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Target Search on Road Networks with
Range-Constrained UAVs and Ground-Based

Mobile Recharging Vehicles
Kyle E. C. Booth, Chiara Piacentini, Sara Bernardini, and J. Christopher Beck

Abstract—We study a range-constrained variant of the multi-
UAV target search problem where commercially available UAVs
are used for target search in tandem with ground-based mobile
recharging vehicles (MRVs) that can travel, via the road network,
to meet up with and recharge a UAV. We propose a pipeline
for representing the problem on real-world road networks,
starting with a map of the road network and yielding a final
routing graph that permits UAVs to recharge via rendezvous
with MRVs. The problem is then solved using mixed-integer
linear programming (MILP) and constraint programming (CP).
We conduct a comprehensive simulation of our methods using
real-world road network data from Scotland. The assessment
investigates accumulated search reward compared to ideal and
worst-case scenarios and briefly explores the impact of UAV
speeds. Our empirical results indicate that CP is able to provide
better solutions than MILP, overall, and that the use of a fleet
of MRVs can improve the accumulated reward of the UAV fleet,
supporting their inclusion for surveillance tasks.

Index Terms—Aerial Systems, Surveillance Systems, Planning,
Scheduling and Coordination.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) have had impact
across a wide variety of industries, including logistics

[1], agriculture [2], and surveillance [3]. In the context of the
latter, the problem of searching for lost targets has a long
history, with theoretical studies dating back to the 1940s [4].
The search problem involves routing a fleet of surveying units
to try and find a moving target. Once the target has been found,
it can then be tracked; the work in this paper focuses solely
on the search phase of these operations.

While the existing literature surrounding UAV search and
track problems is extensive [3], [5], [6], [7], there is little
work that looks at the viability of real-world, large-scale
target search capabilities using range-constrained, commer-
cially available UAVs. Commercial UAVs have a considerably
shorter flight time than fixed-wing military-grade designs [8].
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For example, the DJI Matrice 200 has a maximum unloaded
flight time of roughly 38 minutes [9], whereas it is not
uncommon for military-grade designs to have flight times
far exceeding 10 hours [8]. As such, we study the range-
constrained multi-UAV target search problem based on com-
mercially available UAV specifications and the use of mobile
recharging vehicles (MRVs). The MRVs can travel, via the
road network associated with the search area, to meet up with
and recharge a UAV. Our investigation looks to identify the
viability of commercially available UAVs for search-phase
surveillance missions when utilized standalone, as well as
when deployed with an accompanying fleet of MRVs.

The contributions of this paper are as follows:
• We propose a pipeline for representing the problem over

real-world road networks, starting with a map of the road
network and yielding a final routing graph that permits
UAVs to recharge via rendezvous with MRVs.

• We model and solve the resulting graph representation
of the problem using both mixed-integer linear program-
ming (MILP) and constraint programming (CP), adopting
recent modeling techniques from the mathematical pro-
gramming literature.

• We conduct a simulation-based assessment of our meth-
ods using real-world road network data from Scotland.

The outline of this paper is as follows. Section II defines
the problem and Section III summarizes related work from
the literature. Section IV presents the pipeline used for rep-
resenting the problem over real-world road networks, while
Section V details the optimization models. Section VI details
experimental setup, results, and analysis, and Section VII
provides concluding remarks.

II. PROBLEM DEFINITION

The problem studied involves cooperatively routing a fleet
of homogeneous UAVs in pursuit of a mobile ground-based
agent (the “target”). In this problem variant, in contrast to
those presented before [3], [10], [11], each UAV is range-
constrained due to limited battery capacity. Ground-based
mobile recharge vehicles (MRVs) are available to provide the
UAVs the opportunity to replenish their battery.

At a high-level, the problem can be posed as follows:
given a mixed-fleet of UAVs and MRVs, a map of the road
network, and a set of locations likely to contain the target
at certain time intervals, determine a temporally feasible and
range-compliant search plan for the fleet that maximizes the
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accumulated expectation of discovering the target. The plan
consists of a sequence of search patterns, i.e., target search
maneuvers performed by the UAVs at specific locations and
times, as well as recharge actions involving both UAVs and
MRVs. For a UAV to initiate a recharge, it must be in the same
location as the MRV at the same time. In this work, we assume
that UAVs do not suffer from communication-related range
constraints, and that UAVs consume energy while traveling
and while conducting a search pattern. The remainder of this
section describes the components of the problem in detail. We
follow existing work for the majority of the problem definition
[3], [11] with minor changes to notation.

