
Heavy-Tails and Randomized Restarting Beam
Search in Goal-Oriented Neural Sequence

Decoding

Eldan Cohen and J. Christopher Beck

Department of Mechanical & Industrial Engineering
University of Toronto, Toronto, Canada
{ecohen, jcb}@mie.utoronto.ca

Abstract. Recent work has demonstrated that neural sequence models
can successfully solve combinatorial search problems such as program
synthesis and routing problems. In these scenarios, the beam search al-
gorithm is typically used to produce a set of high-likelihood candidate
sequences that are evaluated to determine if they satisfy the goal crite-
ria. If none of the candidates satisfy the criteria, the beam search can
be restarted with a larger beam size until a satisfying solution is found.
Inspired by works in combinatorial and heuristic search, we investigate
whether heavy-tailed behavior can be observed in the search effort dis-
tribution of complete beam search in goal-oriented neural sequence de-
coding. We analyze four goal-oriented decoding tasks and find that the
search effort of beam search exhibits fat- and heavy-tailed behavior. Fol-
lowing previous work on heavy-tailed behavior in search, we propose
a randomized restarting variant of beam search. We conduct extensive
empirical evaluation, comparing different randomization techniques and
restart strategies, and show that the randomized restarting variant solves
some of the hardest instances faster and outperforms the baseline.

Keywords: Beam Search · Neural Sequence Models · Randomized Restarts.

1 Introduction

Neural sequence models are commonly used in the modeling of sequential data
and are the state-of-the-art approach for tasks such as machine translation [10],
text summarization [6], and image captioning [37]. Beam search is the most com-
monly used algorithm for decoding neural sequence models by (approximately)
finding the most likely output sequence conditioned on the input. To do so, beam
search generates sequences token-by-token, extending a fixed number of active
candidate sequences (beam size) at each step.

Recently, neural sequence models have been successfully applied to different
combinatorial search problems such as program synthesis and routing problems.
Unlike machine translation and image captioning, such problems often have a
goal criteria that can be used to evaluate candidate solutions and require solu-
tions that satisfy the goal criteria. For example, in resource-constrained combi-
natorial routing problems, we may wish to find a tour that satisfies some resource

2 E. Cohen and J. C. Beck

constraint (e.g., limited fuel or budget). In such scenarios, beam search is used
to produce a set of promising (high-likelihood) candidate sequences that are
evaluated to determine if they satisfy the goal criteria. If none of them satisfy
the criteria, the beam search can be restarted with a larger beam size until a
satisfying solution is found.

Previous work on heuristic and combinatorial search algorithms found they
tend to exhibit a fat- and heavy-tailed behavior that can be exploited to boost
their performance by incorporating randomized restarts in the search (e.g., [12,
8]). In this work, we investigate whether a heavy-tailed behavior can also be
observed for goal-oriented beam search. We consider four goal-oriented neural
sequence decoding tasks, each with a goal criteria that enforces bounded subopti-
mality with respect to a chosen evaluation metric. We focus on complete anytime
beam search (CAB), a complete variant of beam search commonly used in goal-
oriented neural sequence decoding, and perform an extensive empirical study of
the heavy-tailed behavior and the impact of randomized restarts. Specifically,
we make the following contributions:

1. We show that for goal-oriented neural sequence problems, complete anytime
beam search exhibits a fat- or heavy-tailed behavior on ensembles of relaxed
problems, similar to the behavior observed for CSPs and SAT.

2. We consider a randomized variant of beam search that is based on noise injec-
tion to the inputs of the neural network and show that randomized complete
anytime beam search exhibits fat- or heavy-tailed behavior on ensembles of
multiple runs on a single instance.

3. Inspired by previous work on heavy-tailed behavior in combinatorial and
heuristic search problems, we introduce a randomized restarting variant of
complete anytime beam search and show that it outperforms the baseline by
solving some of the hardest problems faster.

4. We conduct extensive empirical evaluation and analyze the impact of differ-
ent parameters including the constrainedness of the goal criteria, the restart
policy, and the type of randomization.

2 Background

2.1 Beam Search for Goal-Oriented Neural Sequence Decoding

A neural sequence model learns a probability distribution over sequences by be-
ing trained to predict the probability of the next token in a sequence, p(yt|x; y1:t−1),
conditioned on the input x and the partial sequence y1:t−1 [5]. The total proba-
bility of a (partial) sequence y1:t follows from the chain rule of probability:

p(y1:t|x) = p(yt|x; y1:t−1) · p(y1:t−1) =

t∏
t′=1

p(yt′ |x; y1:t′−1). (1)

It is common to model p(yt|x; y1:t−1) using a Recurrent Neural Network [16],
where the input x and the partial sequence y1:t−1 we condition on are expressed

Randomized Restarting Beam Search in Neural Sequence Decoding 3

by a fixed length representation ht. This representation is updated each step us-
ing a non-linear function f : ht = f(ht−1, yt−1) with h0 being a representation of
the input x and y0 being a special token that represents the start of the sequence.
The conditional probability over the next token yt can then be computed using
the softmax function,

p(yt = vi|x; y1:t−1) =
exp(wiht)∑|V|
j=1 exp(wjht)

,

where V = {v1, v2, ...} is the set of all possible tokens and wi are model weights.

