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Abstract. The Electric Vehicle Routing Problem with Time Windows
(EVRPTW) extends traditional vehicle routing to address the recent
development of electric vehicles (EVs). In addition to traditional VRP
problem components, the problem includes consideration of vehicle bat-
tery levels, limited vehicle range due to battery capacity, and the pres-
ence of vehicle recharging stations. The problem is related to others in
emissions-conscious routing such as the Green Vehicle Routing Problem
(GVRP). We propose the first constraint programming (CP) approaches
for modeling and solving the EVRPTW and compare them to an existing
mixed-integer linear program (MILP). Our initial CP model follows the
alternative resource approach previously applied to routing problems,
while our second CP model utilizes a single resource transformation. Ex-
perimental results on various objectives demonstrate the superiority of
the single resource transformation over the alternative resource model,
for all problem classes, and over MILP, for the majority of medium-to-
large problem classes. We also present a hybrid MILP-CP approach that
outperforms the other techniques for distance minimization problems
over long scheduling horizons, a class that CP struggles with on its own.

Keywords: Electric Vehicle Routing · Green Vehicle Routing · Con-
straint Programming · Mixed-Integer Linear Programming · Optimiza-
tion

1 Introduction

Fueled by emission regulations, government subsidies, and the benefits of a more
eco-friendly image, electric vehicle (EV) utilization in logistics has seen signif-
icant growth in recent years [9]. Outside of logistics, EVs have experienced a
growing adoption within the consumer automotive industry [28] and have shown
promise in car sharing pilot projects [26]. While not currently cost-competitive
with internal combustion engines due to high acquisition costs and limited op-
erational range [14], the benefits of EVs coupled with an increasing number of
socially and environmentally-aware consumers are driving the adoption of the
technology. The industry has also seen significant investment in the development
of required recharging infrastructure. As with traditional fleets, the case for EVs
can be significantly bolstered via effective route planning.
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The vehicle routing literature has recently addressed this emerging technol-
ogy through the introduction of the Electric Vehicle Routing Problem with Time
Windows (EVRPTW) [29], building on previous work conducted on green logis-
tics, including the Green Vehicle Routing Problem (GVRP) [12]. The problem
involves routing a fleet of vehicles to satisfy customer demands while adhering
to the battery capacity and range of the fleet EVs. The EVRPTW literature has
seen considerable research activity, including the development of sophisticated
exact approaches [10, 7], metaheuristics [29, 13], and the introduction of increas-
ingly rich problem definitions driven by real-world logistics use cases [27, 17].
There have been, however, no efforts thus far to explore the use of constraint
programming (CP) to model and solve the problem.

Recognizing EV routing as a strategic area for methodological development,
we investigate the use of monolithic (i.e., non-decomposed) MILP and CP models
to solve the problem. The contributions of this paper are as follows:

i. We propose the first CP approaches for the EVRPTW.
ii. We introduce a single resource transformation for CP formulations that use

optional interval, sequence, and cumulative function expression variables.
The transformation significantly extends the size of problems that can be
solved with CP, and can be applied to other homogeneous VRP and multi-
machine scheduling problems.

iii. We demonstrate, through empirical evaluation, that our single resource CP
approach significantly outperforms the alternative resource CP model, and
outperforms MILP for nearly all medium-to-large problem classes.

iv. Following the observation that MILP excels at quickly finding high quality
solutions to distance minimization problems with large scheduling horizons,
we propose a hybrid MILP-CP technique that outperforms the individual
approaches on this problem class.

This paper is organized as follows. Section 2 defines the EVRPTW problem
and presents an existing MILP model. Section 3 details related work for the
problem studied. Section 4 presents two CP models, alternate modeling strate-
gies, and an initial empirical evaluation with accompanying analysis. Section
5 illustrates a hybrid CP-MILP approach, motivated by the strength of MILP
for larger, long horizon problems, and presents hybrid experimental results with
detailed analysis. Finally, Section 6 provides concluding remarks.

2 Problem Definition

The Electric Vehicle Routing Problem with Time Windows (EVRPTW) is a
static optimization problem that aims to route a fleet of electric vehicles to
satisfy customer requests [29]. Following existing notation, we let V ′ = V ∪ F ′
be the set of N vertices where V = {v1, . . . , vn} is the set of customer requests, F
is the set of recharging stations, and F ′ = {vn+1, . . . , vN} is the set of augmented
recharging stations that includes dummy vertices to allow multiple visits to each
of the stations in F . We let vertices v0 and vN+1 correspond to start and end
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instances of the vehicle depot, where each vehicle starts and ends. Sets with depot
subscripts include the indicated instances of the depot (i.e., V ′N+1 = V ′∪{vN+1}
and V ′0,N+1 = V ′ ∪ {v0, vN+1}). The problem is then defined on a graph with
vertices V ′0,N+1 and undirected arcs A = {(i, j)|i, j ∈ V ′0,N+1, i 6= j}. Each arc
is assigned a distance, travel time, and energy consumption, dij , tij , and h · dij ,
respectively, where h is a constant energy consumption rate. Vehicles are initially
positioned at the depot and start with maximum capacity C, while customer
vertices, i ∈ V , are assigned a positive demand, qi ≤ C, and a time window,
[ei, li].

