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Abstract
Problem difficulty for greedy best first search
(GBFS) is not entirely understood, though existing
work points to deep local minima and poor correla-
tion between the h-values and the distance to goal
as factors that have significant negative effect on
the search effort. In this work, we show that there
is a very strong exponential correlation between
the depth of the single deepest local minimum en-
countered in a search and the overall search effort.
Furthermore, we find that the distribution of local
minima depth changes dramatically based on the
constrainedness of problems, suggesting an expla-
nation for the previously observed heavy-tailed be-
havior in GBFS. In combinatorial search, a similar
result led to the use of randomized restarts to escape
deep subtrees with no solution and corresponding
significant speed-ups. We adapt this method and
propose a randomized restarting GBFS variant that
improves GBFS performance by escaping deep lo-
cal minima, and does so even in the presence of
other, randomization-based, search enhancements.

1 Introduction
In recent years, several works have conducted empirical stud-
ies of problem difficulty in greedy best first search (GBFS),
highlighting factors that have negative effect on the search ef-
fort. One key observation is that the search can get stuck in
large local minima (“bad subtrees” [Xie et al., 2014b]): re-
gions of the state space that have no solution, due to an early
mistake in the search (“low-h bias” [Richter et al., 2010]).
Avoiding such local minima would result in a much lower
runtime. Wilt and Ruml [2016] also observed that GBFS per-
formance is negatively effected when the h-value difference
in a local minimum is high and when it is not possible to reach
the goal via a path along which h monotonically decreases.

In a recent study, Cohen and Beck [2018] found that the
search effort of GBFS exhibits a heavy-tailed behavior. In
combinatorial search, the heavy-tailed behavior was shown
to be related to the distribution of depth of subtrees with no
solution (inconsistent subtrees) [Gomes et al., 2005]. In crit-
ically constrained problems, the probability of deep inconsis-
tent subtree is very high, while in relaxed problems there is a

low, but non-negligible probability of a deep inconsistent sub-
tree. These results led to the development of techniques such
as randomized restarts and tailored portfolios [Gomes, 2003]
that improve search performance by jumping out of deep in-
consistent subtrees.

In this work, we show that the analysis of the distribu-
tion of inconsistent subtree depths can be applied to GBFS
as an explanatory framework for the observed algorithm per-
formance phenomena. We extend Cohen and Beck’s frame-
work and introduce the notion of local minimum h-depth and
h-backtracks. We use this framework to study the distribu-
tion of local minima h-depths in planning problems of differ-
ent constrainedness levels and its effect on the search effort.
We provide explanation and deeper understanding of previous
observations on the behavior of GBFS, and show how these
insights can be exploited to improve GBFS performance. We
make the following contributions:

1. We find an exponential correlation between the h-depth
of the single deepest local minimum encountered and the
total search effort (i.e., number of expanded nodes).

2. We find an exponential correlation between the h-depth
of local minima and the number of h-backtracks.

3. We show that the distribution of local minima h-depth
in planning problems depends on the constrainedness of
problems, and that heavy-tailed behavior appears when
there is a low, but non-negligible, probability of encoun-
tering a deep local minimum during search.

4. Inspired by combinatorial search, we propose RR-GBFS,
a randomized restarting GBFS that outperforms GBFS
by escaping deep local minima.

2 Background
2.1 Local Minima, Backtracking, and GBFS
A recent line of work in heuristic search has focused on em-
pirical characterizations of problem difficulty and highlighted
different factors affecting the search effort. Wilt and Ruml
[2016] analyzed the behavior of GBFS and made three ob-
servations. First, that GBFS “tends to work well when it is
possible to reach the goal from every node via a path where h
monotonically decreases along the path”1 (Observation 1, p.

1More precisely, the authors actually refer to the case where h is
monotonically non-increasing.



283) and that a heuristic with no local minima is an extreme
example of such heuristic. They also observe that GBFS
“tends to work well when the difference between the mini-
mum h value of the nodes in a local minimum and the min-
imum h that will allow the search to escape from the local
minimum and reach a goal is low” (Observation 3, p. 288).2

In a previous work, Wilt and Ruml [2014] showed that the
negative effect of operator cost ratio in satisficing search is
due to the deepening of the local minima. Cohen and Beck
[2017] found that the effect of operator cost ratio depends
on the constrainedness of problems and therefore conjectured
that there is a connection between the existence and extent of
local minima and the constrainedness of problems.