A. Environment and Target

Our problem considers an environment in two-dimensional
Euclidean space characterized by a road network attained from
the underlying map of the search area and defined by a series
of roads, each of which is a sequence of road segments with
varying speed limits (see Figure 1a). The road network is
then discretized into cells with side length δ to produce a
problem graph, G = (V,E) (Figure 1b-1c). Each vertex,
v ∈ V , in the problem graph represents a cell containing at
least one road segment, and each undirected edge, e ∈ E,
represents an adjacent pair of vertices connected by a road
segment in the underlying road network. Each edge, e ∈ E, is
labeled with its minimum and maximum travel speeds, smine

and smaxe , respectively. The target is characterized by a last
known position (LKP), v0, and a set of potential destinations,
d ∈ D ⊂ V . The process of going from the real-world road
network to the problem graph, G, with search patterns is
illustrated by Figures 1a to 1c.

B. Fleets

The fleet of homogeneous UAVs is denoted o ∈ O. UAVs
move between locations of interest at a constant speed of sO
in metres per second. Q denotes the total battery capacity of
a UAV (with 0 being the minimum capacity) and the per-
unit-distance energy consumption of each UAV is given by g.
Energy consumption for a search pattern is given by h.

The fleet of homogeneous mobile recharging vehicles
(MRVs) is denoted k ∈ K. MRVs move along the road
network subject to road segment speed limits. To recharge a
UAV, the UAV and an MRV must meet in the same location at
the same time, and this location must contain a road segment.
In this work, the recharging of a UAV is executed via a
constant time battery swap operation [12], where a UAV meets
an MRV and has its battery replaced resulting in a full charge.
This operation is assumed to take ξ seconds. MRVs are not
range constrained and can recharge a single UAV at a time.

C. Target Simulation and Search Patterns

Following previous work [10], the target’s motion through
the graph, G, is simulated with a standard Monte Carlo
simulation (MCS). To identify vertices in the graph that have
the highest probability of containing the target at various times,
the MCS uses a probability distribution defined over the set of

possible target destinations, D, shortest paths to each of those
destinations from the LKP, and estimated target travel speeds.
For each simulated time step, the MCS selects the vertices with
the highest probability of containing the target, and creates a
search pattern centered on them, with time windows assigned
to reflect when the target can plausibly be in these areas.
Additional detail regarding the MCS procedure can be found
in existing work [3], [10].

The search pattern itself is a pre-planned target search
maneuver performed by a UAV at a specific location. Previous
work has identified a series of standard manoeuvres that
the UAVs can perform, such as spirals and lawnmowers,
depending on the topology of the search pattern location.
Spiral manoeuvres are useful for covering more dense, urban
areas, while the lawnmower is more effective at searching over
elongated sections [11].

Each search pattern, c ∈ C, is characterized by a location,
processing time, time window, and reward. In Figure 1c, the
locations of possible search patterns are represented by grey
circles. The reward for a UAV performing a search pattern
is calculated following previous work [3] and represents a
measure that the target will be in the area of the search pattern
during its time window; a higher reward is better. The time at
which a UAV starts a search pattern must be within its time
window. The planning horizon, H , is the end of the latest time
window, such that no search pattern can be finished after this
time. A UAV must complete the full duration of an assigned
search pattern before starting another.

D. Solution

A solution to the problem is a sequence of search patterns
and recharging events assigned to each UAV and a traveling
route for each of the MRVs. UAV sequences must satisfy both
temporal and energy constraints, while MRV sequences must
only satisfy temporal constraints (i.e., we do not consider
the need for the ground vehicle to refuel). The objective of
the constrained optimization problem is to maximize the total
accumulated reward of the UAV fleet.

III. RELATED WORK

Research on UAV deployment has received considerable
interest, with early work introducing task assignment methods
[13] and the development of capabilities such as automated
battery swap-out systems for UAV recharging [12]. The impact
of commercial UAVs on logistics resulted in rapid algorithmic
development in the operations research and robotics literature
[1], [14], [15], [16]. A review of optimization approaches to
UAV routing is found in [17].

The routing of range-constrained UAVs while considering
recharging has also seen considerable interest. A number of
these works propose MILP models for the routing of UAV
fleets with fixed location recharge stations [18], [19], while
others propose heuristics and approximation algorithms [20].
Recent work incorporates recharging station placement into
MILP-based UAV routing models in the context of logistics
applications [21], [22]. In these works, the existence of pre-
defined potential facility locations results in smaller networks
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(a) Road network, last
known position, v0, and
destinations, d ∈ D.

  

(b) Discretization cells with
side length δ.

  

(c) Problem graph, G,
and search pattern loca-
tions.

  (d) Shortest paths be-
tween search patterns.
  (e) UAV and MRV rout-

ing graph, G.