1 The time window of the start depot is [0, 0], and the end depot is [H,H],
where H is the problem horizon. Each recharging station has a time window of
the entire horizon, namely [ei = 0, li = H],∀i ∈ F ′. Customer vertices, i ∈ V ,
have a service time si. The depot instances each have a null service time and
the service time at recharging stations is a variable. Vehicles have maximum
battery capacity Q and recharge linearly at rate g. The problem then minimizes
an objective function, often a combination of fleet size and travel distance.

An existing two-index MILP model from the literature [29] is detailed by
Eqns. (1) through (12). Binary variable xij is 1 if arc (i, j) ∈ A is traveled
and 0 otherwise. Continuous variables τi, ui, and yi represent the arrival time,
remaining cargo, and remaining energy, respectively, at vertex i ∈ V ′0,N+1. This
formulation assumes an unlimited number of homogeneous vehicles are available
and only permits full vehicle recharges (i.e., if a vehicle visits a recharge station
vertex, the service time is the difference between its maximum energy capacity
and current energy level, divided by the recharge rate). The augmented recharge
station set, F ′, is constructed such that the number of dummy vertices associated
with each recharge station, nf , represents the number of times the associated
recharge station can be visited across all vehicles (with |F ′| = nf · |F |). Following
the literature, nf is set to be relatively small, to reduce the network size, but large
enough to not restrict multiple beneficial visits [12]. We note that heuristically
choosing a value for nf , as in the literature, can potentially remove optimal
solutions.

Objective (1) details the weighted objective function, where α ∈ [0, 1] iden-
tifies the emphasis on fleet size minimization and β ∈ [0, 1] on travel distance
minimization. Constraint (2) ensures each customer request is satisfied, while
Constraint (3) restricts each recharge station in the augmented set to be visited
at most once (due to the augmented vertices, each recharge station can be vis-
ited at most nf times). Constraint (4) enforces the flow for non-depot nodes.
Constraints (5)-(6) prevent the formation of subtours, with disjunctive constant
M = (l0 + g ·Q). Constraint (7) ensures demand fulfillment at customer vertices
and Constraints (8)-(9) constrain energy levels to be feasible. Constraint (10)
requires customer visits to satisfy the time windows and Constraints (11)-(12)
identify binary and continuous variable domains.

1 Service must start within the time window.
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min α
∑

j∈V ′
x0j + β

∑

i∈V ′0

∑

j∈V ′
N+1

,i 6=j
dijxij (1)

s.t.
∑

j∈V ′
N+1

,i 6=j
xij = 1 ∀i ∈ V, (2)

∑
j∈V ′

N+1
,i 6=j

xij ≤ 1 ∀i ∈ F ′, (3)

∑
i∈V ′

N+1
,i 6=j

xji −
∑

i∈V ′0 ,i 6=j
xij = 0 ∀j ∈ V ′, (4)

τi + (tij + si)xij − l0(1− xij) ≤ τj ∀i ∈ V0, j ∈ V ′N+1, i 6= j, (5)

τi + tijxij + g(Q− yi)−M(1−xij) ≤ τj ∀i ∈ F ′, j ∈ V ′N+1, i 6= j, (6)

0 ≤ uj ≤ ui − qixij + C(1− xij) ∀i ∈ V ′0 , j ∈ V
′
N+1, i 6= j, (7)

0 ≤ yj ≤ yi − (h · dij)xij +Q(1−xij) ∀j ∈ V ′N+1, i ∈ V, i 6= j, (8)

0 ≤ yj ≤ Q− (h · dij)xij ∀j ∈ V ′N+1, i ∈ F
′
0, i 6= j, (9)

ej ≤ τj ≤ lj ∀j ∈ V ′0,N+1, (10)

xij ∈ {0, 1} ∀i ∈ V ′0 , j ∈ V
′
N+1, i 6= j, (11)

τ0 = 0, u0 = C, y0 = Q. (12)

Two Index Formulation. With the exception of xij , the variables are continuous,
modeling visit time, load, and energy level via sequencing constraints. The model
represents multiple vehicles by relaxing the unitary out- and in-flow on the start
and end depot vertices, respectively. This modeling technique is effective as it
does not multiply the number of variables by the number of (symmetric) vehicles.

Problem Variants. The fixed fleet variant can be modeled with the inclusion of a
constraint of the form:

∑
j∈V ′ x0j ≤ m, where m is the fleet size. A variant with

heterogeneous vehicles can be modeled for k different vehicle types by adding an
index for the vehicle type to the arc, cargo, and energy consumption variables
(i.e., xkij , u

k
i , and yki ), with similar adjustments to the parameters [17]. Additional

problem variants, such as partial recharges, can also be considered through the
inclusion of additional constraints/variables [10, 7].

