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Abstract. A constraint satisfaction problem (CSP) model can be preprocessed
to ensure that any choices made will lead to solutions, without the need to back-
track. This can be especially useful in a real-time process control or online inter-
active context. The conventional machinery for ensuring backtrack-free search,
however, adds additional constraints, which may require an impractical amount
of space. A new approach is presented here that achieves a backtrack-free repre-
sentation by removing values. This may limit the choice of solutions, but we are
guaranteed not to eliminate them all. We show that in an interactive context our
proposal allows the system designer and the user to collaboratively establish the
tradeoff in space complexity, solution loss, and backtracks.

1 Introduction

For some applications of constraint computation, backtracking is highly undesirable or
even impossible. Online, interactive configuration requires a fast response given human
impatience and unwillingness to undo previous decisions. Backtracking is likely to lead
the user to abandon the interaction. In another context, an autonomous spacecraft must
make and execute scheduling decisions in real time [10]. Once a decision is executed
(e.g., the firing of a rocket) it cannot be undone through backtracking. It may not be
practical in real time to explore the implications of each potential decision to ensure
that the customer or the spacecraft is not allowed to make a choice that leads to a ”dead
end”. A standard technique in such an application is to compile the constraint problem
into some form that allows backtrack-free access to solutions [12]. Except in special
cases, the worst-case size of the compiled representation is exponential in the size of the
original problem. Therefore, the common view of the dilemma is as a tradeoff between
storage space and backtracks: worst-case exponential space requirements can guaran-
tee backtrack-free search while bounding space requirements (e.g., through adaptive
consistency [3] techniques with a fixed maximum constraint arity) leave the risk of
backtracking. For an application such as the autonomous spacecraft where memory is
scarce and backtracking is impossible, the two-way tradeoff provides no solution.
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With the above two examples in mind, in this paper, we assert that the two-way
tradeoff is too simple to be applicable to all interesting applications. We propose that
there is a three-way tradeoff: storage space, backtracking, and solution retention. In
the extreme, we propose a simple, radical approach to achieving backtrack-free search
in a CSP: preprocess the problem to remove values that lead to dead-ends. Consider
a coloring problem with variables{X, Y, Z} and colors{red, blue}. Suppose Z must
be different from both X and Y and our variable ordering is lexicographic. There is a
danger that the assignmentsX = red, Y = blue will be made, resulting in a domain
wipeout for Z. A conventional way of fixing this would be to add a new constraint
between X and Y specifying that the tuple in question is prohibited. Such a constraint
requires additional space, and, in general, such adaptive consistency enforcement may
have to add constraints involving as many asn− 1 variables for ann-variable problem.
Our basic insight here is simple, but counter-intuitive. We will “fix” the problem by
removing the choice of red for X. One solution,{X = red, Y = red, Z = blue},
is also removed but another remains,{X = blue, Y = blue, Z = red}. If we also
remove red as a value for Y we are left with a backtrack-free representation for the
whole problem. (The representation also leaves us with a single set of values comprising
a single solution. In general we will only restrict, not eliminate, choice.)

The core of our proposal is to preprocess a CSP to remove values that lead to a
dead-end. This allows us to achieve a “backtrack-free” representation (BFR) where all
remainingsolutions can be enumerated without backtracking and where the space com-
plexity is the same as for the original CSP. We are able to achieve backtrack-free search
and polynomially bounded storage requirements. The major objection to such an ap-
proach is that the BFR will likely only represent a subset of solutions. There are two
responses to this objection demonstrating the utility of treating backtracks, space, and
solutions together. First, for applications where backtracking is impossible, an exten-
sion of the BFR approach provides a tradeoff between space complexity and solution
retention. Through the definition of ak-BFR, systems designers can choose a point
in this tradeoff. Value removal corresponds to 1-BFR, where space complexity is the
same as for the original representation and many solutions may be lost. The value of
k is the maximum arity constraint that we add during preprocessing: higherk leads to
higher space complexity but fewer lost solutions. The memory capacity can therefore
be directly traded off against solution loss. Second, for applications where backtracks
are only undesirable, we can allow the user to make the decision about solution loss vs.
backtracks by using two representations: the original problem and the BFR. The latter
is used to guide value choices by representing the sub-domain for which it is guaranteed
that a backtrack-free solution exists. The user can choose between a conservative value
assignment that guarantees a backtrack-free solution or a risky approach that does not
have such guarantees but allows access to all solutions.