Fig. 1. UAV and MRV routing graph construction pipeline.

that can be modeled using single-stage optimization. Con-
versely, our work, which looks to identify valuable locations
for UAV/MRV synchronization over large real-world road
networks requires significant discretization and filtering prior
to optimization, as proposed by our pipeline.

The most relevant recent work considers mobile recharging
stations similar our MRVs [23], [24]. In [23], they plan paths
for a single UAV and single MRV, traveling via a road network,
for surveillance operations. The authors propose a greedy
solution, in contrast to our joint multiple vehicle UAV/MRV
routing models, that first finds a path for the MRV and then
generates a path for the UAV. The recent work of [24] explores
joint routing of a range-constrained UAV and MRVs for site
visits. They investigate three problem variants: i) single UAV
routing with multiple stationary recharging locations, ii) single
UAV/single MRV joint routing, and iii) a single UAV/multiple
MRV problem that, for a given UAV path, looks to minimize
the number of MRVs used. Each of these problems is similar
to ours, though we note that [24] allows the UAV to be
transported by the ground vehicle, whereas we do not. Further
differences between this work and our own: it does not start
from a road network as input, it considers a single UAV, it does
not consider time windows for site visits, and the underlying
structure is a traveling salesman problem as opposed to the
orienteering problem [25] structure in our work.

IV. ROUTING GRAPH CONSTRUCTION

The problem graph, G, which is used to generate search
pattern candidates, is too large to use directly in a monolithic
optimization model. As such, following existing work in
electric vehicle routing [26], [27], we define a routing graph
to facilitate the development of mathematical models for the
problem. Vertices in the routing graph represent locations of
interest and arcs represent travel segments between them.

From the discretized problem graph, G (Figure 1c), we
generate a routing graph, G = (V0,N+1, E), where V0,N+1 is
the set of N + 2 vertices that UAVs/MRVs can possibly visit
(N is the number of non-depot vertices), and E the set of edges
connecting them. We let v0, the vertex representing target LKP,
represent the start depot for all vehicles. We let vN+1 represent
the end depot for all vehicles with zero travel distance to
all other vertices in G; this vertex is simply introduced for
modeling purposes. The set of vertices representing possible
instances of search patterns is denoted by VC . The location,

Algorithm 1 Construct recharge vertex set, VF

Input: Problem graph, G = (V,E), filtering parameter, φ
Output: VF

V+ ← ∅
for (vi, vj) ∈ VC × VC : (t−i + pi +

∆Euc
ij

sO
) ≤ t+j do

V+∪ SHORTESTPATHNODESFILTERED(vi, vj , G, φ)
end for
VF ← MODIFIEDHITTINGSET(V+)
return VF

processing time, time window, and reward associated with
a particular search pattern instance, vi ∈ VC , are given by
`i, pi, [t−i , t

+
i ], and ri, respectively. We let ∆Euc

ij represent
the Euclidean distance between vertices vi and vj , and ∆SP

ij

represent the shortest path MRV travel time between vi and vj ,
following the road network and conforming to speed limits.

In the non-range-constrained variant of the problem (i.e.,
without MRVs), the final routing graph would simply be
defined over the depot nodes, {v0, vN+1}, and VC . However,
in the range-constrained variant, the graph must be augmented
with vertices allowing opportunities for UAVs to meet MRVs
to recharge. We let the set of these recharge vertices be
represented by VF . Constructing the set of recharge vertices,
VF , must be done carefully to avoid dramatically increasing
the size of the graph. The procedure we use for accomplishing
this is detailed in Algorithm 1.

For each pair of search pattern vertices that can feasibly
be executed by the same UAV, the function SHORTEST-
PATHNODESFILTERED computes the shortest path through the
problem graph, G, using Dijkstra’s algorithm; the edge weights
in this case represent the minimum travel time (dictated by
road segment speed limits) between the two search pattern
locations. The algorithm then returns the nodes involved in the
path. To reduce the number of nodes considered, the final step
of this function is to filter the set of returned nodes according
to filtering parameter φ, which ensures nodes from a given
path added to V+ are separated by a distance of at least φ.
The path is traversed, and a node from the unfiltered set is
selected every φ metres. For each pair of search patterns, only
vertices that have not been seen before are added to V+.