2.2 Heavy-Tailed Behavior and GBFS
The study of runtime distributions of several computational
problems (notably SAT and CSP) found exceptionally hard
instances, that were attributed to a fat- or heavy-tailed behav-
ior in ensembles of random problems [Gomes et al., 2005].
In ensembles of critically constrained instances, for which
the median search effort is very high and all instances are uni-
formly hard, heavy-tailed behavior does not appear. However,
relaxing the problems results in statistical regime in which the
median effort is low, but the hardest problems are very hard.
The distribution in this regime can be modeled by a fat- or
heavy-tailed behavior, indicated by a slow decay of the tail of
the survival function and high kurtosis [Gomes, 2003]. For-
mally, a random variable X with distribution F (x) is consid-
ered heavy-tailed if there exists some xl>0, c>0, α>0 such
that 1−F (x) = P [X>x] = cx−α, x>xl [Resnick, 2007].

Later work found that the heavy-tailed behavior is also ob-
served in the runtime distribution of multiple runs of a ran-
domized search procedure on one instance and that the excep-
tionally hard problems are easily solved by minor changes in
the search [Gomes et al., 2005]. This result inspired new al-
gorithms such as randomized restarts and portfolios that aim
at eliminating the heavy-tailed behavior [Gomes, 2003].

For GBFS, Cohen and Beck [2018] found heavy-tailed be-
havior in both ensembles of random planning problems and
multiple runs of a randomized heuristic search on one in-
stance. In order to randomize the heuristic search, they in-
troduced a limited amount of randomization in the heuristic.
Given a heuristic h and a parameter p≥0, they defined h∆p to
be a p-randomized version of h as: h∆p(s)=h(s)+∆h

p where
∆h
p is a random number in the range [−p·h(s), p·h(s)].
To illustrate heavy-tailed behavior, we present an example

from Cohen and Beck [2018]. Figure 1 shows the survival
function for the search effort over 1000 runs of a randomized
search on a single instance of the Rovers domain for differ-
ent levels of constrainedness. When the problem is highly
constrained (C=1), there is no apparent heavy-tailed behav-
ior. As the problem is relaxed we see a fat and heavy-tailed
behavior, as most instances become easy while the hardest
problems are very hard. For C=6, a clear heavy tailed be-
havior is indicated by approximately linear behavior on the
log-log plot [Gomes et al., 2005].

2Wilt and Ruml‘s [2016] Observation 2 is implied by Observa-
tion 1 and so omitted.
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Figure 1: Rovers: Multiple runs on one instance.

3 Preliminaries
Following Bonet and Geffner [2001], a planning
problem P=〈A,O, I,G〉 defines a state space
SP=〈S, sI , SG, A, f, c〉 where the states s ∈ S are collection
of atoms in A, sI is the initial state I, goal states s ∈ SG are
all states such that G ⊆ s, actions a ∈ A(s) are the operators
in O such that the preconditions Prec(o) ⊆ s, the function
f(s, a) maps a state s and an action a into a state s′ based on
the delete and add effects s′=(s \Del(a)) ∪Add(a), and all
action costs c(a, s)=1.

We use the state representation to formally define a set of
terms used in our analysis. Informally, we consider a local
minimum to be a set of states that were expanded between
two consecutive expanded states on the solution path found
by a search algorithm (we assume nodes are not re-opened).
Definition 1. (Solution vector) Let P = 〈s1, ..., sP 〉 be a
vector of states in S. We considerP to be a (feasible) solution
vector if s1 = SI , sP ∈ SG and for each consecutive pair of
states si, sj in P there exists action a such that f(si, a) = sj .
Definition 2. (Expansion vector) Let E = 〈s1, ..., sE〉 be a
vector of states in S. We consider E to be a (feasible) ex-
pansion vector if s1 = SI , sE ∈ SG and for every state
sx ∈ E , x ≥ 2 there exists state sy ∈ E , y < x and action
a ∈ A such that f(sy, a) = sx.
Definition 3. (Local Minimum) Let E be an expansion vector
and P be a solution vector, such that P is a non-contiguous
subsequence of E . For every consecutive pair si, sj in P we
define the local minimum Lsi,sj to be the sub-vector of all
states between si and sj in the vector E (including si, sj).
Definition 4. (h-depth) Let si, sj be two consecutive states
in a solution vector and Lsi,sj = 〈s1, s2...sL〉, a vector of
states, be the local minimum between si and sj . We define the
h-depth of the local minimum dhsi,sj = h(sj)−minh(Lsi,sj ).