Overall, the quality of a BFR depends on the number and quality of the solutions
that are retained. After presenting the basic BFR algorithm and proving its correctness,
we turn to these two measures of BFR quality through a series of empirical studies that
examine extensions of the basic algorithm to include heuristics, consistency techniques,
preferences on solutions, and the representation of multiple BFRs. Each of the empir-
ical studies represents an initial investigation of different aspects of the BFR concept



Algorithm 1: BFRB - computes a BFR
BFRB(n):
Obtains a BFR forPn (maintained as a global variable)

1 if domain ofVn is emptythen
2 report Failure

3 if n = 1 then
4 report Success

5 foreachsolutionS to the parent subproblem that does not extend toVn do
6 Choose a valuev in S and remove it from the domain of its variable.

7 recursively seek a BFR forPn−1:
8 If successful, report Success.
9 If not, make one different choice of a value to remove, and recurse again.

10 When there are no more different choices to make, report Failure.

from the perspective of quality. We then present thek-BFR concept, revisit the issue of
solution loss, and show how our proposal provides a new perspective on a number of
dichotomies in constraint computation.

The primary contributions of this paper are the proposal of a three-way tradeoff
between space complexity, backtracks, and solution retention, the somewhat counter-
intuitive idea of creating backtrack-free representations by value removal, the empirical
investigation of a number of variations of this basic idea, and the placing of the idea in
the context of a number of important threads of constraint research.

1.1 Related Work

Early work on CSPs guaranteed backtrack-free search for tree-structured problems [4].
This was extended to general CSPs throughk-trees [5] and adaptive consistency [3].
These methods have exponential worst-case complexity, but, for preprocessing, time
is not a critical factor as we assume we have significant time offline. However, these
methods also have exponential worst-case space complexity, which may indeed make
them impractical.

Efforts have been made in the past to precompile all solutions in a compact form [1,
8, 9, 11, 12]. These approaches achieved backtrack-free search at the cost of worst-case
exponential storage space. While a number of interesting techniques to reduce average
space complexity (e.g., meta-CSPs and interchangeability [12]) have been investigated,
they do not address the central issue of worst case exponential space complexity. Indeed,
as far as we have been able to determine, the need to represent all solutions has not been
questioned in existing work. Furthermore, recasting the problem as a three-way tradeoff
between space complexity, backtracks, and solution retention appears novel.

2 Algorithm, Alternatives, and Analysis

We describe a basic algorithm for obtaining a BFR by deleting values, prove it correct
and examine its complexity. Given a problemP and a variable search orderV1 toVn, we



will refer to the subproblem induced by firstk variables asPk. A variableVi is a parent
of Vk if it shares a constraint andi < k. We call the subproblem induced by the parents
of Vk the parent subproblemof Vk. Pn will be a backtrack-free representation if we
can choose values forV1 to Vn without backtracking. BFRB operates on a problem and
produces a backtrack-free representation of the problem, if it is solvable, else reports
failure. We will refer to the algorithm’s removal of solutions to the parent subproblem
of Vk that do not extend toVk asprocessingof Vk.

The BFRB algorithm is quite straightforward. It works its way upwards through a
variable ordering, ensuring that no trouble will be encountered in a search on the way
back down, as does adaptive consistency; but here difficulties are avoided by removing
values rather than adding (or refining) constraints. (Of course, removing a value can be
viewed as adding/refining a unary constraint.)