As a final vertex selection step, MODIFIEDHITTINGSET
takes as input the set of filtered shortest path vertices, V+, and
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solves the integer program (IP) detailed by Eqns. (1) through
(6), similar to a previous approach based on geometric hitting
sets [23]. The solution to the IP selects the set VF ⊆ V+ of
recharge vertices. Variable αi is 1 if vertex vi is selected, while
βij is 1 if vertex vi is assigned to selected vertex vj . ∆Euc

ij

is the euclidean distance between vertices vi and vj , and R is
the maximum permissible distance between a selected vertex
and a vertex assigned to it. We use the shorthand i ∈ V to
indicate vertex vi ∈ V in the remainder of the paper.

min
∑
i∈V+

αi (1)

subject to:
∑
j∈V+

βij = 1 ∀i ∈ V+ (2)

∆
Euc
ij βij ≤ Rαj ∀i, j ∈ V+ (3)

αi = 1 ∀i ∈ V+ | i ∈ VC (4)

αi ∈ {0, 1} ∀i ∈ V+ (5)

βij ∈ {0, 1} ∀i, j ∈ V+ (6)

The IP model finds the minimum number of selected vertices
subject to constraints. Constraint (2) ensures each vertex is
assigned to a selected vertex. Constraint (3) dictates that a
vertex can only be assigned to a selected vertex if it is less
than R from the selected vertex. Constraint (4) ensures that
vertices coinciding with search pattern locations are always
selected, while the remaining constraints dictate variable do-
mains. Selected vertices vi with αi = 1 in the optimal solution
to the IP are added to VF .

The final routing graph, G = (V0,N+1, E), consists of
vertices V0,N+1 = {v0, vN+1}∪VC∪VF . The set of non-depot
vertices is defined as V = VC∪VF . Indices are used to specify
sets that contain instances of the depot, e.g., V0 = {v0} ∪ V ,
VN+1 = V ∪ {vN+1}, and VF0 = {v0} ∪ VF . The edge set is
defined as E = {(i, j) : i ∈ V0, j ∈ VN+1, i 6= j}.

V. TARGET SEARCH OPTIMIZATION MODELS

In this section, we present both MILP and CP models for
solving the UAV and MRV routing problem over the generated
routing graph, G. Recall that VC are the vertices pertaining to
search pattern executions and VF those that pertain to possible
recharge opportunities.

A. Mixed-Integer Linear Programming

Our MILP model is defined by Eqns. (7) through (26).
Binary decision variable xij is 1 if a UAV travels from vi to
vj and 0 otherwise. Similarly, binary decision variable yij is
1 if a MRV travels from vi to vj and 0 otherwise. Continuous
variable τi represents the arrival time of any vehicle at vertex
vi. Continuous variable ei indicates UAV energy level upon
arrival at vertex vi.

max
∑
i∈VC

∑
j∈VN+1

xijri (7)

subject to:∑
j∈V

x0j ≤ |O| (8)

∑
j∈VF

y0j ≤ |K| (9)

∑
j∈VN+1,i6=j

xij ≤ 1 ∀i ∈ V (10)

∑
j∈VF

N+1
,i6=j

yij ≤ 1 ∀i ∈ VF (11)

∑
i∈VN+1,i6=j

xji −
∑

i∈V0,i6=j
xij = 0 ∀j ∈ V (12)

∑
i∈VF

N+1
,i6=j

yji −
∑

i∈VF0 ,i6=j

yij = 0 ∀j ∈ VF (13)

∑
j∈VN+1

xij ≤
∑

j∈VF
N+1

yij ∀i ∈ VF (14)

τ0 +
∆Euc0j
sO

x0j−H(1−x0j) ≤ τj ∀j ∈ VN+1 (15)

τi + (
∆Eucij
sO

+ pi)xij−H(1−xij) ≤ τj ∀i ∈ VC , j ∈ VN+1 (16)

τi + (
∆Eucij
sO

+ ξ)xij−H(1−xij) ≤ τj ∀i ∈ VF , j ∈ VN+1 (17)

τ0 + ∆
SP
0j y0j−H(1−y0j) ≤ τj j ∈ VFN+1 (18)

τi + (∆
SP
ij + ξ)yij−H(1−yij) ≤ τj ∀i ∈ VF , j ∈ VFN+1 (19)

ei − (g∆
Euc
ij + h)xij +Q(1− xij) ≥ ej ∀i ∈ VC , j ∈ VN+1 (20)

Q− g∆Euc
ij xij +Q(1− xij) ≥ ej ∀i ∈ VF0 , j ∈ VN+1 (21)

t
−
i ≤ τi ≤ t

+
i ∀i ∈ VC (22)

0 ≤ ei ≤ Q ∀i ∈ VN+1 (23)

τi ≥ 0 ∀i ∈ V0,N+1 (24)

xij ∈ {0, 1} ∀i ∈ V0, j ∈ VN+1 (25)

yij ∈ {0, 1} ∀i ∈ VF0 , j ∈ V
F
N+1 (26)