Beam search is a limited-width breadth-first search. In the context of se-
quence models, it is often used as an approximation to finding the (single) se-
quence y that maximizes Eq. (1), or as a way to obtain a set of high-probability
sequences from the model. At the first step, t = 0, we only have one (empty)
sequence. At each of the following steps, t ≥ 1, we consider all one-token ex-
tensions of the beam sequences from step t − 1 and retain (at most) B partial
sequences with the highest probability. In the last step, we return the B highest
probability complete sequences, which we assume to be of equal length (as they
can be padded). B is called the beam width (or, alternatively, beam size) and
the probabilities of (partial) sequences are estimated by the neural network.

In goal-oriented neural sequence decoding, we are not looking for the most-
likely sequence according to the learned model. Instead, we are looking for a
solution that satisfies the goal criteria. In such scenarios, we use beam search to
generate a set of B high-quality candidates that are then evaluated to determine
if they satisfy the goal criteria. Once a candidate satisfies the goal criteria, it is
returned as the solution of the beam search.

Previous work on goal-oriented neural sequence decoding considered a variant
of the complete anytime beam search (CAB) [42] in which failing to find a
satisfying solution results in doubling the beam width and re-running the beam
search [43, 2, 25]. As the beam width increases, a larger portion of the hypotheses
space is explored and the search is guaranteed to find a solution, if one exists.
Algorithm 1 shows pseudo-code for this variant of complete anytime beam search.

Algorithm 1 Complete Anytime Beam Search

function CAB(goalCriteria)
beamWidth← 1
while not solved do

candidates← BeamSearch(beamWidth)
for cand ∈ candidates do

if Satisfy(cand, goalCriteria) then
return cand

beamWidth← 2 · beamWidth

4 E. Cohen and J. C. Beck

2.2 Heavy-tailed Behavior and Randomization in Heuristic and
Combinatorial Search Algorithms

Analyzing the empirical distribution of search effort over an ensemble of prob-
lems, rather than just the mean or median, can often help design better search
algorithms. Previous work has found fat- or heavy-tailed behavior in the distri-
bution of search effort for different search algorithms on NP-complete problems,
e.g., the number of backtracks in CSPs, on ensembles of random problems [13,
12, 7]. This behavior tends to appear in ensembles of relaxed problems, i.e., prob-
lems with high density of solutions. In these ensembles, the median search effort
is low, however the hardest instances can require orders-of-magnitude higher
effort. Interestingly, Gomes et al. [12] also found heavy-tailed behavior in the
search effort distribution of a randomized search procedure on a single instance,
suggesting that some of the hardest problems can be solved easily by minor
changes in the search procedure. This result has motivated significant work on
reducing heavy-tailed behavior using randomized restarts, portfolios, etc. [11].

Fat- and heavy-tailed distributions have a long tail containing a considerable
concentration of mass. Formally, a random variable X is considered heavy-tailed
if it has a Pareto-like decay of its tail above some threshold xl, i.e., there exists
some xl>0, c>0, α>0 such that P [X > x] = cx−α for x > xl [32]. An approx-
imately linear behavior over several orders of magnitude in the log-log plot of
1− CDF (x) (i.e., the survival function) is a clear sign of heavy-tailed behavior
with the slope providing an estimate of the stability index α [14].

10−2 10−1 100 101 102 103 104 105 106

x

10−3

10−2

10−1

100

1-
CD

F
(S

ur
vi

va
l)

Sym. Walk
N(2,1)
N(2,100000)

Fig. 1: Heavy and non-heavy tailed behavior [14].

To demonstrate heavy-tailed behavior, we present an example from Gomes
et al. [14]. Figure 1 shows the log-log plot of 1 − CDF (x) for two normally
distributed random variables with a mean of 2 and different standard deviation.
It also shows a random variable that represents the number of steps it takes for a
symmetric random walk on a line to get back to the starting point. The normal
distributions exhibit a fast-decay behavior, while the random walk exhibits a
clear heavy-tailed behavior indicated by the approximately linear behavior on
the log-log plot.

Randomized Restarting Beam Search in Neural Sequence Decoding 5

3 Goal-Oriented Benchmark Problems

In our analysis, we use a set of four goal-oriented benchmark problems. Following
is a description of each problem and its goal criteria.

3.1 Combinatorial Routing Problems

Several recent works have demonstrated the potential of using deep learning to
solve combinatorial optimzation problems [23, 22, 9, 30]. A recent work [23] pro-
posed an architecture based on attention layers and trained using REINFORCE
[41] to generate solutions for combinatorial routing problems that minimize the
solution cost. The authors use this architecture to generate solutions to the Trav-
elling Salesman Problem (TSP), two variants of the Vehicle Routing Problem
(VRP), the Orienteering Problem (OP), and the Prize Collecting TSP (PCTSP)
and show it outperforms a wide range of baselines. Decoding can be done using
sampling or beam search, and the best solution among the generated candidates
is returned. To eliminate infeasible solutions, e.g., revisiting the same node in
TSP, the authors use masking (setting the log-probabilities of infeasible solu-
tions to −∞). In our work, we use Kool et al.’s [23] architecture1 and problem
instances and run experiments on two combinatorial routing problems:

– The Travelling Salesman Problem (TSP) consists of constructing a tour that
starts at the depot, visits all nodes exactly once, and returns to the depot.

