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Abstract. The recent emergence of novel hardware platforms, such as
quantum computers and Digital/CMOS annealers, capable of solving
combinatorial optimization problems has spurred interest in formulating
key problems as Ising models, a mathematical abstraction shared by a
number of these platforms. In this work, we focus on constrained cluster-
ing, a semi-supervised learning task that involves using limited amounts
of labelled data, formulated as constraints, to improve clustering accu-
racy. We present an Ising modeling framework that is flexible enough
to support various types of constraints and we instantiate the frame-
work with two common types of constraints: pairwise instance-level and
partition-level. We study the proposed framework, both theoretically and
empirically, and demonstrate how constrained clustering problems can be
solved on a specialized CMOS annealer. Empirical evaluation across eight
benchmark sets shows that our framework outperforms the state-of-the-
art heuristic algorithms and that, unlike those algorithms, it can solve
problems that involve combinations of constraint types. We also show
that our framework provides high quality solutions orders of magnitudes
more quickly than a recent constraint programming approach, making it
suitable for mainstream data mining tasks.

1 Introduction

Recent years have seen the emergence of novel computational platforms, includ-
ing adiabatic and gate-based quantum computers, Digital/CMOS annealers, and
neuromorphic computers (for a review see [8]). These machines represent a chal-
lenge and opportunity to AI and OR researchers: how can specialized models
of computation as embodied by the new hardware be harnessed to better solve
AI/OR problems. Several new hardware platforms have adopted Ising models
[19] as their mathematical formulation and, consequently, a number of exist-
ing problems have been formulated as Ising models, including clustering [22],
community detection [34], and partitioning, covering, and satisfiability [26].

Constrained clustering is a semi-supervised learning task that exploits small
amounts of labelled data, provided in the form of constraints, to improve cluster-
ing performance [35]. In the past two decades, this topic has received significant
attention and algorithms that support different types of constraints have been
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proposed [6, 29, 24]. As finding an optimal solution to the (semi-supervised) clus-
tering problem is an NP-hard problem [27], the commonly used algorithms rely
on heuristic methods that quickly converge to a local optimum.

In a recent work, Kumar et al. [22] presented an Ising model for unsuper-
vised clustering and observed mixed results using a quantum annealer. However,
formulating constrained clustering problems as Ising models and solving them
in hardware has not been studied. In this work, we introduce and analyze a
novel Ising modeling framework for semi-supervised clustering that supports the
combination of different types of constraints and we instantiate it with pairwise
instance-level and partition-level constraints. We demonstrate the performance
on the Fujitsu Digital Annealer [28, 33], and discuss several hardware-related
considerations when embedding our framework on this hardware.

Our main contributions are summarized as follows:

– We introduce an Ising framework for constrained clustering with pairwise
and partition-level constraints that can be solved on a variety of novel hard-
ware platforms.

– We demonstrate the performance of our framework on a specialized CMOS
annealer and show that it outperforms the state-of-the-art heuristic meth-
ods for constrained clustering and produces approximately equal or better
solutions compared to a constraint programming model in a small fraction
of the runtime (i.e., a two orders of magnitude speed-up).

– We show that the framework can seamlessly solve semi-supervised clustering
problems with both pairwise and partition constraints, problems that cannot
be solved by the existing heuristic techniques.

– We discuss some of the challenges in embedding Ising models onto quantum
and quantum-inspired hardware.

2 Background

Let X = {xi}ni=1 be the set of n data points with xi being a finite-sized feature
vector and K be the number of clusters (K<n). Combinatorial clustering algo-
rithms attempt to find a partition of X into K disjoint subsets, S = S1∪· · ·∪SK ,
that minimizes a chosen objective function, typically the total within-cluster
scatter [32] based on pairwise dissimilarities, d(xi, xj). When the dissimilarity is
represented by the squared Euclidean distance the objective is:

min

K∑
k=1

∑
i<j:

xi,xj∈Sk

d(xi, xj) =

K∑
k=1

∑
i<j:

xi,xj∈Sk

‖xi − xj‖2. (1)