3 Related Work

Research on energy-aware, environmentally conscious vehicle routing is a rel-
atively new area with a flurry of research in recent years [24]. In response
to a growing commitment within the United States to investigate alternative
fuel sources, the vehicle routing literature introduced the GVRP, detailing a
MILP formulation, construction heuristic, and clustering algorithm [12]. Since
the introduction of the GVRP, EV routing has grown dramatically, with initial
EVRPTW work for homogeneous fleets and full re-charges including a MILP
model and a hybrid variable neighborhood search/tabu search solution technique
[29]. Subsequent research was developed with approaches for heterogeneous ve-
hicles [17], and partial recharging problem variants [13, 10, 19]. Recent work has
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also been conducted on modeling non-linear energy consumption [27] as well as
incorporating richer, industry-driven problem constraints [1].

Although the literature for mathematical programming-based approaches
(e.g., MILP, branch-and-price, branch-and-cut) for the GVRP and the EVRPTW
is abundant [12, 29, 10, 17], to the authors’ knowledge, the use of CP for solving
these problems has not yet been investigated. While the performance achieved by
sophisticated branch-and-price-and-cut algorithms for EVRPTW [10] is unlikely
to be surpassed by monolithic modeling methods utilizing off-the-shelf solvers,
the practicality and flexibility of such approaches, including MILP and CP, often
translate to more widespread adoption.

In general vehicle routing, CP has been offered as an alternative to mathe-
matical programming approaches for quite some time [30, 2]. Recent applications
include work on the multiple traveling salesman problem [31], team orienteering
[15], dynamic dial-a-ride routing [3], bike share balancing [11], joint vehicle and
crew routing [23], and patient transportation [8, 25], though these efforts do not
consider fuel constraints. While CP has not been explicitly proposed for GVRP
nor EVRPTW as of yet, previous work on snow plow routing [20] and robot
task allocation and scheduling [5, 6] propose CP models with consideration for
energy consumption and replenishment.

4 Constraint Programming Approaches

In this section we present two CP formulations for the EVRPTW. Our models are
posed as scheduling formulations with optional activities [21, 22]. As is becoming
increasingly common in CP-based approaches [5, 8, 25], the proposed models
make use of three primary decision variable types, namely: optional interval
variables, sequence variables, and cumulative function expressions.

Optional Interval Variables. Formally, optional interval variables are decision
variables whose possible values are a convex interval: {⊥}∪{[s, ε)|s, ε ∈ Z, s ≤ ε},
where s and ε are the start and end values of the interval and ⊥ is a special value
indicating the variable is not present in the solution. The presence (binary),
start time, and length of an optional interval variable, var, can be expressed
within a CP model using Pres(var), Start(var), and Length(var), respectively.
We use the notation optIntervalVar(p, [s, ε]) to define these variables in our
models, where p is the processing time of the task (and can be variable). Model
constraints are only enforced over present interval variables.

Sequence Variables. This variable type is useful for expressing model constraints
over a permutation of present (i.e., Pres(var) = 1) interval variables. Given the
definition of a sequence variable, π, various constraints can be expressed, includ-
ing those on the interval variable previous to var in the sequence, Prevπ(var),
and temporal constraints such as the NoOverlap(π) constraint, which ensures
the interval variables in the sequence do not interfere temporally.
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Cumulative Function Expressions. It is often useful to represent the usage of
a renewable resource as the sum of individual interval variable contributions
over time. Given a cumulative function expression variable, f , we can express
impact on the expression using the f ± StepAtStart(var, impact) expression,
specifying that at the start of interval variable var, function f has an increment
(or decrement) of impact. The constraint AlwaysIn(f, [s, ε], [min,max]) ensures
that min ≤ f ≤ max holds for all time points in s to ε and a similar constraint
AlwaysIn(f, var, [min,max]) ensures that min ≤ f ≤ max holds during the
processing of interval variable var. Cumulative expression variables are useful in
representing both the vehicle load and energy constraints, and have been used
for similar problems [20, 5].

4.1 Alternative Resource Model

Our first CP model follows the traditional alternative resource model for formu-
lating VRPs in CP [20, 8], and, in contrast to the two-index MILP presented in
Section 2, explicitly represents the vehicles. We define an upper bound on the
number of vehicles to be equal to the number of customer requests, |K| = |V |,
representing the worst-case where each customer is serviced by a separate vehicle.
For each customer request, i ∈ V , we introduce a mandatory interval variable,
x̄i. We create an optional interval variable, xki , for each vertex, i ∈ V ′, for each
vehicle, k ∈ K. We also introduce start and end interval variables, xk0 and xkN+1,
with null duration for each vehicle to represent the depot.

The model considers a set of |V ′0,N+1| interval variables and a sequence

variable, πk, for each vehicle k ∈ K. Each interval variable xki , for all i ∈
V ′0,N+1, represents the time period in which the vehicle visits i. Thus, expressions

StartOf(xki ) and EndOf(xki ) correspond to the arrival and departure time of ve-
hicle k at location i, respectively. The expression Pres(xki ) = 1 if vehicle k ∈ K
visits location i (i.e., the interval variable is present in the solution), and 0 oth-
erwise. Sequence variable πk is defined over the set of interval variables involving
vehicle k, and represents the sequence of visits. Vehicle load consumption and
energy level consumption/replenishment are modeled with cumulative function
expressions. We let Ck and Qk be cumulative function expressions representing
the load and energy level of vehicle k ∈ K throughout its route.