– The Capacitated Vehicle Routing Problem (CVRP) consists of constructing
multiple routes, each starting and ending at the depot, such that the total
demand of the nodes in each route does not exceed the vehicle capacity.

The cost of solution in both problems is the sum of pairwise Euclidean distances
of consecutive nodes in the solution path (including the depot).

Goal Criteria. As the current model is trained to minimize the solution
cost, we consider the goal-oriented problem of finding a solution with a bounded
optimality gap. Assuming a minimization problem with cost function C, our

goal criteria for a candidate solution x is C(x)−C(x
∗)

C(x∗) ≤ ε, where x∗ is an optimal

solution and ε controls the constrainedness of problems (increasing ε leads to
a higher expected number of feasible solutions).2 Following Kool et al. [23], we
compute optimal solutions for TSP using Concorde [1] and approximate optimal
solutions for CVRP using KLH3 [17] (Kool et al. [23] note CVRP problems with
more than 20 location were intractable for an exact solver).

1 Obtained from github.com/wouterkool/attention-learn-to-route.
2 This notion of constrainedness matches the notion of resource-constrainedness pre-

viously used to study planning in resource-constrained environments [29].

6 E. Cohen and J. C. Beck

3.2 Visual Program Synthesis

Several recent works have considered the problem of synthesizing programs for
images using deep neural networks [33, 36, 27]. These networks take an image as
input and output a program that generates the image. The quality of a candidate
program can be evaluated using a metric of projection loss, typically a distance
measure between the generated image and the input. In our experiments, we use
CSGNet3 [33], a neural architecture that takes in a 2D or 3D shape image and
outputs a program to generate the shape using instructions based on constructive
solid geometry (CSG). CSGNet is trained using a combination of supervised
learning and reinforcement learning (using REINFORCE [41]) to minimize the
visual distance between the generated solutions and the input images.

Goal Criteria. Our goal criteria is based on Chamfer Distance (CD), a mea-
sure of visual similarity between two shapes that is used by Sharma et al. [33]
to evaluate CSGNet. Let CD(a, b) denote the (non-negative) Chamfer distance
between shape a and shape b. We define our goal criteria for a candidate solution
x to be CD(x, i) ≤ γ where i is the input shape and the parameter γ controls
the constrainedness of problems.

3.3 Conditional Molecular Design

A recent line of work focuses on generating molecules with specific properties [20,
19, 18], such as the molecular weight, the Wildman-Crippen partition coefficient
[40], and a quantitative estimation of drug-likeness (QED) [3]. Kang and Cho
[20] proposed a semi-supervised variational autoencoder that is trained on a set
of existing molecules from the ZINC dataset [35] with only a partial annotation
(i.e., only a fraction of the molecules are labelled with the property values).4

The model represents a generative process in which the input molecule x
is generated from the distribution p(x|z, y) that is conditioned on the molecule
properties y and a latent variable z. The molecules are represented using SMILES
strings [39] and are generated character-by-character. For the conditional gen-
eration of molecules with a specific property, we sample z from its prior and y
from its prior conditioned on the specific property. A molecule representation x̂
is obtained from y and z using the decoder’s conditional probability p(x|y, z),

x̂ = arg max p(x|y, z), (2)

where Eq. (2) is approximated by a beam search.

Goal Criteria. We focus on the QED property [3], a measure of drug-likeness
in the range [0, 1] that is based on desirability functions for several molecu-
lar properties. We compute QED using RDKit [26] and evaluate the generated

3 Obtained from github.com/Hippogriff/CSGNet.
4 Obtained from github.com/nyu-dl/conditional-molecular-design-ssvae.

Randomized Restarting Beam Search in Neural Sequence Decoding 7

0.00 0.02 0.04 0.06 0.08 0.10
Optimality Gap

0

20

40

60

80
Co

un
ts

(a) Histogram of solution quality.

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

Un
so

lv
ed

 P
ro

bl
em

s

ε = 0.04
ε = 0.05
ε = 0.06

(b) Distribution of beam widths.

Fig. 2: TSP (100 nodes): Results for 500 random instances.

molecules based on the absolute difference between their QED and the desired
QED. Formally, we define our goal criteria for a candidate solution x to be
|QED(x) − q| ≤ ρ where q is the desired value of QED and the parameter ρ
represents a bound on the deviation from the desired QED value and controls
the constrainedness of the criteria.

4 Fat- and Heavy-tailed Behavior in Goal-Oriented
Neural Sequence Decoding

In this section we demonstrate the existence of heavy-tailed behavior in goal-
oriented neural sequence decoding. Due to space, we only present results for
one benchmark problem, the Travelling Salesman Problem (TSP), however in
Appendix A, we present similar results for the other three benchmarks.5

We consider a collection of 500 randomly generated TSP problem instances
with 100 nodes solved using beam search with a beam width of 10. Figure 2a

shows the distribution of solution quality presented as optimality gap (C(x)−C(x
∗)

C(x∗))

to match our goal criteria. The center of the distribution is around 0.03 with
the mean (marked in a dashed line) at approximately 0.034. However, there is a
small number of problems for which the optimality gap can be much higher (up
to approximately 0.1).