In the Euclidean case, another commonly used objective function is the sum
of squared errors [18],

min

K∑
k=1

∑
xi∈Sk

‖xi − µk‖2, (2)

where µk is the mean vector of the points in cluster k.
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2.1 Constrained Clustering

In a semi-supervised setting, we assume some amount of labelled data in the form
of constraints. Constrained clustering is the problem of finding a partition that
satisfies the provided constraints [35]. First, we consider two pairwise constraints:
must-link (ML) and cannot-link (CL) [4]. ML constraints are defined by a set,
M, of pairs of points that must be assigned to the same cluster, (xi, xj) ∈
M ⇒ s(xi) = s(xj), where s(xi) denotes the cluster that xi is assigned to,
s(xi) = k ⇐⇒ xi ∈ Sk. CL constraints are defined by a set, C, of pairs of points
that must be assigned to different clusters, (xi, xj) ∈ C ⇒ s(xi) 6= s(xj).

Bilenko et al. [6] proposed the Pairwise Constrained K-Means (PCK-Means)
problem that incorporates the constraints in the objective function:

min

K∑
k=1

∑
xi∈Sk

‖xi − µj‖2 +
∑

(xi,xj)∈M

wi,j1[s(xi) 6= s(xj)]

+
∑

(xi,xj)∈C

wi,j1[s(xi) = s(xj)] (3)

where 1[true] = 1 and 1[false] = 0. PCK-Means is solved using a greedy iter-
ative algorithm, adapted from the K-Means algorithm [25]. Note that Eq. (3)
allows violation of ML and CL constraints depending on the weights wi,j and
wi,j that correspond to the confidence in the external information [23]. Metric
PCK-Means (MPCK-Means) [6] is a combination of PCK-Means with distance-
metric learning [36] that outperforms PCK-Means [9].

Other well-known approaches include Constrained Vector Quantization Error
(CVQE) [13] that augments the clustering objective to account for constraint
violations, but uses the distances between the centroids to compute the viola-
tion costs, and linear-time CVQE (LCVQE) [29] that computes the violation
costs based on the distances between objects and centroids. LCVQE was found
to be competitive in terms of accuracy with CVQE while violating fewer con-
straints [9].

We also consider partition-level (PL) constraints, where some points have
predefined cluster labels. Formally, assuming an arbitrary labeling of clusters
k, Xk ⊆ X denotes the set of points that must be assigned to cluster k. For
example, in clustering of patients into two cancer risk categories, X1 (X2) is the
set of patients known to have low (high) risk of having cancer.

To handle PL constraints, Liu et al. [24] proposed the Partition-Level Con-
strained Clustering (PLCC) problem that uses the following objective:

min

K∑
k=1

∑
xi∈Sk

‖d(1)i −m
(1)
k ‖

2 + Λ1[di ∈ P ]‖d(2)i −m
(2)
k ‖

2 (4)

where the first term is the squared distance from centroid and the second term
is the constraint violation weighted by Λ. PLCC is solved using a K-Means-like
algorithm.
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Several works have applied model-based exact techniques to constrained clus-
tering, including constraint programming [10–12] and integer linear program-
ming [2]. In a recent work, Dao et al. [12] proposed a constraint programming
(CP) approach for constrained clustering that minimizes within-cluster pairwise
dissimilarity (Eq. (1)) using a dedicated global constraint. In an earlier work,
they showed that a similar CP approach for minimizing sum of squared errors
outperforms integer programming [11]. Although exact techniques are able to
find and prove optimal solutions, they are often several orders of magnitude
slower than heuristic techniques and for large problems can be intractable. Fur-
thermore, they do not return a solution in case of contradictory constraints.