However, correctness is not as obvious as it might first appear. It is clear that a BFR
to a soluble problem must exist; any individual solution provides an existence proof:
simply restrict each variable domain to the value in the solution. However, we might
worry that BFRB might not notice if the problem is insoluble, or in removing values it
might in fact remove all solutions, without noticing it.

Theorem 1 If P is soluble, BFRB will find a backtrack-free representation.

Proof: Proof by induction.
Inductive step: If we have a solutions to Pk−1 we can extend it to a solution to

Pk without backtracking. Solutions restricted to the parents ofVk is a solution to the
parent subproblem ofVk. There is a value,b, for Vk consistent with this solution, or else
this solution would have been eliminated by BFRB. Addingb to s gives us a solution to
Pk, since we only need worry about the consistency ofb with the parents ofVk.

Base step:P1 is soluble, i.e. the domain ofV1 is not empty after BFRB. SinceP is
soluble, lets be one solution, withs1 as the value forV1. We will show that if it does
not succeed otherwise, BFRB will succeed by providing a representation that includes
s1 in the domain ofV1. We will do this by demonstrating, again by induction, that in
removing a solution to a subproblem,sp, BFRB will always have a choice that does not
involve a value ofs. Suppose BFRB has proceeded up toVk without deleting any value
in s. It is processingVk and a solutionsp to the parent subproblem does not extend to
Vk. If all the values insp are ins, then there is a value inVk that is consistent with them,
namely the value forVk in s. So one of the values insp must not be ins, and BFRB can
choose at some point to remove it. (The base step forVn is trivial.) Now since BFRB
tries, if necessary, all choices for removing values, BFRB will choose eventually, if
necessary, not to remove any value ins, includings1. 2

Theorem 2 If P is insoluble, BFRB will report failure.

Proof: Proof by induction.
Pn = P is given insoluble. We will show that ifPk is insoluble, then after BFRB

processesVk, Pk−1 is insoluble. Thus eventually BFRB will always backtrack whenP1

becomes insoluble (the domain ofV1 is empty) if not before, and BFRB will eventually
run out of choices to try, and report failure.



SupposePk is insoluble. We will show thatPk−1 is insoluble in a proof by contra-
diction. Supposes is a solution ofPk−1. Thens restricted to the parents ofVk, sp, is
a solution of the parent subproblem ofVk, which is a subproblem ofPk−1. There is a
valueb of Vk consistent withsp, for otherwisesp would have been eliminated during
processing ofVk. But if b is consistent withsp, s plusb is a solution toVk. Contradic-
tion. 2

The space complexity of BFRB is polynomial in the number of variables and values,
as we are only required to represent the domains of each variable. The worst-case time
complexity is, of course, exponential in the number of variables,n. However, as we will
see in the next section, by employing a “seed solution”, we can recurse without fear of
failure, in which case the complexity can easily be seen to be exponential in(p + 1),
wherep is the size of the largest parent subproblem. Of course,p + 1 may still equaln
in the worst case; but when this is not so, we have a tighter bound on the complexity.

3 Extensions and Empirical Analysis

Preliminary empirical analysis showed that the basic BFRB algorithm is ineffective in
finding BFRs even for small problems. We therefore created a set of basic extensions
that significantly improved the algorithm performance. We then performed further ex-
periments, building on these basic extensions. In this section, we present and empiri-
cally analyze these extensions.

3.1 Basic Extensions

A significant part of the running time of BFRB was due to the fallibility of the value
pruning decision at line 6. While BFRB is guaranteed to eventually find a BFR for a
soluble problem, doing so may require “backtracking” to previous pruning decisions
because all solutions had been removed. To remove this thrashing, our first extension to
BFRB is to develop a BFR around a “seed” solution. Secondly, no consistency enforce-
ment is present in BFRB. It seems highly likely that such enforcement will reduce the
search and increase the quality of the BFRs.