Next, we consider the case of solving the goal-oriented problem where solu-
tions must satisfy a bound on the optimality gap denoted as ε (as discussed in
Section 3.1). We use complete anytime beam search (Algorithm 1) to solve the
problems with the given bound as goal criteria. We start with a beam width of
1, and double the beam width in each iteration if no solution that satisfies the
goal criteria is found. We record the beam width for which a satisfying solution
was found representing the required search effort.

Figure 2b shows the search effort distribution for three different goal criteria
ε = 0.04, ε = 0.05, ε = 0.06. The y-axis represents the number of unsolved

5 All appendices appear in tidel.mie.utoronto.ca/pubs/rr-beam-appendix.pdf.

8 E. Cohen and J. C. Beck

problems in log-scale, while the x axis represents the search effort (i.e., beam
width) in discrete log2-scale (i.e., in steps of 2i, i = 0, 1, ...) to match the behavior
of the complete anytime beam search. We artificially add the step 0 (i.e., no
search effort) to denote the total number of problems. For ε = 0.05 and ε = 0.06,
there is a clear heavy-tailed behavior with a very low median (beam width of 1)
and a slow decay of the tail over multiple orders of magnitude. In fact, not all
problems were solved for the maximum beam width of 32, 768. Note that when
ε = 0.05, 332 of the 500 problems are solved with a beam width of 1, while five
problems could not be solved for a beam width of 32, 768. For a more constrained
goal criteria of ε = 0.04, we still observe a fat-tailed behavior, however we see
a noticeable increase in the difficulty of problems and the number of problems
that could not be solve in the search effort limits is significantly higher. We could
not analyze more constrained goal criteria due to the high computational cost,
however we hypothesize that problems will become significantly harder and the
heavy-tailed behavior will reduce, consistent with previous work [12, 7].

The above results suggest that goal-oriented beam search exhibits a heavy-
tailed behavior in ensembles of random problems, similar to the one observed for
other combinatorial and heuristic search algorithms. In these algorithms, much
of the large variability in the search effort for ensembles of random problems was
found to be associated with the algorithm, rather than the problem instances
[12]. To isolate the variability of the search algorithm, in the next section we an-
alyze the search effort distribution of a randomized variant of complete anytime
beam seach on a single instance.

4.1 Fat- and Heavy-tailed Behavior on a Single Instance

In order to introduce randomization into beam search decoding of neural se-
quence models, we inject random noise in the inputs of the neural network that
is being decoded using beam search. Injecting random noise in the inputs of a
neural network is a known technique in the training of neural networks in order
to improve their robustness [16].6 Note that the noise injected to the network’s
inputs does not impact the goal test that is still based on the original input, i.e.,
the noise does not change the problem we are solving. The sole purpose of the
noise is to introduce some randomness in the network’s predicted probabilities
and, as a result, in the beam search decoding.

For TSP instances, the inputs to the network consist of the locations of all
nodes, expressed as two-dimensional coordinates normalized in the range [0, 1].
We inject noise to the network inputs by adding random noise drawn from a
uniform distribution, U(−0.01, 0.01). Figure 3a shows the distribution of search
effort for 500 randomized runs (i.e., runs with different random injected noise) for
different values of ε. We can see a fat-tailed behavior that indicates a significant

6 Note that we are not aware of any direct connection between noise injection in
training to increase robustness and our use of noise injection in testing to introduce
randomness in the decoding process. However, it might be interesting to consider
whether there is some underlying connection.

Randomized Restarting Beam Search in Neural Sequence Decoding 9

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

Un
so

lv
ed

 P
ro

bl
em

s

ε = 0.06
ε = 0.065
ε = 0.07

(a) TSP (100 nodes): Distribution
of beam widths for 500 randomized
runs on a single instance.

CVRP Multiplicative uniform noise
on locations and demand

Visual Prog.
Synthesis

We flip, with small probabil-
ity, pixels close to the edges
of the shape

Molecule
Generation

Additive Gaussian noise on
random seeds

(b) Problem-specific noise injection to net-
work’s inputs. See Appendix B for detailed
description.

variability is associated with the search method. Note that the results in Figure
3a were observed for a single, arbitrarily chosen instance. Experiments with other
instances also yielded fat- and heavy-heavy tailed behavior, however we found
large differences among instances: different instances exhibited different levels of
fat- and heavy-tailedness for different levels of goal criteria constrainedness.

Table 3b briefly summarizes the problem-specific noise injection used for the
other three benchmarks. A detailed description of the random noise injection
and experimental results for these benchmarks appear in Appendix B.

The above results indicate that significant variability can be associated with
the search algorithm itself. Previous works have exploited the large variability
associated with the search algorithm to improve problem solving performance
by introducing randomized restarts (see Section 2.2). In the next section, we
propose a complete variant of beam search that incorporates randomized restarts
and evaluate its impact on the distribution of search effort.