2.2 Ising Models

Ising models are graphical models that comprise a set of nodes N representing
spin variables, σi ∈ {−1, 1}, i ∈ N and a set of edges E representing interactions
between spin variables, (i, j) ∈ E . The problem is parameterized by the biases
hi and the couplers Ji,j . The objective is to minimize the energy of the model
given by the Hamiltonian:

E(σ) =
∑

(i,j)∈E

Ji,jσiσj +
∑
i∈N

hiσi. (5)

Quadratic unconstrained binary optimization (QUBO) models are equivalent
representations used to model problems with binary decision variables. Specif-
ically, a QUBO model has n decision variables, qi ∈ {0, 1}, i ∈ [1..n], with
corresponding biases, ci, and couplers, ci,j . The objective of the QUBO is to
minimize the following quadratic function:

E(q) =

n∑
i=1

ciqi +
∑
i<j

ci,jqiqj . (6)

QUBO models can be converted to Ising models by setting σi = 2qi − 1 [5]
and thus we refer to them as Ising models.

2.3 Unsupervised Clustering with Ising Models

Kumar et al. [22] presented a QUBO model for unsupervised clustering,

E(q) =
∑
i<j

ci,j

K∑
k=1

qikq
j
k +

n∑
i=1

λiφi. (7)

The first term in the objective is the within-cluster all-pairs dissimilarity. The
cluster assignment for each data point is represented using one-hot encoding,
i.e., K binary variables qik such that qik=1 ⇐⇒ xi∈Sk. Since each point is
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assigned to exactly one cluster, the QUBO model includes a quadratic penalty
term to ensure the one-hot encoding holds:

φi =

(
K∑

k=1

qik − 1

)2

. (8)

If xi is assigned to exactly one cluster φi = 0, otherwise φi ≥ 1 and the objective
is penalized by λiφi.

Kumar et al. [22] could only fit very small instances on a quantum annealer
(up to 40 points) and used classical solver for larger instances. Their results were,
at best, competitive with the K-Means heuristic in terms of solution quality.

3 A Framework for Constrained Clustering

We start by formulating the semi-supervised constrained clustering problem as
a constrained optimization problem (COP). Given a problem instance defined
by 〈X,K,M, C, {Xk}K1 〉, we wish to find a partition, S = S1 ∪ · · · ∪ SK , that
minimizes the objective in Eq. (1) while satisfying the constraints:

min
S

K∑
k=1

∑
i<j:

xi,xj∈Sk

‖xi − xj‖2

s.t. s(xi) = s(xj), ∀(xi, xj) ∈M
s(xi) 6= s(xj), ∀(xi, xj) ∈ C
s(xi) = k, ∀k ∈ K,∀xi ∈ Xk.

(9)

3.1 A QUBO Model for Constrained Clustering

We modify the unsupervised clustering model (Eq. (7)) to include clustering
constraints. Specifically, we introduce the pairwise and partition-level constraints
as quadratic penalty terms in the energy function:

E(q) =
∑
i<j

ci,j

K∑
k=1

qikq
j
k +

n∑
i=1

λiφi +
∑
i<j:

(xi,xj)∈M

wMi,jψ
M
(i,j)+

∑
i<j:

(xi,xj)∈C

wCi,jψ
C
(i,j) +

K∑
k=1

∑
i:xi∈Xk

wP
i,kψ

P
(i,k).

(10)

The cost function is ci,j = ‖xi − xj‖2 and the terms λiφi enforce the one-
hot encoding (Eq. (8)). The terms wMi,jψ

M
(i,j) enforce must-link constraints by

penalizing the energy function if xi and xj are assigned to different clusters,

ψM
(i,j) =

K∑
k=1

(qik − q
j
k)2, (11)
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with (qik−q
j
k)2 being quadratic terms equal to one if qik 6= qjk and zero if qik = qjk.1

The terms wCi,jψ
C
(i,j) enforce the cannot-link constraints by penalizing the

energy function if xi and xj are in the same cluster, i.e., there exists k such that

qik = 1 and qjk = 1,

ψC
(i,j) =

K∑
k=1

qikq
j
k. (12)

The terms wP
i,kψ

P
(i,k) enforce the partition-level constraints by penalizing the

energy function for assigning a data point xi ∈ Xk in a cluster m 6= k,

ψP
(i,k) =

K∑
m=1,
m 6=k

qim. (13)

Once we obtain a solution to the QUBO in Eq. (10), each point xi is repre-
sented by K bits qik, k∈[1..K] where qik = 1 if and only if xi is in cluster k. We
can extract the cluster for each point using the following function:

zi(q) = arg max
k∈[1..K]

qik. (14)