Our alternative resource CP model is detailed by Eqns. (13)-(27). Objective
(13) represents the minimization of fleet size and distance traveled. Constraint
(14) ensures that each customer is serviced by one vehicle and Constraint (15)
enforces that tasks assigned to a vehicle, represented by the sequence variable
πk, do not interfere temporally, including travel times. Constraints (16)-(17) en-
sure that the vehicle load does not fall below zero over the planning horizon,
represented as a cumulative function expression with negative impact for served
customers. Constraints (18)-(19) ensure vehicle energy stays within permissible
limits, also represented as a cumulative function expression with negative im-
pact for travel between locations and a positive impact for vehicle recharging.
We note that the impact for energy replenishment tasks includes the negative
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contribution of the travel to the recharge station. Constraint (20) ensures that
during a recharge task, the energy of the vehicle is set to its capacity; whenever
a vehicle recharges, it does so fully. Constraint (22) ensures each recharge sta-
tion is used at most nf times across the fleet, where F ′(i) represents all dummy
recharge stations associated with real recharge station i ∈ F . Constraint (21)
enforces that the start and end depot instances for a vehicle be first and last in
the sequence variable for that vehicle, while Constraints (23)-(27) provide the
definitions of the interval and sequence variables.

As the alternative resource formulation explicitly represents each vehicle, the
number of variables can become unwieldy for larger problems. Specifically, the
formulation has |V | + |K| · |V ′0,N+1| interval variables, |K| sequence variables,
and 2|K| cumulative function expression variables.

min
∑

k∈K

(
αPres(x

k
0 )+β

∑

i∈V ′
N+1

Pres(x
k
i )·dPrev

πk
(i),i

)
(13)

s.t. Alternative(x̄i, {x1
i , . . . , x

|V |
i }) ∀i ∈ V, (14)

NoOverlap(π
k
, {tij : (i, j) ∈ A}) ∀k ∈ K, (15)

Ck = StepAtStart(x
k
0 , C)

−
∑

i∈V
StepAtStart(x

k
i , qi) ∀k ∈ K, (16)

AlwaysIn(Ck, [0, H], [0, C]) ∀k ∈ K, (17)

Qk = StepAtStart(x
k
0 , Q)

−
∑

i∈V ′
N+1

StepAtStart(x
k
i , h · dPrev

πk
(i),i)

+
∑

i∈F ′
StepAtStart(x

k
i , g · Length(x

k
i )) ∀k ∈ K, (18)

AlwaysIn(Qk, [0, H], [0, Q]) ∀k ∈ K, (19)

AlwaysIn(Qk, xki , [Q,Q]) ∀i ∈ F ′, k ∈ K, (20)

First(π
k
, x
k
0 ), Last(π

k
, x
k
N+1) ∀k ∈ K, (21)

∑

k∈K

∑

j∈F ′(i)
Pres(x

k
j ) ≤ nf ∀i ∈ F, (22)

x
k
i : optIntervalVar([0, Q · g−1

], [0, H]) ∀i ∈ F ′, k ∈ K, (23)

x
k
i : optIntervalVar(si, [ei, li]) ∀i ∈ V, k ∈ K, (24)

x̄i : intervalVar(si, [ei, li]) ∀i ∈ V, (25)

x
k
0 : intervalVar(0, [0, 0]), x

k
N+1 : intervalVar(0, [H,H]) ∀k ∈ K, (26)

π
k

: sequenceVar({xk0 , . . . , x
k
N+1}) ∀k ∈ K. (27)

Model Strengthening

Cumulative Resource Constraint. Similar to a previous CP formulation for pa-
tient transportation [8], we strengthen the baseline formulation with a cumula-
tive resource constraint. We define an auxiliary integer variable representing the
number of vehicles in the fleet, z =

∑
k∈K Pres(xk0). The cumulative constraint

is then Cumulative(x̄∪ {xi : i ∈ F ′}, z), which expresses that at any time point
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in the horizon, the total number of customer interval variables, x̄, and present
recharge interval variables is bounded by the number of vehicles in the fleet.

Symmetry Breaking Constraints. Due to the large number of homogeneous vehi-
cles, the use of symmetry breaking can be effective. We introduce a constraint of
the form Pres(xk0) ≥ Pres(xk+1

0 ), ensuring vehicles are used in a lexicographic
order. We then specify that if a vehicle depot task is not present, it cannot be
assigned any other activities via Pres(xk0) ≥ Pres(xki ),∀i ∈ V ′N+1.

Energy Expression Tightening. While the energy impact of a customer visit on
vehicle energy level is a variable, we can tighten the domain of its impact by
reasoning about minimum and maximum travel consumptions to the consid-
ered customer location. More specifically, we add the constraint mini∈V ′0 (h ·
dij) ≤ HeightAtStart(xkj ) ≤ maxi∈V ′0 (h · dij),∀j ∈ V, k ∈ K, where the
HeightAtStart(var, f) expression evaluates the individual contribution of an
interval variable, var, to a cumulative function expression, f .