Definition 5. (h-backtrack) Let si, si+1 be two consecutive
states in an expansion vector. We define the expansion of si+1

to be an h-backtrack if h(si+1) > h(si).
Note that the definition of local minimum h-depth closely

matches the h difference in Observation 1 and the defnition
of h-backtrack is closely related to the non-monotonicity of
h-values in Observation 3.



4 Empirical Analysis
In this section we present an empirical analysis of the local
minima phenomenon in GBFS. We present results for the FF
heuristic [Hoffmann and Nebel, 2001] with deferred (“lazy”)
heuristic evaluation [Richter and Helmert, 2009], however
experiments with standard (“eager”) evaluation and other
heuristics (causal graphs [Helmert, 2004], landmark count
[Richter et al., 2008], landmark cut [Helmert and Domsh-
lak, 2009]) yielded similar trends. We use Fast Downward
[Helmert, 2006], configured not to re-open nodes.

In our analysis, we use the six benchmark domains in Co-
hen and Beck [2018], for which the constrainedness of prob-
lems can be controlled either by resource-constrainedness pa-
rameter (denoted C) or by goal-constrainedness parameter
(denoted λ): NoMystery, Rovers, TPP, Maintenance, Parking,
and Freecell. We present a thorough analysis of one domain
(NoMystery) and summarize the results for the rest. For each
domain, we present results for both an ensemble of 1000 ran-
dom problems and for 1000 runs of a p-randomized search
on a single problem (0.05 ≤ p ≤ 0.1). Following Cohen
and Beck [2018], the single problem is the median instance
of the ensemble C=1 and the relaxed instances are generated
by increasing C (analysis of starting problems from quantiles
other than the median yields similar trends).

4.1 Problem Difficulty and Local Minima
We start by analyzing the connection between the h-depth and
the size (i.e., number of expanded nodes) of a local minimum
for different constrainedness levels. Figure 2a shows the dis-
tribution of local minima size vs. h-depth in ensemble of 1000
random problems in both the non-heavy-tailed regime (C=1)
and the heavy-tailed regime (C=2). We can clearly see an ex-
ponential correlation, similar to inconsistent subtrees [Gomes
et al., 2005]. Figure 2b shows similar results for 1000 runs
of a randomized search on one instance. While the absolute
numbers change between different levels of constrainedness,
the qualitative trends remains similar for different C values.

In combinatorial search, this result is due to backtracking
behavior. Figure 2c shows the distribution of number of h-
backtracks vs. h-depth in an ensemble of random problems
in both the non-heavy-tailed and the heavy-tailed regimes.
Again, we find an exponential correlation suggesting that the
observed effort is due to a backtracking behavior based on h-
values. The fact that we would observe such a correlation for
GBFS is not a priori obvious given its best-first search style.

Surprisingly, we also find a strong correlation between the
h-depth of the single deepest local minimum encountered in
an instance and the total search effort for that instance. Table
1 reports this correlation for all the six benchmark domains,
in both the heavy-tailed and the non-heavy-tailed regimes and
over all problem instances (of mixed constrainedness values).
The reported values are the Pearson correlation coefficient
between the h-depth of the deepest local minimum and the
log(search effort). We use log since Pearson measures linear
correlation, and linear correlation between x and log(y) indi-
cates an exponential correlation between x and y. To make
sure we are not biased by a population that is centered on a
small range of h-values we also calculated the weighted Pear-
son correlation (all the instances of a given h-depth sum up
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(a) 1000 random instances: local minima size vs. h-depth.
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(c) 1000 random instances: number of h-backtracks vs. h-depth.

Figure 2: Empirical results for NoMystery.

to the same weight) and found similarly high values. These
results indicate a strong exponential correlation and suggest
that the deepest local minimum encountered in a search is an
important factor in determining the total search effort.

Given this strong correlation, a natural hypothesis, that is
consistent with the results for CSP and SAT, is that the heavy-
tailed behavior in planning problems is due to the distribution
of h-depth of local minima in such problems (i.e., there is
a low probability of getting into a deep local minimum that
leads to few, very hard, instances). In the next section, we
will analyze this distribution and test this hypothesis.