5 Randomized Restarting Neural-Guided Beam Search
for Goal-Oriented Combinatorial Problems

We present randomized-restarting complete anytime beam search (RR-CAB), a
variant of complete anytime beam search (Algorithm 1) that uses randomized
beam search and a custom restart strategy. Algorithm 2 presents the pseudo-
code of RR-CAB, where the goal criteria and the restart strategy are passed
as parameters. In each iteration the algorithm runs a randomized beam search
(using a random seed) with a beam width that is determined by the restart
strategy. The algorithm returns when one of the candidate solutions generated
by the beam search satisfies the goal criteria.

In order to randomize the results of a beam search, we consider the following
two options.

Beam search with injected input noise. Following the methodology in
Section 4.1, we inject random noise to the inputs of the neural networks.

10 E. Cohen and J. C. Beck

Algorithm 2 Randomized Complete Beam Search

function RR-CAB(goalCriteria, restartStrategy)
iteration← 1
while not solved do

beamWidth← restartStrategy(iteration)
seed← RandomSeed()
candidates← RandomizedBeamSearch(beamWidth, seed)
for cand ∈ candidates do

if Satisfy(cand, goalCriteria) then
return cand

iteration← iteration + 1

Stochastic beam search (SBS) [24]. SBS is a stochastic variant of beam
search that samples k sequences without replacement from a sequence model
and therefore produces randomized output. The level of diversity in SBS is con-
trolled by the softmax temperature that modifies the conditional probability
of each token during the decoding process. The probability of token yt condi-
tioned on the partial sequence y1:t−1, is defined as a softmax normalization of
the unnormallized log-probabilities, φ(yt|x; y1:t−1), with a temperature T [24]:

p(yt|x; y1:t−1) =
exp(φ(yt|x; y1:t−1)/T)∑
y′ exp(φ(y′|x; y1:t−1)/T)

.

The temperature T > 0 and higher T leads to higher diversity. The default tem-
perature is T = 1, where the predicted probabilities are not modified. In our
experiments, we considered two temperature configurations: the default temper-
ature T = 1.0 and a higher diversity temperature T = 1.5.

Note that we could not perform the analysis in Section 4.1 using SBS since,
unlike input noise injection, we cannot guarantee that repeated runs with differ-
ent beam widths will maintain similar conditional probability distributions (see
discussion in Section 7). However, in RR-CAB, we are not interested in main-
taining the same probability distributions across runs and therefore SBS can be
used as a randomized variant of beam search.

5.1 Restart Strategies

A restart strategy is a sequence (t1, t2, t3, ...) of run lengths after which the search
restarts. In goal-oriented neural sequence decoding, the sequence length is either
fixed (e.g., in TSP and CVRP) or predicted by the network (e.g., in visual pro-
gram synthesis or conditional molecule generation). If we want to allocate more
search effort, we simply extend the beam width thus allowing more sequences to
be tested against the goal criteria.

In each iteration, we run a beam search with a given beam width until a
solution if found. In deterministic complete anytime beam search (Algorithm 1),
the beam width is increased in each iteration. In RR-CAB, running a search with
the same beam width multiple times leads to different results and can sometimes

Randomized Restarting Beam Search in Neural Sequence Decoding 11

be more efficient than increasing the beam width. We therefore employ a custom
restart strategy to determine the beam width in each iteration. We consider two
popular restart strategies from the literature.

Fixed-Cutoff Strategy. Fixed-cutoff strategies [15] are simple strategies of the
form (tc, tc, ...) where tc is a constant. This strategy is often not robust enough:
a small tc value might not be sufficient to solve all problems, while a larger value
will be computationally inefficient.

Geometric Strategy. Geometric strategies [38] take the form (r0, r1, r2, r3,)
where the geometric factor r controls how fast the cutoff values grow. When
r = 2 and randomization is not applied, this strategy has a similar behavior to
the complete beam search procedure described in Section 2.1.

6 Empirical Results

In this section, we present empirical analysis of the performance of RR-CAB
on the goal-oriented benchmarks. We compare results for the two randomiza-
tion techniques (input noise injection and SBS) and the two restart strategies
(geometric and fixed-cutoff) described in Section 5.

6.1 Results for the Travelling Salesman Problem (TSP)

We consider the same collection of 500 randomly generated TSP problems with
100 nodes used in Section 4. We analyze the results of RR-CAB with random
noise injection and the two restart strategies: geometric with r = 2 and fixed-
cutoff with beam width B = 8. In order to directly compare the performance
of a fixed-cutoff strategy and a geometric strategy, we organize the results of
fixed-cutoffs beam search in batches of multiple beam searches with a constant
beam width, such that they sum to the beam width of the corresponding beam
search with geometric restarts. For example, we present results for a geometric
restart policy for the beam width thresholds 1, 2, 4, 8, 16, 32, etc. In comparison,
for fixed-cutoff restarts, the result for a threshold of 16 represents a batch of two
beam searches, each with a constant beam width of 8.

Figure 4 compares the distribution of search effort of standard CAB and RR-
CAB in the configurations described above. In general, the randomized variants
tend to under perform for the very small beam width: problems that were easily
solved without randomization do not benefit, and even suffer, from adding ran-
domization. In particular, since we use a beam width B = 8 for the fixed-cutoff
strategy, solutions are only found starting from a threshold of 8. However, as
we increased the search effort, we see that the randomized variants outperform
standard CAB. For the more constrained problems, we see that the fixed-cutoff
strategy significantly outperforms the geometric restarts strategy. This could
be due the use of relatively large r chosen for fair comparison with CAB. For
ε = 0.6, geometric restarts seem to have similar performance to fixed cut-offs.