4.2 Single Resource Model

Our second CP model, inspired by the modeling efficiency of the two-index
MILP for homogeneous vehicles, utilizes a single resource transformation to sig-
nificantly reduce the number of variables. The transformation represents the
problem as an interval variable sequence over an augmented horizon and, like
the MILP, does not explicitly represent the vehicles. This modeling strategy,
while common in MILP models for VRPs, has been rarely used in CP. In pre-
vious work on joint vehicle and crew routing, a similar strategy was used to
artificially join the end of one route to the beginning of another when using the
Circuit global constraint [23], which prevents the formation of subtours among
a set of integer variables. However, to our knowledge, the single resource trans-
formation has never been proposed for scheduling-based CP models involving
interval, sequence, and cumulative function expression variables. The transfor-
mation using these formalisms is challenging as the modeling paradigm does not
permit the “resetting” of time as in [23]; we detail how this is accomplished in
the remainder of this section. The described transformation can also be applied
to homogeneous machine scheduling problems, which we leave to future work.

We visualize the single resource model in Figure 1. The transformation aug-
ments the problem horizon from H to |V |·H, generating a horizon for each poten-
tial vehicle used. In addition to the start and end depot instances, v0 and vN+1,
we define a set of auxiliary depot instances, H = {vN+2, . . . , vN+|V |}, represent-
ing the end depots of the additional horizon segments. We define the notation
V ′0,N+1,H = V ′0,N+1 ∪ H and undirected arcs A′ = {(i, j)|i, j ∈ V ′0,N+1,H, i 6= j}.
Similarly, we define HN+1 = vN+1 ∪ H and H0,N+1 = {v0, vN+1} ∪ H. A de-
pot instance, represented as an interval variable, xi, is assigned with null du-
ration for i ∈ H0,N+1. These interval variables have start time σi, such that
σ0 = 0, σN+1 = H,σN+2 = 2H, and so forth. We then create a mandatory
interval variable, xi, for each customer request, i ∈ V , and an optional interval

This is the author’s version of an article that is to appear in the Proceedings of the Sixteenth International Conference on
the Integration of Constraint Programming, Artficial Intelligence, and Operations Research (CPAIOR2019).



Constraint Programming for Electric Vehicle Routing 9

  

Fig. 1: Single resource transformation for problem with |V | = 3 and a single
recharge station, |F | = 1, with nf = 2 (such that |F ′| = 2). A horizon segment is
created for each potential vehicle and time windows are duplicated. All customer
tasks are mandatory with disjoint start time domains and energy tasks (optional)
have start time domain of [0, 3H]. A cumulative function expression represents
vehicle load and energy level (where notation SaS corresponds to StepAtStart

in models). Vehicle assignments can then be inferred by the start times of the
tasks themselves. The last horizon segment is not used (set as absent).

variable for each recharge station instance in the augmented set, i ∈ F ′. Our
model uses a single sequence variable, π, defined over the set of all interval vari-
ables, and a single cumulative function expression to model vehicle load, C, with
another for energy level, Q. Additionally, at the start of each end depot instance,
i ∈ HN+1, the state of the vehicle must be reset to initial conditions. Thus, the
cumulative function expressions for vehicle load and energy have auxiliary pos-
itive impacts bringing them to their maximum capacity states. The start time
domain for customer requests, i ∈ V , becomes a set of disjoint time windows,
where each request time window is replicated over each of the horizon segments.
The start domain for customer requests is the entire augmented horizon and the
disjoint time windows are enforced with constraints. The start time domain for
recharge tasks, i ∈ F ′, becomes the entire augmented horizon.

Our single resource CP model is detailed by Eqns. (28)-(42). Objective (28) is
our fleet and distance minimization objective function. Constraint (29) enforces
temporal feasibility of the interval variable sequence, π, including travel times.
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10 Booth and Beck

To make sure customers are serviced during a valid time window, we use Con-
straint (30), where φi = {0, . . . , |V | ·H}\⋃δ∈{0,...,|V |}{δH + ei, . . ., δH+ li+si}.
The ForbidExtent constraint prevents an interval variable, xi, from being sched-
uled during any time point within the augmented horizon that is not also within
one of the disjoint time windows. We discuss a number of alternatives for mod-
eling disjoint time windows with CP in the next section. Constraints (31)-(32)
ensure vehicle load feasibility. Constraints (33)-(35) ensure vehicle energy level
feasibility while Constraints (36)-(37) dictate any present recharges, as well as
horizon end tasks, must charge the vehicle to full energy level. To ensure the
resetting of energy level at the end of each horizon, i ∈ HN+1, we use a positive
impact StepAtStart with magnitude in [0, Q− h · dPrevπ(i),i] expressed by Con-
straint (34), and the AlwaysIn expressed by Constraint (37). These components
are illustrated in Figure 1. The position of the start depot in the interval vari-
able sequence, π, is expressed through Constraint (38) and Constraints (39)-(42)
identify variable domains.

min α
∑

i∈HN+1

Pres(xi) + β
∑

i∈V ′H,N+1

Pres(xi) · dPrevπ(i),i (28)

s.t. NoOverlap(π, {tij : (i, j) ∈ A′}) (29)

ForbidExtent(xi, φi) ∀i ∈ V, (30)