4.2 The Distribution of Local Minima h-Depth
We now analyze the distribution of h-depth of the deepest
local minimum encountered in each problem for ensembles of



log(effort) log(h-backtracks)

Domain N-HT HT N-HT HT

NoMyst (1000) 0.92 0.92 0.93 0.95
NoMyst (one) 0.87 0.94 0.97 0.96
Rovers (1000) 0.96 0.84 0.98 0.94
Rovers (one) 0.98 0.95 0.98 0.98
TPP (1000) 0.89 0.86 0.92 0.95
TPP (one) 0.80 0.77 0.84 0.93
Maint (1000) 0.93 0.95 0.96 0.98
Maint (one) 0.93 0.98 0.93 0.99
Parking (1000) 0.97 0.93 0.96 0.96
Parking (one) 0.97 0.92 0.97 0.90
Freecell (1000) 0.79 0.83 0.82 0.87
Freecell (one) 0.73 0.82 0.75 0.83

Table 1: Pearson correlation coefficient between h-depth and
log(Search effort) (log(h-backtracks)) in the non-heavy-tailed (N-
HT) and heavy-tailed (HT) regimes for ensembles of random prob-
lems and for multiple runs on one problem.
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Figure 3: NoMystery: Local minima size vs. h-depth.

random problems of different constrainedness levels. Figure
3a shows the distribution in the non-heavy-tailed (C=1) and
in the heavy-tailed regime (C=2). In the non-heavy-tailed
regime, we find that GBFS on the majority of the problems
encounters a deep local minimum (the peak of the histogram
is at 10). In the heavy-tailed regime, where most problems
are easy but there are few exceptionally hard problems, we
find that the distribution changes dramatically. The majority
of the searches do not encounter a deep local minimum at all
(the peak of the histogram is at 1), however a few instances do

N-HT HT
Domain Med Max Med Max

NoMyst (1000) 9 14 0 13
NoMyst (one) 10 12 3 12
Rovers (1000) 12 25 0 24
Rovers (one) 21 22 7 23
TPP (1000) 9 13 0 11
TPP (one) 11 12 1 9
Maint (1000) 10 16 0 11
Maint (one) 12 16 0 11
Parking (1000) 4 19 1 14
Parking (one) 9 13 2 13
Freecell (1000) 14 35 8 32
Freecell (one) 22 33 7 27

Table 2: Median and maximal value of deepest local minimum
encountered in instances in the non-heavy-tailed (N-HT) and the
heavy-tailed (HT) regimes for both ensembles of 1000 random prob-
lems and for multiple runs on one problem.

encounter local minima that are almost as deep as the deepest
local minima in the non-heavy-tailed regime.

More interesting is the corresponding distribution for mul-
tiple runs of a randomized search procedure on one problem
instance. Figure 3b shows the results when using a random-
ized search procedure on the same instance for different val-
ues of C. We find similar trends: in the non-heavy-tailed
regime (C=1) we find that the majority of runs encounter
a deep local minimum. As we relax the problem and move
to the heavy-tailed regime and easier problems on average,
the majority of runs do not encounter a deep local minimum,
however a few encounter a very deep local minimum.

To summarize similar results for the different domains, Ta-
ble 2 reports the median and the maximal value for the deep-
est local minimum encountered in an instance. As demon-
strated for NoMystery, in the non-heavy-tailed regime the
median and the maximal value are much closer, compared
to the heavy-tailed regime where the median is very low but
there are few very deep local minima. In many cases the max-
imal value for the heavy-tailed regime is very close and in
Rovers (one) even higher than the one of the non-heavy-tailed
regime, while the median is significantly lower.

4.3 Discussion
Our analysis suggests that the h-depth of the local minima
encountered in the search is a key factor in problem diffi-
culty for different kinds of planning problems (we analyzed
six domains with different characteristics and constrainedness
type). Furthermore, we find an exponential correlation be-
tween the depth of a local minimum and its size, as often ob-
served in tree search. These results are consistent with com-
binatorial search problems (e.g., in [Gomes et al., 2005]) and
further establish the connection between satisficing planning
and a large body of literature on combinatorial search.

These results provide explanation and deeper understand-
ing of several previously observed phenomena in GBFS:

1. Our results explain the heavy-tailed behavior observed
in satisficing planning using GBFS [Cohen and Beck,



2018]. In relaxed problems, there is a low, but non-
negligible, probability of encountering a deep local min-
imum (consistent with combinatorial search).

2. The exponential correlation between h-depth and search
effort explains Observations 1 on the effect of large h
difference in a local minimum [Wilt and Ruml, 2016].