If the one-hot encoding constraint is satisfied, zi is bijective and therefore the
partition can be obtained as follows:

xi ∈ Sk ⇐⇒ zi(q) = k. (15)

3.2 Choosing the Weights

Given Eq. (10), we must choose weights for the penalty terms to control the
constraint violation. In most practical cases, the one-hot encoding is a hard
constraint that we do not want violated. However, depending on the confidence
we have in each of the constraints, we may be willing to violate some of these
constraints in favor of satisfying others.

We consider the case in which our constraints come from a trusted source
and we wish to find a partition that satisfies all constraints. Setting the weights
for all penalty terms to be nd̃, where d̃ = max ci,j , guarantees that the optimal
solution to the QUBO model in Eq. (10) is an optimal solution for the COP in
Eq. (9).

Theorem 1 Consider a constrained clustering problem defined by
〈X,K,M, C, {Xk}K1 〉, such that the COP in Eq. (9) is satisfiable. Let
E(q) be the energy function in our QUBO model (Eq. (10)), with the following
weights for the penalty terms λi = wMi,j = wCi,j = wP

i,k = nd̃. Let q̄ be an

optimal solution to our QUBO model. Then the corresponding partition S̄,
xi ∈ S̄k ⇐⇒ zi(q) = k, is an optimal solution to the COP in Eq. (9).2

1 If the one-hot encoding constraint is satisfied, violating a must-link constraint will
apply two penalty terms, one for each of the two clusters of the data points.

2 All proofs appear in tidel.mie.utoronto.ca/pubs/constrained-clustering-proofs.pdf.
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3.3 An Efficient Encoding for K = 2

In the special case of K = 2, we can use an encoding that only requires n
variables, rather than Kn variables:3

EB(p) =
∑
i<j

ci,j(p
i+pj−1)2 +

∑
i<j:

(xi,xj)∈M

ŵMi,jσ
M
(i,j)+

∑
i<j:

(xi,xj)∈C

ŵCi,jσ
C
(i,j) +

K∑
k=1

∑
i:xi∈Xk

ŵP
i,kσ

P
(i,k).

(16)

The variables pi represent the partition: xi is in the first cluster if pi = 0 and in
the second cluster otherwise. The terms σM

(i,j) = (pi− pj)2 enforce the must-link

constraints, the terms σC
(i,j) = (pi + pj − 1)2 enforce the cannot-link constraints,

and the terms σP
(i,k) = [pi − (k − 1)]2 enforce the partition-level constraints.

Theorem 2 shows that the equivalence between the efficient encoding and the
general model for K = 2. The bound in Theorem 1 is therefore applicable for
this model.

Theorem 2 Consider a constrained clustering problem defined by
〈X,K,M, C, {Xk}K1 〉 such that K = 2. Let qik be an assignment of vari-
able for the K-clustering model in Eq. (10). We set ŵM

i,j = 2wM
i,j, ŵC

i,j = wC
i,j

and ŵP
i,j = wP

i,j. If the one-hot encoding constraint is satisfied (i.e., φi = 0 in

Eq. (10)), then E(q) = EB(p) where pi is equal to zero if qi1 = 1 and equal to
one if qi2 = 1.

4 Constrained Clustering on the Fujitsu Digital Annealer

The Fujitsu Digital Annealer (DA) is recent CMOS hardware designed for Ising
optimization problems formulated as a QUBO [28, 33]. We use the first genera-
tion of the DA that is capable of representing problems with up to 1024 variables
with 16-bit precision for the couplers and 26-bit precision for the biases.

The DA algorithm is based on simulated annealing [21], however it takes
advantage of the massive parallelization provided by the custom CMOS hardware
[1]. Furthermore, it has several key differences compared to simulated annealing:

– It starts every run from the same arbitrary state to reduce computational
effort.

– It uses a parallel-trial scheme in which each Monte Carlo step considers all
possible one-bit flips, in parallel. If more than one flip is accepted, one of
accepted flips is chosen uniformly at random.