C = StepAtStart(x0, C)

−
∑

i∈V
StepAtStart(xi, qi)

+
∑

i∈HN+1
StepAtStart(xi, [0, C]) (31)

AlwaysIn(C, [0, |V | ·H], [0, C]) (32)

Q = StepAtStart(x0, Q)

−
∑

i∈V ′
StepAtStart(xi, h · dPrevπ(i),i)

+
∑

i∈F ′
StepAtStart(xi, g · Length(xi))

+
∑

i∈HN+1

StepAtStart(xi, ψi) (33)

0 ≤ ψi ≤ Q− h · dPrevπ(i),i ∀i ∈ HN+1, (34)

AlwaysIn(Q, [0, |V | ·H], [0, Q]) (35)

AlwaysIn(Q, xi, [Q,Q]) ∀i ∈ F ′, (36)

AlwaysIn(Q, [σi, σi + 1], [Q,Q]) ∀i ∈ HN+1, (37)

First(π, x0) (38)

xi : optIntervalVar([0, Q · g−1
], [0, H · |V |]) ∀i ∈ F ′, (39)

xi : intervalVar(si, [0, H · |V |]) ∀i ∈ V, (40)

xi : intervalVar(0, σi) ∀i ∈ H0,N+1, (41)

π : sequenceVar({x0, . . . , xN+|V |}). (42)

The single resource transformation requires only |V ′0,N+1|+ |H| interval vari-
ables, one sequence variable, and two cumulative function expression variables,
a significant reduction from the alternative resource model.
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Model Strengthening

Optional Horizon Segments. Initially, a horizon segment must be created for
each potential vehicle, recalling that the upper bound used is the number of
customer requests, |V |. This augmented horizon significantly increases the start
time domain of the recharge tasks, even though most high quality solutions only
use a small fraction of the vehicles allotted. To improve upon this, we develop
a technique, similar to the symmetry breaking in the alternate resource model,
where horizon segments can be set absent. First, we set all auxiliary end depot
instances, xi,∀i ∈ H, as optional interval variables. Next, we introduce an integer
variable for each of the end depot instances, wi, and constrain its value to be
the start time of the interval variable (0 if the variable is set as absent), via
StartOf(xi) = wi,∀i ∈ HN+1. We then constrain the end time of the set of
customer and recharge visit tasks to be bounded by the maximum wi value,
EndOf(xj) ≤ maxi∈HN+1

wi,∀j ∈ V ′. Finally, we impose an ordering on the
present depot instances using: Pres(xi) ≥ Pres(xi+1),∀i ∈ H \ vN+|V |.

Energy Expression Tightening. Similar to the technique presented for the alter-
native resource model, we introduce energy impact tightening constraints for the
single resource model as well, namely: mini∈V ′0 (h · dij) ≤ HeightAtStart(xj) ≤
maxi∈V ′0 (h · dij),∀j ∈ V .

4.3 Alternate Modeling Strategies

We investigated a number of alternate modeling strategies that were found,
through initial experiments, to under-perform the proposed models.

Vehicle Energy and Load. The modeling of energy and vehicle load can also be
accomplished via auxiliary tracking variables [20] similar to those used in the
MILP. The idea is to introduce a numeric variable for each interval variable
representing the load or energy level in the sequence after that particular task.
This technique is advantageous in that the exact vehicle load or energy level can
be accessed at any point along the route, whereas current implementations of
cumulative function expressions, as within CP Optimizer, do not support this.

Disjoint Time Windows. The single resource model results in a set of disjoint
time windows for customer tasks.2 The model uses the ForbidExtent(var, T )
constraint, restricting an interval variable var from executing at any time point
within the restricted set of time points T . This relationship can also be expressed
using interval variables by generating a set of fixed interval variables that occupy
all the time points in T . Then, a NoOverlap(π′i) is added to the model for each
customer request task, i ∈ V , where the sequence variable π′i contains the set of
all customer interval variables and the auxiliary fixed interval variables. Finally,
similar to the alternative resource CP model, one can generate an alternative

2 There also exist VRP variants posed with multiple disjoint time windows [18].
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task for each of the time windows. Although these alternate techniques perform
moderately well on smaller problems, the increased model size was detrimental
for larger problems.

4.4 Experimental Analysis

We present an empirical assessment of our models on the benchmark data in Ta-
ble 2. We explore three different objective functions: fleet distance minimization
(α = 1, β = 0) as reported in [29, 10], fleet size minimization (α = 0, β = 1),
and fleet size minimization with distance minimization as a secondary objective
(α = ξ, β = 1), where ξ is a sufficiently small number to lexicographically order
the objective components. We reiterate that the intent of this work is to investi-
gate the performance of off-the-shelf optimization models for EVPRTW; state-
of-the-art results for distance minimization are found in [10] using sophisticated
branch-price-and-cut techniques bolstered by customized labeling algorithms.

Set-up. All experiments are implemented in C++ on an Intel Xeon CPU E5-
2690 v4 2.60GHz processor and 16GB of RAM running Ubuntu 14.04. We use CP
Optimizer for the CP models and CPLEX for the MILP model from the IBM
ILOG CPLEX Optimization Studio version 12.8. All experiments are single-
threaded with default search and inference settings. A five minute time limit is
used for all experiments.