Seed SolutionsIn searching for a BFR, we can avoid the need to undo pruning decisions
by guaranteeing that at least one solution will not be removed. We do this by first solving
the standard CSP (i.e., finding one solution) and then using this solution as a seed during
the preprocessing to find a BFR. We modify the BFRB pruning (line 6) to specify that
it cannot remove any values in the seed solution. This is sufficient to guarantee that
there will never be a need to undo pruning decisions. There is a computational cost
to obtaining the seed, and preserving it reduces the flexibility we have in choosing
which values to remove; but we avoid thrashing when finding a BFR and thus improve
the efficiency of our algorithm. In addition, seed solutions provide a mechanism for
guaranteeing that a solution preferred by the system designer is represented in the BFR.

Experiments indicated that not only is using a seed significantly faster, it also tends
to produce BFRs which represent more solutions. Given the strength of these results,
all subsequent experiments are performed using a seed.
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Fig. 1. Absolute and relative number of solutions retained.

Enforcing ConsistencyGiven the usefulness of consistency enforcement in standard
CSP solving, we expect it will both reduce the effort in searching for a BFR and, since
non-AC values may lead to dead-ends, reduce the pruning decisions that must be made.
We experimented with two uses of arc consistency (AC): establishing AC once in a
preprocessing step and establishing AC whenever a value is pruned. The latter variation
proved to incur less computational effort as measured in the number of constraint checks
to find a BFR and resulted in BFRs which represented more solutions. In our subsequent
experiments, we, therefore, establish AC whenever a value is pruned.

Experiments: Solution Coverage Our first empirical investigation is to assess the
number of solutions that the BFR represents. To evaluate our algorithm instantiations,
we generated random binary CSPs specified with 4-tuples(n,m, d, t), wheren is the
number of variables,m the size of their domains,d the density (i.e. the proportion of
pairs of variables that have a constraint over them) andt the tightness (i.e. the proportion
of inconsistent pairs in each constraint). We generated at least 50 problems for each
tested CSP configuration where we could find a solution for at least 30 instances. In the
following we refer to the mean of those 30 to 50 instances.

While the absolute number of represented solutions naturally decreases when the
problems become harder, the relative number of solutions represented decreases first
and then increases. The decreasing lines in Figure 1 represent the absolute number
of solutions for the original problem and the BFR for(15, 10, 0.1, t) problems. The
numbers fort ≤ 0.4 are estimated from the portion of solutions on the observed search
space and the size of the non-observed search space. Experiment with fewer samples
revealed similar patterns for smaller(10, 5, 0.5, t) and larger(50, 20, 0.07, t) problems.
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The increase in the relative number of solutions retained for very hard problems
can be explained by the fact that a BFR always represents at least one solution and
that the original problems have only very few solutions for these problem sets. For the
very easy problems, there may not be much need to backtrack and thus to prune when
creating the BFR. In the extreme case, the original problem is already backtrack-free. In
a larger set of experiments we observed the decreasing/increasing behaviour for a range
of density and tightness values. In Figure 2, we show the results of this experiment with
(15, 10, d, t) problems, whered ∈ {0.4, 1} andt ∈ {0.1, 1} both in steps of 0.1.

Experiments: Computational Effort Now we consider the computational effort re-
quired when using BFRs. Our main interest is the offline computational effort to find a
BFR. The online behaviour is also important, however, in a BFR all remaining solutions
can be enumerated in linear time (in the number of solutions). As this is optimal, empir-
ical analysis does not seem justified. Similarly, the (exponential) behaviour of finding
solutions in a standard CSP is well-known. Figure 3 presents the CPU time for the
problems considered in our experiments including the time to compute a seed solution.
Times were found using C++ on a 1.8 GHz, 512 MB pentium 4 running Windows 2000.

It can be seen that the time to find BFRs scales well enough to produce them easily
for the larger problems of our test set.