Objective (7) maximizes the total accumulated reward of the
UAV search routes. Constraints (8) and (9) ensure the number
of UAVs and MRVs routed are limited by their respective fleet
sizes. Constraints (10) through (13) enforce the flow through
the graph for both UAVs and MRVs. Constraint (14) ensures
that if a UAV visits a recharge vertex, it must be also visited by
an MRV. By the definition of τi, all vehicles that visit vertex
vi are synchronized in time. Constraints (15) and (16) dictate
UAV arrival time at a vertex vj when the preceding vertex vi
is the depot or a search pattern, while Constraint (17) does the
same when the preceding vertex is a recharge vertex. Similarly,
Constraints (18) and (19) enforce arrival times at vertices for
MRVs. Note that a solution to the model may have a UAV
or MRV waiting between vertex visits. The remaining energy
of a UAV at vertex vj given the previous vertex vi was a
search pattern is given by Constraint (20), while Constraint
(21) details the remaining energy if the previous vertex vi
was the depot or a recharge visit. Energy is consumed due
to travel between locations and search pattern execution (no
energy is consumed while waiting). Finally, Constraints (22)-
(26) express the various domains of the decision variables.
Given a solution, the routes of the vehicles can be efficiently
determined based on the binary decision variable values. The
model contains |V0,N+1|2 + |VF0,N+1|2 binary variables and
2 · |V0,N+1| continuous variables.

B. Constraint Programming
Our second approach uses constraint programming (CP).

CP is an alternative technology to MILP, employing branch-
and-infer tree search. It has been successfully applied to UAV-
routing problems in recent work [28], [15], [14], [29], however,
these do not consider the routing of a UAV fleet in tandem
with a supporting MRV fleet for mobile recharging. As with
existing work [26], [30], we make use of optional interval,
sequence, and cumulative function expression variables.
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a) Optional Interval Variables: Variables whose possible
values are a convex interval: {⊥} ∪ {[a, b)|a, b ∈ Z, a ≤ b},
where a and b are the start and end values of the interval and
⊥ is a special value indicating the variable is not present in the
solution. The presence (i.e., absent or present) and start time
of an optional interval variable, var, can be expressed within
a CP model using PRES(var) ∈ {0, 1} and START(var). We
use the notation INTERVALVAR(p, [a, b]) to define mandatory
interval variables in our models (and OPTINTERVALVAR if
the task is optional), where p is the task processing time
(duration). Model constraints are only enforced over present
interval variables. For our problem, interval variables are used
to represent search pattern and recharge tasks.

b) Sequence Variables: These variables are useful for
expressing model constraints over a permutation of interval
variables. Given a sequence variable, π, defined on a set of
interval variables, various constraints can be expressed. The
expression PREVπ(var) returns the interval variable previous
to var in the sequence π. We also use the NOOVERLAP(π, tt)
constraint, which ensures the present interval variables in π
do not overlap, while considering a set of specified transition
times between pairs of tasks, tt. For the studied problem,
sequence variables represent a permutation of search pattern
and recharge tasks.

c) Cumulative Function Expressions: These variables
represent the usage of a renewable resource over time as
the sum of interval variable contributions. With a cumulative
function expression variable, f , we can express impact on
the expression using the f ± STEPATSTART(var, impact)
expression, specifying that at the start of interval vari-
able var, function f is incremented or decremented by
impact (where impact can be a range). The constraint AL-
WAYSIN(f, [a, b), [min,max]) dictates that min ≤ f ≤ max
holds for all time points in a up until, but not including, b, and
a similar constraint ALWAYSIN(f, var, [min,max]) ensures
that min ≤ f ≤ max holds during the processing of interval
variable var. In the studied problem, cumulative expression
variables are used to represent vehicle energy constraints in a
way similar to previous work [31], [32].

d) Proposed Model: Our proposed CP model is defined
by Constraints (27) through (44) and follows the single re-
source transformation technique recently proposed for electric
vehicle routing to leverage the homogeneity of UAV and
MRV fleets [26]. This transformation compactly represents
the routes of multiple vehicles of the same type with a
single augmented horizon (Figure 2). Given a solution to the
model, the assignment of tasks to vehicles can be efficiently
determined based on the start time of each task.