Table 1: Problem instances. Each value represents the number of instances for
a given size/characteristic combination. |V | ≤ 15 are small instances containing
5, 10, and 15 customers. Clustered, random, and mix refer to the geographical
distribution of customer vertices. |F | values are averages across the instances.

Short Horizon Long Horizon

|V | |F | Total Clustered Random Mix Clustered Random Mix

≤15 4.2 36 6 6 6 6 6 6
25 21 56 9 12 8 8 11 8
50 21 56 9 12 8 8 11 8

Instances and Implementation. We conduct our analysis on problem instances
taken from the literature [29, 10]. Instances vary w.r.t. the number of customer
and recharge station vertices, the length of the scheduling horizon (short and
long) and the geographical distribution of the customer vertices (random, clus-
tered, and a mixture of both). The benchmark utilized contains a total of 148
instances summarized in Table 1.

Following the procedure outlined in previous work on the same instances [10],
we transform floating point parameter values to integer values such that the
problems are amenable to CP modeling. As with most integer transformations,

This is the author’s version of an article that is to appear in the Proceedings of the Sixteenth International Conference on
the Integration of Constraint Programming, Artficial Intelligence, and Operations Research (CPAIOR2019).



Constraint Programming for Electric Vehicle Routing 13

the scaling involved in this process results in much larger variable domain ranges
which can have a negative impact on CP approaches. Additionally, we heuristi-
cally set the number of visits allowable to each recharge station as nf = d|V |·0.2e
(i.e., problems with five customers allow a single visit to each recharge station).

During testing, we found that the CP solver, for both formulations, had a
difficult time producing initial feasible solutions for the larger problems, |V | ∈
{25, 50}. To mitigate this, we seed the CP search with the initial solution found
by the MILP presolve routine. We note that we could have used any initial
heuristic here to yield the same result; the presolve results used were often trivial
(i.e., each customer serviced by a separate vehicle).

Table 2: Experimental results. The best result of each column for each objective
function in bold. ‘M’: method ran out of memory before entering the search.

Short Horizon Long Horizon

# Feasible # Best MRE (%) # Feasible # Best MRE (%)

Method ≤15 25 50 ≤15 25 50 ≤15 25 50 ≤15 25 50 ≤15 25 50 ≤15 25 50

α = 1; β = 0
MILP 18 29 29 17 4 9 7.3 63.4 68.1 18 27 27 18 16 25 3.7 50.3 51.7
CPAR 18 29 M 8 0 M 12.6 76.4 M 18 27 M 3 0 M 17.9 71.3 M
CPSR 18 29 29 9 25 20 9.9 54.9 64.5 18 27 27 5 11 2 11.0 50.3 67.0

α = 0; β = 1
MILP 18 29 18 14 0 7 24.8 83.5 88.3 18 27 27 15 0 2 17.6 82.0 93.6
CPAR 18 29 M 7 0 M 35.4 89.3 M 18 27 M 8 3 M 41.7 84.4 M
CPSR 18 29 23 18 29 17 22.8 71.7 88.2 18 27 27 18 27 25 11.1 52.2 78.9

α = ξ; β = 1
MILP 18 29 29 14 3 11 22.8 68.6 66.2 18 27 27 17 0 8 14.0 65.5 59.5
CPAR 18 29 M 5 0 M 48.6 88.8 M 18 27 M 2 0 M 56.5 94.4 M
CPSR 18 29 29 14 26 18 23.7 58.8 64.0 18 27 27 5 27 19 25.0 40.0 57.0

Results. The results are illustrated in Table 2. The mean relative error (MRE)
compares the best solution found by a given technique to the best bound found
across all techniques; the results in the table take the average of this across all
instances solved by the technique.

The MILP displayed fairly strong performance on the distance minimization
objective function, particularly for small problems, where the strong bound is
able to effectively direct the search, and on long horizon problems, where CP
inference is less effective. While the MILP approach is often able prove optimality
for small instances when minimizing travel distance, it struggles to produce high
quality solutions and meaningful bounds for the fleet minimization objective
functions for medium-to-large problems, with optimality gaps close to 100%.

The alternative resource CP model, CPAR, encountered memory issues for
|V | = 50, while the single resource transformation model, CPSR, was able to ini-

This is the author’s version of an article that is to appear in the Proceedings of the Sixteenth International Conference on
the Integration of Constraint Programming, Artficial Intelligence, and Operations Research (CPAIOR2019).



14 Booth and Beck

tiate the search for all problems.3 Overall, it was found that the single resource
model outperformed the alternative model for all problem classes. Additionally,
CPSR outperforms the MILP formulation on almost all classes of larger prob-
lems (|V | ∈ {25, 50}), with the exception of distance minimization over long
horizons. The horizon augmentation of the single resource model results in large
domain sizes for problems with larger initial scheduling horizons, resulting in
weaker inference throughout the search. Both CP approaches tend to produce
more meaningful bounds for the fleet minimization problems, where the MILP
approach has difficulty producing non-trivial lower bounds.