Experiments: Solution Quality The second criteria for a BFR is that it retain good
solutions assuming a preference function over solutions. To investigate this, we examine
a set of lexicographic CSPs [7] where the solution preference can be expressed via a
re-ordering of variables and values such that lexicographically smaller solutions are
preferred.
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Fig. 3. Average runtime (seconds) to produce BFR.

To generate the BFR, a seed solution was found using lexicographic variable and
value ordering heuristics that ensures that the first solution found is optimal. The best
solution will thus be protected during the creation of the BFR and always be represented
by it. For the evaluation of the BFR we used the set of its solutions or a subset of it that
could be found within a time limit. This set was evaluated with both quantitative and
qualitative measure: the number of solutions and their lexicographic rank. In Figure 4
we present such an evaluation for(10, 5, 0.25, 0.7) problems. The problem instances
are shown on the x-axis while the solutions are presented on the y-axis with increasing
quality. The solid line shows the total number of solutions of the original problem,
which we used to sort the different problems to make the graph easier to read. Every
‘x’ represents a solution retained by the BFR for this problem instance. In the figure we
can observe for example, that the instance 35 has 76 solutions and its BFR has a cluster
of very high quality (based on the lexicographic preferences) and a smaller cluster of
rather poor quality solutions.

3.2 Pruning Heuristics

With the importance of value ordering heuristics for standard CSPs, it seems reasonable
that the selection of the value to be pruned in BFRB may benefit from heuristics. It is
unclear, however, how the standard CSP heuristics will transfer to BFRB. We examined
the following heuristics:

– Domain size: remove a value from the variable with minimum or maximum domain
size.

– Degree: remove a value from the variable with maximum or minimum degree.
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– Lexicographic: given the lexicographic preference on solutions, remove low values
from important variables, in two different ways: (1) prune the value from the lowest
variable whose value is greater than its position or (2) prune any value that is not
among the best 10% in the most important 20% of all variables.

– Random: remove a value from a randomly chosen variable.

Since we are using a seed solution, if the heuristically preferred value occurs in the
seed solution, the next most preferred value is pruned. We are guaranteed that at least
one parent will have a value that is not part of the seed solution or else we would not
have found a dead-end.

Experiments BFRs were found with each of the seven pruning heuristics. Using a
set of 1600 problems with varying tightness and density, we observed little difference
among the heuristics: none performed significantly better than random on either number
or quality of solutions retained. Apparently, our intuitions from standard CSP heuristics
are not directly applicable to finding good BFRs. Further work is necessary to under-
stand the behaviour of these heuristics and to determine if other heuristics can be applied
to significantly improve the solution retention and quality of the BFRs.

3.3 Probing

Since we want BFRs to represent as many solutions as possible, it is useful to model
the finding of BFRs as an optimization problem rather than as a satisfaction problem.
There are a number of ways to search for a good BFR, for example, by performing a



branch-and-bound to find the BFR with the maximal number of solutions. A simple
technique investigated here is blind probing. Because we generate BFRs starting with a
seed solution, we can iteratively generate seed solutions and corresponding BFRs and
keep the BFR that retains the most solutions. This process is continued until no improv-
ing BFR is found in 1000 consecutive iterations. Probing is incomplete in the sense that
it is not guaranteed to find the BFR with maximal coverage. However, not only does
such a technique provide significantly better BFRs based on solution retention, it also
provides a baseline against which to compare our satisfaction-based BFRs.

Experiments Table 1 presents the number of solutions using random pruning with
and without probing on seven different problem sets each with 50 problem instances.
Probing is almost always able to find BFRs with higher solution coverage. On average,
the probing based BFRs retain more that twice as many solutions as the BFRs produced
without probing.