12 E. Cohen and J. C. Beck

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

Un
so

lv
ed

 P
ro

bl
em

s

ε = 0.4

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

ε = 0.5

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

ε = 0.6

CAB RR-CAB (Geom.) RR-CAB (Fixed)

Fig. 4: TSP (100 nodes): Distribution of beam widths for 500 random instance
for RR-CAB with input noise injection.

The inherent differences between the two restart strategies result in an ap-
parent inferiority of fixed-cutoffs in smaller beam widths: in addition to having
no solutions for beam widths smaller than 8, even for a beam width of 8 it
underperforms since RR-CAB with geometric restarts has already made three
randomized runs (for beam width 1, 2, and 4) that can lead to solutions. In prac-
tice, this is easily mitigated by using a restart policy that starts with geometric
restarts before changing to fixed-cutoffs: 1, 2, 4, 8, 8, ... To maintain simple and
clear comparison we do not adopt this enhancement in our evaluation.

Figure 5 shows similar comparison to Figure 4 where the beam search is
randomized using SBS with a softmax temperature of T = 1 (top) and T = 1.5
(bottom). Again, we see that introducing randomization to CAB leads to better
performance. Using softmax temperature of T = 1.5 exhibits better performance
and manages to solve more hard instances faster. Interestingly, for SBS we find
that geometric restarts are approximately as good as fixed-cutoff strategy.

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

Un
so

lv
ed

 P
ro

bl
em

s

ε = 0.4

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

ε = 0.5

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

ε = 0.6

CAB RR-CAB (Geom.) RR-CAB (Fixed)

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

Un
so

lv
ed

 P
ro

bl
em

s

ε = 0.4

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

ε = 0.5

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

ε = 0.6

CAB RR-CAB (Geom.) RR-CAB (Fixed)

Fig. 5: TSP (100 nodes): Distribution of beam widths for 500 random instances
for RR-CAB with SBS using T = 1.0 (top) and T = 1.5 (bottom).

Randomized Restarting Beam Search in Neural Sequence Decoding 13

The above results show that introducing randomization in the search can
help solve some of the hardest instances faster. Consistent with previous work
on CSPs and SAT, the impact on more relaxed instances tends to be more
significant [12]. However, note that we cannot analyze the impact of RR-CAB
on more constrained instances due to computational limitations and even for
ε = 0.4, using randomization seems to have positive impact on the performance.

6.2 Results for the Other Benchmarks

Figure 6, Figure 7, and Figure 8 show the results for CVRP, visual program syn-
thesis and conditional molecule generation, respectively. For CVRP and molecule
generation, we found that, similar to TSP, a temperature of T = 1.5 yields bet-
ter results when using SBS. In visual program synthesis, higher temperature did
not lead to better results and we present results for T = 1.

In the visual program synthesis problem, the number of potential expansions
of each of the beam candidates is much higher than the other problems (approx-
imately 400, compared to 36-100 in the other problems). Therefore, when using
SBS for this problem, we only consider the top 50 extensions of each candidate.
Practically, it is unlikely that an extension of partial hypothesis that is not in
the most likely 50 extensions will lead to a hypothesis that will be returned
by the beam search. However, when applying randomization it may have the
undesired outcome of promoting very low-ranked hypotheses and we therefore
consider only the top 50 hypotheses.

Consistent with our results for TSP, we find that RR-CAB solves some the
hardest problems faster and outperforms the baseline. As in TSP, when using
random noise injection, the fixed cut-offs strategy tends to outperforms the ge-
ometric strategy.

7 Discussion and Future Work

Our empirical results suggest that RR-CAB exploits the variability associated
with the search procedure and significantly outperforms the baseline by solving
some of the hardest problems faster. In this section, we discuss different aspects
related to RR-CAB and directions for future work.

Randomization Techniques. We consider two techniques that can randomize
the results of a beam search: input noise injection and SBS. While both tech-
niques introduce randomization to the predicted probabilities, there are some
important differences between them. A key limitation of the noise injection tech-
nique is that it needs to be tailored for each problem. In our work, we had to
manually try different randomization approaches in order to find one that would
generate sufficient variability on a single instance without making the problem
significantly harder across different runs. Alternatively, an inherent limitation of
SBS is that we are unable to guaranteed that repeated runs with different beam

14 E. Cohen and J. C. Beck

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

Un
so

lv
ed

 P
ro

bl
em

s

ε = 0.4

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

ε = 0.5

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

ε = 0.6

CAB RR-CAB (Geom.) RR-CAB (Fixed)

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

Un
so

lv
ed

 P
ro

bl
em

s

ε = 0.4

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

ε = 0.5

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

ε = 0.6

CAB RR-CAB (Geom.) RR-CAB (Fixed)

Fig. 6: CVRP (50 nodes): RR-CAB with noise injection (top), SBS (bottom).

