and we obtain y from the relationship f̄ = −yTA, which

1 The shifted geometric mean time is computed as follows:
∏

(ti + s)1/n − s, where ti
is the actual CPU time, n is the number of instances, and s is chosen as 10. Using
geometric mean can decrease the influence of the outliers of data [18].
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gives us y = −(f̄A−1)T . If the problem is originally convex, we obtain A and y
with H and f .

Results and Discussion. From Table 1, it is clear that the DEBS method per-
forms the best both for the EQKP and its relaxed problem. For the EQKP,
DEBS is on average one to two orders of magnitude faster than CPLEX and it
strictly dominates CPLEX on each problem instance in our experiments. The
SDP approach performs the worst among the three approaches. This is sur-
prising given the strong results for solving the BQPs, and the fact that these
results are the best per instance results over the three BiqCrunch variations.
Analysis of CPLEX and the SDP solving behaviour shows that the reason that
both approaches are unable to prove optimality for larger problems is mainly the
weakness in the dual bound. This apparently favours the DEBS method as it
does not rely on dual bounding. In fact, DEBS completely lacks a dual bounding
mechanism, depending on propagation to reduce the search space.

Interestingly, the running times for all three approaches increase significantly
when K is increased. The reason is that during the search, when the sum of the
already fixed variables at a node is equal toK, we know that the unfixed variables
have to be set to zero to satisfy the cardinality constraint. Intuitively, if K is
small, such solutions are early in the search tree, as fewer branching decisions are
required to reach such nodes. For the same reason, we expect that the running
time to be also decreased when K is further increased towards n.

From Table 1, it is observed that the relaxed domain makes the problem
much more difficult to solve, but DEBS still dominates CPLEX. The SDP ap-
proach cannot be used to solve the relaxed problem without transforming the
problem back to binary domain at the cost of introducing additional variables
and constraints. Therefore, we expect its performance to be inefficient.

It is interesting to observe that the reduction does not seem to improve
the performance for the EQKP as it does on the BQP problems without gen-
eral linear constraints [12]. Reduction even worsens performance on the relaxed
problems. This suggests that it might be of interest to develop new reduction
algorithms that take into the account of the linear constraints.

6 Conclusion

We proposed an extension to the discrete ellipsoid-based search (DEBS) method
to solve the exact quadratic knapsack problem (EQKP) and a variation. The
core of our extension required the modification of the DEBS approach to in-
corporate linear constraints. We did this by adopting standard linear constraint
propagation algorithms. Results showed that our algorithm outperforms both
the state-of-the-art MIP and SDP approaches. For future work, we would like
to further extend DEBS to solve general mixed integer convex quadratic pro-
gramming problems and test its ability as a general solution approach. It is also
interesting to investigate dual bounding mechanism for the DEBS search algo-
rithm, as it is possible to compute a dual bound at each level to further limit
the search interval.
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