3. The exponential correlation between h-depth and h-
backtracks suggest Observation 3 is connected to Obser-
vation 1. Extensive backtracking behavior is the result
of a deep local minimum [Wilt and Ruml, 2016].

4. The h-depth distribution suggests that the existence and
extent of the factors highlighted by Wilt and Ruml (deep
local minima and extensive backtracking behavior) de-
pend on the constrainedness of problems. This work es-
tablishes the conjecture by Cohen and Beck [2017] that
there is a connection between the existence and extent of
local minima and the constrainedness of problems.

The heavy-tailed behavior observed in the investigated do-
mains stems primarily from local minima, one type of unin-
formative heuristic region [Xie et al., 2014a]. A second type,
plateaus, are a different kind of search inefficiency that is not
addressed in this work. The effect of constrainedness on do-
mains with significant plateaus and no local minima in GBFS
is an interesting direction for future work.

5 Exploiting the Heavy-tailed Behavior:
Randomized Restarting GBFS

Following the work on randomized restarts in combinatorial
search [Gomes et al., 1998], in this section we demonstrate
how such randomized restarts can be integrated into a GBFS
to gain significant speed-ups.

A restart strategy is a sequence (t1, t2, ...) of cutoff values,
i.e., run lengths (often expressing number of backtracks) af-
ter which the search restarts. As we have established the con-
nection between the h-backtracks and the heavy-tailed behav-
ior, we use cutoff values based on h-backtracks. Algorithm 1
presents pseudocode for a randomized restarting GBFS (RR-
GBFS). In each iteration, we run a GBFS with a given h-
backtrack cutoff. If the cutoff is reached before a solution is
found, the randomized search is restarted with a different seed
and the next cutoff value. We use randomized heuristic search
with a geometric restart policy [Walsh, 1999] with an initial
value of 16, increasing with a factor of 1.5: (16, 24, 36, ...).

Figure 4a and 4b compare the runtime distribution of
NoMystery for multiple runs on one instance and for an
ensemble of random instances respectively, using random-
ized restarting GBFS vs. standard GBFS. The randomized-
restarting GBFS manages to significantly reduce the tail in
the fat- and heavy-tailed regimes, outperforming GBFS when
C > 1. However, for the most constrained problems (C = 1),
where the probability of a deep local minimum is very high
and, therefore, restarting is likely to lead to another deep local
minimum, RR-GBFS underperforms GBFS, as expected.

Table 3 reports the maximum local minimum h-depth en-
countered for GBFS and for the last iteration of RR-GBFS in
both the heavy-tailed and non-heavy-tailed regimes. It also
reports the maximal number of restarts needed by RR-GBFS.

Algorithm 1 Randomized restarting GBFS
function RR-GBFS (seed, cutoff)

while GBFS(seed, cutoff) = NO_SOLUTION do
seed← ChooseRandomSeed()
cutoff← updateCutoff()

These results explain the success of RR-GBFS for the less
constrained problems. Exploiting the distribution of local
minima h-depth in the heavy-tailed regime, RR-GBFS needs
fewer restarts to successfully escape deep local minima in
most of the domains, reducing the maximum h-depth signif-
icantly compared to GBFS. In the non-heavy-tailed regime,
the number of restarts is much higher and the maximum h-
depth of RR-GBFS is much closer to GBFS.

Cohen and Beck [2018] previously noted that ε-GBFS
[Valenzano et al., 2014] and Type-GBFS [Xie et al., 2014b],
GBFS variants that incorporate random exploration in the
search, reduce heavy-tailed behavior while increasing the ef-
fort for median problems. A comparison between RR-GBFS,
ε-GBFS, and Type-GBFS found that while they all tend to
reduce the heavy-tailed behavior, their performance differs
based on the domain, the constrainedness of problems, and
the effect on the easy problems. In general we find that ran-
dom exploration tends to work better for the most constrained
problems (as RR-GBFS applies unneeded restarts) and RR-
GBFS tends to perform better for more relaxed problems (as
ε-GBFS and Type-GBFS apply unneeded exploration).
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Figure 4: NoMystery: GBFS (solid) vs RR-GBFS (dashed).