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

Un
so

lv
ed

 P
ro

bl
em

s

γ = 1.55

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

γ = 1.65

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

γ = 1.75

CAB RR-CAB (Geom.) RR-CAB (Fixed)

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

Un
so

lv
ed

 P
ro

bl
em

s

γ = 1.55

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

γ = 1.65

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

γ = 1.75

CAB RR-CAB (Geom.) RR-CAB (Fixed)

Fig. 7: Visual Program Synthesis: RR-CAB with noise injection (top), SBS (bot-
tom).

widths will maintain similar conditional probability distributions. The implica-
tion of this limitation is that we cannot analyze the search effort distribution of
SBS on a single problem instance, as we do for beam search with noise injec-
tion in Section 4.1. As future work, it is interesting to investigate other generic
ways of introducing noise into the decoding process. Potential directions include
applying noise to hidden units [31, 4] or using dropout [34] in inference.

Restart Strategies and Parallelization. We focused on two well known
restart strategies: fixed-cutoff and geometric restarts. Previous works in combi-
natorial optimization has considered more advanced restart strategies such as
Luby’s universal strategy [28] and dynamic and learning restart strategies (e.g.,
[21]). Investigating ways to incorporate such strategies in RR-CAB is an inter-
esting direction for future work.

Randomized Restarting Beam Search in Neural Sequence Decoding 15

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

Un
so

lv
ed

 P
ro

bl
em

s

ρ = 0.01

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

ρ = 0.05

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

ρ = 0.07

CAB RR-CAB (Geom.) RR-CAB (Fixed)

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

Un
so

lv
ed

 P
ro

bl
em

s

ρ = 0.01

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

ρ = 0.05

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

ρ = 0.07

CAB RR-CAB (Geom.) RR-CAB (Fixed)

Fig. 8: Molecule Generation: RR-CAB with noise injection (top), SBS (bottom).

A key challenge in designing restart strategies for beam search is their ability
to be parallelized on a GPU. In our experiments, we present results for the fixed-
cutoff restart strategy by batching together beam searches and comparing these
results to the corresponding final beam width of a geometric strategy. As we
start investigating more complicated restart strategies, such as Luby’s universal
strategy [28], we will not be able to batch the results together to maintain
comparability. Furthermore, even in our comparison, it is not clear that a set of
four beam search instances, each with a beam width of 8 and executed together
on a GPU, is comparable to one beam search with a beam width of 32. Our work,
therefore, raises the need for well-defined evaluation metrics that can be used to
compare the results of parallelized complete beam searches with different restart
strategies, even when it not possible to batch together runs as we currently do.

8 Conclusion

In this work we show that fat- and heavy-tailed behavior, that was previously ob-
served for several combinatorial and heuristic search algorithms, can be observed
for complete anytime beam search in goal-oriented neural sequence decoding. We
perform an extensive empirical analysis, across four goal-oriented benchmarks,
and find fat- and heavy-tailed behavior in the distribution of search efforts of
beam search. Inspired by previous work on combinatorial and heuristic search,
we propose a randomized restarting variant of complete anytime beam search,
RR-CAB, and study the impact of different randomization techniques and restart
strategies. Our experiments show that RR-CAB solves some of the hardest prob-
lems faster and outperforms the baseline. Our work raises interesting questions
on the impact of parallelization on the development and evaluation of random-
ized restarting beam search algorithms and highlights directions for future work.

16 E. Cohen and J. C. Beck

Acknowledgements

We thank the anonymous reviewers for their valuable feedback. This work was
supported by the Natural Sciences and Engineering Research Council of Canada.

References

1. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP solver (2006)

2. Balog, M., Gaunt, A., Brockschmidt, M., Nowozin, S., Tarlow, D.: Deepcoder:
Learning to write programs. In: International Conference on Learning Representa-
tions (ICLR) (2017)

3. Bickerton, G.R., Paolini, G.V., Besnard, J., Muresan, S., Hopkins, A.L.: Quanti-
fying the chemical beauty of drugs. Nature chemistry 4(2), 90 (2012)

4. Cho, K.: Noisy parallel approximate decoding for conditional recurrent language
model. arXiv preprint arXiv:1605.03835 (2016)

5. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation. In: EMNLP (2014)

6. Chopra, S., Auli, M., Rush, A.M.: Abstractive sentence summarization with at-
tentive recurrent neural networks. In: North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL-HLT). pp.
93–98 (2016)

7. Cohen, E., Beck, J.C.: Fat- and heavy-tailed behavior in satisficing planning. In:
AAAI Conference on Artificial Intelligence (AAAI). pp. 6136–6143 (2018)

8. Cohen, E., Beck, J.C.: Local minima, heavy tails, and search effort for GBFS. In:
International Joint Conferences on Artificial Intelligence (IJCAI). pp. 4708–4714
(2018)

9. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.M.: Learn-
ing heuristics for the tsp by policy gradient. In: International Conference on the
Integration of Constraint Programming, Artificial Intelligence, and Operations Re-
search (CPAIOR). pp. 170–181 (2018)

10. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional
sequence to sequence learning. In: International Conference on Machine Learning
(ICML). pp. 1243–1252 (2017)