– It uses dynamic offset to increase the energy of a state in order to escape
local minima.

3 Kumar et al. [22] presented a model for unsupervised clustering with n variables
for K=2. Their model uses spin-glass variables and does not optimize the energy
function in Eq. (10).
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4.1 Embedding Problems on the DA

When solving constrained clustering problems on the DA we have to make some
practical representation and configuration choices. Due to the precision limit, we
need to embed the couplers and biases on a scale with limited granularity. We
therefore make the following implementation choices:

1. The distances d(xi, xj) are normalized in the discrete range of [0, 150].
2. The chosen weights cannot be arbitrarily high and the bound in Theorem 1

cannot be met. Instead we use the highest supported value for λ, the weight
that enforces the one-hot encoding.

3. The bound in Theorem 1 guarantees that all constraints are satisfied if the
problem is solved to optimality. In practice, the DA does not necessarily
solve problems to optimality and instead terminates after a specified time
limit. To avoid cases where the DA violates a one-hot encoding constraint in
favor of satisfying a clustering constraint, we empirically find that it is better
to use a lower weight for the penalty terms of the clustering constraints. In
our experiments, we used a ratio of 1:4, wM = wC = wP = 1

4λ.

The optimization parameters that represent the temperature schedule are
tuned once per data set based solely on the obtained objective value (we do not
use the true labels).

Unlike K-Means-based algorithms that run until convergence, our method
runs for a given time limit and returns the best solution encountered. We there-
fore need to define a time limit to use in the evaluation of our approach. Con-
sidering the run time of heuristic techniques can vary significantly (for example,
Liu and Fu [23] found LCVQE average run time varies between 0.01 to 76.73
seconds across different data sets) and the needs of practical applications, we
arbitrarily choose 5 seconds as a time limit for each execution of our model (see
Section 5.6 for further discussion).

5 Empirical Evaluation

We perform an empirical evaluation of our method across eight benchmark data
sets. As the commonly used methods only support one type of constraint (pair-
wise or partition-level), we first compare performance on problems with one
constraint type. Then, we evaluate our method on problems that involve both
pairwise and partition-level constraints. To demonstrate the advantages of us-
ing special purpose hardware for combinatorial optimization, we compare our
method to constraint programming [12] and two CPU solvers for Ising models.

5.1 Data sets

We run experiments on eight data sets: Breast Cancer, Ionosphere, Pima, Sonar,
Seeds, Optdigits, Letters [15], and Protein [36]. Optdigits-389 is a randomly
sampled subset of the UCI handwritten digits data set containing only the digits
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Table 1. Description of data sets

Data set Instances Features Classes CV

Breast cancer 683 9 2 0.424
Ionosphere 351 34 2 0.399

Pima† 768 8 2 0.427
Sonar 208 60 2 0.095
Seeds 210 7 3 0.000
Protein 116 20 6 0.330
Optdigits-389 283 64 3 0.032
Letters-IJLT 250 16 4 0.168
†Data is normalized using the standard deviation.

{3, 8, 9}, generated by sampling each instance with a probability of 0.15. Letters-
IJLT is a randomly sampled subset of 250 instances from the letter recognition
data set containing only the letters {I, J, L, T}.

Table 1 reports the number of instances, features, and classes. The coefficient
of variation (CV) [14] describes the degree of class imbalance: zero indicates
perfectly balanced classes, while higher values indicate higher class imbalance.

5.2 Algorithms

For problems with pairwise constraints, we compare our model to MPCK-Means4

and LCVQE.5 For problems with partition-level constraints, we compare our
model to PLCC.6 For MPCK-Means and PLCC we used the weights proposed
in the original papers. Increasing the weights did not lead to a significant change
in results.

If K=2, we use the efficient QUBO encoding (Eq. (16)). Otherwise, we use
the general QUBO model (Eq. (10)).

5.3 Evaluation Measures

Since labels are available for the data sets, we use the following measures to
evaluate and compare the different methods.