Non-Heavy-tailed Heavy-tailed

Domain DG DRR #R DG DRR #R

NoMyst (1000) 14 15 27 13 6 10
NoMyst (one) 12 11 18 12 5 5
Rovers (1000) 25 21 28 24 13 17
Rovers (one) 22 18 23 23 9 9
TPP (1000) 13 11 23 13 6 6
TPP (one) 12 12 15 9 6 3
Maint (1000) 16 15 19 11 7 14
Maint (one) 16 15 17 11 5 7
Parking (1000) 19 18 23 12 11 16
Parking (one) 13 10 12 13 6 4
Freecell (1000) 35 36 24 32 25 21
Freecell (one) 33 32 17 27 19 10

Table 3: The maximum h-depth for GBFS (DG) and for RR-GBFS
(DRR) and the maximal number of restarts in RR-GBFS (#R).
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Figure 5: Comparison between RR-GBFS to Type-GBFS and ε-GBFS on ensembles of 1000 random problems.

We can easily combine randomized restarts with random
exploration (by applying both techniques) as shown in Fig-
ure 5 for NoMystery, TPP, and Maintenance. The combined
versions seem to be as good or better than either of the meth-
ods alone. A detailed investigation of the differences between
random exploration and randomized restarts is an interesting
direction for future work.

Our results support the hypothesis that randomized restarts
exploit the distribution of local minima h-depth to escape
deep local minima in the heavy-tailed regime and show that
randomized restarting can improve performance of GBFS
and of GBFS variants that incorporate random exploration.
In combinatorial search, much work has been done on ran-
domized restarts, including the use of dynamic and learning
restart policies (e.g., [Kautz et al., 2002]) that are updated in
real-time. Investigating ways to incorporate such policies in
GBFS is an interesting direction for future work.

We considered two common exploration methods: ε-GBFS
and Type-GBFS. Other methods that incorporate exploration
in GBFS include GBFS-LS [Xie et al., 2014a], DBFS [Imai
and Kishimoto, 2011], and IP-diversification [Asai and Fuku-
naga, 2017]. Analyzing the effect of restarts in the presence
of these exploration methods is potential future work.

6 Related Work
Several works have dealt with the state space topology of
satisficing planning. Hoffmann [2005] discussed the local
search topology of heuristic search and analyzed plateaus
and local minima (defined differently) for the idealized h+.
Heusner et al. [2017] used high-water mark benches which
separate the search space into areas that are searched by a
GBFS in sequence, allowing to determine nodes that will not
be expanded and nodes that will be expanded only if certain
conditions are met. Using the theory developed in this work
to derive theoretical bounds on the size of local minima is a
potential future work. Wilt and Ruml [2014] measured the ef-
fect of cost-based GBFS on the size of local minima (number
of nodes) in different domains using different heuristics. In
a later work, they provide several observations (see Section
2.1) on the behavior of GBFS [Wilt and Ruml, 2016].

Several works suggested using restarts in different plan-
ning algorithms and scenarios. Nakhost et al. [2009] used
restarts in Monte-Carlo Random Walk planning after reach-
ing a dead end or a maximum number of consecutive non-

improving steps. Coles et al. [2007] proposed a local search
planning algorithm together with global restarts. Richter et al.
[2010] used restarts to improve solution quality in an anytime
weighted A* by restarting the search each time a new solu-
tion is found, while keeping track of previously seen nodes.
While these algorithms show the value of restarts, none do so
in the context of GBFS nor do they provide a precise empir-
ical understanding of how randomized restarting can lead to
stronger search performance as we have done here.

7 Conclusion
We performed an empirical study of local minima in ensem-
bles of random planning problems and multiple runs of a ran-
domized heuristic search on a single planning problem in-
stance. We defined the depth of local minima based on the
h-value differences and analyzed the connection between h-
depth and search effort and the distribution of local minima
h-depth in problems of different constrainedness.

Our empirical results indicate a strong exponential corre-
lation between the h-depth of a local minimum and the asso-
ciated search effort and a similar strong correlation between
the h-depth and the number of h-backtracks. Furthermore,
we found that the probability of entering a deep local mini-
mum depends on the constrainedness of the problems.

Inspired by combinatorial optimization, we proposed a ran-
domized restarting GBFS variant and show that it success-
fully escapes deep local minima in the heavy-tailed regime,
resulting in better search performance.

These results provide a deeper understanding of GBFS and
its search topology and explain several previous observations
and conjectures on the behavior of GBFS. We have demon-
strated a simple way that these insights can be used to en-
hance search performance and believe that they can be fur-
ther exploited to develop additional improvements to heuris-
tic search algorithms.
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