11. Gomes, C.: Randomized backtrack search. In: Milano, M. (ed.) Constraint and
integer programming: Toward a unified methodology, pp. 233–291. Springer Science
& Business Media (2003)

12. Gomes, C.P., Fernández, C., Selman, B., Bessière, C.: Statistical regimes across
constrainedness regions. Constraints 10(4), 317–337 (2005)

13. Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial
search. In: International Conference on Principles and Practice of Constraint Pro-
gramming (CP). pp. 121–135. Springer (1997)

14. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in sat-
isfiability and constraint satisfaction problems. Journal of automated reasoning
24(1), 67–100 (2000)

15. Gomes, C.P., Selman, B., Kautz, H., et al.: Boosting combinatorial search through
randomization. National Conference on Artificial Intelligence (AAAI) 98, 431–437
(1998)

Randomized Restarting Beam Search in Neural Sequence Decoding 17

16. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016),
http://www.deeplearningbook.org

17. Helsgaun, K.: An extension of the lin-kernighan-helsgaun TSP solver for con-
strained traveling salesman and vehicle routing problems. Roskilde: Roskilde Uni-
versity (2017)

18. Jin, W., Barzilay, R., Jaakkola, T.: Junction tree variational autoencoder for molec-
ular graph generation. In: International Conference on Machine Learning (ICML).
pp. 2323–2332 (2018)

19. Jin, W., Yang, K., Barzilay, R., Jaakkola, T.: Learning multimodal graph-to-graph
translation for molecule optimization. In: International Conference on Learning
Representations (ICLR) (2018)

20. Kang, S., Cho, K.: Conditional molecular design with deep generative models.
Journal of chemical information and modeling 59(1), 43–52 (2018)

21. Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic restart policies.
National Conference on Artificial Intelligence (AAAI) pp. 674–681 (2002)

22. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial opti-
mization algorithms over graphs. In: Conference on Neural Information Processing
Systems (NeurIPS). pp. 6348–6358 (2017)

23. Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
In: International Conference on Learning Representations (ICLR) (2019)

24. Kool, W., Van Hoof, H., Welling, M.: Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without replacement. In: International
Conference on Machine Learning (ICML). pp. 3499–3508 (2019)

25. Lample, G., Charton, F.: Deep learning for symbolic mathematics. In: International
Conference on Learning Representations (2019)

26. Landrum, G.: Rdkit: Open-source cheminformatics, http://www.rdkit.org

27. Liu, Y., Wu, Z., Ritchie, D., Freeman, W.T., Tenenbaum, J.B., Wu, J.: Learn-
ing to describe scenes with programs. In: International Conference on Learning
Representations (ICLR) (2018)

28. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms.
Information Processing Letters 47(4), 173–180 (1993)

29. Nakhost, H., Hoffmann, J., Müller, M.: Resource-constrained planning: A monte
carlo random walk approach. In: International Conference on Automated Planning
and Scheduling (ICAPS) (2012)

30. Nazari, M., Oroojlooy, A., Snyder, L., Takác, M.: Reinforcement learning for solv-
ing the vehicle routing problem. In: Conference on Neural Information Processing
Systems (NeurIPS). pp. 9839–9849 (2018)

31. Poole, B., Sohl-Dickstein, J., Ganguli, S.: Analyzing noise in autoencoders and
deep networks. arXiv preprint arXiv:1406.1831 (2014)

32. Resnick, S.I.: Heavy-tail phenomena: probabilistic and statistical modeling.
Springer Science & Business Media (2007)

33. Sharma, G., Goyal, R., Liu, D., Kalogerakis, E., Maji, S.: Csgnet: Neural shape
parser for constructive solid geometry. In: Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 5515–5523 (2018)

34. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research 15(1), 1929–1958 (2014)

35. Sterling, T., Irwin, J.J.: Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling 55(11), 2324–2337 (2015)

18 E. Cohen and J. C. Beck

36. Tian, Y., Luo, A., Sun, X., Ellis, K., Freeman, W.T., Tenenbaum, J.B., Wu, J.:
Learning to infer and execute 3d shape programs. In: International Conference on
Learning Representations (ICLR) (2019)

37. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: Lessons learned
from the 2015 mscoco image captioning challenge. IEEE Transactions on Pattern
Analysis and Machine Intelligence 39(4), 652–663 (2017)

38. Walsh, T.: Search in a small world. In: International Joint Conference on Artificial
Intelligence (IJCAI). pp. 1172–1177 (1999)

39. Weininger, D.: Smiles, a chemical language and information system. 1. introduction
to methodology and encoding rules. Journal of chemical information and computer
sciences 28(1), 31–36 (1988)

40. Wildman, S.A., Crippen, G.M.: Prediction of physicochemical parameters by
atomic contributions. Journal of chemical information and computer sciences
39(5), 868–873 (1999)

41. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning 8(3-4), 229–256 (1992)

42. Zhang, W.: Complete anytime beam search. In: National Conference on Artificial
Intelligence (AAAI). pp. 425–430 (1998)

43. Zohar, A., Wolf, L.: Automatic program synthesis of long programs with a
learned garbage collector. In: Conference on Neural Information Processing Sys-
tems (NeurIPS). pp. 2094–2103 (2018)