Problem No Probing Probing
(10, 10, 0.75, 0.3) 41.36 274.90
(10, 20, 0.5, 0.3) 774.26 3524.22
(10, 5, 0.25, 0.3) 121463.08134494.04
(10, 5, 0.25, 0.7) 27.84 31.14
(10, 5, 0.5, 0.3) 587.42 2204.08
(10, 5, 0.5, 0.5) 4.10 4.28
(10, 5, 0.75, 0.3) 8.35 25.04

Table 1.Average number of solutions with and without probing.

3.4 Representing Multiple BFRs

Another way to improve the solution coverage of BFRs is to maintain more than one
BFR. Given multiple BFRs for a single problem, we span more of the solution space
and therefore retain more solutions. Multiple BFRs can be easily incorporated into the
original CSP by adding an auxiliary variable (whose domain consists of identifier values
representing each unique BFR ) andn constraints. Each constraint restricts the domain
of a variable to the backtrack-free values for each particular BFR identifier. Provided
that we only represent a fixed number of BFRs, such a representation only adds a con-
stant factor to the space complexity. Online, all variables are assigned in order except
the new auxiliary variable and arc consistency allows the “BFR constraints” to remove
values when they are no longer consistent with at least one BFR.

Experiments To investigate the feasibility of multiple BFRs, we found 10, 50 and 100
differing BFRs for each(15, 10, 0.7, t) problem. The result of applying this technique
is shown in Figure 5 in the relation to the solutions of the original problem, the number
of solutions of the best BFR that could be found using probing (Iter1000rand), and the
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number of solutions in a single BFR using random pruning (Random). Representing
multiple BFRs clearly increases the solution coverage over the best single BFRs we
were able to find with probing.

4 Discussion

In this section we discuss a number of additional issues arise in terms of extensions that
we have not yet empirically investigated, the central issue that BFRs do not retain all
solutions, the role of online consistency enforcement, and a broader perspective that the
BFR concepts allows to a number of aspects of constraint research.

4.1 k-BFR and Restrictedk-BFR

Instead of pruning values from variable domains, we could add new constraints restrict-
ing the allowed tuples. In fact, from this perspective BFRB implements 1-BFR: value
removal corresponds to adding unary constraints. This is one end of a spectrum with
the other end being adaptive consistency. Between, we can define a range of algorithms
in which we can add constraints of arity up tok. For ann-variable problem, whenk
is 1 we have the a value-removal algorithm, whenk is n − 1 we have full adaptive
consistency. Ask increases the space complexity of our BFR increases but so does the
solution retention.

A further variation (calledrestrictedk-BFR) addresses the space increase. Rather
than adding constraints, we only tighten existing constraints. For example, assume
that partial assignment,X1 = v1, ..., Xm = vm, does not extend to a solution and



a constraintc overX1, ..., Xm exists. Restrictedk-BFR will simply remove the tuple
(v1, ..., vm) from c. In general, constraintc will not exist and therefore the algorithm
has to consider constraints over subsets of the variables{X1, ..., Xm}. Given binary
constraints between some pairs of the variables, we can remove the tuple(vi, vj) from
any constraint whereXi andXj are involved in the dead-end. A reasonable approach is
to identify the highest arity constraint involved in a dead-end and remove a single tuple.
This algorithm will always be applicable, since in the extreme no constraints among the
parent variables exist and therefore pruning a “tuple” from a unary constraint is equiva-
lent to BFRB. A drawback of restrictedk-BFR is that it requires extensional constraint
representations.

k-BFR and restrictedk-BFR suggest a number of research questions. What is the
increase in solution coverage and quality that can be achieved without extra space con-
sumption? If we allow new constraints to be added, how do we choose an appropriate
k value? How does a goodk relate to the arity of the constraints in the original CSP?
Given the spectrum that exists between 1-BFR and adaptive consistency, we believe
that future empirical work on these and related questions can be of significant use in
making adaptive consistency-like techniques more practically applicable.