Adjusted Rand Index (ARI) Rand Index [30] measures agreement between
two partitions of the same data, P1 and P2. Each partition represents

(
n
2

)
de-

cisions over all pairs, assigning them to the same or different clusters. Let a be
the number of pairs assigned to the same cluster in both P1 and P2. Let b be the
number of pairs assigned to different clusters. Rand Index is defined as follows:

RI(P1, P2) =
a+ b(

n
2

) ,
4 Obtained from www.cs.utexas.edu/users/ml/risc/code.
5 Obtained from github.com/danyaljj/constrained clustering.
6 As the code is not available, we implemented PLCC in Python.
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Fig. 1. Comparison of ARI scores for clustering with pairwise constraints.

while the Adjusted Rand Index (ARI) [17] is a correction for RI, based on its
expected value:

ARI =
RI − E(RI)

Max(RI)− E(RI)
.

An ARI of zero indicates the partition is not better than a random assignment,
while one indicates a perfect match.

Normalized Mutual Information (NMI) Mutual information quantifies the
statistical information shared between two distributions [31]. We use MI(P1, P2)
to denote the mutual information between partitions P1 and P2, and H(Pi) to
denote the entropy of partition Pi. Normalized mutual information (NMI) [31]
is normalized using a generalized mean (e.g., arithmetic or geometric) of H(P1)
and H(P2):

NMI(P1, P2) =
MI(P1, P2)

Mean(H(P1), H(P2))

Values close to zero indicate independent partitions, while values close to
one indicate a significant agreement between P1 and P2. We use NMI based on
arithmetic mean.

Fraction of violated constraints We compute the mean fraction of con-
straints that were violated in the partition.

5.4 Empirical Results

Instance-level Pairwise Constraints We compare our framework with MPCK-
Means and LCVQE, on clustering with different numbers of randomly generated
pairwise constraints. Following Covões et al. [9], each constraint is generated by
randomly selecting two different instances in the data set and adding an ML
constraint if they are in the same cluster and a CL constraint otherwise.

Figure 1 shows the performance for a varying number of pairwise constraints,
measured by ARI. Each point in the plot is the average of 50 runs with different,
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randomly generated, sets of constraints. The bands represent the 95% confi-
dence interval obtained using bootstrapping with 1000 replications. Note that
the graphs do not share the same y-axis to increase readability (each graph
presents data for a different data set and we do not compare across data sets).
Results for NMI exhibited similar patterns and are omitted due to space.

In all cases but one, our framework outperforms the other methods. In Breast
Cancer, Ionosphere, Sonar, Pima, Optdigits-389, Seeds, Letters-IJLT our frame-
work is at least as good, and usually significantly better, across all numbers of
constraints. In Protein there is no dominating algorithm and our framework is
the best performing one for problems with large number of constraints (approxi-
mately 300 or more) while LCVQE is the best performing algorithm for problems
with smaller number of constraints (less than 300).

Interestingly, there is no clear winner between LCVQE and MPCK-Means.
In three data sets LCVQE outperforms MPCK-Means, in two data sets MPCK-
Means outperforms LCVQE, and in the rest they are comparable. In contrast,
our framework clearly outperforms the other methods.

Figure 2 shows the average fraction of violated must-link constraints and the
95% confidence interval for four data sets. In all data sets but Breast Cancer,
we find that our method violates fewer constraints than the other methods,
and in most cases does not violate any of the constraints. On Breast Cancer,
our method and LCVQE outperform MPCK-Means, but do not dominate each
other. Analysis of violated CL constraints is omitted due to space. As with ML
constraints, our method is as good or better than the other methods in all cases
except for Breast Cancer.

Partition-level Constraints We compare our framework with PLCC on clus-
tering with different numbers of randomly generated partition-level constraints,
taken from the true labels. To be consistent with previous work [23, 24], we
present the number of constraints as the fraction of the labeled data points.
Figure 3 shows the performance of PLCC and our algorithm, measured by ARI.
Results for NMI exhibit similar patterns and are omitted due to space.

Our method is consistently at least as good as PLCC, and in most cases
better. Interestingly, for PL constraints, the improvement observed for general
clustering problems is larger than the one observed for problems with K = 2.