5 A Hybrid Approach

From the experiments, it is evident that MILP outperforms CPSR for distance
minimization for large problems over long scheduling horizons. This finding is
similar to that from previous research that demonstrated scheduling-based CP
models containing optional activities can suffer from poor inference as the prob-
lem scales without good upper bounds on horizon length [4]; the authors of this
previous work found that seeding CP with high quality solutions found by a
different solver can be significantly beneficial.

Given these findings, we construct a hybrid approach that passes the best
solution found by the MILP solver to the CP solver as a starting point. Following
previous work [4], we allocate half of the runtime to MILP and half to CP
noting that the MILP solution improvement diminishes with time. We apply
this hybrid to the larger problem instances, |V | ∈ {25, 50}. The remainder of the
experimental set-up remains as described in the previous section.

Results. We present the results for our hybrid approach, denoted MILP→CPSR,
in Table 3, alongside the original MILP and CPSR results. It is apparent that the
hybrid approach is beneficial for the distance minimization objective over long
horizons, outperforming the other approaches by a wide margin and improv-
ing over MILP MRE values by up to 4.4% (|V | = 50, long horizon). However,
outside of the large, long horizon distance minimization problems, the hybrid
provides improvement in few other areas, and is commonly outperformed by
the standalone CP method. Based on this observation, we can conclude that it
makes sense to hybridize MILP and CP in particular circumstances, but often
standalone CP will produce the best result. In these experiments, a CP-based
approach (either hybrid or standalone) provides the best results for every prob-
lem class, and the hybrid approach outperforms standalone MILP across nearly
all problem classes, with the exception of fleet minimization on short horizons.

3 In fact, the single resource model required significantly less memory for |V | = 50
problems than the alternative resource model did for |V | = 25 problems.
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Table 3: Hybrid results, large problems. Best result of column for each objective
function in bold. ‘M’: method ran out of memory before entering the search.

Short Horizon Long Horizon

# Feas. # Best MRE (%) # Feas. # Best MRE (%)

Method 25 50 25 50 25 50 25 50 25 50 25 50

α = 1; β = 0
MILP 29 29 2 5 63.4 68.1 27 27 5 8 50.3 51.7
CPSR 29 29 14 14 54.9 64.5 27 27 8 2 50.3 67.0
MILP→CPSR 29 29 13 10 54.6 64.5 27 27 14 17 47.3 47.3

α = 0; β = 1
MILP 29 18 0 7 83.7 87.6 27 27 0 2 81.8 92.8
CPSR 29 23 23 15 72.0 87.5 27 27 27 25 51.2 77.5
MILP→CPSR 29 16 11 3 74.0 86.7 27 27 24 13 53.3 82.3

α = ξ; β = 1
MILP 29 29 0 4 68.9 66.2 27 27 0 5 65.5 59.5
CPSR 29 29 19 14 59.1 64.0 27 27 16 17 40.0 57.0
MILP→CPSR 29 29 10 11 59.8 62.9 27 27 11 5 47.9 55.3

6 Conclusion and Perspective

In this paper we presented the first approaches for solving the Electric Vehicle
Routing Problem with Time Windows (EVRPTW) using constraint program-
ming (CP). We present two scheduling-based CP formulations: the initial model
uses an alternative resource technique previously applied to other routing prob-
lems, while the second uses a single resource transformation for CP models using
optional activities, sequence variables, and cumulative function expressions. We
detail techniques used to strengthen the formulations and discuss alternate mod-
eling strategies.

Numerical results indicate the superiority of the single resource CP model
over the alternative resource model, for all problems, and the MILP formulation,
for the majority of medium-to-large problem classes. Recognizing the ability of
MILP to quickly produce good quality solutions for large distance minimization
problems with long scheduling horizons, we also investigate a hybrid MILP-CP
approach where the best solution from the mathematical programming solver is
used to seed the CP search. Results indicate the hybrid approach outperforms
both of the standalone techniques for the problems that motivated the effort,
but is not beneficial overall.

Given the growth of electric vehicle (EV) adoption in the logistics and con-
sumer automotive industries, we believe the study of these problems in the con-
text of CP modeling and solving is a strategic direction. Outside of EVs and
transportation, there is considerable opportunity in the highly related field of
multi-robot task allocation (MRTA) [16, 5]. Future work will investigate the ap-
plicability of the techniques developed in this paper to problems found in MRTA.
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22. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P.: IBM ILOG CP Optimizer for schedul-
ing. Constraints 23(2), 210–250 (2018)

23. Lam, E., Van Hentenryck, P., Kilby, P.: Joint vehicle and crew routing and schedul-
ing. In: International Conference on Principles and Practice of Constraint Program-
ming. pp. 654–670. Springer (2015)

24. Lin, C., Choy, K.L., Ho, G.T., Chung, S.H., Lam, H.: Survey of green vehicle
routing problem: past and future trends. Expert Systems with Applications 41(4),
1118–1138 (2014)

25. Liu, C., Aleman, D.M., Beck, J.C.: Modelling and solving the senior transporta-
tion problem. In: International Conference on the Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research. pp. 412–428. Springer
(2018)
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