4.2 Coming to Terms with Solution Loss

The central challenge to the BFR concept is that solutions are lost: perfectly good solu-
tions to the original CSP are not represented in its BFR. A problem transformation that
loses solutions is a radical, perhaps heretical, concept. To revisit one of our motivating
examples, failing to represent solutions in an online configuration application means
that some valid product configurations cannot be achieved. This appears to be a high
price to pay to remove the need to undo previous decisions.

There are three characteristics of problem representations that are relevant here:
space complexity, potential number of backtracks, and solution loss. Simultaneously
achieving polynomial space complexity, a guarantee of backtrack-free search, and zero
solution loss implies thatP = NP . Therefore, we need to reason about the tradeoffs
among these characteristics. Precisely how we make these tradeoffs depends on the
application requirements. BFRs allow us to achieve tradeoffs that are appropriate for
the application.

In the autonomous space vehicle application example, backtracking is impossible
and memory is extremely limited. The tradeoff clearly lies on the side of allowing so-
lution loss: any solution is better than spending too much time or memory in finding
the best solution. Therefore, a small number of BFRs that represent a reasonable set of
solutions is probably the best approach.

In the interactive configuration application example, space complexity is less of a
problem and avoiding backtracks is important. Using BFRs, we can create a system that
allows the system designer and user to collaboratively make the three-way tradeoff in
two steps. First, the system designer can decide on the space complexity by choosing the
arity,k, in ak-BFR approach. In the extreme, a singlen−1-BFR achieves full adaptive
consistency and so, if the memory space is available, a zero backtrack, zero solution
loss BFR can be achieved. The system designer, therefore, makes the decision about
the tradeoff between the number of solutions that can be found without backtracking



and the space complexity. Furthermore, the use of seed solutions means that each BFR
can be built around a solution preferred by the system designer: guaranteeing a minimal
set of desirable solutions. Second, the BFRs together with the original CSP can be used
online to allow the user to make the tradeoff between solution loss and backtracks. The
BFRs create a partition of the domain of each variable: those values that are guaranteed
to lead to a solution without backtracking and those for which no such guarantee is
known. These partitions can be presented to the user by identifying the set of “safe” and
“risky” options for a particular decision. If the user chooses to make safe decisions, the
BFRs guarantee the existence of a solution. If the user decides to make a risky decision,
the system can (transparently) transition to standard CSP techniques without solution
guarantees. This allows the user to decide about the tradeoff between backtracks and
solution loss: if the user has definite ideas about the desired configuration, more effort
in terms of undoing previous decisions may be necessary. If the user prefers less effort
and has weaker preferences, a solution existing in one of the BFRs can be found.

The basic BFR concept encompasses solution loss because it allows backtrack-free
search with no space complexity penalty for those applications where zero backtracks
and limited memory are hard constraints. When solution loss may be more important,
the k-BFR concept together with online solving using both the BFR and the original
representation allow the system designer and the user to collaboratively decide on the
tradeoff among space complexity, backtrack-free search, and solution loss.

4.3 Online Consistency Enforcement

By changing our assumptions about the on-line processing, we can also expand the set
of techniques applied in finding the BFR. As noted, we are enforcing arc-consistency
during the creation of a BFR: whenever a value is pruned to remove a dead-end, we en-
force arc-consistency. When solving a problem online, however, we do no propagation
as we are guaranteed that the possible values are (globally) consistent with the previous
assignments. If, instead, we use forward checking or MAC online, we can remove fewer
dead-ends offline and retain more solutions in a BFR. In creating a BFR, we need to
remove dead-ends that may be encountered by the online algorithm. If the online algo-
rithm itself can to avoid some dead-ends (i.e., through use of propagation), they do not
need to be dealt with in the BFR. This means, in fact, that a backtrack-free representa-
tion is backtrack-free with respect to the online algorithm: a BFR built for MAC will
not be a BFR for simple backtracking (though the converse is true). BFRB can be easily
modified to ensure that only those dead-ends that exist for a specific online algorithm
will be pruned.

4.4 Context

The work on BFRs presents a perspective on a number of fundamental dichotomies in
constraint processing.