This technique uses a set of auxiliary depot instance ver-
tices, H = {vN+2, . . . , vN+max(|O|,|K|)}, to represent end
depots of the additional horizon segments. Vertex and edge
sets are extended to include these auxiliary vertices (e.g.,
H0,N+1 = {v0, vN+1} ∪ H, V0,N+1,H = V0,N+1 ∪ H, and
E ′ = {(i, j) | i, j ∈ V0,N+1,H, i 6= j}). A depot instance,
represented as an interval variable, xi, is assigned with null
duration for i ∈ H0,N+1. These variables have fixed start time
σi such that σ0 = 0, σN+1 = H,σN+2 = 2H , etc. Then,
optional interval variable xi, for i ∈ V , represents a visit to

  

Fig. 2. CP model, single resource transformation technique. Two UAVs,
|O| = 2, with augmented horizon (2H). Single MRV, |K| = 1. Each UAV
conducts one search pattern (blue/green) and is recharged once (yellow) by
the MRV.

vertex vi by a UAV in the fleet. Similarly, optional interval
variable yi represents a visit to vertex vi, for i ∈ VF , by an
MRV. We let sequence variable π represent the sequence of
UAV visits, and sequence variable ρ the sequence of MRV
visits. Cumulative function expression variable Q represents
the energy level throughout the augmented UAV schedule.

max
∑

i∈VC
PRES(xi) · ri (27)

subject to:

NOOVERLAP(π, {
∆Eucij

sO
: (i, j) ∈ E ′}) (28)

NOOVERLAP(ρ, {∆SP
ij : (i, j) ∈ E ′}) (29)

FORBIDSTART(xi, ψi) ∀i ∈ VC (30)
Q = STEPATSTART(x0, Q)

−
∑

i∈VC
STEPATSTART(xi, g∆

Euc
PREVπ(xi),i

+ h)

+
∑

i∈VFN+1,H

STEPATSTART(xi, [0, Q−g∆Euc
PREVπ(xi),i

]) (31)

ALWAYSIN(Q, [0, |O| ·H], [0, Q]) (32)

ALWAYSIN(Q, xi, [Q,Q]) ∀i ∈ VF (33)

MOD(START(yi), H) = MOD(START(xi), H) ∀i ∈ VF (34)

PRES(yi) = PRES(xi) ∀i ∈ VF (35)
FIRST(π, x0), LAST(π, xN+|O|) (36)

FIRST(ρ, y0), LAST(ρ, yN+|K|) (37)

xi : INTERVALVAR(0, [σi, σi]) ∀i ∈ H0,N+1 (38)

xi : OPTINTERVALVAR(pi, [0, |O| ·H]) ∀i ∈ VC (39)

xi : OPTINTERVALVAR(ξ, [0, |O| ·H]) ∀i ∈ VF (40)
yi : INTERVALVAR(0, [σi, σi]) ∀i ∈ H0,N+1 (41)

yi : OPTINTERVALVAR(ξ, [0, |K| ·H]) ∀i ∈ VF (42)
π : SEQUENCEVAR({x0, . . . , xN+|O|}) (43)

ρ : SEQUENCEVAR({y0, . . . , yN+|K|}) (44)

Objective (27) maximizes accumulated search reward. Con-
straint (28) uses the NOOVERLAP constraint to ensure UAV
tasks do not interfere temporally, with consideration for travel
times, and Constraint (29) enforces the same restriction for
MRVs. Constraint (30) uses the FORBIDSTART constraint to
ensure that UAV search pattern tasks can only start during
search pattern time windows; the set of forbidden start-
ing times for xi is denoted by ψi = {0, . . . , |O| · H} \
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⋃
γ∈{0,...,|O|−1}{γH + t−i , . . . , γH + t+i }. Constraint (31)

dictates the effects of consumption and replenishment of UAV
energy on the cumulative function expression variable Q (with
a slight abuse of notation, ∆Euc

PREVπ(xi),i
returns the Euclidean

distance between the visit previous to xi and xi). Constraint
(32) ensures that throughout the entire augmented UAV plan-
ning horizon, [0, |O| · H], UAV battery level always remains
within [0, Q]. Constraint (33) ensures that when a UAV swaps
a battery, the battery is recharged completely. Constraint (34)
ensures that UAV and MRV recharge tasks are synchronized
across augmented horizons using the MOD constraint based
on the modulo operation. MOD(START(var), H) returns the
remainder when START(var) is divided by the planning hori-
zon, effectively yielding the non-augmented start time of the
task. Constraint (35) enforces that both a UAV and MRV must
be present for a recharge. The depot visits are constrained to
be at the start and end of vehicle sequences through Constaints
(36) and (37), respectively. The remainder of the Constraints
(38) through (44) indicate the domains of the decision vari-
ables. The model contains |V0,N+1,H| + |VF0,N+1,H| interval
variables, two sequence variables, and one cumulative function
expression variable.