Next, we analyze the fraction of violated partition-level constraints. When
K = 2, we found that both algorithms satisfy approximately 100% of the con-
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Fig. 3. ARI scores for clustering with partition-level constraints.
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Fig. 4. Average fraction of violated partition-level constraints for K>2.

straints, with no significant differences. For the data sets with K > 2, PLCC
violates a significant portion of the partition-level constraints while our method
continues to satisfy all of them (see Figure 4). This may account for the larger
difference in performance between the two algorithms for data sets with K > 2.

Mixed Constraint Types One of the advantages of our method, based on a
mathematical model solved using a general optimization technique, is the ability
to easily combine different types of constraints without the need to create a
specialized algorithm.

To demonstrate this ability, we present results for problems that involve
both pairwise and partition-level constraints. As far as we are aware, such prob-
lems cannot be solved by any existing heuristic techniques. Figure 5 reports
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the ARI for Ionosphere and Letters-IJLT for different combinations of pairwise
and partition-level constraints. We can see that fusing different types of side-
information can improve the clustering performance. Results for the other data
sets exhibit similar patterns and are omitted due to space.

5.5 Comparison to Exact Methods

Despite the differences, it may be of interest to compare our approach to exact
techniques. In this section, we compare our Ising framework to the CP approach
with similar objective function [12] based on both the objective value and the
accuracy of obtained solutions. We use the original code that is implemented in
the Gecode solver[16] 7 and compare the solutions obtained by the DA after 5
seconds to the solutions found by Gecode with a time limit of 500 seconds. Note
that objective value is only comparable in case both methods satisfy the same
set of constraints. For CP, solutions that satisfy all pairwise constraints were
found for all instances. For DA, solutions that satisfy all pairwise constraints
were found for 595 out of the 600 instances. In each of the other five instances
only a single pairwise constraint was not satisfied, however we remove these
instances when comparing the objective values.

Table 2. Comparison between our Ising approach and Constraint Programming.

Data Num. Ising-DA (5s) CP (500s limit) DA/CP
set constr. Obj. ARI Obj. ARI % Opt Obj.

Sonar
(K=2)

50 31764.7 0.02 32992.2 0.04 0% 0.9632
150 35501.9 0.43 35760.6 0.41 0% 0.9927
350 36588.7 0.94 36588.5 0.94 100% 1.0000

Ionosphere

(K=2)

50 433763.2 0.20 464745.6 0.13 0% 0.9344
150 478007.9 0.34 500041.8 0.30 0% 0.9566
350 514919.0 0.84 514922.3 0.84 94% 1.0000

Optdigits

(K=3)

50 18790486.7 0.73 18840370.7 0.73 0% 0.9974
150 18862921.9 0.85 18947962.6 0.87 0% 0.9955
350 18955340.4 0.94 18957524.6 0.94 0% 0.9999

Protein
(K = 6)

50 226791.6 0.31 260764.2 0.23 0% 0.8701
150 245273.6 0.35 270906.9 0.29 0% 0.9070
350 259862.0 0.62 269950.0 0.56 6% 0.9643

Table 2 shows the average objective value (lower is better) and ARI (higher
is better) obtained by each of the approaches on four data sets with different
characteristics and a varying number of pairwise constraints. We also list the
percentage of instances for which CP was able to prove optimality and the av-
erage per-instance objective ratio between the two methods (DA/CP). In the

7 Obtained from cp4clustering.github.io.
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majority of cases Gecode was not able to prove optimality within the time limit.
Furthermore, solutions found by the DA within 5 seconds are approximately
equal or better for all configurations. In terms of clustering accuracy (measured
by ARI), our approach outperforms CP for Ionosphere and Protein while in
Sonar and Optdigits the methods are comparable.