Inference vs. SearchAs in many aspects of constraint computation, the axis that runs
from inference to search is relevant for BFRs. The basic BFR algorithm allows us to
perform pure search online without fear of failure. BFRs for online algorithms that use



some level of inference require more online computation while still ensuring no back-
tracks and preserving more solutions. It would be interesting to study the characteristics
of BFRs as we increase the level of online consistency processing.

Implicit vs. Explicit SolutionsBFR models can be viewed along a spectrum of implicit
versus explicit solution representation, where the original problem lies at one end, and
the set of explicit solutions at the other. The work on “bundling” solutions provides
compact representations of sets of solutions. Hubbe & Freuder [8] and Lesaint [9] rep-
resent sets of solutions as Cartesian products, each one of which might be regarded as
an extreme form of backtrack-free representation. If we restrict the variable domains
to one of these Cartesian products, every combination of choices is a solution. All the
solutions can be represented as a union of these Cartesian products, which suggests that
we might represent all solutions by a set of distinct BFRs. As we move toward explicit
representation, the preprocessing cost rises. Usually the space cost does as well, but
1-BFR and restrictedk-BFR are an exception that lets us “have our cake and eat it too”.

Removing values vs. SearchRemoving values is related in spirit to work on domain
filtering consistencies [2] though these do not lose solutions. Another spectrum in which
BFRs play a part therefore is based on the number of values removed. We could envision
BFRB variations that remove fewer values, allowing more solutions, but also accepting
some backtracking. Freuder & Hubbe [6] remove solutions in another manner, though
not for preprocessing, but simply in attempting to search more efficiently. Of course, a
large body of work on symmetry and interchangeability does this.

Offline vs. Online EffortBFRs lie at one end of an axis that increasingly incorporates
offline preprocessing or precompilation to avoid online execution effort. These issues
are especially relevant to interactive constraint satisfaction, where human choices alter-
nate with computer inference, and the same problem representation may be accessed
repeatedly by different users seeking different solutions. They may also prove increas-
ingly relevant as decision making fragments among software agents and web services.
Amilhastre et al. [1] have recently explored interactive constraint solving for configu-
ration, compiling the CSP offline into an automaton representing the set of solutions.

“Customer-centric” vs. “Vendor-centric” PreferencesAs constraints are increasingly
applied to online applications, the preferences of the different participants in a transac-
tion will come to the fore. It will be important to bring soft constraints, preferences and
priorities, to bear on BFR construction to address the axis that lies between “customer-
centric” and “vendor-centric” processing. For example, a customer may tell us, or we
may learn from experience with the customer, that specific options are more important
to retain. Alternatively, a vendor might prefer to retain an overstocked option, or to
remove a less profitable one.

5 Conclusion

In this paper we identify, for the first time, the three-way tradeoff between space com-
plexity, backtrack-free search, and solution loss. We presented an approach to obtaining



a backtrack-free CSP representation that does not require additional space and investi-
gated a number of variations on the basic algorithm including the use of seed solutions,
arc-consistency, and a variety of pruning heuristics. We have evaluated experimentally
the cost of obtaining a BFR and the solution loss for different problem parameters.
Overall, our results indicate that a significant proportion of the solutions to the origi-
nal problem can be retained especially when an optimization algorithm that specifically
searches for such “good” BFRs is used. We have seen how multiple BFRs can cover
more of the solution space. Furthermore, we have argued that BFRs are an approach
that allows the system designer and the user to collaboratively control the tradeoff be-
tween the space complexity of the problem representation, the backtracks that might be
necessary to find a solution, and the loss of solutions.

Our approach should prove valuable in real-time process control and online inter-
active problem solving where backtracking is either impossible or impractical. We ob-
served further that the BFR concept provides an interesting perspective on a number
of theoretical and practical dichotomies within the field of of constraint programming,
suggesting directions for future research.
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