VI. EXPERIMENTAL EVALUATION

In this section we conduct an empirical investigation of the
proposed routing graph construction pipeline and target search
optimization models. We evaluate the relative performance of
the models presented, and discuss whether our approaches
are reasonable for use in real-time situations. To assess the
advantages of using MRVs in tandem with the UAV fleet,
we examine optimization results for non-range constrained
(NRC), range constrained no recharging (RC-NC), and range
constrained with recharging (RC-C) variants of the problem.
NRC, when solved optimally, provides an upper-bound on
the best possible solution to a given problem instance as it
allows UAVs to fly without range constraints; in this case,
accumulated reward is limited by the temporal aspects of the
problem (i.e., time windows, transition times, and planning
horizon). RC-NC, when solved optimally, provides a lower
bound on the accumulated reward as each UAV has limited
battery but is not able to recharge. The RC-C variant includes
the fleet of MRVs and represents the range-constrained variant
primarily studied in this work.

A. Setup
The UAV and MRV routing graph construction pipeline is

implemented in Python. All shortest path calculations use the
NetworkX library [33] and the modified hitting set problem
is solved using Gurobi 9.0 via the Python interface. All target
search optimization model experiments are implemented in
C++ and run on the Compute Canada Niagara computing
cluster operated by SciNet (http://www.scinethpc.ca). The
cluster runs the Linux CentOS 7 operating system and uses
Skylake cores at 2.4 GHz. We use CP Optimizer for the
CP models and CPLEX for the MILP model from the IBM
ILOG CPLEX Optimization Studio version 12.9. All target
search optimization model experiments are single-threaded
with default inference settings and a time limit of one hour.

TABLE I
PROBLEM INSTANCE DETAILS

Class Small Medium Large

UAVs, |O| 1 3 5

MRVs, |K| 1 2 3

Graph vertices, |V | (Avg.) 7,645 10,042 16,756

Graph edges, |E| (Avg.) 8,839 11,635 19,327

Fig. 3. Simulation instance problem graph derived from road network
in Scotland. Search patterns (blue circles), destinations (red), target LKP
(yellow), target actual start and end (purple/blue), UAV position (light blue).

B. Real-world Instances

For our simulations, we set UAV parameter values to follow
the design specifications of the DJI Matrice 200, a popular
and commercially-available rotary wing UAV [9]. UAV speed
is set to 23 m/s, max range on a full charge is set to 17,940
metres (where energy consumption is assumed to be linear)
following flight time with a loaded payload, and search pattern
consumption is set to be the equivalent of the UAV traveling
3,450 metres. We investigate two battery swap durations:
instantaneous, and 30 seconds, following existing research on
automated battery swap technology [12]. We generate problem
instances and run simulations for three problem classes: small,
medium, and large as illustrated in Table I. Each problem class
varies the number of UAVs and MRVs, as well as the scale of
the road networks used. To construct our benchmark set, 20
instances are generated for each class, starting from real-world
road networks in Scotland, upon which the problem graph is
constructed (Figure 3), and ending with the routing graph via
our pipeline. Each instance considers a different road network
discretized with δ = 300 metres, resulting in the average graph
characteristics noted in Table I. As is detailed in the table, the
scale of the road networks used for large instances is more
than twice the size as those for small instances.

C. Simulation Results

In this section we detail results for the routing graph
construction pipeline and target search optimization.

1) Routing Graph Construction: The first phase of routing
graph construction is running the MCS to identify search
pattern locations and time windows, finalizing the problem
graph, G. Following the existing approach [10], this phase
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Fig. 4. Solution quality over time. Comparison of NRC, RC-NC, and RC-C
optimization performance. All experiments given one hour of runtime. Plots
represent proportion of reward compared to the optimal reward yielded by
solving the NRC problem variant. RC-C results for instantaneous battery swap,
and battery swap with duration of 30 seconds. Top: Experiments following DJI
speed specifications. Bottom: 30% increase in UAV speed over specifications.

was found to take an average of 5.2 seconds with a standard
deviation of 0.6 seconds across all problems.

The second phase constructs the routing graph, G, from
the problem graph, G. For these experiments, we set filtering
and coverage parameters, φ and R, respectively, to 25% of
max UAV range, in metres, a value empirically found to yield
sufficient filtering while providing strategic areas for recharge
vertex placement. Due to numerous shortest path calculations
and the use of IP in MODIFIEDHITTINGSET, this step is quite
sensitive to the size of the problem graph. For our experiments,
the small and medium instances take, on average, roughly a
minute to construct the routing graph, while the large instances
can exceed five minutes. This suggests that, while the proposed
pipeline is reasonable for use in real-time, small-to-medium
sized situations, additional optimizations are required for large
problems (e.g., using a heuristic to find the centres).

For each problem class, the produced routing graph, G,
varies in size. Small instances had routing graphs with an
average of 44.4 vertices, medium instances with an average
of 62.1 vertices, and large instances with an average of
102.1 vertices. Depending on the underlying topology of the
instance, the routing graphs were found to include up to 20
strategically placed (i.e., not coinciding with a search pattern
location) vertices to enable synchronized recharging.