5.6 Comparison to CPU baselines

Our interest in Ising models is motivated by their ability to be efficiently solved
by a variety of specialized hardware platforms. To demonstrate the benefit of
specialized hardware, we compare the results of the DA, a CMOS annealer, to
two CPU baselines for Ising models: neal, a simulated annealer for Ising models,
and qbsolv, a decomposing solver that splits QUBO problems into sub-problems
solved by a tabu search (both are part of D-Wave’s Ocean software package).8

We compare the quality of solutions obtained by these tools after 10 seconds
and after 30 seconds to the solutions obtained by the DA after one and 5 seconds.
Table 3 reports the mean ARI for four selected data sets for different numbers of
pairwise constraints. Solutions that violate the one-hot encoding are considered
to have an ARI of zero. As solutions obtained by the CPU solvers often do not
satisfy all constraints, we do not compare the methods based on objective value.

Table 3. Mean ARI for DA vs. CPU solvers.

Num DA neal qbsolv

const. 1s 5s 10s 30s 10s 30s

50 .02 .02 .02 .02 .02 .02
150 .41 .43 .38 .40 .39 .40
350 .94 .94 .94 .94 .94 .94

(a) Sonar (K=2)

Num DA neal qbsolv

const. 1s 5s 10s 30s 10s 30s

50 .19 .20 .18 .19 .16 .16
150 .33 .34 .26 .31 .32 .33
350 .84 .84 .82 .83 .80 .82

(b) Ionosphere (K=2)

Num DA neal qbsolv

const. 1s 5s 10s 30s 10s 30s

50 .71 .73 .35 .48 .27 .29
150 .85 .85 .57 .72 .32 0.35
350 .94 .94 .89 .91 .82 0.83

(c) Optdigits (K=3)

Num DA neal qbsolv

const. 1s 5s 10s 30s 10s 30s

50 .29 .31 .02 .02 .26 .27
150 .30 .35 .06 .05 .28 .31
350 .59 .62 .32 .37 .61 .63

(d) Protein (K=6)

We can see that the DA achieves better performance compared to the CPU
baseline, even when we allow the CPU baselines longer time limits. In all but
one configuration, DA with 5 seconds outperforms neal and qbsolv with 30
seconds. Interestingly, even when given only one second the DA performs well

8 Both tools obtained from github.com/dwavesystems.
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and in most configurations obtain solutions that are equal or better than those
found by the CPU baselines in 30 seconds.

6 Discussion & Limitations

Our empirical evaluation shows that our method, based on an Ising model and
specialized hardware, outperforms state-of-the-art K-Means-like methods. In un-
supervised clustering, Kumar et al. [22] found that using Ising models for clus-
tering achieves, at best, equal performance to K-means. Our results suggest that
in the semi-supervised setting, where the problems include a set of constraints,
using specialized hardware is a promising direction. The comparison to CP and
CPU baselines shows that our approach can provide high quality solutions fast,
making it an attractive solution for modern data mining tasks.

Our framework can be extended to other scenarios: representing new types
of constraints (e.g., cluster-size constraints [7]), tuning the weights of the con-
straints if they are not fully-trusted, and evaluating our model with constraints
arising from active learning [3] are all potential extensions of our work. While our
models can incorporate any constraint that can be represented as a quadratic
equality or inequality over the binary variables, some constraints may require
additional auxiliary or slack variables. Investigating ways to efficiently encode
other types of constraints is also an interesting direction for future work.

Our method is sensitive to hardware-related limitations. For example, the
number of data points is limited by the number of variables supported by the
hardware and our ability to represent the objective is limited by the precision.
However, new hardware allows for larger problems and increased precision (e.g.,
[37, 1]) and improved optimization schemes can reduce the need to tune the
temperature schedule and potentially yield superior performance [20].

Our model can be solved on any platform that supports Ising models. As a
large number of novel computational platforms (including quantum computers)
have chosen Ising as their main abstraction [8], experimenting with new and
different hardware platforms is an important direction of future work.

7 Conclusion

We address the problem of semi-supervised clustering on specialized hardware
and present an Ising formulation that can be solved on a variety of novel hard-
ware platforms. Our empirical analysis shows that our method outperforms
the state-of-the-art heuristic methods for semi-supervised clustering and, un-
like those algorithms, can support combinations of constraint types. The use of
a mathematical model means that our framework is easily extended to support
other types of constraints and hardware platforms.
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