2) Target Search Optimization: With the constructed rout-
ing graphs, we present target search simulation results using
realistic DJI Matrice 200 speeds. These results are presented
in Figure 4 (top). Each of the plots summarizes average results
for the problem classes (e.g. small, medium, large). Each
plot provides a time-based analysis capturing how closely the
approaches approximate the optimal accumulated reward of

the NRC variant. The NRC variant can be solved to optimality
using MILP as it omits all of the energy constraints/variables
and MRVs, making the problem considerably easier to solve.1

At each time step, the average objective for a given method, as
a proportion of the NRC objective, is plotted. For the RC-C
experiments, plots with solid lines reflect optimization runs
with instantaneous battery swaps, while those with dashed
lines use a duration of 30 seconds.

In Figure 4 (top), the RC-NC variant (orange plot) indicates
that deploying the UAV fleet on a single charge can attain
from 85% to 90% of the NRC reward (blue plot). Therefore
at realistic UAV speeds, there is less than 10-15% reward
improvement to be gained by leveraging the MRVs. This
observation is likely driven by the fact that, as a property
of the instance, search patterns closer to the target’s LKP are
assigned larger rewards (and are likely to be reachable with a
single charge); as candidate search areas get further away from
the LKP, their reward values diminish to reflect a reduction in
confidence that the target will be reacquired.

For strategies using MRVs (i.e., RC-C-MILP and RC-C-
CP), it is clear that the CP model (red plots) is able to find
the highest reward solutions overall, with average rewards
exceeding the RC-NC baseline in less than 10 seconds of
solver runtime, even for the largest problems, and approaching
those of the NRC variant. The MILP method (green lines)
exhibits reasonable performance for small instances, but only
modestly improves on the RC-NC variant bound for medium
class problems and is unable to improve upon it for large
problems. Battery swap duration has relatively little effect on
the CP approach for these experiments; for small problems, the
solution quality is appreciably less when 30 second battery
swaps are used (versus instantaneous swaps), however, for
medium-to-large problems the effect is negligible. The impact
of swap duration on the MILP approach is more pronounced,
but does not, overall, drastically impact results. This finding
is attractive as it indicates accumulated reward under realistic
battery swap duration is not significantly eroded compared to
an idealized instantaneous swap scenario.

The results in Figure 4 (bottom) assess performance when
UAV speed is increased to 30 m/s. We can see from the
figure that the difference between the NRC “ideal” objective
values and RC-NC lower bound objective values becomes
more pronounced (20-25%) as UAV speed is increased. Faster
UAVs are able to satisfy the time windows of more search
pattern locations, thus improving the NRC objective, while
still remaining range constrained in the RC-NC variant. The
impact of battery swap duration on the CP approach remains
neglible, while the MILP approach exhibits more pronounced
variation. The primary assessment of the optimization methods
remains consistent: the CP approach is the dominant method.
This performance advantage is particularly apparent for large
problems where CP finds solutions of 90% of the NRC
rewards, while MILP struggles to improve over the RC-NC
lower bound of 75-80%.

MILP is known to have a weak linear relaxation when con-

1For similar reasons, the RC-NC variant can also be solved to proven
optimality with MILP.
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straints with large disjunctive constants (‘big-M’ constraints)
are used, as in Constraints (15) through (21) of the MILP
model. Possible techniques that can be investigated to im-
prove upon the baseline MILP approach include branch-and-
price/branch-and-cut decompositions that have been applied to
problems with similar characteristics [27], [16].

Overall, simulation results suggest that the inclusion of
a fleet of MRVs can bolster UAV fleet search performance
over a single charge bound, with cumulative reward values
often exceeding 90% of the best-case NRC values. While we
provide experimentation with UAV speed and battery swap
duration in our analysis here, investigating the impact of other
UAV characteristics (i.e., battery capacity) on performance
represents possible future work. Furthermore, the speed at
which the CP approach is able to find solutions exceeding
the quality of the RC-NC baseline suggests that our overall
approach (i.e., routing graph construction with target search
optimization route planning) is promising for use in real-time,
small-to-medium sized target search situations.

VII. CONCLUSIONS

In this paper we studied a range-constrained variant of the
multi-UAV target search problem, assessing the viability of
commercially available UAVs for target search missions. We
proposed a pipeline for representing the problem over real-
world road networks and solved the problem using mixed-
integer linear programming (MILP) and constraint program-
ming (CP). Our empirical results indicate that CP is able to
provide better solutions than MILP, overall, and that the use
of a fleet of MRVs can significantly improve the accumulated
reward of the UAV fleet.
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